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Abstract	31	

In	eusocial	insects,	the	ability	to	discriminate	nestmates	from	non-nestmates	is	32	

widespread	and	ensures	that	altruistic	actions	are	directed	towards	kin	and	agonistic	33	

actions	are	directed	towards	non-relatives.	Most	tests	of	nestmate	recognition	have	34	

focused	on	hymenopterans,	and	suggest	that	cooperation	typically	evolves	in	tandem	35	

with	strong	antagonism	towards	non-nestmates.	Here	we	present	evidence	from	a	36	

phylogenetically	and	behaviourally	basal	termite	species	that	workers	discriminate	37	

members	of	foreign	colonies.	However,	contrary	to	our	expectations,	foreign	intruders	38	

were	the	recipients	of	more	rather	than	less	cooperative	behaviour,	and	were	not	39	

subjected	to	elevated	aggression.	We	suggest	that	relations	between	groups	may	be	40	

much	more	peaceable	in	basal	termites	compared	to	eusocial	hymenoptera,	owing	to	41	

energetic	and	temporal	constraints	on	colony	growth,	and	the	reduced	incentive	that	42	

totipotent	workers	(who	may	inherit	breeding	status)	have	to	contribute	to	self-43	

sacrificial	intergroup	conflict.		44	

	45	
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Introduction	51	

One	of	the	key	mechanisms	proposed	to	explain	the	evolution	of	altruism	is	the	ability	to	52	

direct	care	preferentially	toward	kin	[1].	In	primitively	eusocial	insects,	colonies	are	53	

typically	composed	of	close	relatives,	in	which	case	the	ability	to	distinguish	nestmates	54	

from	non-nestmates	may	be	a	cost-effective	rule-of	thumb	to	ensure	that	altruism	is	55	

directed	on	average	toward	kin	[2],	and	aggression	toward	non-kin	[3].	In	support	of	this	56	

hypothesis,	numerous	eusocial	hymenopterans	[4,5,6],	some	termites	[7,8,9,10,11],	and	57	

eusocial	mole	rats	[12]	exhibit	extreme	aggression	toward	non-nestmates.	Intense	and	58	

violent	intergroup	competition	is	also	common	of	mammalian	cooperative	breeders	59	

[13].	60	

	61	

Tests	of	the	role	of	kin	or	nestmate	discrimination	as	a	promoter	of	cooperation	in	62	

insects	have	focused	mainly	on	Hymenoptera	[6,14,15],	while	termites,	the	second-63	

largest	eusocial	taxon,	have	been	relatively	neglected	[16-18].	Studies	of	termites	may	64	

be	particularly	illuminating	because	they	vary	enormously	in	colony	size	and	individual	65	

specialization	[16,19],	possess	fundamentally	different	life	history	traits	from	66	

Hymenoptera	(such	as	hemimetabolous	development),	display	radically	different	67	

feeding	ecologies	[16],	and	there	are	no	known	extant	solitary	species	[20,21].	68	

Moreover,	termites	are	diploid	and	hence	offer	a	chance	to	test	the	hypothesized	role	of	69	

genetic	architecture	in	the	evolutionary	origin	and	maintenance	of	eusociality	70	

[19,20,22,23].	71	

	72	

Among	extant	termites	the	wood-dwelling	species	(Termopsidae,	Kalotermitidae)	are	73	

thought	to	display	the	most	basal	life-history	traits	[24,25]	(but	see	[26]).	In	contrast	to	74	

the	high	morphological	and	behavioural	diversity	of	derived	termites,	workers	in	wood-75	

dwellers	tend	to	show	relatively	little	division	of	labor	and	are	monomorphic.	Most	76	

species	lack	a	true	worker	caste,	instead	possessing	‘false	workers’	or	‘pseudergates’	77	

which	are	developmentally	plastic,	and	like	social	vertebrates	possess	the	potential	to	78	

explore	all	caste	options	throughout	their	lives	[17].	In	the	drywood	termites	79	

