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Abstract 

Using the tracer caesium-137 (137Cs) and experimental approaches this study 

quantified soil redistribution induced spatial variation of nutrients and soil organic 

carbon (SOC), net C flux between soil and atmosphere and soil respiration rate at 

various landscapes positions (eroding to deposition) within agricultural fields from the 

foot hills of Indian Himalaya. The depth distributions of 137Cs and the spatial patterns 

of 137Cs inventories were consistent with previous applications of the approach in that 

low inventories were associated with low concentrations in the cultivation layer and 

high inventories were reflected in deeper 137Cs profiles indicative of accumulation of 

labelled soil. This supports the contention that 137Cs is a suitable tracer for use in this 

environment. 

The study found that soil redistribution within fields altered the spatial variation of 

nutrients and SOC; with significantly lower concentrations of nutrients in the most 

eroded part of fields (upslope) and significantly higher concentrations of nutrients and 

SOC in the depositional part of field (downslope). The spatial pattern of nutrients and 

SOC is reflected in differences in depth distributions between eroded and depositional 

areas.  

The 137Cs and SOC inventory and depth distribution data were used to derive 

retrospective assessments of net C exchange between soil and atmosphere. The C 

flux quantification model was used to estimate lateral and vertical soil and SOC 

redistribution under an assumption of equilibrium conditions and the net exchange of 

C between soil and atmosphere was derived from the difference between measured 

and ‘equilibrium’ SOC inventories. Fluxes were derived for each landscape position 

within the agricultural fields studies and calculated at field and site scale. High rates 

of soil loss were measured and the results showed that the majority of eroded 

sediment and SOC was exported from field with only a small fraction redeposited 

within the field. The effect of soil and SOC redistribution was to create disequilibrium 

in SOC dynamics at eroding and deposition positions and this supported the formation 

of a field scale C sink. The sink strength is highest in the most eroded parts of the 

fields due to dynamic replacement of eroded C. This is assumed to be due to the high 

rate of incorporation of SOC-poor subsoil, with a large C-unsaturated surface area, 

into the cultivation layer. The C sink is smaller that those reported from high nutrient-

input mechanised farm lands.  Irrespective of the fate of exported SOC, the SOC 

stocks in the fields appear to be in dynamic equilibrium and, therefore, there is no 
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evidence of a C source to the atmosphere due to erosion. Also the rate of SOC export 

from the fields is very high, especially when compared with mechanised fields and, if 

it is assumed that some portion of exported C is stored in some part of low lying area, 

the C sink strength would be comparable to mechanised farm lands. 

 

The soil redistribution and C flux study confirmed the existence of spatial variation in 

C flux at various landscapes position and was consistent with an important role for 

vertical mixing of soil and SOC in determining net C exchange with the atmosphere. 

This informed the design of the final element of the research that examined soil 

respiration differences in soil from shallow and deep layers in eroding and aggrading 

landscapes position. Respiration was measured over a one year period in samples 

derived from separate depth layers and in mixtures of soil from different depths at each 

landscape position. No significant difference was found in C release rate (per unit 

mass of C) from topsoil of eroding and deposition position but the subsoil of eroding 

pits exhibited significantly higher C release than the subsoil from deposition positions. 

This result suggests that topsoil in both locations has almost equal and similar C origin. 

The relatively high rate of respiration in sub soils from eroding pits may be due to the 

presence of a larger proportion of SOC formed from recently incorporated plant 

material (crop roots) at these locations. In buried and deposition locations the reduced 

mineralisation is consistent with the proposition that burial of top soil can contribute to 

formation of a C sink. In the samples containing mixed topsoil and subsoil, evidence 

for priming was seen where the respiration rate in the mixed sample was significantly 

higher than the expected rate based on the respiration rate seen in the separate depth 

samples. No priming was evident in mixed soils from eroding locations, suggesting 

that mixing of subsoil and surface soil does not accelerate loss of old SOC from the 

subsoil.  In contrast, significant priming action was evident in mixed soils from 

aggrading locations suggesting that buried SOC at depositional locations may be 

subject to accelerated respiration as long as it is exposed to fresh plant input (as found 

in surface soils).  

In conclusion, despite the low input and low productivity of the farmlands in the Indian 

Himalaya region studied here, there is consistent evidence that high rates of soil 

erosion and soil redistribution have induced spatial variation of nutrients and SOC, net 

C flux and soil respiration rates that combine to create a pattern of SOC stocks that 

are close to equilibrium and, if some of the exported C is sequestered, to create a net 
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C sink. This result again confirms that erosion induced redistribution of C does not 

directly cause a net release of C to the atmosphere. The consistency of these results 

with previous studies suggests that there is both scope and need for soil erosion 

induced carbon fluxes to be incorporated into carbon budgets, research frameworks, 

land management and climate change mitigation strategies at policy-relevant scales. 
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1. Introduction 

Soil erosion is the process of displacement of soil from the place of formation by 

causative agents (water, tillage, wind, gravity etc.) and thereafter deposition either on 

land or water courses. Erosion affects soil quality (which can be spatially variable) 

(Lowery et al., 1998; Beuselinck et al., 2000; Steegen and Govers, 2001; Quine and 

Zhang, 2002; De Gryze et al., 2008; Nosrati et al., 2015), agronomic productivity (Lal 

et al., 1998) and landscape process (Li et al. 2007b), and can also have implications 

for water quality as a non-point source pollutant (Burwell et al., 1975). In India, out of 

328 Million hectares (Mha) total geographical area, near to 147 Mha are undergoing 

soil degradation, 64% of which is by water erosion (Bhattacharyya et al., 2015). Water 

erosion rates vary from 5 t ha-1 y-1 in dense forest regions and are highest in the 

Shiwalik region (> 80 t ha-1 y-1) (Singh et al., 1992). In a comparison of annual 

estimates of soil erosion with several tropical countries (Swaify et al., 1982), India was 

observed to have extremely high erosion values. India’s average soil loss is 16.4 t ha-

1 y-1 of which 29% is lost permanently to the sea, 10% is deposited in reservoirs, and 

the remaining 61% is deposited on land (Narayana and Ram Babu, 1983). Thirty-nine 

percent of India is estimated to have erosion rates of more than 10 t ha-1 y-1 (Sharda 

and Mandal, 2010).  India soil loss tolerance limit (SLTL) values range from 2.5 to 12.5 

t ha-1 y-1. Fifty-seven percent of India has permissible soil loss of <10 t ha-1 y-1, these 

soils need to be treated appropriate and responsibly used (Mandal and Sharda, 2011). 

Annual soil loss from the Himalayan hills is estimated to be 28.2 t ha-1 y-1 (Singh and 

Gupta, 1982).  In North western Indian Himalaya (NWH) and the Shavlik area are 

considered to be severely eroded (>20 t ha-1 y-1) (Singh et al., 1992).  Thirty-nine 

percent of the Indian Himalayas has a potential erosion rate of > 40 t ha-1 y-1. In NWH, 

on average 17% can be categorised as very severe with erosion rates exceeding 40 t 

ha-1 y-1   and 25% has erosion rates of > 10 t ha-1 y-1. The state of Uttarakhand in NWH 

and Nagaland in North eastern Indian Himalaya (NEH) region have maximum area of 

34 and 65.3%, respectively considered to be very severely eroded, with rates in 

exceeding 40 t ha-1 y-1 (Madhu and Sharda, 2011). The major form of erosion in this 

area and India is water erosion. 

Soil erosion by water and tillage have a first order influence on the distribution of soil 

organic carbon content (SOC), within field landscapes by removing SOC from eroding 

sites, redistribution and deposition (Van Oost et al., 2005b; Zhang et al., 2006). This 
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process creates disequilibrium between SOC content and carbon input at each 

position of the landscape (Quine and Van Oost, 2007). The recent estimate of global 

agricultural sediment flux on crop, pasture and range land is 33 Pg (1 Pg = 1015g) y-1. 

With respect to sediment, total SOC erosion rate from agricultural land is 0.47 to 0.61 

Pg y-1 (Van Oost et al., 2007). The erosion induced net loss of nutrients/SOC is well 

studied, however, the influence of erosion induced redistribution and therefore, spatial 

variation of nutrients, soil carbon and respiration changes at the field-scale are not well 

reported upon. In particular, there is a research gap in the understanding of whether 

erosion induced redistribution of soil/SOC is a carbon (C)-source or sink. This study 

aims to understand the soil redistribution/erosion induced spatial variation of nutrients 

(C, N and P), C flux between soil and atmosphere, and soil respiration changes at 

various landscapes positions (e.g., eroding and deposition points) of low 

input/productivity and highly eroding agricultural field from foothills of Indian Himalaya.  

To address this research gap I will use 137Cs to trace the soil sediment/SOC 

redistribution. . 

This thesis is presented in 8 chapters. Following this introduction, Chapter 2 conducts 

a literature review placing this study into context. Firstly, an overview of soil erosion 

impacts on soil degradation and within field variation of SOC/nutrients is presented. 

