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Highlights: 

 

x High-magnification (63X) benchtop FTIR imaging of colon tissues of clinical origin 
x Highly resolved detail of cellular features and tissue type boundaries in a label-free manner 
x Indication of differences between intracellular mucin and mucin secreted outside the cells. 

 

Abstract:    

Label-free imaging of cells and tissues is a promising tool to study the molecular alterations for 

improved cancer diagnosis. In this regard, vibrational spectroscopic method of FTIR imaging has 

been employed to study the histo-pathological features and the alterations were correlated to a 

disease state. The aim of this study was to see if magnification to image pixel size smaller than the 

diffraction limit of mid-IR wavelengths with two NA objectives could provide cellular and subcellular 

resolution of key diagnostic features. To this effect, FTIR spectroscopic imaging has been carried out 

directly on paraffinized colon tissue sections using a benchtop imaging system consisting of two 

different IR objectives with a NA of 0.81 and 0.62. The high NA objective (0.81) at a high 

magnification (63X) provided a pixel size of 0.63x0.63 µm2 in comparison to the standard 

magnification (12X) where the pixel size is 3.3x3.3 µm2. The second objective (0.62 NA) at a high 

magnification (36X) provided a pixel size of 1.1x1.1 µm2 in comparison to the standard magnification 

(7X) pixel size of 5.5x5.5 µm2. The spectral images were corrected for paraffin and other spectral 

interferences using a modified EMSC algorithm and subjected to cluster analysis in order to 

appreciate the histopathological details. Comparison of the cluster analysis results to adjacent 

haematoxylin and eosin stained tissue sections which were used as the morphological controls, 

revealed various levels of histological and cellular organization. Together with large scale features 

such as the glandular and connective tissue regions, small scale features like goblet cells, interfaces 

between tissue types especially the peri-cryptal fibroblastic sheath were observed. Noticeable 

differences between intracellular mucin and secreted mucin was also observed. However, it appears 

that high power mid-IR radiation sources would be more beneficial especially when higher signal to 

noise levels would be needed at smaller time frames.   

Keywords: mid-IR spectroscopic imaging, histopathology, colon cancer, goblet cells, high-resolution 

infrared imaging, FTIR imaging 



 

1. Introduction:  

Detection of early molecular changes indicative of disease is vitally important to ensure effective 

treatment selection. This is particularly important in diseases such as cancer; which continues to be 

one of the most significant global burdens in terms of both incidence and mortality [1]. Early signs of a 

disease are manifested by changes at the very basic genomic and proteomic levels which are then 

expressed at a much larger cellular and tissue level [2]. Diagnostic techniques directed towards 

identifying these changes in most cases need the samples to be extrinsically labelled to facilitate their 

detection. Such precise changes detected using these techniques are specific only to a small region 

of the genome or the proteome.  Histopathology, which is the current diagnostic ‘gold-standard’ for 

cancer, on the other hand provides information on the morphological changes occurring at a much 

larger level, from large areas of a diseased tissue [3]. In this case too, the samples need to be 

labelled for visual inspection. Alternatively, vibrational spectroscopy based in the mid-infrared (mid-IR) 

can provide a bio-molecular fingerprint of cells [4-7], tissues [8-11] and bio-fluids [12,13] 

encompassing a wide range of bio-molecular information without the need for any extrinsic labelling. 

Hence rather than monitoring a single entity or a single biomarker, global changes associated with a 

disease state could be identified using this approach. Using hyperspectral IR imaging approach, the 

measured tissue regions are captured simultaneously by an array of pixels on a detector through 

which spatial detail could be obtained.  

One of the factors that determine the image spatial detail is the pixel size that allows collection of 

sufficient sampling frequency [14]. Based on the Rayleigh criterion, although a theoretical spatial 

resolution that is of the order of the wavelength (~ 2-12 microns using mid-IR spectral range) could be 

achieved, lack of sufficient sampling frequency is a limitation. Previously, this has been the case due 

to limited technical capabilities of the imaging systems including detectors, light sources and optical 

components. Due to these constraints, direct characterization of smaller scale histological features 

(such as cells and subcellular features, histological boundaries between tissue types etc) was not 

entirely possible.    