(Kalotermitidae)	these	‘workers’	perform	little	or	no	brood	care	or	nest	maintenance	80	

activities	[19,27].	However,	workers	do	altruistically	feed	soldiers	(who	cannot	feed	81	

themselves)	[18],	engage	in	proctodeal	and	anal	trophallaxis	[28],	and	maintain	hygiene,	82	

[29].	Because	the	wood	these	species	inhabit	serves	simultaneously	as	a	source	of	food,	83	



shelter,	and	protection,	colony	members	never	voluntarily	leave	the	nest,	except	as	84	

dispersing	alates	[18,21,30].	However,	it	has	been	previously	noted	in	other	drywood	85	

species	that	two	or	more	colonies	occupying	the	same	piece	of	wood	sometimes	meet,	86	

which	can	lead	to	intergroup	aggression	and	colony	fusion	[27,30,31,32].	87	

	88	

In	this	study	we	tested	the	hypothesis	that	drywood	termites	can	recognize	non-89	

nestmates	and	directing	specific	behaviours	towards	them.	We	performed	a	series	of	90	

behavioural	assays	using	captive	colonies	of	the	drywood	termite	Pterotermes	occidentis	91	

(Kalotermitidae),	indigenous	to	the	Sonoran	desert	of	the	southwest	USA	[21].	92	

Specifically,	we	introduced	single	individuals	into	foreign	nests	and	observed	and	93	

measured	subsequent	interactions,	such	as	allogrooming	rates,	which	we	interpreted	as	94	

a	cooperative	behaviour,	and	frequency	of	butting,	which	in	other	termites	is	taken	as	a	95	

measure	of	aggression	or	dominance	[33].	While	other	aggressive	interactions	(such	as	96	

wing	pad	biting	have	been	observed	in	wood-dwelling	termites	[24],	butting	was	the	97	

only	potentially	aggressive	behaviour	observed	in	our	study.	We	predicted	that	foreign	98	

individuals	would	face	increased	aggression	and	receive	less	allogrooming	than	99	

individuals	native	to	their	own	colony,	providing	evidence	of	discrimination	between	100	

nestmates	and	non-nestmates.	101	

	102	

Methods	103	

Whole	colonies	of	P.	occidentis	termites	were	collected	from	standing	Cercidium	104	

floridum	(Blue	palo	verde)	trees	in	September	2011	and	October	2013	in	the	Sonoran	105	

desert,	Arizona.	Of	the	6-colonies	used	in	the	experiment,	5	were	collected	in	one	region	106	

(Mendoza	Canyon:	31.972088,	-111.470339)	and	one	colony	was	collected	within	the	107	

Tucson	metropolitan	area	(32.273160,	-110.905818).	In	the	Sonoran	desert,	single	108	

colonies	of	Pterotermes	occidentis	stage	multiple	(up	to	40)	dispersal	flights	on	nights	in	109	

July	and	August	[21].	Dispersal	distance	is	unknown	for	this	species,	but	in	other	110	

Kalotermitidae	alates	disperse	up	to	a	few	km,	apparently	as	an	inbreeding	avoidance	111	

mechanism	[34,35].	The	five	colonies	collected	from	Mendoza	Canyon	were	all	located	112	

at	least	500m	apart	when	found,	and	consequently	are	likely	to	be	founded	by	unrelated	113	

queens.	Behavioural	observations	were	conducted	between	December	2013	and	July	114	