Followed by the proposed drivers and mechanisms for soil erosion induced spatial 

variation of SOC (Quine and Van Oost, 2007), and finally summarising the soil 

respiration rates within eroded landscapes, and the vertical soil mixing effects on soil 

respiration (Quine and Van Oost, 2007). 

Based upon the findings of Chapter 2 and in the context of the overall aim of this study; 

Chapter 3 states the, and provides the rationale for each of the, the specific objectives 

that this study addresses. 

Chapter 4 documents and justifies the methodology used to address the identified 

objectives and includes: a detailed description of the study sites; description the field, 

laboratory, and data analysis methods used. The methods are separated into three 

sections, with the aim of providing the reader with an easy to use resource, detailing 

the approaches used within each of the results chapters. To address existing research 

gap fields were selected at three different locations of foot hills of Indian Himalaya. For 

studying spatial variation of nutrients and SOC 137Cs technique used as important 

marker to trace the movements of sediments along slope transect within fields. To 
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study C flux (C Sink or Source) quantified using model developed by Quine and Van 

Oost (2007). Soil respiration variation was measured in samples collected along slope 

transects from top and sub soil in isolation and mixed together to quantify priming 

effects. Respiration was measured over a long term (one year) soil incubation. 

 

This thesis contains three major results chapters. Chapter 5 presents and discusses 

results pertaining to the assessment of soil redistribution induced spatial variation 

(vertically and laterally) of nutrients (SOC, total nitrogen - TN - and total and organic 

phosphorus – TP & OP), and its stoichiometric relationship within agricultural fields 

using 137Cs as an erosion tracer.  Chapter 6 presents results regarding assessment of 

the effect of soil redistribution on the net flux of C between soil and the atmosphere 

within the landscape under low input /low productivity farming fields of the Indian 

Himalaya by using 137Cs fallout and SOC inventories. Chapter 7 seeks to study the 

effect of soil erosion induced vertical soil/soil organic carbon (SOC) mixing on soil 

respiration rates/priming effect at various landscape positions.  To conclude this 

thesis, Chapter 8 summarises the key findings of the study in the context of the 

identified aims and objectives, as well as giving consideration to key areas for further 

investigation and research.   
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2. Research context 

2.1. Introduction   

The last two decades have seen increasing concern about rising concentrations of 

carbon dioxide (CO2) in the atmosphere (IPCC, 2007) and consequent interest in the 

global carbon cycle (Figure 2.1). In 2016, the global atmospheric CO2 concentration 

reached 403 ppm (NOAA, 2016), presently increasing at a rate of 2.0 ppm y-1 

compared to pre-industrial levels. Although the rise in CO2 concentrations over the last 

century is attributed primarily to fossil fuel combustion and land use change. As Figure 

2.1 illustrates, there are several important exchanges of carbon between terrestrial 

pools and the atmosphere. In particular, soils are the third largest pool of carbon in the 

terrestrial ecosystem and store 2300 Pg (SOC 1550 Pg and soil inorganic carbon 

(IOC) 750 Pg) of soil carbon to 1 m depth (Eswaran et al., 1995; Batjes, 1996) and 

exchange many times as much carbon with the atmosphere as fossil fuels (Paustian 

at al., 2016).  Perturbation to carbon exchanges between soils and the atmosphere 

have a significant potential for either sequestering or releasing carbon (Schlesinger, 

1999; Bellamy et al., 2005). There is, therefore, considerable interest both in predicting 

the future of soil carbon stocks (Smith et al., 2005; Smith et al., 2006; Gottschalk et 

al., 2012) and in exploring the potential to store more carbon in soils and the terrestrial 

ecosystems (Lal, 2004). Furthermore, it has been suggested that the latter may yield 

significant co-benefits for ecosystem service delivery (Millennium Ecosystem 

Assessment, 2005; UK National Ecosystem Assessment, 2011; Dungait et al., 2012; 

Paustian et al., 2016).   

In response to this interest, there has been significant progress in understanding 

terrestrial, and specifically, soil carbon dynamics (Heimann and Reichstein, 2008).The 

vertical exchange of carbon (and net flux to atmosphere) is increasingly well 

understood; however, there has been less progress in resolving the influence of lateral 

fluxes of carbon / nutrients on the direction of net vertical fluxes.  
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Figure 2.1 Global carbon pools and their interactions.  

(source: WHRC http://www.whrc.org/global/carbon/index.html) 
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Figure 2.2 Simulated global distribution of cropland SOC erosion (Mg C ha-1 y-1) by 

water and tillage (top). Simulated global distribution of agricultural (crop land, pasture 

and rangeland) carbon erosion Mg C ha-1 y-1) (bottom). (Reproduced from Van Oost 

et al., 2007). 
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Soil erosion induced redistribution causes spatial variation of SOC and nutrients, it can 

alter net C flux between soil and atmosphere and also affect soil respiration rates.  To 

improve understanding of erosion induced redistribution impacts on net C flux there is 

need for an integrated study on spatial variation of SOC/nutrients and soil respiration 

across a topographic gradient. The importance of this integrated process is reviewed 

within the next three broader sections and also interlinked work. 

1. Spatial variation of SOC / nutrients; 

2. Net C flux between the soil and atmosphere; 

3. Spatial variation of soil respiration and the potential priming effect. 

2.2. Spatial variation of SOC / nutrients 

Soils are the terrestrial reservoir of nutrients such as carbon, nitrogen (N), and 

phosphorous (P). Biogeochemical cycling of C, N and P are strongly interrelated. Soil 

erosion processes are an important form of land degradation and it has three stages: 

(1) detachment, (2) transport and (3) deposition. These phases have an impact on 

SOC, N and P dynamics (Quinton et al., 2010; Berhe et al., 2014). Detachment and 

removal of soil at the eroding position can remove C, N, and P, and expose these 

nutrients to further loss via consumption by plants, microbes and leaching. New 

aggregate formation during the mixing of transported minerals will slow down the 

nutrient (C, N and P) loss, however, the process of transport itself may break 

aggregates and expose new surfaces for erosion process to act upon.  During 

deposition, eroded material is deposited at lower landscapes and buries the nutrient 

rich top soil already present (Berhe et al., 2012; Berhe and Kleber, 2013). In addition, 

while transport, detachment, deposition, and exposure of buried organic matter (OM) 

to fresh OM / nutrients may enhance decomposition of buried OM, this is known as 

priming (Kuzyakov et al., 2000; Fontaine et al., 2007; Kuzyakov, 2010). This entire 

cycle of erosion and deposition influences the spatial distribution of nutrients (C, N, 

and P). This erosion induced spatial variation of nutrients will also lead to the spatial 

variability of crop production/production of new photosynthetic (Quine and Zhang, 

2002). Eroded sites are likely to have lower crop productivity than a deposition site 

(Stallard, 1998; Parfitt et al., 2013). Soil erosion and redistribution has an effect on 

both rates of input and persistence of soil nutrients in eroded soil system. 

Erosion associated with nutrient loss and crop productivity is well studied. Many 

studies estimate nutrient loss by erosion field level and mainly by water erosion 
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(Benniston et al., 2014; Gulati and Rai, 2014; Lal and Mishra, 2015). If erosion and 

deposition occur within a field landscape there is minimal nutrient loss from the field 

itself as it is redistributed and leads to spatial variability of SOC / nutrients and crop 

productivity (Beuselinck et al., 2000; Steegen and Govers, 2001; Van Oost et al., 

2005a; De Gryze et al., 2008; Li et al., 2012, 2013; Nosrati et al., 2015). Therefore, it’s 

very important to assess erosion induced redistribution of soil nutrient / SOC (Quinton 

et al., 2010; Berhe et al., 2014; Zhang et al., 2015) and it stoichiometric relationship. 

There are several studies in this area for mechanised agriculture landscapes (Lobb et 

al., 1995; Quine and Zhang, 2002; De Alba, 2004; Heckrath et al., 2005; Smith et al., 

2005; Li et al., 2007a, b), however, there are few studies that consider low input/less 

mechanised agriculture farm lands (Quine et al., 1999; Li and Lindstrom, 2001; Thapa 

et al., 2001). Furthermore, the existing studies on C measurement and modelling of 

SOC dynamics has been limited to the top 20 cm of soil (Smith et al., 1997), so there 

is less understanding of deep soil SOC. The restriction to the top 20 cm may lead to 

misunderstanding of SOC dynamics and potential storage of C (Rumpel and Kogel-

Knabner, 2011). Therefore, the impact of soil redistribution on spatial variation (vertical 

and lateral) of soil nutrients has received limited study especially within low input, non-

mechanised, highly erosion susceptible agricultural farm lands. This spatial variation 

study will enhance the understanding of SOC dynamics and assist in the development 

of cost effective and environmental protective farming practice (precision farming).  