Most of the standard benchtop FTIR imaging systems provided pixel sizes as small as 6.25x6.25 µm2 

or 5.5x5.5 µm2 [9,11,12]. Some systems provided even smaller pixel sizes as low as 2.6x2.6 µm2 



which were used to elucidate the histological features of tissue sections [15-16]. In recent years, 

imaging at a smaller scale within the theoretical limits of the mid-IR range using far field or standard 

microscopy (not considering near field IR spectroscopy) has been attempted using improved optical 

set ups, detector systems and brighter radiation sources [14, 17-20]. Before this, such attempts were 

restricted to Synchrotron radiation sources [21,22] that exhibit higher intensity than conventional 

Globar® sources.   

It has been shown recently that using a benchtop instrument with a Globar® and using an enhanced 

optical set up, it is possible to identify cellular features with a high degree of detail [18,19]. This optical 

set up consisted of a 0.62 NA objective and with an enhanced optical set up provided 36X 

magnification corresponding to a pixel size of 1.1x1.1 µm2 that was five times smaller than that 

achieved using standard IR optics (usually 5.5x5.5 µm2). We have shown that, sufficient sampling 

frequency is generated with this set up through which images with higher detail could be achieved 

and those when subjected to multivariate statistical analysis can enable detailed histological 

characterisation of cells and tissues.       

In the current study, the aim was to see if further enhancement of magnification together with 

increased NA of the objective using a similar set up (Agilent benchtop instrument with a Globar® 

radiation source) could furthermore improve image quality and thereby its histological 

characterization. For this, a higher NA objective (0.85) with a magnification of 12X in standard mode 

and 63X in a high magnification mode was used. The high magnification mode provided a sampling 

frequency corresponding to a pixel size of 0.63x0.63 µm2 in comparison to the standard magnification 

where the pixel size is 3.3x3.3 µm2.     

 

2. Materials and Methods:  

FTIR images were obtained using an Agilent FTIR imaging system (Agilent 620 FTIR microscope 

coupled with an Agilent 670 FTIR spectrometer) with a Globar® source, and a liquid-nitrogen cooled 

128x128 FPA detector. Two different IR objectives of 15X (objective 1) and 25X (objective 2) were 

used for measurements. The first objective (15X) with a NA 0.62 provided a final magnification of 7X 

in standard mode (there is ∼2X de-magnification after the 15X objective) and 36X in high 

magnification mode at the sample plane (there is ∼2.4X extra magnification on top of the 15X), 



resulting in a pixel size of 5.5x5.5 µm2 and 1.1x1.1 µm2 respectively on the FPA detector. The second 

objective (25X) with a higher NA of 0.81 provided a magnification of 12X in standard mode (there is 

∼2X de-magnification after the 25X objective) and 63X in high magnification mode at the sample 

plane (there is ∼2.5X extra magnification on top of the 25X), resulting in a pixel size of 3.3x3.3 µm2 

and 0.66x0.66 µm2 respectively. For clarity, only the final magnifications at the sample plane (i.e. 7X 

and 36X for objective 1; and 12 and 63X for objective 2) will be used hereafter. For 7X and 12X 

modes the incident radiation was used at only 25% throughput. This is required due to the high-

sensitivity of the currently used FPA detector to avoid possible speckles. Alternatively, this was offset 

to a certain extent by increasing the attenuation time compared to what would have been used at full 

throughput. For 36X and 63X modes, the incident radiation was used at its full capacity of 100%.   