2014.	During	the	experiment	all	colonies	were	housed	in	plastic	boxes	containing	tightly	115	

arranged	blocks	of	C.	floridum	wood	from	the	colonies	sites	of	origin	and	kept	in	an	116	



incubator	at	a	constant	temperature	of	26±2°	C,	with	30%	-	36%	humidity	and	117	

permanent	darkness.		118	

	119	

15	size-matched	treatment-control	pairs	of	individuals	were	selected	randomly	from	120	

each	colony	and	marked	with	a	unique	tricolour	code	using	enamel-based	paint	on	the	121	

head,	thorax,	and	abdomen.	Focal	individuals	were	marked	3-days	prior	to	122	

commencement	of	observations,	allowing	time	for	recovery	from	the	procedure.	123	

Marking	was	carried	out	under	anaesthesia	following	exposure	to	30-seconds	of	CO2	124	

[36].	During	the	3-day	period	between	marking	and	the	first	observations	all	termites	125	

were	returned	to	their	native	colonies	in	captivity.	126	

	127	

Prior	to	each	observation	session,	a	random	subset	of	15	termites	was	selected	from	128	

either	the	home	or	foreign	colony	with	which	interactions	could	take	place,	depending	129	

on	the	stage	of	the	trial.	40-minute	behavioural	observations	were	conducted	over	four	130	

stages	for	each	focal	termite	during	a	4-day	period	(figure	1).	Observations	were	131	

conducted	at	27±2°	C	in	perspex	observation	arenas	separate	to	the	main	colony	132	

containers,	and	contained	a	single,	colony-specific	piece	of	C.	floridum	wood	to	avoid	133	

cross-contamination	of	odor-carrying	hydrocarbons.	The	limitation	of	this	setup	is	that	it	134	

differed	from	the	termites	usual	tightly	confined	tunnel	networks.	However,	it	did	allow	135	

for	easy	observation	of	individuals,	and	we	observed	typical	behaviours	such	as	eating	136	

and	trophallaxis	similar	to	those	observed	in	the	main	colony	housing	boxes,	suggesting	137	

low	levels	of	disturbance	in	the	observation	arena.	Treatment	and	control	groups	were	138	

observed	simultaneously	using	video	cameras,	and	observation	sessions	were	preceded	139	

by	a	30-minute	calming	period	following	transfer	from	the	nest	box.	Focal	termites	were	140	

placed	into	the	observation	arenas	with	colony	subsets	immediately	prior	to	the	onset	of	141	

this	calming	period	and	allowed	to	settle	together.	142	

	143	

Allogrooming	was	measured	by	timing	the	onset	and	end	times	of	each	occurrence	in	144	

seconds	and	summing	the	total	for	each	40-minute	session.	For	butting	behaviour,	145	

which	we	defined	as	a	vigorous	shaking	motion	in	response	to	disturbance	or	as	a	signal	146	

of	reproductive	dominance	[33],	frequency	data	were	recorded.	Occasional	periods	147	

when	the	focal	termite	was	hidden	or	obscured	were	deducted	from	each	session	time.	148	

For	both	behaviours	recorded,	the	focal	termite	could	either	be	the	actor	or	recipient,	149	



and	the	distinction	was	noted.	150	

	151	

We	used	general	linear	mixed-effects	models	GLMMs	to	predict	how	treatment	affected	152	

the	proportion	of	time	spent	being	groomed	and	frequency	of	butting	interactions.	153	

Models	were	fitted	with	stage	of	experiment	and	treatment	as	fixed	effects,	and	in	our	154	

models	of	butting	we	also	included	observation	time	(which	occasionally	was	less	than	155	

40-minutes	due	to	the	focal	individual	being	obscured).	In	all	models	we	used	individual,	156	

native	colony	of	focal	termite,	and	colony	sample	in	which	the	observation	was	taking	157	

place	as	random	intercepts.	In	our	models	of	butting	behaviour	we	also	included	these	158	

observation	level	random	effects	to	control	for	overdispersion	[37].	159	

	160	

The	response	variables	in	grooming	observations	were	the	proportion	of	time	spent	161	

being	groomed	or	performing	grooming,	and	those	models	were	fitted	with	a	binomial	162	

error	structure.	The	response	variables	in	butting	models	were	the	frequency	of	163	