2.3. Soil erosion induced net C flux between soil and the atmosphere 

The direct effect of erosion and degradation on productivity (Lal et al., 1998) and the 

large lateral fluxes of sediment (and associated OM) associated with erosion, prompt 

the question – what impact does erosion and land degradation have on the terrestrial 

C cycle? Fundamentally, this is the primary question that this research seeks to 

address. It is a question that is at the heart of an ongoing debate in the scientific 

literature (Doetterl et al., 2016) that divides those that consider erosion to cause a 

source for atmospheric CO2 (e.g. Lal and Pimentel, 2008) from those who propose 

that it drives a sink (e.g. Stallard, 1998; Berhe et al., 2007; Van Oost et al., 2007; Li et 

al., 2015). The following considers both sides of the debate. 
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Soil erosion as a source for atmospheric CO2 

One proposition is that soil erosion causes a source of 0.8 to 1.2 Pg C y-1 of 

atmospheric carbon (Lal, 2003; Lal et al., 2004; Lal and Pimentel, 2008). Mechanisms 

that promote net C loss as a result of erosion have been identified as follows: 

1. An increase in breakdown of soil aggregates has been observed to occur during 

detachment and transport (Raymond and Bauer, 2001) and it is suggested that 

this exposes protected SOC to microbes and thereby accentuates 

mineralization and emission of CO2 (Oskarsson et al., 2004).  

2. Where deposition occurs in anaerobic conditions, the rate of aerobic 

decomposition may be low but SOC mineralisation may be accompanied by 

efflux of CH4 and N2O (Lal and Pimentel, 2008) which have higher global 

warming potentials than CO2.  

3. The eroded soil is severely SOC depleted (Rhoton et al., 1990) which is 

preferentially removed by runoff as a result of its low density and concentrates 

more in the surface layer. Along with SOC, eroded soil lose nutrient and water 

holding capacity, which causes low productivity, even with additional inputs 

(Dick and Gregorich, 2004). As a result of low productivity the net return of 

above and below ground biomass is reduced and the rate of replacement of 

SOC is low on severely eroded soils (Lal, 2005).  

4. The erosional losses of soil C and mixing with sub-soil C may lead to the priming 

at eroding and at deposition location. Both eroding and deposition location may 

experience the effects of priming (Fontaine et al., 2007)). 

 

Soil erosion as a sink for atmospheric CO2 

A second proposition is that, human-induced soil erosion causes a global sink of 0.12-

1.5 Pg C Y-1 (Stallard, 1998; Harden et al., 1999; Berhe et al., 2007; Van Oost et al., 

2007; Li et al., 2015). This is based on:  

1. Dynamic partial replacement of SOC at eroding sites with new photosynthate 

by continuous crop cultivation with proper inputs. At eroded sites subsoil with 

low SOC content is mixed with plant derived new carbon. The low SOC content 

implies low saturation of mineral surfaces with SOC and, therefore, a greater 

potential to store new SOC (Harden et al., 1999; Quine and Van Oost, 2007; 

Van Oost et al., 2007; Dlugoß, 2011; Doetterl et al., 2012; Dungait et al., 2013; 

Li et al., 2015; Vandenbygaart et al., 2015; Nie et al., 2016).  
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2. Removal of SOC from eroding site results in lower SOC stocks at these sites 

and this may limit the rate of microbial respiration (Li et al., 2015). 

3. A significant portion of eroded carbon rich topsoil is buried in different 

depositional sites and is subject to a reduced rate of decomposition (Doetterl et 

al., 2012; Vandenbygaart et al., 2012; Wang et al., 2013) and further 

transported SOC to the distal/ fluvial environment where it may be re 

aggregated and physically protected and thereafter, conserved in oxygen-

limited environments (Stallard, 1998; Van Oost et al., 2007; Li et al., 2015). 

 

The continuing debate 

This debate on the influence of erosion on the global C cycle continues (Li et 

al., 2015; Doetterl et al., 2016) due to the complexity of the controls on fluxes (spatial 

variability in plant productivity, soil nutrients, hydrology, spatial variability of 

decomposition, burial and physical protection of C); the lack of clear mechanistic 

understanding; the underuse of  spatially comprehensive methods (Aufdenkampe et 

al., 2011) and the predominant focus in early studies on short term measurements 

(Trumbore, 2009). The continuing debate is fuelled by the relatively few datasets 

available with respect to mineralisation of SOC as affected by erosion process and is 

reflected in the large variation in estimates of soil erosion caused carbon sink / source 

(Table 2.1).  These reinforce the need for further investigation from diversified regions 

(Berhe et al., 2007). Most previous empirical studies are from temperate climates and 

within mechanised agriculture landscapes (Quine and Van Oost, 2007; Van Oost et 

al., 2007). In particular, there have been very few studies from tropical-subtropical 

regions with low-input subsistence agriculture landscapes, where the highest 

sediment and carbon flux are located (Figure 2.2), particularly in South Asia. There is 

a need to study the impact of erosion process on C flux in different climatic regions 

and management strategies (Quine and Van Oost, 2007). 
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Table 2.1 Variation in erosion influenced C Sink /Source estimation 

Authors Sink  

(Pg C y-1 ) 

Authors Source 

(%) 

Yoo et al., 2005 0.02  Van Hemelryck et al., 2010 2.0 – 12.0 

Van Oost et al., 2007  0.12  Lal, 2003a 20.0-30.0    

Berhe et al., 2007 0.72  Polyakov and Lal, 2004 26.0 

Smith ., 2001 1.0 Jacinthe et al., 2004 16.0-42.0   

Stallard, 1998  1.5  Beyer et al., 1993 70.0 

Quine and Van Oost, 

2007 

 

0.25-0.46 Schlesinger 1990,1995 100.0 
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2.4. Need of long-term assessment of Sink/Source strength influenced by 

Erosion/Deposition process using 137Cs 

Caesium -137 (137Cs) was produced by thermonuclear weapons testing during 1950s 

– 1970s and was distributed globally within the stratosphere and deposited as fallout, 

largely in association with precipitation. Its use as a tracer of erosion is based on 

assumptions that total fallout was locally uniform and that subsequent lateral 

redistribution occurred in association with soil/sediment. It has been used as a tracer 

of erosion and deposition for more than 40 years and, although its reliability and 

underpinning assumptions have come under scrutiny (Parsons and Foster, 2011; 

Parsons and Foster, 2013), it remains a valuable tool in assessing long-term erosion 

rates because of the time period since fallout and the long half-life of 137Cs (30.2 

years). Recently many studies used 137Cs as a tracer for the long–term assessment 

of soil erosion induced redistribution on carbon budgets (Ritchie and McCarty, 2003; 

Quine and Van Oost, 2007; Ritchie et al., 2007; Van Oost et al., 2007). Earlier studies 

mainly focus on short term erosional events (1 year to decade) on carbon dynamics. 

For detailed understanding of erosion influence of sink / source strength, this needs to 

be studied by long-term measurement. Long-term observation is essential because 

carbon dynamics at eroding and depositional sites occurs over long processing time 

in terms of decomposition loss, new plant input, reaggregation at burial site and 

enhancement of stabilization. Therefore, 137Cs is a valuable tracer in the quantification 

of sink/source strength through long-term measurements. The application in this study 

will account for the recent critique of Parsons and Foster (2011) and ensure that 

sufficient account is taken of sources of local variability.  

2.5 Hypothesized influence of soil erosion induced redistribution on SOC 

balance under various landscape positions in within field 

Change in SOC stocks at various landscape positions is controlled by the magnitude 

of two opposing vertical carbon fluxes, SOC formation (Atmosphere C – Plant C- 

Humus) and decomposition (SOC-release C to atmosphere; Figure 2.3). When SOC 

stocks are at equilibrium state, the fluxes balance and formation gains equal 

decomposition losses. When erosion / deposition occurs, it directly alters the local 

SOC stocks by removing (or redistributing) or adding SOC. This lateral SOC flux 

results in SOC redistribution within field or watershed and change in the spatial 

distribution of SOC storage. This need not directly result in change in soil-atmosphere 
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exchange. However, erosion and deposition indirectly affect soil atmospheric 

exchange by causing disequilibrium of SOC content and C input at each position and 

this is expected to change the relative magnitude of SOC formation and decomposition 

(Figure 2.3). At eroding sites, the soil profile becomes depleted in SOC, due to 

erosional export and disequilibrium favours the potential to create an atmospheric sink 

through reduced mineralisation (Li et al., 2015) as a result of lower SOC stocks and 

increased SOC stabilisation (Harden et al., 1999; Quine and Van Oost, 2007) through 

plant input adsorption on new mineral surfaces with low SOC content associated with 

soil material advected upwards to replace that lost through erosion (Van Oost et al., 

2005a). At deposition sites, the soil profile exhibits elevated SOC contents at greater 

depths than at stable sites as surface accretion leads to burial of SOC to deeper layers. 

The latter process may inhibit decomposition due to burial of C under deep layer which 

is less favourite condition for decomposition (Doetterl et al., 2012) or SOC stocks 

exceed equilibrium levels for C input and disequilibrium may favour continuous C loss 

through mineralisation even buried C also get continues loss (Van Oost et al., 2005a; 

Van Oost et al., 2012; Wang et al., 2015). During and after transport, breakdown of 

aggregates and mixing of SOC (Old SOC with fresh SOC cause Priming –Kuzyakov 

et al., 2000; Fontaine et al., 2007) can result in net loss of C to atmospheric CO2. 