Samples included a polystyrene film, a chrome-on-glass 1951 USAF target (Edmund Optics) and five 

formalin fixed paraffin embedded (FFPE) benign colon tissues, obtained with the approval of the local 

research ethics committee for collection of additional biopsies during routine clinical investigations by 

colonoscopy. For the polystyrene film, different numbers of scans (16, 32, 64 and 128) was measured 

at 4cm-1 spectral resolution in order to compare the signal to noise levels of the 0.62 NA and 0.81 NA 

objectives in both standard and high magnifications. The background spectra of air at 256 scans were 

obtained for this. To calculate the signal, the difference of the maximum and the minimum peak height 

above the baseline in the signal range of 1500-1480 cm-1 was used while the difference of the 

maximum and the minimum peak in the signal-free range of 2100-2050 cm-1 was used for the noise. 

The median signal to noise ratio (SNR) over all the pixels in the image with error bars of ±1 median 

absolute deviation from the median (MAD) were calculated.   

In order to test the highest resolution achievable with the instrument, an FTIR map of the inner 

structure of the USAF target consisting of elements 4, 5 and 6 of group 7 was measured using the 

0.81 NA objective in high magnification mode. The target being manufactured from chrome on glass, 

required the measurements to be made in reflectance mode to enable the full mid-IR spectral range to 

be utilized. Background spectra were collected at 256 number of scans from the chrome on glass 

region, which was then ratioed against glass to get the contrast. The mosaic image itself consisted of 

3x3 tiles collected with 128 scans each at 32 cm-1 spectral resolution. Data was loaded into R using 

the software package hyperSpec [23], and ggplot2 [24] was used to generate the figures. Spectra 



containing detector artefacts were excluded by considering only spectra with an average total 

intensity of below 1.2 for further analysis.   

Colon tissues were sectioned to 7 microns and placed on mid-IR transparent calcium fluoride (CaF2) 

substrates. They were measured without chemical de-paraffinization. To account for the potential 

interferences from paraffin, which has a strong FTIR absorbance spectrum, a mathematical de-

paraffinization was performed after imaging to minimize paraffin signal contributions; an approach we 

have previously shown to be highly effective [25-27]. The tissue sections were measured using 64 

scans at 4 cm-1 spectral resolution and multi-mosaic images (multiple FPA tiles) were obtained 

depending on the size of the sample and the type of objective/magnification used. A clean area of the 

CaF2 slide was used for the background, measured at 256 scans.    

All the post-measurement analyses were carried out using in-house programs written in Matlab 

R2014b® (Mathworks, USA). The pre-processing of the raw IR spectra was carried out in a similar 

way to the previous work [25-27]. In brief, the IR images of the colon tissues were independently pre-

processed using a modified extended multiplicative signal correction algorithm (EMSC). EMSC based 

mathematical de-paraffinization is now commonly being employed to minimize the variance 

contributions of paraffin in paraffinized tissue sections [19,28]. The algorithm employs a pure paraffin 

model (obtained from tissue free area of paraffin and consisting of mean paraffin spectrum and its first 

ten principal components) as an interference matrix incorporated into the EMSC model. Then using a 

fitting algorithm the paraffin variability across all the pixels of the image is minimized and only the 

biomolecular variability arising from the biological tissue is retained. The spectral images were also 

simultaneously corrected for baseline (polynomial order 4) and normalized using the same EMSC 

algorithm. The EMSC corrected spectral images were subjected to cluster analysis based on the K-

means clustering algorithm (using Euclidean distance) with the aim to segment the various 

histological features of the tissue sections. The spectra corresponding to pure paraffin regions (without 

any tissue features) and the spectra that are noisy with low signal to noise identified by the EMSC 

algorithm as outliers are coloured as white pixels in all of the IR images [27]. The cluster centroids 

were plotted and the spectral distances between clusters were calculated (Hierarchical clustering 

using Ward’s linkage algorithm) and represented in the form of a dendrogram in order to visualize the 

heterogeneity between different histological groups. K-means is an unsupervised iterative algorithm 

that is a well-suited method for processing large data sets such as in this case [29]. In addition, 



Spatially Guided Fuzzy C-Means (sgFCM) clustering was applied to a selected subset of the samples 

to test if any additional information could be obtained in comparison to the K-means clustering [30]. 

