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Mosquitoes boost body armour to resist insecticide attack 
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With more than one million insect species described to date, it is perhaps unsurprising that 

at least some have come into conflict with humans. A variety of methods have been 

developed to control pest insects but the application of synthetic insecticides remains one of 

the most widely used and effective approaches. Unfortunately, the inevitable result of the 

overuse of insecticides for the control of many pest species has been the evolution of 

resistance (1, 2). This is particularly well illustrated in the case of malaria-carrying Anopheles 

mosquitoes in Sub-Saharan Africa (2). Modern malaria control strategies rely heavily on the 

use of insecticides to suppress Anopheles populations, primarily applied as either 

insecticide-treated bed nets (ITNs) or as indoor residual sprays (IRS). Between 2000 and 

2015 the number of deaths due to malaria halved, 80% of which was attributed to the scale-

up of these insecticide-based vector control interventions (3). These promising gains are 

now, however, under threat. The use of just a single insecticide class, the pyrethroids, in 

ITNs has created huge selection pressure for resistance to evolve and resistance to 

pyrethroids in Anopheles mosquitoes is now widespread, reaching unprecedented levels in 

parts of West Africa (2). To make matters worse, although insecticides with different modes 

of action are available for use in IRS, mosquito populations have now emerged that exhibit 

resistance to multiple classes (2, 4). In PNAS Balabanidou et al. (5) use an impressive array 
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of approaches to unravel the molecular basis of resistance in a strain of Anopheles gambiae 

from West Africa that exhibits such a multi-resistance profile. 

Over the last fifty years significant advances have been made in our understanding of how 

insects evolve resistance to insecticides at the molecular level (6). Two mechanisms have 

been most frequently described: enhanced insecticide metabolism/sequestration by 

detoxification enzymes, and mutations in insecticide target-sites that alter the affinity of 

insecticide binding. Reduced penetration of insecticide through the insect cuticle has been 

proposed as an alternative resistance mechanism for some time, but much less frequently 

reported. Just a handful of studies have associated changes in insecticide penetration or 

cuticular thickness with resistance (7-9) and the precise mechanisms that result in changes 

in cuticular structure or composition are essentially unknown. 

The insect cuticle is composed of the polysaccharide chitin, proteins and lipids that form two 

primary layers: the inner procuticle, containing chitin, and the thin outer epicuticle which is 

chitin free (Fig. 1). Insects prevent desiccation by depositing cuticular hydrocarbons (CHC), 

synthesised in specialised secretory cells in the epidermis called oenocytes, on their 

epicuticle as effective waterproofing agents. Previously in PNAS, Qiu et al. (10) 

demonstrated that in Drosophila and the housefly, Musca domestica, the final step of CHC 

synthesis is catalysed by cytochrome P450 enzymes of the CYP4G subfamily (CYP4G1 and 

CYP4G2 respectively) that are highly expressed in oenocytes. This finding was of significant 

interest to the community working on insecticide resistance in Anophelines as the potential 

functional orthologs of these genes in mosquitoes, CYP4G16 and CYP4G17, are 

overexpressed in resistant populations of both An. arabiensis and An. gambiae (11, 12), 

suggesting a possible link with cuticular-based resistance. 

Balabanidou et al. (5) build on these studies by conducting one of the most comprehensive 

analyses of penetration resistance in insects described to date. The authors first 

demonstrated clear differences in the uptake of the pyrethroid deltamethrin through the 
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cuticle of resistant and susceptible strains of An. gambiae. By measuring radiolabelled 

deltamethrin extracted from the cuticle with that extracted from the whole mosquito body 

they showed that the amount of internalized deltamethrin was approximately 50% lower in 

resistant compared to susceptible mosquitoes. Changing from an oil- to actone-based 

formulation of insecticide, in order to circumvent the lipid barriers of the cuticle, led to a 50% 

decrease in the resistance ratio between the two strains, suggesting differences in the lipid 

component of the cuticle are, at least partially, responsible for the observed resistance. 

Having established cuticular resistance in a multiple insecticide resistant strain of An. 

gambiae Balabanidou et al. (5) exploited a diverse range of methods to examine if 

differences in the structure or composition of the cuticle are associated with resistance. 

Transmission electron microscopy revealed a significantly enhanced thickness of the cuticle 

in resistant mosquitoes with the outer epicuticle explaining much of the overall difference in 

total cuticle thickness. Crucially, Gas Chromatography and Mass Spectrometry showed that 

while there were no qualitative differences in CHC profiles between the two strains, a 

significant increase (29%) was observed in the CHC content of resistant mosquitoes. Taken 

together these data provide significant advances in our understanding of cuticular 

resistance; first they suggest the underlying basis may be due to quantitative rather than 

qualitative changes in chemical composition of the cuticle. Second, they highlight which 

parts of the insect cuticle might be most important in providing protection from insecticides 

by revealing that the greatest changes occur in the epicuticle which contains the protective 

CHC-rich wax layer of the cuticle (Fig. 1). 

What genetic changes underlie the increase in thickness of the epicuticle and the higher 

levels of CHCs observed in resistant An. gambiae mosquitoes? Because of prior work 

implicating CYP4G P450s in CHC biosynthesis and resistance (10, 12) Balabanidou et al. 