Priming action is also possible at eroding and deposition location by mixing of top and 

sub soil C. At mid-slope positions where net soil loss and gain from upslope will be 

there. SOC formation and decomposition fall between range of upslope and 

downslope condition. The extent to which this drives a source or sink will be dependent 

on lateral transport rates, the degree to which soil mineral surfaces are saturated with 

carbon, and the presence or absence of equilibrium between SOC stocks and inputs.  

Other than within field C flux study need further attention about fate of exported C from 

the field because highly eroding field mainly through water erosion export maximum 

eroded C to outside the field.  
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Figure 2.3 Vertical and horizontal changes of SOC due to erosion process at various 

landscape positions (developed after Van Oost et al., 2007). Notation: + mean C sink; 

- mean C source 
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2.6. Spatial variation of soil respiration/priming effect 

Soil respiration changes by erosion/deposition process 

Atmospheric CO2 levels have increased steadily over the last century and the current 

level is 403 ppm (NOAA, 2016). One significant area of uncertainty in prediction of 

future CO2 levels is the future trend in soil respiration because small changes in soil 

respiration rate can cause significant alteration in atmospheric CO2 level (Meir et al., 

2006). Soil respiration is highly variable in space and time because it is controlled by 

many factors. Temperature and soil moisture are the most important factors that 

control soil respiration (Kang et al., 2003; Herbst et al., 2009). Other factors that 

directly or indirectly control soil respiration include: SOC stocks (Li et al., 2015), SOC 

pools composition along landscape with various depth (Doetterl et al., 2012), nutrient 

content (Hartley et al., 2010), soil texture and porosity (Papiernik et al., 2007). These 

factors are modified by soil erosion induced redistribution and can be expected to vary 

with landscape position as a result. 

Soil respiration results from eroded and deposited landscapes reported by 

different researchers to answer source or sink for atmospheric CO2 

C sink by short term incubation study for soil respiration: Doetterl et al., 2012a 

studied short term incubation study by keeping top and sub soils from eroding, 

deposition and non-eroded positions from agricultural fields and measured soil 

respiration found no significant difference of C release from top soils of eroding and 

deposition (Figure 2.4 ). This no difference due to dynamic C replacement from plant 

inputs equal at both positions. Subsoil respiration from eroding and deposition position 

indicated high respiration from eroding subsoils than deposition. This may be due to 

high plant derived fresh inputs deposited at deep soil of eroded position and deposited 

position less mineralisation due to physical protection by reaggregation. Over all they 

found soil respiration result from eroded agricultural fields found C sink. Similar short 

term study also done by other researchers (Wang et al., 2013; Vandenbygaart et al., 

2015) and found eroding location high respiration than deposition this due to dynamic 

replacement fresh C high at eroding position and less respiration at deposition location 

due to burial of C and formed reaggregation caused physical protection of C (Berhe et 

al., 2008). Here they found burial and dynamic replacement of C at deposition and 

eroding landscapes facilitate C sink. Wang et al., 2015 found similar result but warned 

that buried C may loss continuously and more vulnerable to human disturbance.  
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C sink/source by insitu measurement study for soil respiration (Interpretation 

differ): Insitu measurement of soil respiration in croplands at eroding and deposition 

positions studied (Wiaux et al., 2014; Li et al., 2015) and found that reduced respiration 

at eroding landscapes and high mineralisation at deposition this due to eroding 

position less C available than deposited position with more C. This reduced respiration 

C release at eroded landscapes and dynamic replacement support C sink (Li et al., 

2015). Similar at high respiration due to breakdown of aggregates (Van Hemelryck et 

al., 2010) and more C available to respire due to deposition cause loss of C but 

continuous burial of C at deposition with considering over all proportion of eroding and 

deposition area if eroded area less than C loss over all support C sink. This buried C 

more vulnerable to future changing climate and agricultural practice (Wiaux et al., 

2014). The researchers view and interpretation on soil respiration differ but overall 

support C sink at eroding and deposition landscapes. 

No landscapes level variation of C flux Some researchers studied soil respiration 

at eroding and deposition landscapes position by insitu measurement and found no 

significant difference of C release (Bhajracharya et al., 2000; Fiener et al., 2012). 

Though few studies exist on this contested topic but up to now there is no study 

conducted on effect of soil erosion induced vertical soil organic carbon (SOC) mixing 

(redistribution) on soil respiration rates/priming effect at various landscape positions; 

to answer Source or sink for atmospheric CO2. Still this uncertain view and debate 

continuing and existing study mostly lost in short duration of incubation so need further 

study to address existing research gaps and better understanding of mechanisms 

involves. 
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Figure 2.4 Observed respiration rates for top- and subsoil as a function of the 

geomorphic positions (Reproduced from Doetterl et al., 2012). In figure same letters 

indicate statistically not significant. 

 

2.7. SOC pools composition altered by erosion process 

The most abundant element in soil organic matter (SOM) is carbon, followed by 

Nitrogen, Phosphorus and Sulphur. SOM is derived from fresh to progressively 

decaying plants, soil microbial decomposition products, soil faunal debris and root 

exudates. The SOM (& SOC) may be adsorbed and stabilised and contributes to the 

formation of aggregates (Tisdall and Oades, 1982) as is illustrated in Figure 2.5. These 

are relevant in the consideration of the mechanisms for SOC stabilisation (Six et al., 

2002). In this context, SOC is often conceptualised as existing in pools mainly based 

on stabilizing mechanism (Six et al., 2002) and decomposition / turnover rate. In 

dynamic SOC (numerical) models, pool division is typically based on turnover (Figure 

2.6a) (Jenkinson and Rayner, 1977; Paustian et al., 1992). The turnover rate of these 

pools varies due to complex interaction of biological, chemical and physical process 

in soil (Christensen, 1992; Trumbore, 2009). The active pool is less stable with mean 

residence time (MRT) of less than one year, slow pool with MRT of few decades and 

passive pool with long MRT. In the context of SOC characterisation and measurement, 

pools are often grouped based on their stabilization mechanisms. For example, Six et 

al (2002) grouped SOC into four measurement pools (Figure 2.6b) viz., silt and clay, 

micro aggregate, biochemically protected pools and unprotected pools. At stable sites 

where the erosion/deposition have not occurred, it has been observed that SOC 
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stability changes with depth; labile carbon pools present in surface soils; and more 

stable carbon pools are found in deeper layers (Rumpel and Kogel-Knabner, 2011). 

The implications of erosion and deposition for carbon distribution between pools may 

be identified as follows: 

1. Soil redistribution as a result of erosion and deposition alters the soil texture 

(Quine and Zhang, 2002; Fiener et al., 2008) and can be expected to affect 

the SOC pools associated with soil primary mineral particles and aggregate 

(Six et al., 2002).  

2. During high energy transport (wind and water erosion) SOC protected in 

aggregates (Figure 2.5) may be dispersed and exposed to microbial activity 

and, therefore, subject to enhanced decomposition.  

At eroding site, it is expected that stable carbon pools from subsoil layers will 

be incorporated into surface horizons and mixed with labile carbon pools. This may 

increase the rate of decomposition of formerly stable subsoil derived carbon due to 

the priming effect of the labile carbon (Fontaine et al., 2007). At depositional sites, 

buried topsoil (rich in labile carbon pools) may be physically protected at deeper layer. 
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Figure 2.5 SOC store in aggregate form (above arrow) and SOC release during 

disturbance (bottom arrow side) Source of original graphic: Brady & Weil (2000) after 

Tisdall and Oades, 1982. 

 

 

 

 

 

 

 

 

 

 

 

 

Soil aggregate perspective (SOM transformation)

Tisdall & Oades, (1982)

C store (flocculation)

C release (Dispersion)

Carbon 

poor 

mineral 

sediment

e.g. 

