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Abstract. Multi-objective hyper-heuristics are fast becoming an efficient way of optimising complex problems.
The water distribution network design problem is an example of such a problem, and this work employs a recent
hyper-heuristic that generates sequences of low-level heuristics to solve the multi-objective water distribution
design problem. The results presented are comparable to those generated by state-of-the-art metaheuristics, as
well as a single-objective version of the algorithm from the literature. The information revealed from analysing
the sequences generated to solve the problem reveal important information about the nature of the problem space
that is not available from the metaheuristics, and the entire Pareto front can be explored in a single run as opposed
to the multiple runs needed with the original single-objective algorithm.

1 Introduction

Hyper-heuristics are search and optimisation approaches for
optimising complex problems. Whereas metaheuristics use a
pre-defined strategy for applying low-level heuristics to gen-
erate new solutions to an optimisation, hyper-heuristics opti-5

mise the set of heuristics used to optimise a problem. They
operate above the “domain barrier”, requiring no detailed in-
formation about the optimisation problem they are employed
to solve. They have been used extensively to optimise single-
objective combinatoric problems, making them a natural can-10

didate for optimising water distribution network (WDN) de-
sign problems, and they have been used successfully in this
area (e.g. McClymont et al., 2013; Kheiri et al., 2015). Re-
cent work has considered the solution of multi-objective
problems with hyper-heuristics. Multi-objective optimisa-15

tion hyper-heuristics are also emerging Guizzo et al. (2015);
Maashi et al. (2015, 2014); Walker and Keedwell (2016a),
and as the WDN problem can be cast in terms of multiple
objectives it is sensible to consider the use of multi-objecitve
hyper-heuristics to solve it.20

The multi-objective algorithm employed herein generates
sequences of heuristics that lead to good solutions. A single-
objective version of the algorithm has been shown to produce
good results (Kheiri et al., 2015) when optimising the same

problem; that work cast the problem as a single-objective one 25

by aggregating the objective functions with a weighted sum.
This work instead considers the optimisation of the two ob-
jective functions independently, using Pareto dominance to
compare the solutions. The multi-objective sequence-based
selection hyper-heuristic (MOSSHH) has been demonstrated 30

on continuous multi-objective test problems (Walker and
Keedwell, 2016a), but this is the first time it has been used to
optimise either a combinatoric or real world problem.

The remainder of this paper is organised as follows. Some
relevant background material is presented in Section 2 before 35

the algorithm is introduced in Section 3. Section 4 presents
the experimental framework employed, before results are
presented in Section 5. Concluding remarks are made in Sec-
tion 6.

2 Background 40

2.1 Multi-objective Hyper-heuristics

A multi-objective problem is characterised by two or more
objectives, which are usually in conflict. The quality y of a
solution x to a multi-objective problem is defined by a set of
M objective functions as follows: 45

y = (f1(x), . . . ,fM (x)). (1)
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Metaheuristics, such as evolutionary algorithms (EAs), have
long been used to optimise multi-objective problems, and
operate by generating an approximation to the true Pareto
front, the best possible trade-off surface between the prob-
lem objectives. It is not possible to generate feasible solu-5

tions that offer better quality beyond the Pareto front. Meta-
heuristics operate by using a predefined set of one or more
low-level heuristics (such as a mutation or crossover opera-
tor) by which a randomly initialised solution, or population
of solutions, is improved over time. Though these heuristics10

can be parametrised to allow them to adapt during the course
of an optimisation, their operation is largely pre-determined.
Significant time can be expended by an expert in design-
ing a good low-level heuristic with which to optimise a spe-
cific problem. In contrast, hyper-heuristics optimise a prob-15

lem by determining a good set of heuristics for that prob-
lem. Hyper-heuristics are either generative, in which a set of
novel heuristics is generated, or selection-based, whereby a
good set of existing heuristics is identified. This work con-
siders selection hyper-heuristics. A hyper-heuristic operates20

above the domain barrier; no information about the specific
problem is included in the algorithm, and the only informa-
tion it receives about solutions is their objective values. In
this sense, they operate as black-box optimisers.