received/performed	butting	observed,	using	a	poisson	log-normal	error	structure.	We	164	

then	conducted	post	hoc	Tukey	comparisons	between	treatment	and	control	groups	in	165	

each	stage	to	control	for	multiple	pairwise	comparisons.	To	test	whether	genetic	166	

relatedness	between	colonies	(which	could	conceivably	be	>	0	for	Mendoza	Canyon	167	

colonies)	influenced	our	results	we	conducted	a	post-hoc	Mann-Whitney	U	test	to	test	168	

whether	trials	involving	focal	individuals	from	the	single	Tucson	area	colony	differed	169	

from	those	involving	focal	individuals	from	Mendoza	Canyon	colonies.		170	

	171	

All	analyses	were	performed	using	R	statistical	software	[38]	using	packages	lme4	and	172	

lsmeans	[39,40],	with	the	exception	of	the	Mann-Whitney	U	tests	which	performed	in	173	

Microsoft	Excel	2011.	174	

	175	

Results	176	

Treatment	affected	the	amount	of	grooming	the	focal	individuals	received	(Table	1).	177	

Contrary	to	our	predictions	however,	grooming	towards	the	foreign	individuals	178	

increased	upon	introduction	to	a	foreign	colony	(Stage	2).	This	effect	disappeared	after	4	179	

days	within	the	host	colony	(Stage	3,	see	figure1).	Post-hoc	testing	revealed	no	180	

significant	difference	between	trials	involving	focal	individuals	from	the	Tucson	area	181	

colony	and	those	involving	focal	individuals	from	the	5	Mendoza	Canyon	colonies	182	



(Supplementary	Material).	In	contrast	to	our	results	for	grooming	behaviour,	there	was	183	

no	difference	between	control	and	treatment	individuals	in	the	amount	of	butting	184	

received	or	given.	Introduction	to	a	foreign	colony	also	had	no	significant	effect	on	the	185	

amount	of	grooming	performed	by	focal	individuals.	Finally,	there	was	no	significant	186	

difference	in	behaviour	(rates	of	grooming	or	butting)	of	Treatment	or	Control	187	

individuals	after	reintroduction	to	their	original	colony,	immediately	after	Stage	3	(Table	188	

1).	189	

	190	

Discussion	191	

The	intense	levels	of	grooming	directed	toward	individuals	from	foreign	colonies	192	

suggests	that	P.	occidentis	workers	can	distinguish	nestmates	from	non-nestmates.	193	

However,	the	results	were	opposite	to	our	original	predictions:	foreign	intruders	were	194	

not	subject	to	greater	levels	of	aggression	(butting),	and	were	the	beneficiaries	of	195	

significantly	higher	levels	of	allogrooming,	which	in	social	organisms	is	usually	196	

interpreted	as	a	form	of	cooperation.	After	4	days	the	rate	at	which	intruders	were	197	

groomed	had	dropped	back	to	the	same	rate	as	control	individuals	in	their	native	colony	198	

(figure	3,	stage	3).	199	

	200	

A	plausible	explanation	for	these	results	is	that	P.	occidentis	workers	use	allogrooming	201	

to	maintain	a	recognizable	colony	odor,	most	likely	mediated	by	cuticular	hydrocarbons	202	

(CHCs).	In	fact	allogrooming	behaviour	may	be	the	primary,	and	perhaps	sole	203	

mechanism	of	transferring	in-group	chemical	profiles	between	colony	members	[5,18].	204	