Geologically 

sourced



37 
 

a  

 

b 

 

 

Figure 2.6 (a) SOC pools by CENTURY model (b) stabilization based pools (Sources: 

Century slides: http://www.nrel.colostate.edu/projects/century; Six et al., 2002)  
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2.8. SOC dynamics / characteristics in top- and sub-soils 

Nearly 70% of the total SOC stock (1550 Pg C) is present in the top 1 m of soil profiles 

(Figure 2.7).  In general, SOC contents in soil profiles are highest near the surface and 

decrease with increasing depth. Pedological, environmental and physicochemical 

properties, which also influence activity of microorganism/ biological, differ strongly 

between the top soil (plough layer) and sub soil (sub plough layer).  Specifically, top 

soil SOC is considered to be more labile, highly degradable, highly saturated and be 

characterised by more microbial activity and lower mean residence time; whereas, sub 

soil SOC tends to be more passive, less degradable, less saturated, and be 

characterised by less microbial activity and higher mean residence time.  This 

difference of above important properties in topsoil and subsoil are entirely influence 

SOC dynamics difference in respective soils layers (Fierer et al., 2003; Fontaine et al., 

2007; Salome et al., 2010; Rumpel and Kogel-Knabner, 2011; Wang et al., 2013). Also 

If erosion and deposition of soil /SOC occur at  each landscapes it bring the changes 

on topsoil and subsoil proportion (eroding position loss the topsoil and subsoil and 

deposition position gain soils) and ultimately influence SOC dynamics  in respective 

soil layers and landscapes position 
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Figure 2.7 Vertical distribution of SOC stock up to 3 m depth in Global soil profile 

(Developed from Jobbagy and Jackson, 2000)      
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2.9. Hypothesised mechanism on SOC/soil redistribution process and vertical 

mixing of SOC-Possible priming effect 

Most of landscapes (>60%) are composed of undulating slopes (> 8% slope) (Staub 

and Rosenzweig, 1992). In world majority of agriculture field under undulating 

topography and particularly in my study area near foot hills of Indian Himalaya farming 

practiced in slope fields. In cultivated land, this undulating slope field promotes soil 

redistribution by water and tillage erosion process within fields (Govers et al., 1999; 

Quine and Zhang, 2002; Van Oost et al., 2005) and this also alters lateral and vertical 

distribution of SOC stocks along soil toposequences within rolling fields ( Quine and 

Van Oost , 2007). This within field redistribution of soil/SOC plays an important role in 

controlling then depth and spatial distribution of SOC. Tillage process in particular act 

as major conveyors in agricultural fields to move massive soils from eroding convex 

to depositing concave landscape positions (Van Oost et al., 2005). This redistribution 

of sediment (with nutrients/SOC) can get mixed with soils (different nutrient/SOC) at 

various landscape positions (Quinton, et al., 2010) and can be vertically mixed within 

the profile (Quine and Van Oost, 2007; Van Oost et al., 2012; Vandenbygaart et al., 

2012). 

In non-eroding stable profile there is no possibility of vertical mixing of top soil SOC 

with subsoil SOC (Figure 2.8) and both top soil (plough) and sub soil (sub-plough) kept 

separately. Plough-layer soils and sub plough soils are entirely different in the aspects 

of nutrients, SOC quality/ quantity, microbial activity and minerals surface (proportion 

of surface area occupied by minerals and SOC) etc (Salome et al., 2010; Rumpel and 

Kogel-Knabner, 2011).  Normally, in non eroded profiles, plough-layer soils are more 

fertile and with greater biological activity than sub plough soils when plough and sub 

plough soils get mixed due to erosion and deposition process, it changes the vertical 

flux of SOC at each landscape position, and this needs to be quantified. This is my 

prime aim of the study. 

At eroding positions, erosion removes part of the plough layer (maximum), and even 

some sub plough soil, and redistributes and deposits material in depositional areas 

within fields, with some export outside of the field. After removal of plough soil at 

eroding positions, sub plough soil can get exposed at the surface. This soil has less 

SOC and unsaturated more minerals surface (Harden et al., 1999; Quine and Van 

Oost, 2007) and gets mixed through cultivation/erosion with remaining plough-layer 

soil which has high SOC, nutrients and maximum saturated minerals surface (SOC 
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occupy more minerals surface and left less free minerals surface for further 

adsorption)  than deep soils (Vitousek et al., 2003). This mixing of sub plough soil with 

plough soil could lead to increased sequestration of new photosynthate due to more 

availability of non C saturated mineral surface which have more potential to stabilise 

organic C (Tisdall and Oades, 1982; Six et al., 2002; Berhe et al., 2007; Van Oost et 

al., 2007) and facilitate C sequestration.  

The mixing can potentially result an increase in the rate of organic matter 

decomposition in soil that was previously below the plough layer through the process 

of priming. A positive priming effect is the stimulation of soil organic matter 

mineralisation by the addition of fresh organic matter (Bingeman et al., 1953; 

Kuzyakov et al., 2000; Fontaine et al., 2007). Priming effects are possible at eroding 

positions due to the mixing of fresh carbon from plough soil with older carbon in the 

sub plough soil (Fontaine et al., 2007). In addition, the mixing may further promote sub 

plough soil organic matter decomposition by exposing the material to higher 

temperatures or better aerated conditions or greater nutrient availability (Fierer et al., 

2003). Whatever the mechanism, any increase in sub plough layer organic matter 

decomposition could promote C release.  

At deposition site eroded plough/sub plough soil deposited and it initially gets mixed 

with plough soil of depositional site. After that, at deposition site top and subsoil of 

eroded sediment get buried and mixed along with buried topsoil of depositional site 

cause complex vertical mixing (Van Oost et al., 2005, 2012; Quine and Van Oost, 

2007). This complex vertical mixing of soils may cause priming effects with readily 

decomposable topsoil organic matter promoting the decomposition of recalcitrant 

subsoil carbon. Alternatively promote a stronger C sink by burial of eroded carbon / 

top soil C at depositional site. Buried soil organic matter may become exposed to less 

favourable conditions for C mineralisation (Less microbial activity, temperature, 

moisture and oxygen availability) or physically protected by reaggregation which 

facilitate long-term storage of C (Doetterl et al., 2012; Wang et al., 2013; Wang et al., 

2014; Vandenbygaart et al., 2015).  Further presence (unsaturated mineral surface) 

of subsoil at top of depositional site exported from eroding positions has potential to 

stabilize more C or loss by priming.  

Further investigation of these hypothesised mechanisms remains a priority for further study. 
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Figure 2.8 Conceptual model of erosion and deposition induced vertical mixing of soil, 

the effect on SOC and soil respiration. 
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2.10. Knowledge gaps 

Contradictory global estimates of net fluxes and contrasting hypothesized changes in 

soil SOC stocks, pools composition, respiration and soil profile modification highlight 

the existence of gaps in knowledge concerning soil erosion induced redistribution 

process and SOC dynamics. Key areas of uncertainty may be summarised as follows: 

 The influence of soil redistribution on spatial variation of SOC stocks is relatively 

well established (Zhang et al., 2006; Quine and Van Oost, 2007). However there 

is less known about the effect on the relative distribution of other nutrients with 

SOC, for better understanding of SOC on sink/source estimates by erosion, need 

a combined study of spatial variation of nutrients. 

 Earlier studies on source/sink strength have used data mainly from high input, 

mechanized agriculture landscape (Berhe et al., 2007; Quine and Van Oost, 2007; 

Van Oost et al., 2007; Dlugo, 2011; Van Hemelryck et al., 2011; Doetterl et al., 

2012). But few have used data from low input-subsistence farming, low 

productivity, tropical, sup-tropical climate (Zhang et al., 2006). For thorough 

sink/source estimates, there is a need for studies from diverse regions, including 

low input and low productivity regions (Quine and Van Oost, 2007; Van Oost et al., 

2007). 

 Previous studies inferred C budgets based on control on the soil respiration/ 

decomposition rates (Quine and Van Oost, 2007; Van Oost et al., 2007). There 

remains a need to investigate the factors and mechanism that control the observed 

behaviour.  

 Many studies investigated SOC pattern for topsoil layer (Terra et al., 2004; Takata 

et al., 2007). Spatial pattern of SOC might differ substantially in subsoil layer due 

to different controls on SOC dynamics compared to topsoil layer (Salome et al., 

2010). So there is a need for clear investigation of SOC dynamics in top and subsoil 

of various landscapes position (Doetterl et al., 2102) separately and mixed layer.  
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2.11. Summary 

This above review has highlighted the need of further research on erosion induced soil 

redistribution impacts on spatial variation of nutrients, net C flux between soil and 

atmosphere and soil respiration rates at various landscapes position within agricultural 

fields.  

Soil erosion impacts on net nutrient/SOC loss has been well studied (Ghosh et al., 

2012 and 2015) but impacts on within field spatial variability has been less studied and 

also less linked with SOC dynamics and Crop productivity variability within field. 

Existing studies on spatial variability of SOC/nutrients have been mainly from 

mechanised /high productivity farm lands (Quine and Zhang, 2002). There is huge 

demand of data /study required from where less mechanised/low productivity farm 

lands where highest erosion occurring. 

Studies that have evaluated soil redistribution induced net C flux and found a C sink 

(Quine and Van Oost, 2007; Van Oost et al., 2007) have been mainly from mechanised 

farmlands where highest crop productivity exist. It is possible that C sink strength may 

be lower or there may be no sink in low productivity farm lands because the lower net 

returns of biomass (Quine and Van Oost., 2007). This need to be tested on lower crop 

productivity farmland with lower and biomass return to the soil. 

Erosion induced spatial variation of soil respiration rate at various landscapes has 

been relatively less studied and reported results have varied significantly (Doetterl et 

al., 2012; Li et al., 2015; Vandenbygaart et al., 2015). Also the impact of vertical mixing 

of SOC (top and subsoil) has not yet studied. Therefore, further research on erosion 

effects on soil respiration is needed to help better understanding of mechanisms 

involved in erosion perturbed SOC dynamics. 