This method has been shown to be effective in segmentation of MRI images with noise and intensity 

inhomogeneity and works by high probability of grouping with the neighbouring pixel if they share 

similar characteristics.  Both pre-processing and further analysis of the colon tissue images were 

carried out in the spectral range of 1800-1000 cm-1 owing to the specificity of this region to 

biomolecular features. All measurements were carried out in the spectral range of 3800-1000 cm-1 

and in transmission mode except for the USAF target where reflection mode was employed.      

 

3. Results and Discussion: 

3.1. Signal to Noise optimization: The signal to noise levels when using various experimental 

parameters and objectives using the benchtop FTIR imaging system were compared in order to 

establish sufficient SNR levels for further measurements. For this, different numbers of scans were 

tested on a polystyrene window using the two different IR objectives (NA of 0.62 and 0.81) at two 

different magnifications each (standard and high magnifications). As shown in Figure 1, there is an 

approximately linear trend of SNR improvement with increasing number of scans for each of the 

modalities. The standard magnification of both objectives (7X and 12X) on average show a higher 

SNR compared to the high magnification set ups (36X and 63X). This is expected as lower 

magnifications benefit from light throughput to the detector pixels, while higher magnifications (and 

smaller image pixel sizes) lead to reduced light reaching each detector pixel. Nonetheless, with the 

current high magnification set ups, there still appears to be comparable signal to noise levels to the 

standard ones although on the lower side and with an appropriate number of scans, sufficient signal 

to noise levels could be achieved with all configurations. Based on this and in order to establish a 

balance between the signal quality and time constraints especially for imaging of larger samples, 64 

scans per FPA tile were used for further measurements with respect to both the objectives and their 

magnifications. This corresponded to 5 min of acquisition time per FPA tile.   

 

3.2. Characterization of resolving capability: In order to measure the highest resolution of the 

system, rather than the pixel size, the elements 4, 5 and 6 of group 7 on the USAF target were 



measured using the objective with the highest NA at the highest magnification (0.81 NA and final 

magnification of 63X). The lines / spacings of this group are separated by 2.76, 2.46 and 2.19 microns 

respectively. Figure 2 shows the images obtained by visualizing the average intensity per pixel of a 

low wavenumber region (Figure 2A, 1400 to 1000 cm-1) and a higher wavenumber region (Figure 2B, 

3900 to 3800 cm-1). Figure 2C shows a zoomed area of the smallest structures (from Figure 2B) of the 

USAF target for the region 3900-3800 cm-1 and below it the corresponding intensity along the 

coloured cross sections. The differences in intensity along the cross section show that all of the 

structures of the target are clearly resolvable in the high wavenumber region. The Rayleigh criterion 

for optical resolution requires a differences in detected intensity of at least 25% to consider two points 

being separated is clearly fulfilled for all structures here [31]. However this only gives discrete 

resolution for specific wavelengths and estimating the resolution of an image when using multivariate 

analysis of an entire spectrum is still a subject of ongoing research. To resolve the USAF target 

features as small as ~2.19 microns (element 6 of group 7) using a pixel size of 0.66x0.66 µm2, 

needed a sampling frequency of ~ 3.5. Further, pixels were binned to explore how reduction in the 

sampling frequency affects the resolution of the USAF target features. For this, pixels from figure 2C 

were binned two times (figure 2D) and four times (figure 2E) and their respective intensity profiles 

plotted (corresponding plots below figures 2D and E respectively). The USAF target features were still 

resolvable (following the Rayleigh criterion) for figure 2D (sampling frequency of ~ 1.8), while the 

structures become no more resolvable as can be observed by the loss of the intensity plot in figure 2E 

(sampling frequency of ~ 0.9). Overall, the plot shows a decreasing intensity profile for resolving the 

USAF target features as the sampling frequency decreases. It has to be noted that the difference in 

spatial resolution between the vertical and horizontal axis especially in figure 3C, is an inherent effect 

caused by the sampling geometry. In transflection mode, only half of the objective is illuminated by 

the source whereas the other half of it is used to collect the transflected light. This effectively results in 

a lower opening angel along one of the axis and therefore decreases spatial resolution along that 

axis. 