Over	the	course	of	the	4-days	spent	integrating	with	the	foreign	host	colony,	elevated	205	

levels	of	allogrooming	received	by	an	intruder	may	reduce	any	dissimilarity	in	CHC	206	

profile	between	itself	and	the	members	of	its	host	colony,	so	that	by	day	4	of	our	207	

experiment	the	foreign	termite	is	no	longer	recognized	as	an	intruder.	This	hypothesis	208	

would	predict	that	reintroduction	to	the	focal	individual’s	own	colony	should	again	lead	209	

to	elevated	levels	of	grooming	compared	to	controls.	In	our	limited	sample,	levels	of	210	

grooming	upon	reintroduction	were	elevated	for	treatment	individuals,	but	not	211	

significantly	so	(p	=	0.07;	Table	1).	To	test	this	hypothesis	further	will	require	further	212	

experiments	using	non-destructive	CHC	sampling	techniques	(such	as	the	use	of	SPME	213	

fibres	[41])	to	determine	whether	the	profile	of	excluded	individuals	drifts	from	that	of	214	

their	native	colony	over	time;	and	whether	allogrooming	functions	to	homogenise	the	215	



CHC	profile	of	intruders.		216	

	217	

Why	should	P.	occidentis	group	members	actively	try	to	integrate	foreign	individuals	into	218	

a	colony	(through	allogrooming),	rather	than	repelling	or	attacking	them	as	commonly	219	

occurs	in	many	insect	and	vertebrate	societies?	Encounters	between	colonies	may	be	220	

frequent	in	wood-dwelling	termites	such	as	P.	occidentis,	because	suitable	nesting	trees	221	

usually	contain	multiple	colonies	[30].	With	colony	growth	and	expansion	of	nest	222	

galleries,	colony	contact	can	occur	when	adjacent	cavities	meet	[22,23,27,32].	Genetic	223	

studies	of	within-colony	relatedness	in	wild	populations	have	found	evidence	for	224	

mergers	in	several	species	of	both	wood-dwelling	[27,32,42,43,44]	and	external	foraging	225	

termites	[45,46,47,48,49],	with	one	study	finding	evidence	of	multiple	mergers	in	226	

several	colonies	of	the	drywood	termite	Kalotermes	flavicollis	[32].	In	laboratory	studies	227	

of	the	drywood	termite	Cryptotermes	secundus,	peaceful	colony	mergers	are	associated	228	

with	increased	colony	survival	and	an	increased	production	of	new	reproductives,	229	

suggesting	that	individual	workers	may	stand	to	benefit	(in	terms	of	direct	fitness)	when	230	

colonies	fuse	[27].	Similarly,	in	the	dampwood	termite	Zootermopsis	nevadensis,	colony	231	

fusion	creates	opportunities	for	workers	to	inherit	reproductive	status	[30].	Theoretical	232	

models	predict	that	an	increase	in	the	probability	of	inheritance	should	favour	lower	233	

investment	in	self-sacrificial,	colony-beneficial	behaviour,	such	as	intergroup	conflict	234	

[50,51]	(note	this	prediction	does	not	necessarily	hold	if	invaders	represent	a	threat	to	235	

an	individual’s	inheritance	rank	[52]).	In		addition,	since	the	indirect	fitness	benefits	of	236	

helping	appear	to	be	relatively	low	in	wood-dwelling	termites	[18],	workers	have	less	237	

incentive	to	invest	in	colony	defence	to	maintain	kinship	within	groups	at	the	expense	of	238	

their	own	potential	future	fecundity.	Together,	these	ecological	and	social	factors	may	239	

explain	why	in	wood-dwelling	termites	individual	workers	may	be	selected	to	detect	and	240	

integrate	foreign	individuals	into	the	group	rather	than	attack	them.	241	

	242	

An	alternative	hypothesis	to	explain	our	results	is	that	foreign	individuals	are	perceived	243	

as	potentially	harboring	pathogens,	with	allogrooming	being	an	adaptive,	selfish	244	

response	to	maintain	social	immunity	and	colony	health	[53].	Rosengaus	et	al.	[29]	245	

observed	that	drywood	termites	tend	to	have	low	pathogen	loads,	but	whether	this	is	246	

linked	to	allogrooming	behaviour	is	unknown.	In	dampwood	termites,	elevated	levels	of	247	

allogrooming	behaviour	have	been	observed	following	exposure	to	fungal	pathogens	248	