Based upon the state of current understanding reviewed here; the following chapter 

outlines the aims and objectives of this study and details how they will further 

understanding of soil erosion induced redistribution impacts on spatial variation of 

nutrients, net C flux and soil respiration rates from low input/productivity farm lands. 
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3. Aim and Objectives 

 

Aim: To study the effect of erosion induced soil redistribution on spatial variation of 

nutrients/C, net C flux between soil and atmosphere, and soil respiration rates/ priming  

3.1. Objective 1: To quantify the impacts of erosion-induced soil redistribution on SOC 

and nutrients (lateral and vertical) within agricultural fields 

Erosion associated with nutrient loss and crop productivity was well studied. Many 

studies estimated nutrient loss by erosion field level and mainly by water erosion 

(Benniston et al., 2014; Gulati and Rai., 2014; Lal and Mishra, 2015) But if erosion and 

deposition occur within field landscape there is no much nutrient loss out of the field 

all redistributed within field (Beuselinck et al., 2000; Steegen and Govers, 2001; Van 

Oost et al., 2005; De Gryze et al., 2008; Li et al., 2012, 2013: Nosrati et al., 2015). 

This cause within field spatial variability of nutrients/SOC and crop productivity and it 

will affect SOC dynamics. Therefore it’s very important to assess erosion induced 

redistribution of soil nutrient (Quinton et al., 2010; Berhe et al., 2014; Zhang et al., 

2015) and it stoichiometry relationship. Erosion induced redistribution impact on 

nutrient (C, N and P) spatial variation within field well studied from mainly mechanised 

agriculture landscape (Quine and Zhang, 2002; De Alba, 2004; Heckrath et al., 2005) 

and very less from low input/less mechanised agriculture farm lands (Quine et al., 

1999; Thapa et al., 2001; Li and Lindstrom, 2001). As per my knowledge no single 

study studied in highly eroding and low input/crop productivity and less mechanised 

agriculture field from Indian Himalaya region which is represent large area in the world 

and more people depended for their subsistence agriculture. Therefore, the impact 

of soil redistribution on spatial variation (vertical and lateral) of soil nutrients (C, 

N, P) needs to be studied well from low input –non mechanised highly erosion 

susceptible agricultural farm lands where people are highly dependent on farm 

resource and it will help to better understanding of SOC dynamics and also help 

to develop cost effective and environmental protective farming practice 

(Precision farming). For this I used 137Cs tracer technique to understand erosion 

induced spatial variation of nutrients/SOC. 
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3.2. Objective 2 : To quantify erosion-induced soil carbon redistribution on the net 

effect of carbon exchange between soil and atmosphere in low input/productivity and 

highly eroding agricultural fields from the foothills of the Indian Himalaya by using 137Cs 

fallout and SOC inventories 

The debate on the influence of erosion on Global C cycle continues ( Li et al., 2015; 

Doetterl et al., 2016)  and  continuing controversy is fuelled by the relatively few data 

available with respect to mineralisation of SOC as affected by erosion process and is 

reflected in the large variation in estimates of soil erosion caused carbon sink /source.  

These reinforce the need for further investigation from diversified regions (Berhe et 

al., 2007). Most previous empirical studies are from temperate climates and 

mechanized agriculture landscape (Quine and Van Oost, 2007; Van Oost et al., 2007). 

In particular, there have been very few studies from tropical-subtropical region with 

low-input subsistence agriculture landscape, where the highest sediment and carbon 

flux is existing, particularly in South Asia. There is need of study on C flux impact 

by erosion process from different climate and management region (Quine and 

Van Oost, 2007) particularly from low input farming fields where net return of 

biomass will be low to return C input and harm dynamic C replacement (Van 

Oost et al., 2007; Bhattacharyya et al., 2009). Based on this existing research gap 

here this study proposed to investigate the sink/source strength by erosion/deposition 

process in the Indian –Himalayan region where moderate to severe erosion (Singh 

and Gupta.,1982; Narayana and Ram Babu, 1983; Khola and Sastry., 2005; Singh et 

al., 2016 ) and low input (Tiwari et al., 2005; Ghosh et al., 2014) and low crop 

productivity (Madhu and Sharda, 2011; Ghosh et al., 2012; Singh et al., 2016) exist. 

 

3.3. Objective 3 : To study the effect of erosion- and deposition-induced vertical soil/SOC 

mixing on soil respiration rates at various landscapes positions. 

 

Soil erosion-induced redistribution of soil organic carbon (SOC) alters the lateral and vertical 

distribution of SOC stocks and this has been shown to perturb the net exchange of C 

between soil and atmosphere (Dungait et al., 2013), although there remains debate 

concerning the net direction of C exchange. Retrospective studies, using caesium-137 

(137Cs) and SOC inventories have found that long-term (half-century) erosion-induced SOC 

redistribution on agricultural land has driven a carbon sink (Van Oost et al., 2007). 

Furthermore, in a recent study of in situ spatial variation in soil respiration in a landscape 
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subject to sustained high magnitude erosional forcing, Li et al., (2015) demonstrated that 

SOC stocks in the eroding landscape were in equilibrium and, therefore, that erosion was 

driving a sink of atmospheric C (assuming that at least some of the eroded C was 

sequestered elsewhere in the landscape). The lateral redistribution of SOC stocks 

appeared to be the main control on spatial variation in respiration rates.  

Although attention has focussed on lateral redistribution, vertical redistribution of SOC 

between the plough and sub-plough layer of agricultural soils as a result of erosion and 

deposition may also have an important effect on respiration rate and SOC ‘stability’. At 

depositional sites, SOC-rich material transported into deeper horizons may respire at a 

lower rate due to physical separation from the most biologically active surface environment. 

On the other hand, incorporation of relatively young SOC into deeper horizons may 

enhance mineralisation of the pre-existing deeper SOC in a priming effect. At erosion sites, 

SOC-poor material transported towards the surface may sequester new SOC but mixing 

with material richer in SOC may again see priming and more rapid consumption of formerly 

buried SOC.  This uncertainty defines the objectives of the study. This will addressed 

highly eroding and low input agricultural field from Indian Himalaya region by 

measuring soil respiration rates in individual layer (plough and sub plough) and 

mixing both to detect possible priming effect. 

 

The following chapter outlines the experimental framework, including field, laboratory 

and analytical techniques used to address the identified objectives. 
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4. Experimental framework and methods   

4.1. Site location, Soil, climate and Land use description 

The selected area of study is located in the lower Himalayan region of northern India 

(Figure 4.1).The Indian Himalayan region covers 53 million hectares (Mha) and it is 

grouped into North West Himalaya (NWH) and North East Himalaya (NEH). The 

selected study area falls within the NWH. The NWH occupies major part (about 62%) 

of the total Himalayan range. The climate is dry and cold in NWH, the mean air 

temperature varies from 30.0°C in May to 3.5°C in January. Mean annual rainfall is 

1600 mm, highest during July-September.  

The Himalaya is the youngest mountain system in the world (Burman, 1984). Lower 

Himalaya rocks provide a source of fresh water deposits that are composed of clays, 

sandstone, grits and conglomerates. These are products of rising Himalayas and are 

mobilised by heavy rainfall. Limestone is the major geological rock type, which is highly 

erodible, particularly in wet and tropical conditions. Lower Himalaya is mostly 

dominated by loam to sandy loam soil types, which are predominantly slightly acidic 

to neutral in pH. Major soil orders existing in the study area are Entisol > Inceptisol > 

Alfisol. 

According to State Forest Report (2009), agriculture is the major national land use. 

However, within the Indian Himalayan region forest cover is the dominant (Figure 4.3).  

Rice, wheat and maize are the predominant crops grown in Himalaya region and about 

70% of population in this area are engaged in agriculture. Comparatively lower 

productivity of crops in Himalaya region (Table 4.4) is a result of the low application of 

fertilisers, and the cultivation on steep slopes (Tiwari et al., 2005; Ghosh et al., 2012). 

Hill and mountain agriculture in the Indian sub-Himalayas has evolved over the 

centuries with the application of 10-15 t ha-1 Farm yard manure (FYM) along with 

inorganic NPK fertilizer at lower doses of around 20 kg ha-1 y-1 compared to the 

national average of 130 kg ha-1 y-1 causing degradation of soil quality in all cropping 

system (Tiwari et al., 2005).  In the Himalaya region after harvesting of crop removal 

of residues for livestock feed is normal practice and open grazing also affects the net 

return of biomass to the soil and further accelerates land degradation (Bhattacharyya 

et al., 2009).  Seventy percent of the population depends on agriculture for their 

livelihood in the NWH region, and small areas of lands were cultivated for subsistence 

purpose (Ghosh et al., 2012).The major source of water for agricultural purpose is via 



49 
 

rainfall, which can be erratic and insufficient at times, this envitably leads to low 

productivity especially within the during the growing season, which coincides with the 

lowest rainfall period (Ghosh et al., 2012).  Drought, intensive tillage, high runoff and 

soil loss rates are the largest causes of production losses within NWH (Sharda and 

Singh, 2004). 

Site selection 

The study was conducted during 2013 in agricultural fields in the foothills of the Indian 

Himalaya, near Dehradun, Uttarakhand, India. Three sites (Figure 4.1) were selected: Site 

1: Dhulkhot (DK)-Low Input Agriculture –Acidic (LIA), Site 2: Pasauli (PS) - Low Input 

Agriculture- Acidic, and Site 3: Bhatta Gaon (BG)- Low Input Agriculture-Calcareous (LIC). 