 

3.3. Characterization of tissue features: While the USAF standard provided a good reference to 

test the imaging system, the ultimate resolving capabilities were tested directly on real samples from 

clinical origin. This provides a direct evidence for the features of interest that could be resolved for 



diagnosis of a disease. To this effect, initially the same region of interest of a paraffinized colon tissue 

sample was measured using both IR objectives and at two different magnifications each 

corresponding to different pixel sizes. The details corresponding to these objectives and the 

achievable pixel sizes is shown in Table 1. A total of 4 images using the different parameters were 

obtained from this sample, pre-processed and subjected to independent K-means cluster analysis. As 

shown in Figure 3, a comparison of the cluster analysis results demonstrates the glandular or 

epithelial regions (crypts) and the connective tissue regions (regions between the glands/crypts), but 

with a different degree of detail in each of the 4 images. These variations were prominent especially in 

and around the epithelium corresponding to nuclear regions, cytoplasmic regions, mucin features and 

goblet cells as discussed in detail later in this section.   

Although, a higher NA is associated with higher spatial resolution, optimal sampling frequency is still 

essential to attain the necessary image detail. This is exemplified in figure 3C, where although a setup 

of higher NA (NA 0.81) was used in comparison to figure 3B (NA 0.62), the obtained image detail is 

lesser compared to the latter. It has to be noted that although a higher NA objective was used in 

figure 3C, the pixel size was 3.3x3.3 µm2 as compared to the lower NA objective for which the pixel 

size was 1.1x1.1 µm2. In terms of sampling frequency for the given size of the image which was ~ 

416x228 microns; figure 3C was obtained using 126x69 pixels while figure 3b was obtained using 

378x207 pixels respectively. Therefore, obtaining a sufficient sampling frequency using optimal 

magnifications could enhance the resolving capabilities of a system.  

This is directly translated into histopathological characterization of the analyzed tissue where the 

degree of elucidated tissue features differed; examples in this case are the cellular features such as 

goblet cells. As can be seen in Figure 3B, there is a clear separation of goblet cells features (cluster 

8) while in Figure 3C these regions/clusters appear averaged across pixels. Nonetheless, the best 

image for cellular detail was achieved using the high magnification mode of the 0.81 NA objective, 

where the final magnification was 63X with a pixel size of 0.66x0.66 µm2 as shown in Figure 3D. In 

this case, a very clear pattern of the glandular structures/crypts (clusters 8, 4, 6, 2, 7, 9 and 1) and the 

connective tissue (clusters 5 and 3) could be resolved.  

In comparison to previous studies based on mid-IR imaging including our own, several interesting 

features were observed in the current study. Firstly, as reported previously [19], the goblet cell 



features were immediately distinguishable along the edge of the crypts (clusters 6 and 2) based on 

the dominant mucin spectral features and the corresponding dendrogram (Figure 4) and their 

localization with in and along the outer region of the crypt [30]. Additionally in this case, features that 

can be correlated to mucin secretion from the goblet cells to the lumen of the crypt were observed. 

Cluster 8 in Figure 3D, which is the extra cellular mucin present in the central lumen of the crypt also 

appears as part of some of the goblet cells (clusters 6 and 2) but always facing towards the internal 

part of the gland. This continues from the cellular part towards the crypt lumen. This observation gives 

rise to the hypothesis if the differences in spectral signatures are discriminating the mucin internalized 

within the goblet cells from the mucin secreted outside of the cells. The clusters 6 and 8 although both 

correspond to mucin they are distinctively localised with a specific pattern. This distinct clustering 

within and outside the cell potentially indicates that extracellular mucin is distinct from the intracellular 

mucin. Whether this is associated with localisation between secreted or trans-membrane type mucins 

or is just related to the pure form of mucin secreted out of the cells needs to be further evaluated. 