[29,54],	and	substantially	lowered	external	pathogen	loads	have	been	observed	249	

following	experimental	exposure	to	fungal	spores	and	subsequent	grooming	[46].	250	

Experimental	manipulation	of	pathogen	load	in	P.occidentis	could	be	used	to	test	this	251	

hypothesis.	252	

	253	

In	summary,	the	basal	life	history	traits	of	P.occidentis	[31]	make	the	species	an	254	

excellent	system	to	investigate	the	behavioural	factors	and	evolutionary	processes	255	

associated	with	the	apparently	unique	origin	of	termite	sociality.	Future	fitness	benefits,	256	

low	levels	of	helping	behaviour,	and	strict	ecological	and	temporal	constraints	on	colony	257	

growth	may	explain	why	relations	between	groups	in	basal	termites	are	less	fractious	258	

and	violent	than	is	typically	the	case	in	eusocial	Hymenoptera	and	cooperatively	259	

breeding	vertebrates.	We	suggest	that	further	studies	of	intergroup	interactions	in	basal	260	

termites	may	contribute	to	an	improved	understanding	of	the	role	of	between-group	261	

competition	in	social	evolution.	262	
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	429	

Table	Legend	430	

Table	1.	Tukey’s	honest	significant	difference	tests	comparing	the	allogrooming	and	431	

butting	that	control	and	treatment	individuals	received	and	gave	in	each	stage.	In	each	432	

stage	the	parameters	estimates	for	treatment	individuals	are	compared	to	control	433	

individuals.	*	p	<0.05.	434	

	 	435	



Figure	Legends	436	

Figure	1.	Design	and	sequence	of	the	experiment.	437	

	438	

	439	

Figure	2a.	Diagram	of	the	experimental	setup	as	it	was	during	observations.	440	

	441	

	442	

Figure	2b.	Still	image	of	the	arena	taken	from	one	of	the	observation	videos.	443	

	444	

	445	

Figure	3.	Proportion	of	observation	session	for	which	focal	individuals	were	groomed	446	

when	introduced	to	a	foreign	colony	(treatment:	black	line)	or	to	their	own	colony	447	

(control:	gray	line).	N=15	trials	between	6	colonies	in	both	treatment	and	control	448	

categories.	Points	show	means,	bars	show	standard	error.		449	

	450	



Behaviour	  received Behaviour	  given
Beta s.e. z P-‐Value beta s.e. z P-‐Value

Stage	  1 C -‐2.53 0.44 -‐3.52 0.67
T 0.03 0.22 0.14 0.44 -‐0.013 0.82 0.017 0.49

Stage	  2 C -‐2.24 0.44 -‐4.07 0.67
T 0.75 0.22 3.34* <0.01* 0.91 0.82 -‐1.11 0.134

Stage	  3 C -‐2.31 0.44 -‐3.59 0.67
T -‐0.11 0.23 0.51 0.31 -‐0.5 0.82 0.62 0.27

Reintroduction C -‐2.07 0.44 -‐3.39 0.67
T 0.34 0.22 1.49 0.07 -‐0.64 0.82 0.78 0.22

Stage	  1 C 1.7 0.55 1.27 0.62
T -‐0.041 0.49 0.084 0.46 -‐0.7 0.83 0.84 0.2

Stage	  2 C 1.57 0.55 0.45 0.66
T 0.4 0.49 0.82 0.21 -‐0.24 0.86 0.28 0.39

Stage	  3 C 1.65 0.55 1.29 0.63
T 0.28 0.49 0.56 0.29 -‐0.54 0.83 0.65 0.26

Reintroduction C 1.59 0.54 1.24 0.63
T -‐0.03 0.48 0.061 0.48 -‐0.55 0.82 0.66 0.25

	  

Grooming

Butting
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