At each site three fields (Figure 4.2 & Appendix Figure 4.1 to 4.3 and Table 4.1 to 4.3) were 

selected for sampling. Within each field a field slope transect was designated, which was 

typically ~60m in length. All slope fields were surveyed by using Leica total station survey 

equipment and pits location and elevation were recorded using GPS (Garmin). The 

transects extended from eroding upslope to deposition downslope areas at the base. Also, 

each sites three fields were selected with no apparent erosion and deposition (Appendix 

Figure 4.1 to 4.3). These were considered as stable areas, and were used to collect 

reference samples. Due to the lack of stable uncultivated land in the region, cultivated fields 

were used as reference sites.  
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Figure 4.1 Location of the three study sites in the foot hills of Indian Himalaya ; *1: 
Dhulkhot, *2: Pasauli, and *3: Bhatta Gaon. (Source:  ArcGIS@ -Online). 
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Figure 4.2 Topographical transect (line) and pit locations (red square) for all fields. 
Site 1(a = DKF1, b =DKF2, and c = DKF3), Site 2 (d =PSF1, e =PSF2 and f =PSF3) 
and Site 3 (g =BGF1, h=BGF2 and I =BGF3) 
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Table 4.1 Site 1 (DhulKhot-DK) slope fields and reference fields basic data description 

. Soil pH and EC measurements represent mean values for whole profile depth. 

Distance of pits start from upslope (eroding) to downslope (deposition) within each 

field. 

 

 

 

 

 

 

Sites Fields Profile Lattitude Langitude Elevation (m) Distance (m) Soil pH EC dsm-1 Depth( cm)

Site 1 DKF1 P1 30o21.052, N 77o53.483, E 537.3 4.2 5.09 0.13 <70

P2 30o21.062, N 77o53.472, E 536.9 16.1 4.99 0.07 <70

P3 30o21.062, N 77o53.472, E 536.5 28.6 5.16 0.06 <90

P4 30o21.067, N 77o53.466, E 536.1 42.0 5.11 0.05 >100

P5 30o21.073, N 77o53.460, E 535.6 57.2 4.95 0.09 >100

P6 30o21.076, N 77o53.457, E 535.5 63.0 5.09 0.10 >100

Site 1 DKF2 P1 30o21.065, N 77o53.494, E 537.7 2.5 5.70 0.09 <70

P2 30o21.069, N 77o53.489, E 537.4 13.9 5.34 0.16 >100

P3 30o21.073, N 77o53.485, E 537.1 24.1 5.43 0.13 <50

P4 30o21.077, N 77o53.480, E 536.8 35.3 5.33 0.07 >100

P5 30o21.082, N 77o53.475, E 536.7 46.4 5.23 0.12 >100

Site 1 DKF3 P1 30o21.087, N 77o53.533, E 555.0 0.0 5.20 0.06 <70

P2 30o21.096, N 77o53.524, E 554.8 15.9 5.12 0.09 >100

P3 30o21.101, N 77o53.516, E 554.2 36.3 5.20 0.46 >100

P4 30o21.104, N 77o53.510, E 553.6 46.4 5.35 0.04 >100

P5 30o21.107, N 77o53.507, E 553.3 54.1 5.31 0.05 >100

P6 30o21.111, N 77o53.502, E 553.0 64.0 5.42 0.14 >100

Site 1 DK Ref Ref1 30o21.011, N 77o53.475, E 550 5.27 0.05 >100

Ref2 30o21.001, N 77o53.487, E 550 5.29 0.09 >100

Ref3 30o21.079, N 77o53.541, E 556 5.33 0.06 <70
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Table 4.2 Site 2 (Pasauli-PS) slope fields and reference fields basic data description. 

Soil pH and EC measurements represent mean values for whole profile depth. 

Distance of pits start from upslope (eroding) to downslope (deposition) within each 

field. 
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Table 4.3 Site 3 (Bhatta Gaon-BG) slope fields and reference fields basic data 

description. Soil pH and EC measurements represent mean values for whole profile 

depth. Distance of pits start from upslope (eroding) to downslope (deposition) within 

each field. 
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Figure 4.3 Major land use pattern in Study area and India (SFR, 2009) 

 

 

 

Table 4.4 Major crops productivity (kg ha-1) from different region (Madhu and Sharda, 

2011) 

Different region Maize Wheat Rice 

  kg ha-1  

NWH 1779 1665 1796 

Uttarakhand 1392 1921 1939 

Himalaya 1579 1649 1741 

India 1998 2715 2051 

Developed country (FAO-Stat) 6810 3110 8340 

FAO-Stat- Food and Agriculture Organisation -statistics 
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4.2. Methodology for chapter 5 

Chapter 5 address research objective 1: To quantify the impacts of erosion-induced 

soil redistribution on SOC and nutrients (lateral and vertical) within agricultural fields 

The statistical data analysis in this chapter assumes the overall null hypothesis: 

H0: Erosion induced redistribution of soils (Top/Subsoil) changes within field spatial 

variation of soil nutrient stock and it CNP ratio, eroding position low SOC/nutrient 

stocks than deposition positions. 

 

Soil sampling design 

The effect of soil redistribution on spatial variation (Vertical and Lateral) of 137 Cs, SOC, TN 

and P were studied by measuring above parameters  in soil samples from eroding to 

depositional profiles by opening 1 m3 pits along slope transect of each agricultural field and 

samples were collected from each pits with 3 replication (randomly selected and considered 

each face of pit as one replicate). The pits were located along slope transect based on slope 

steepness variation (approximate interval between pit to pit is 10 m) and minimum 5 pits to 

maximum 7 pits were selected for study in each field. The sample collected in different soil 

depth increment ( 0-10, 10-20, 20-30, 30-50, 50-70, 70-100cm)  using metal box (dimension 

10*10*5cm), collected soil samples were processed  (air dried and oven dried at <60oC) 

and sieved using 2mm sieve and weighed <2 mm and >2 mm mass. This <2 mm particles 

used for further analysis of 137Cs, SOC, TN and P (Walling and Quine, 1991: Quine and 

Zhang, 2002). 

Soil chemical analysis 

Soil total Carbon and Nitrogen contents were analysed from the sieved < 2mm soil 

samples of all replicates using a Flash 2000 Organic elemental analyser (Thermos 

scientific). Inorganic carbon removed for soils had >6 pH. Inorganic carbon removed 

by following acid fumigation method (Harris et al., 2001; Walthert et al., 2010) and 

after IOC removal samples were measured for SOC (review and methods presented 

in Appendix Text 4.2 and data presented in Appendix Table 4.4 and Appendix Figure 

4.4). Total Nitrogen content data used from acid untreated samples because acid 

treated samples affect total nitrogen concentration. 

 

 Soil Phosphorous (Total/ Inorganic P) measured (review and methods presented in 

Appendix Text 4.3 and Table 4.7) by Saunders and Williams, 1955 method only pits at three 
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slope positions (eroding, mid and deposition) for each field, soil samples were prepared as 

a composite of three replicates of each pit up to 50cm depth increment.  Soil samples were 

burnt at 550oC to measure Total P and unburnt for inorganic P and extracted with 0.5M 

H2SO4 solution and P measured in UV-1600 PC spectrophotometer (VWR-Made in China). 

After measuring Total P and Inorganic P, Organic P calculated based on these two results.  

Soil pH was measured with Hand held pH meter from a soil slurry of 1:1 ratio by volume 

of soil to deionised water (complete data in Appendix Table 4.1 to 4.3). 

 

The basic and application of 137Cs technique 

137Cs is an artificial radionuclide present in the environment due to human activity. 

137Cs fallout was produced as a by-product of atmospheric testing (Figure 4.4) of 

thermonuclear weapons during the period between 1950 -1970s. The maximum rate 

of 137Cs fallout from the atmosphere occurred in 1963. Another source of 137Cs to 

environment was the accident at the Chernobyl nuclear power station in 1986. 137Cs 

released from Chernobyl is locally important particularly northern Europe and 

Northern-western Eurasia, but in most parts of the world, the 137Cs in environment was 

derived from weapons testing.  This bomb-derived 137Cs was distributed globally in the 

stratosphere and deposited on earth surface by fallout (dry or wet), usually in 

association with precipitation. After deposition of 137Cs on mineral and organo-mineral 

soils, 137Cs fallout was strongly and rapidly adsorbed (Wallbrink et al., 1994; Zhang et 

al., 2008) and its subsequent redistribution has occurred in association with the 

erosion and deposition of soil particles by water, tillage and wind (Ritchie and 

McHenry, 1990; Scott Van Pelt et al., 2007). The Chernobyl derived 137Cs is less 

important for my study area. 137Cs has a half-life of 30.17 years and at present day 

about 40% of original fallout still remains at undisturbed sites. The 137Cs distribution at 

various landscape positions is affected by erosion and different agricultural practices. 