Additional studies in conjunction with glycoprotein assays could provide more insights into this 

observation, the validation of which could enable label-free and rapid characterization of mucins 

which are implicated in a wide range of diseases including cancer.    

Secondly, the boundaries between glandular tissue and connective tissue were more apparent 

compared to previous studies [32-34]. In particular, cluster 1 established a clear separation at the 

epithelial-connective tissue boundary which is followed by a second layer as cluster 9. Previously this 

boundary was always accredited to the outer nuclear region of the crypt due to lack of high degree of 

detail [32]. It is however known that this region is in the vicinity of the basement membrane and the 

peri-cryptal fibroblastic sheath (PCFS). The presence of two distinct regions surrounding the crypt 

indicate that the layer of PCFS corresponding to the basement membrane of the colonic epithelium 

specifically in conjunction with the outer nuclear part is being resolved. The ability to resolve these 

features using a label-free spectral histopathological approach could enable rapid identification of 

invasive cancers as the degradation of the PCFS in conjunction with the basement membrane is one 

of the vital signs of tumor invasiveness [35].       

In some of the other samples analyzed, pixelation of the connective tissue region was observed and 

sufficient segmentation of the histological features could not be obtained. On closer examination, a 

low variance between histological groups was noted which potentially could be due to the combination 



of the current optical set up with the low brightness Globar® radiation source, with the point spread 

function (PSF) at the longer wavelength covering several image pixels. This observation points out to 

the importance of employing high intensity radiation sources such as synchrotrons, or laser sources 

such as quantum cascade lasers (QCL) or supercontinuum sources, that could potentially improve the 

signal to noise levels to overcome such issues.    

To explore if the connective tissue group pixel membership could be improved using an alternative 

less constrained approach, cluster analysis based on sgFCM was tested on these images. This 

method has been used elsewhere to address similar issues in magnetic resonance imaging (30). As 

an example, the same FTIR image of a tissue interphase between an adenomatous and a normal 

gland processed using K-means clustering and sgFCM is shown in Figure 5. As can be seen in the 

Figure 5A (K-means image), most of the connective tissue region (between the glands) appear 

pixelated (clusters 4 and 6). By the use of sgFCM (Figure 5B), this could be overcome where a better 

segmentation of both the epithelial (clusters 1,2,4,5 and 7) and the connective tissue regions (cluster 

3) was obtained. Although no major segmentation difference could be observed between the 

adenomatous and the normal gland, clusters 5 and 7 appears to belong exclusively to the normal 

gland. However, the data is not sufficient in this case to imply any pathological evidence at this point 

and it is the segmentation of different tissue types (epithelium and connective tissue) that is of 

interest. 

Finally, four different tissue interfaces (epithelium, lamina propria, muscularis mucosa and 

submucosa) from the same tissue section were measured and analyzed using K-means cluster 

analysis. As shown in Figure 6, all the tissue interfaces were segmented in a way directly comparable 

to the HE stained tissue (Epithelial glands – cluster 1 and 7, lamina propria – cluster 3, muscularis 

mucosa – cluster 6 and submucosa – clusters 2; clusters 4 and 5 could not be attributed to any 

histological features). Further, the identification of boundaries especially between epithelium and the 

remaining connective tissue of lamina propria, submucosa and muscularis mucosa is much defined 

and easier to identify in the IR cluster image.      

The exploration of label-free diagnostic methods is a highly sought after area of research and mid-IR 

spectral imaging is a promising tool in this regard. This is now well documented where several studies 

have shown the potential of mid-IR imaging as a diagnostic tool applied to various types of cancer 



[9,10,36-38]. To precisely interpret the biomolecular changes either in a manual or an automatic 

manner, it is essential to have highly resolved images. Until recently, although mid-IR wavelengths as 

low as ~2 microns were used for imaging, due to the limitations in instrument capabilities, such spatial 

resolutions in an image could not be achieved. Although, to discriminate a diseased tissue from a 

non-diseased tissue, such high resolution imaging may not be required [9,11], it is of great importance 

from a clinical perspective to obtain as pure spectral information as possible to monitor molecular 

changes at the smallest level possible. Such capabilities could potentially reduce the chances of mis-

diagnosis (over or under diagnosis) as the boundaries between cells or tissue types would be much 

more defined and easier to interpret.    