2.2 Water Distribution Network Design25

The water distribution network design problem is NP hard.
Solutions to the problem are represented as a vector of pipe
diameters dk, and the problem is solved by identifying the
best combination of pipe diameters. The operation of the net-
work is simulated using EPANET (Rossman, 2000) so that30

the hydraulic performance of the network can be quantified.
The first objective function represents the cost of the net-
work:

f1 =
K∑

k=1

(
1.1d1.24k × lk

)
, (2)

where the length of the k-th pipe is denoted by lk. The second35

objective function quantifies the head deficit of the network:

f2 =

N∑
n=1

((
ĥn −hn

)
> 0
)
, (3)

where hn represents the hydraulic head of the n-th node and
ĥn is the target head at that node. Though the target head is
often the same throughout the network, some of the nodes40

in the problem used in this work have different targets. Only
head deficit is considered.

The approach taken by (Kheiri et al., 2015) was to ag-
gregate these two objective functions in order to optimise
them with the single-objective version of the algorithm used45

Algorithm 1 Multi-objective Sequence-based Selection
Hyper-heuristic (MOSSHH)

1: x,hc,A,B = initialise()
2: repeat
3: hp = hc

4: hc = select(A,hp)
5: AS = select(B,hc)
6: record(hp,hc,AS)
7: x′ = apply(x,hc)
8: if AS == 1 then
9: archived = update_archive(x)

10: if f(x)⊀ f(x′) then
11: x= x′

12: if archived== true then
13: x∗ = x′

14: update()
15: end if
16: end if
17: clear_records()
18: end if
19: until termination criterion met

herein. Since this work considers a multi-objective algo-
rithm, the two problems are considered independently and
an approximation to the true Pareto front between the two is
sought.

3 Multi-objective Sequence-based Hyper-heuristic 50

The sequence-based hyper-heuristic (SSHH) algorithm is
a hyper-heuristic first proposed by Kheiri and Keedwell
(2015) and more recently extended to the multi-objective
domain by (Walker and Keedwell, 2016a) with the defini-
tion of the multi-objective SSHH (MOSSHH). Whereas se- 55

lection hyper-heuristics generally operate by applying low-
level heuristics to a solution in order to generate a hope-
fully improved solution, MOSSHH uses sequences of low-
level heuristics that can be applied. The algorithm is based
on a hidden Markov model; it employs a transition matrix to 60

determine the next low-level heuristic to be added to a se-
quence, and a hidden state that determines whether or not the
current sequence is complete, known as the acceptance strat-
egy. The transition probabilities are updated if the acceptance
strategy is met and the child solution resulting from the ap- 65

plication of the sequence of low-level heuristics is not infe-
rior to the original parent from which it was generated. In the
single-objective algorithm probabilities are updated when the
fitness of the child is superior to that of the parent. In order to
optimise multi-objective problems MOSSHH uses the dom- 70

inance relation instead. MOSSHH employs an elite archive
of solutions to store the current approximation to the Pareto
front, and the transition probabilities are updated if the child
solution is added to the archive.
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Figure 1. Schematic showing the New York Tunnels network.

The MOSSHH algorithm is described in Algorithm 1. The
first step (Line 1) is to initialise a random solution, as well
as the transition probability matrix (A) and the acceptance
strategy probabilities (B). All transition probabilities are ini-
tialised to 1/H (for H low-level heuristics) and the accep-5

tance strategy for each heuristic is initialised to 1/2. A cur-
rent heuristic hc is chosen as a starting position. The itera-
tive phase of the algorithm then commences, and runs until a
stopping condition is met (we use a fixed budget of function
evaluations). It begins by selecting the next heuristic, based10

on the current heuristic using B (Line 3-4). A record is made
of the heuristic (Line 6) and it is applied to the current so-
lution x to generate a child x′. If the acceptance strategy is
met (Line 8) then the solution is evaluated under the objec-
tive functions and the archive is updated (Line 9). If the child15

is not dominated by the parent (Line 10) then it replaces the
parent as the current solution in the next generation. If the
solution was added to the archive then the sequence is com-
pleted and a new one begins in the next generation.

4 Experiments20

The MOSSHH algorithm is demonstrated on the well-known
New York Tunnels benchmark problem, illustrated in Fig. 1
(Schaake and Lai, 1969). The problem requires the optimi-
sation of 21 pipe diameters linking 20 nodes. There are 16
potential pipe diameters, and as such the problem is combi-25

natoric. The low-level heuristics employed are a combination
of those used in Kheiri et al. (2015) to optimise a single-
objective variant of the same problem, and those introduced
to optimise multi-objective problems in Walker and Keed-
well (2016a). The heuristics are as follows:30

– h1: change pipe – replace a single pipe with one of
the 16 possible diameters at random (similar to the
parameter-wise ruin and recreate parameter used in
Walker and Keedwell (2016a)).