(5) then turned their focus to the two members of this P450 subfamily found in Anopheles 

mosquitoes. Using antibodies raised against CYP4G16 and CYP4G17 in 

immunofluorescence microscopy they revealed that both proteins are highly abundant in 
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oenocyte cells, the primary site of CHC synthesis. Interestingly, contrasting subcellular 

locations were observed for the two P450s; while CYP4G17 was found throughout the 

intracellular compartment of the cell CYP4G16 showed a striking association with the cell 

periphery, predominantly associated with the cytoplasmic side of the cell membrane. The 

localization of CYP4G16 to the plasma membrane, or the distal ER associated with it, is 

intriguing and has not been reported previously for a P450. Balabanidou et al. (5) speculate 

that this may be related to its role in hydrocarbon synthesis (see below), facilitating the swift 

export of hydrocarbons from the cell membrane of oenocytes for transport to the cuticle and, 

given the novelty of this finding, this hypothesis clearly warrants further more detailed 

exploration. 

Functional characterisation of CYP4G16 and CYP4G17 by heterologous expression in an 

insect cell line demonstrated that CYP4G16 can catalyze a long chain aldehyde substrate to 

hydrocarbon and is thus a bona fide oxidative decarbonylase. Expression of insect P450s in 

vitro is non-trivial, especially in the case of CYP4 family P450s, and attempts to functionally 

characterise CYP4G17 were not possible due to inconsistent expression. Regardless, these 

findings, along with work by Qiu et al. (10), clearly highlight the important physiological role 

of this subfamily of P450s in CHC biosynthesis. More generally such studies are important 

because while a great number of P450s have been implicated in the metabolism of natural 

and synthetic xenobiotics (i.e. detoxification) the endogenous substrates of the majority of 

insect P450s is unknown. 

The work by Balabanidou et al. (5) represents a major advancement in our understanding of 

cuticular resistance, revealing the specific changes that occur in the cuticle of resistant 

mosquitoes and significantly progressing previous studies to provide additional evidence of a 

role for the CYP4G subfamily of P450s in this process. Given the complexity of cuticular 

biosynthesis it is unsurprising that additional questions remain to be answered. First, the 

precise role of CYP4G16/17 in cuticular resistance in mosquitoes demands further 

investigation. In particular, the data provided in this study and those previously are yet to 
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directly link the overexpression of these P450s with resistance mediated by enhanced 

production of CHCs/thickness of the epicuticle. Balabanidou et al. (5) attempted to do this 

using RNA interference (RNAi), but the results were inconclusive. An alternative route would 

be to exploit transgenic approaches to overexpress these genes and examine the effect on 

resistance. This could be done by exploiting the powerful genetic resources available in the 

model insect Drosophila melanogaster, such as the binary UAS/GAL4 expression system. 

The creation of transgenic Drosophila lines expressing mosquito CYP4G16/17 under the 

control of the UAS promoter and subsequent crossing with oenocyte-selective GAL4-

promoter lines would allow expression of the transgenes at their native site. Although not yet 

routine, recent advances in the tools available for An. gambiae transgenesis may also make 

similar experiments possible in the native species (13, 14). 

Synthesis of CHCs from long-chain fatty acids is complex and requires a combination of 

elongases, reductases and dehydrogenases. It would be worthwhile, therefore, to explore if 

cuticular resistance also involves genes from these families in addition to CYP4G16/17. 

Previous work on resistant An. arabiensis has identified several genes, co-upregulated with 

CYP4G16, which are involved in fatty-acid metabolism (12). This suggests that a suite of 

genes involved in hydrocarbon synthesis may be co-upregulated to confer resistance and 

the consistency of this finding warrants investigation. 

Finally, the data described above strongly suggests a causal role for CYP4G16/17 in 

resistance. Once this is definitely confirmed it would be interesting to explore what drives 

their overexpression in resistant mosquitoes. No difference in CYPG16 copy number was 

observed in resistant An. arabiensis (12) and sequencing of the promoter regions of these 

genes would be a logical first step to examine if modification of a cis-acting element is 

associated with the enhanced expression of these genes. The identification of a genomic 

change linked to overexpression would facilitate the development of DNA-based diagnostics 

that can be used to determine the frequency and distribution of resistance conferred by this 

mechanism. Indeed, the extent to which cuticular resistance has arisen in Anopheles 
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throughout Sub-Saharan Africa, and the relative contribution of reduced insecticide 

penetration towards resistance phenotypes (in the presence of other resistance 

mechanisms) are outstanding and important questions for the management of resistance in 

these malaria vectors. 
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Fig. 1. A hypothetical model for cuticular resistance in Anopheles mosquitoes. A) and 

B) show a cartoon cross-section of the integument of an insecticides susceptible and 
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insecticide resistant mosquito respectively. The cuticle comprises the relatively thin 

cuticular hydrocarbon rich epicuticle and the thicker procuticle. CHs (represented by 

black dots) are produced in specialised cells called oenocytes found associated with 

the epidermis or fat body. The final step of CH synthesis is catalysed by CYP4G P450s 

(represented by red circles) with CHs then transported to the epicuticle. Resistant An. 

arabiensis mosquitoes (panel B) produce up to 4-fold more CYP4G16 than susceptible 

mosquitoes (panel A) and this may explain the enhanced CH synthesis and thickening 

of the epicuticle observed in resistant mosquitoes.  
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