One of the important reasons for not being able to achieve diffraction limited resolution of the order of 

the wavelength, was the lack of optimal sampling frequency or smaller pixel sizes. With the very 

recent developments in various instrument parameters, it is now becoming possible to obtain a higher 

sampling frequency by effectively reducing the pixel sizes by improved magnifications at the sample 

plane [14,17-19]. According to the Rayleigh criterion, the diffraction limited spatial resolution = 

0.61λ/NA, where λ is the wavelength of the light and NA is the numerical aperture of the objective. 

Therefore using the IR objective of NA 0.81, the achievable theoretical spatial resolution at 3900-3800 

cm-1 (equivalent to ~2.6 micrometres) is ~2 microns. Using this at 63X magnification corresponding to 

a pixel size of 0.66x0.66 µm2, it was possible to resolve the USAF target features as small as ~2.19 

microns (element 6 of group 7, figure 2) which therefore needed a sampling frequency of ~ 3.5.   

However, the analysis of the tissue sections was performed in the fingerprint region of 1800-1000 cm-

1 (equivalent to ~5.5 to 10 micrometres). With the high NA objective of 0.81, the achievable theoretical 

spatial resolution in this region is 4 to 7.5 microns. The features of interest that were targeted to be 

resolved were still within these scales which included the cellular features, the epithelial-connective 

tissue boundaries and especially the boundary that corresponded to the PCFS. Such improvements 

were possible due to the improved magnifications using smaller pixel sizes.  

In our previous study, imaging of colon tissues was carried out using a 0.62 NA objective at 36X 

magnification and a pixel size of 1.1×1.1 μm2 [19]. In comparison to this, the current study 

demonstrates an important improvement in the technical capability of the current FTIR bench top 

imaging systems, where the suitability of using a higher NA objective at 63X magnification and a pixel 



size of 0.66×0.66 μm2 is demonstrated. Furthermore, in going from 1.1×1.1 μm2 to 0.66×0.66 μm2, the 

improvement in resolving tissue interfaces between epithelium and connective tissue, the PCFS and 

mucin associated patterns are highlighted in the current study. 

Although the spectral images of colon tissue shown here provide potentially important detail, there are 

certain limitations when using such high-resolution imaging methods. Due to the higher magnifications 

and smaller pixels sizes, the time taken to measure tissue regions increases to a large extent and 

thereby the amount of data collected. Therefore with the current technical capabilities such application 

would be feasible only to screen specific regions of interest that are of diagnostic importance and that 

are not possible to resolve using standard approaches. Nevertheless, such specific details would 

provide vital information to clinicians/pathologists. However, with improvements in detector areas, 

pixel densities, sizes such as megapixel detectors, and further improvements to optical set ups, it 

might become possible to scan large areas at high magnifications.  

Alternatively, discrete frequencies could be used provided sub-spectral sampling is sufficient, 

reducing the amount of data and associated acquisition time to a large extent [39]. Such approaches 

could be made possible using high power radiation sources such as QCLs [40-42] or supercontinuum 

sources that are under development [43, 44]. Such sources would also mean improved signal to noise 

levels thereby providing a chance to mitigate the time constraints using the current systems. One of 

the challenges in this study was that the variance in the images with the pixel size of 0.66x0.66 µm2 

was quite low to be able to exploit the spectral information. This could have been improved to an 

extent by increasing the number of scans per FPA tile with a compromise with the time constraints. 

However, in the future the use of high power radiation sources could potentially overcome this 

problem allowing correlating the morphological differences to the spectral differences.  