– h2: swap: – select parameters at random and swap their 35

pipe diameters.

– h3: change by one size – increase the pipe diameter
to the next biggest diameter, or decrease it to the next
smallest.

– h4: shuffle – select a group of between 1 and 5 param- 40

eters and shuffle their pipe diameters.

– h5: ruin and recreate – replace the entire chromosome
with one generated at random.

– h6: archive parameter replacement – replace a ran-
domly chosen parameter and replace it with the corre- 45

sponding diameter of an archived solution.

The algorithm was run for 40,000 function evaluations, the
experiment was repeated 30 times. Results are compared us-
ing the hypervolume indicator (Fleischer, 2003), which eval-
uates the results of an optimiser both in terms of its con- 50

vergence to the true Pareto front, and its ability to cover
the Pareto front. In order to demonstrate the efficacy of
MOSSHH’s online learning component, comparative runs
are also shown for the individual low-level heuristics. Each
comparative run is executed for 40,000 function evaluations, 55

and the optimiser is run 30 times for each heuristic. These
experiments employ a simple (1+1)–evolution strategy that
at each generation creates a child from the current parent so-
lution by mutating it (with whichever of the low-level heuris-
tics is being tested); the parent solution in the next generation 60

is the child, unless it is dominated by the parent in which case
the parent is retained.

5 Results and Discussion

5.1 Optimisation Results

Summary attainment surfaces are used to show the extent 65

to which an optimiser has converged over repeated execu-
tions. Figure 2 illustrates such an attainment surface for the
MOSSHH executions. The distribution of colour indicates
the frequency with which a region is dominated by a mem-
ber of one of the estimated Pareto fronts; most of the range 70

is close to the median Pareto set (shown in black) indicating
that the optimiser frequently converges close to this point in
the thirty runs of MOSSHH. There is more spread in the sec-
ond objective, as seen by the height of the medium front in
the second objective. 75

Comparative hypervolume (Fleischer, 2003) results for
MOSSHH and the individual low-level heuristics are shown
in Figure 3. As can be seen, MOSSHH has overtaken all of
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Figure 2. Summary attainment surfaces for MOSSHH. The colour
indicates how frequently a region of the objective space was dom-
inated by a member of one of the approximated Pareto fronts gen-
erated by MOSSHH (blue indicates frequently dominated, red in-
dicates infrequently dominated). The black line shows the median
attainment surface for the 30 runs.

the low-level heuristics 10,000 function evaluations in. In
fact, it is superior to the swap, shuffle and pipe-wise ruin
and recreate operators from a very early stage in the opti-
misation. The remaining operators (change pipe and change
pipe by one size) are known to be effective heuristics for5

optimising problems of this type. The results show that the
algorithm has converged by 20,000 function evaluations, as
have the algorithms using the individual heuristics. These al-
gorithms converge much faster – albeit to a worse set of so-
lutions – due to the online learning mechanism used within10

MOSSHH, which allows for the generation of superior solu-
tions but takes longer to accomplish it.

Fig. 4 illustrates three of the networks optimised by the al-
gorithm, taken from the Pareto front approximation formed
by aggregating the estimated Pareto fronts generated by15

MOSSHH in all 30 runs. The leftmost network represents the
solution that best optimises the cost objective. The rightmost
network is the corresponding solution for the head deficit ob-
jective. The centre network is the median solution. Pipes are
coloured according to their diameter. As the results show,20

low-cost solutions are characterised by smaller pipes while
networks minimising head deficit tend to comprise pipes with
larger diameters.

5.2 Sequence Analysis

Fig. 5 shows the transition probabilities at the end of the al-25

gorithm’s execution for one of the 30 runs. The row-wise
and column-wise ordering of the heuristics is the same, and
a region indicates the probability of transitioning from the
heuristic represented by a given row to that region’s heuristic.

The size of the region conveys the probability, with a large 30

region indicating a high probability of transition. The lower
plot shows acceptance strategy probabilities. The ordering of
heuristics is as in the top plot, but this time the regions indi-
cate the likelihood that a heuristic will be accepted. As the
heuristic can either be accepted or not, there are only two re- 35

gions; black indicates that a heuristic will be accepted, white
that it will not. As can be seen, the probability of transition-
ing to the pipe-wise ruin and recreate operator is consider-
ably lower than for any of the other heuristics. The largest
transition probabilities are to the change by one size, and 40

archive parameter heuristics, which is supported by accep-
tance strategies – these heuristics have the largest acceptance
strategies.

This conclusion is supported by Figure 6, which shows cu-
mulative averages for the low-level heuristics, presenting the 45

frequency with which a heuristic appears in a sequence as
the optimisation process executes. This visualisation shows
the use of the change by one size heuristic increasing over
time, while the pipe-wise ruin and recreate heuristic is used
significantly less over time. The remaining four heuristics do 50

not change considerably during the course of the optimisa-
tion process, though we note that the slight upward trend vis-
ible in the archive parameter replacement heuristic indicates
the algorithm entering an exploitative phase, instead of ex-
ploring. This is because the archive is becoming populated 55

with strong solutions, and including their parameters in new
child solutions in turn creates strong solutions. Examining
the results in this way is a useful way of understanding which
heuristics are of use when optimising a problem such as this.
This understanding is an important emergent property of the 60

online learning mechanism that is not provided by standard
metaheuristics.

6 Conclusions

This paper has demonstrated the use of a multi-objective
sequence-based hyper-heuristic for optimising the water dis- 65

tribution network problem. The problem has been optimised
in the past using a single-objective sequence-based hyper-
heuristic (SSHH), which aggregated the two objective func-
tions to compute a single fitness function. This work is the
first to use a sequence-based hyper-heuristic that works with 70

Pareto dominance in order to consider the two objectives in-
dependently. The MOSSHH algorithm has previously been
demonstrated on continuous multi-objective test problems,
and this work represents its first application to real-world dis-
crete problems. 75

Having used MOSSHH to optimise the New York Tunnels
problem, the results presented herein show that it is capa-
ble of generating the best approximation to the problem’s
true Pareto front compared to using any one of the low-
level heuristics it relies on. In addition, the algorithm’s use 80

of online learning enables it to provide additional informa-
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Figure 3. Normalised hypervolume for MOSSHH and the five of the low-level heuristics used individually showing their convergence over
time as the optimisation process executes. The results are averaged over the thirty runs for each optimiser.
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Figure 4. Three networks from the estimated Pareto front generated by the algorithm. The left minimises cost, the right minimises head
deficit, and the middle network is the median solution. Colour indicates pipe diameter.
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Figure 5. Top: An exemplar transition probability matrix at the end
of the optimisation procedure. Bottom: The corresponding accep-
tance strategies. Black indicates that a sequence will be accepted.
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Figure 6. Cumulative averages of the frequency with which each
heuristic appears in a sequence over the time of the optimisation.
The upward trend of the change by one size heuristic indicates that
heuristic is being used increasingly as the optimisation proceeds,
while the downward trend of the pipe-wise ruin and recreate opera-
tor indicates that heuristic has been tuned out by the algorithm.
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tion about how these heuristics are used. This is a valuable
source of information for heuristic designers, who can use it
to understand exactly which heuristic features are of use for
specific types of problems. In this work, the change by one
size heuristic is a strong candidate heuristic, while replacing5

a pipe with another chosen at random is shown to provide
little useful contribution to the optimisation process.

This work has demonstrated the efficacy of the MOSSHH
algorithm on a simple benchmark problem with a small set
of low-level heuristics. While the results shown herein are10

extremely promising, there exist multiple areas of future
work. Two avenues of ongoing investigation involve testing
the process on a range of more complex test problems, to
better characterise instances that MOSSHH struggles with,
and investigating and analysing its use with a larger pool15

of heuristics. In addition to providing a means for generat-
ing superior solutions to the problems themselves, we ex-
pect to be able to use the emergent information from the on-
line learning aspect of the algorithm to better characterise
the problems themselves. A recent paper proposed the use of20

a modified MOSSHH for optimising many-objective prob-
lems (comprising four or more objectives) Walker and Keed-
well (2016b). Such problems are difficult to optimise with
dominance-based optimisers, and that work used alternative
solution comparison methods to generate approximations to25

a many-objective Pareto front. A further aspect of ongoing
work is to consider the many-objective water distribution net-
work design problem.
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