 

4. Conclusions:  

The current study demonstrates a label-free biomolecular approach based on FTIR spectroscopic 

imaging to characterize cellular and histological features of FFPE colon tissues from clinical origin at a 

high degree of detail. We have shown that FTIR imaging at reduced pixel sizes using higher 

magnifications improves the degree of histological detail that could be obtained. This is demonstrated 

by detailed segmentation of goblet cell features and tissue interphases between epithelium and 



connective tissue especially the PCFS. Further there appears to be an indication that the intracellular 

mucin is different from the mucin secreted outside the cells.  For conventional IR radiation sources, 

obtaining sufficient signal to noise levels might still be a limitation with respect to time constraints 

where traditional multivariate algorithms need to be adapted for effective segmentation of the spectral 

data. Alternatively, high power radiation sources could potentially overcome these issues. FTIR 

imaging at higher magnifications appears to be an advance revealing further small scale details for 

obtaining molecular information for the diagnosis of cancers.  
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Figure captions: 

Figure 1: Signal to noise ratio comparison between the O.62 NA (7X and 36X magnification) and 0.81 NA (12X 

and 63X magnification) infrared objectives at different number of scans. Plots indicate median signal to noise 

ratio over all the pixels of the IR image of a polystyrene film with error bars of ±1 median absolute deviation from 

the median. 

Figure 2: FTIR image of chrome on glass USAF 1951 target of the elements 4, 5 and 6 of group 7 measured 

using 0.81 NA infrared objective at 63X magnification corresponding to a pixel size of 0.66x0.66 µm2. A. Average 

intensity per pixel in the region 1400-1000 cm-1; B. Average intensity per pixel in the region 3900-3800 cm-1; C. 

Zoomed in area of the boxed region from B with its corresponding average intensity along the coloured lines; D. 

2X2 binned image of C with its corresponding average intensity along the coloured lines; E. 4X4 binned image of 

C with its corresponding average intensity along the coloured lines.    

Figure 3: Comparison of histological resolving capabilities of FTIR benchtop imaging with cluster analysis of a 

normal colon tissue with respect to the HE stained morphological control using different NA objectives. A. 0. 62 

NA objective at 7X magnification and a pixel size of 5.5×5.5 μm2; B. 0. 62 NA objective at 36X magnification and 

a pixel size of 1.1×1.1 μm2; C. 0. 81 NA objective at 12X magnification and a pixel size of 3.3×3.3 μm2; D. 0. 81 

NA objective at 63X magnification and a pixel size of 0.66×0.66 μm2. All the images were analyzed independently 

using different cluster numbers and the color are randomly assigned for a given image. The size of the measured 

tissue was ~ 416x228 microns.    

Figure 4: Cluster centroid spectra and dendrogram corresponding to figure 3D in the spectral region of 1800-

1000 cm-1. The cluster centroids show typical glycoprotein features corresponding to mucin indicated at the 

respective wavenumbers. The corresponding dendrogram representing the heterogeneity of the clusters is also 

shown. 

Figure 5: Comparison of FTIR-cluster analysis results of a benign colon tissue using K-means clustering and 

spatially guided Fuzzy C-means clustering with respect to the HE stained morphological control. Images were 

obtained using a 0.81 NA objective at 63X magnification and a pixel size of 0.66×0.66 μm2. The size of the 

measured tissue was ~ 169x169 microns.   

Figure 6: Histological characterization of a normal colon tissue using FTIR benchtop imaging with cluster 

analysis in comparison to the HE stained morphological control. The FTIR image was acquired using a 0.81 NA 

objective at 63X magnification and a pixel size of 0.66×0.66 μm2. The size of the measured tissue was ~169x338 

microns.      
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Table 1: Achievable pixel sizes from the two IR objectives at different magnifications 

 

 Standard magnification High magnification 

Objective 1, NA 0.62 7X  
(Pixel size: 5.5 x 5.5 μm2) 

36X 
(Pixel size: 1.1 x 1.1 μm2) 

Objective 2, NA 0.81 12X 
(Pixel size: 3.3 x 3.3 μm2) 

63X 
(Pixel size: 0.66 x 0.66 μm2) 

 

 