A sharp decrease in 137Cs content with depth is typical of undisturbed areas/stable site 

are often used to provide a local reference inventory (estimate of fallout input). Where 

cultivation occurs, ploughing modifies the form of 137Cs depth profile, resulting in a 

relatively uniform distribution over the plough depth. In the absence of soil loss the 

137Cs inventory is similar to local reference sites. Where soil loss occurs particularly 

upslope position, 137Cs will also be lost leading to reduced 137Cs inventory. Conversely 

wherever soil deposition takes place mainly downslope position, it increases the 137Cs 

inventory. This principle will be applicable to assessment of soil loss and deposition 
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associated with sheet, rill, and tillage and wind erosion. By using appropriate 

calibration methods (Walling and Quine, 1991) it is possible to derive quantitative 

estimates of soil redistribution from 137Cs measurements.  

137Cs has been used as a well-established tracer of erosion and deposition for more 

than 40 years and, although its reliability and underpinning assumptions have come 

under scrutiny (Parsons and Foster, 2011 and 2013), it remains a valuable tool in 

assessing long-term erosion rates because of the time period since fallout and the 

long half-life of 137Cs (30.2 years). The application in this study will account for the 

critique of Parsons and Foster (2011) and ensured that sufficient account is taken of 

sources of local variability by collecting high intensity soil samples. 137Cs tracer will 

help to study redistribution of nutrients under various landscape position –Eroding to 

Deposition slope - within field and found significant relationship between 137Cs and 

nutrients (SOC, N and P) ( Verity and Anderson, 1990; Pennock, 2000; Quine and 

Zhang, 2002). This benefit of 137Cs tracer technique was applied in my study. 

Few studies only addressed for low input and subsistence agriculture, tropical and 

subtropical climate. In India, only one study has reported and used 137Cs for soil 

erosion measurement in arable land (Prokop and Poreba, 2011 and 2012) and no 

study has used 137Cs for soil erosion/redistribution and nutrients/SOC spatial variation 

within field. This may be the first study for this highly eroding, important bio diverse 

Indian Himalayan region 

 

 

Figure 4.4 Fallout of 137Cs and other radionuclides (Zubanc and Mabit, 2010) 
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137Cs measurement 

100 gram of air dried <2mm soil packed in plastic pots and measured the 137Cs activity 

using a high resolution gamma spectrometer (EG & ORTEC, Made in USA). The 

counting time was at the order of 8, 16 and 24 hrs. 137Cs activity was determined by 

counting the 661.7 keV gamma emissions. As a reference material soil with known 

137Cs provided by IAEA was used to check the detector working conditions. 137Cs 

activities were expressed in m Bq g-1 or Bqkg-1 and corrected with respect to 

radioactive decay to sampling time. Total 137Cs inventory is defined as a sum of 137Cs 

inventory of each soil layer in soil profile (corrected to unit area of sampling device and 

<2mm soil mass) and it expressed in Bq m-2. 

Inventory (137Cs, SOC, TN or P) estimation formula 

Ci =   
Ca∗Sm

A
               (1) 

Ci= Inventory of 137Cs (Bq m-2) or SOC or TN  or P (kg m-2 ) 

Ca= activity of 137Cs (m Bq g-1) or concentration of SOC or TN or P (g kg-1) 

Sm= soil mass of <2mm soil particles at respective depth layers (g) 

A= cross sectional area of sampling device (m2) 

Statistical analysis 

One-way ANOVA performed to test the mean significance of each slope positions/ pits in 

slope transect for total inventory of SOC, TN, 137Cs and P to 50 cm depth. After Anova 

analysis adopted test Tukey HSD at p < 0.05.  

Descriptive statistics performed for Total inventory of 137Cs, SOC, and TN to 50 cm depth 

of all the slope fields. 

Linear regression analysis and significance test performed between total 137Cs inventory 

and SOC and TN inventory for all slope fields up to sum of 50 cm depth of each replicate 

total inventory values.  Also Linear regression analysis performed between 137Cs activity 

and SOC and TN concentration for all slope fields up to 50 cm different depth increments. 

 

Linear regression analysis performed between 137Cs   inventory and OP and TP inventory 

for all slope fields by combining each site field as a one group of data up to 50 cm depth of 
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each replicate total inventory values. Each pit all replicate samples made into composite, 

after analysing the composite sample P concentration used for estimate inventory for each 

replicate and depth samples. 

All statistical analysis executed in R programme 3.1.2 version.   

4.3. Methodology for chapter 6 

Chapter 6 address research objective 2: To quantify erosion-induced soil carbon 

redistribution on the net effect of carbon exchange between soil and atmosphere in 

low input/productivity and highly eroding agricultural fields from the foothills of the 

Indian Himalaya by using 137Cs fallout and SOC inventories. 

The statistical data analysis in this chapter assumes the overall null hypothesis: 

 

H0: Erosion-induced soil redistribution results in a net carbon sink when continuous crop 

production is maintained, despite low fertiliser inputs, low crop productivity and high 

biomass removal 

 

To estimate net C flux, SOC and 137Cs data used from chapter 5 up to 50 cm depth of 

slope fields and up to 100 cm depth of non-slope/ stable fields. 

 

Net C flux estimated based on depth distribution model developed by Quine and 

Van Oost (2007) 

Data of total SOC and 137Cs inventories (mass or activity per unit area) from all soil profile 

were used in retrospective assessment of erosion-induced perturbation of C dynamics 

using the approach of Quine and Van Oost (2007). This approach consist different steps 

as follows 

1. Derivation of initial plough layer mass based on initial 137Cs fallout 

2. Derivation of Carbon Concentration Index (CCI) 

3. Derivation of erosion and deposition rates 

4.  Simulation of reference C profile shape and it depth distribution based on this derive 

dynamic equilibrium profile C inventory for eroding and deposition profiles by 

keeping view no input and C content changed only lateral and vertical redistribution 

of C within profile. 

5. Derive Carbon Inheritance Index (CII) 

6. Derive Sink/Source estimation  
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Reference fallout 137Cs Inventories 

The approach is based on the fundamental principles of the 137Cs technique for erosion 

assessment and is, therefore, reliant on reliable estimates of fallout reference inventories 

and robust measurements of point inventories (4.2 above). Reference 137Cs inventories are 

typically based on measurements from undisturbed and uncultivated, uneroded sites 

nearby to the site under investigation. Due to the intensity of land use in the area, it was not 

possible to find sites that meet these criteria outside the forest areas, which are unsuitable 

due to high local variability in precipitation, stemflow and throughfall. Therefore, estimates 

of fallout reference inventory were initially based on sample collection (same methodology 

as above) from selected flat/levelled fields, nearby slope /study field, which were not thought 

to have been subject to erosion and deposition. Naturally, there is some uncertainty in 

making this assessment and, therefore, for each site three levelled fields within a maximum 

distance 100 m of the study fields were selected for collection of reference samples. 

Furthermore, an attempt was made to estimate the fallout reference inventory from global 

fallout data collected during the period of bomb fallout (Eisenbud, 1987; UNSCEAR, 1982).  

The measured inventories from the reference fields are presented in Table 4.6 In the light 

of the relatively small variation in precipitation between sites (approximately 100 mm) and 

their close geographic proximity, it is surprising that the inventories measured at Site 1 differ 

as much as they do from Sites 2 and 3. Site 1 is the closest to the urban centre of Dehradun 

and there is more light industrial activity (including brick-making) in the area. It is, therefore, 

considered likely that this ‘reference’ inventory is unreliable and a result of large-scale soil 

redistribution due to field-levelling since the period of bomb fallout. Sites 2 and 3 are 

relatively similar; however, it is important to note that they lay in the same agricultural units 

as the fields under investigation and, while their modest slopes would offer some protection 

from erosion, they are potentially susceptible to run-on from the surrounding agricultural 

area, roads and tracks.  

 

In order to estimate the 137Cs inventory from global fallout data, the following steps were 

undertaken: 

 Published relationships between 137Cs fallout and latitude (Table 4.7) in the northern 

hemisphere (Eisenbud, 1987; UNSCEAR, 1982) were used to establish the 

expected ratio, based on latitude alone, between inventories in the Study area and 

Devon, UK (for which the University of Exeter has good records of fallout 
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inventories). This was used to estimate expected reference inventory for 900 mm 

annual precipitation. 

 Well-established relationships between precipitation and fallout (e.g. Pálsson et al., 

2006) were then used to derive an estimate of reference inventory for 1600 mm 

precipitation at the latitude of Dehradun (latitude band 300).   

This approach yielded an estimate of the reference inventory of 1685 Bq m-2. While this is 

of the same order of magnitude as the measured ‘reference’ inventories at Sites 2 and 3, it 

is significantly higher. There is, therefore, significant uncertainty in defining the most 

appropriate reference inventory to use. Taking into account the potential for erosion to have 

occurred at the fields used to derive reference inventories, the value of 1685 Bq m-2 based 

on global patterns was used as the default inventory for the majority of the analysis; 

however, sensitivity analysis was undertaken to explore the effect on erosion and C 

exchange calculations of using a range of reference inventories, including a value closer to 

the observed inventories at the Site 2 and Site 3 reference sites. It is also important to note 

that in Chapter 5, emphasis is placed on examination of within-field patterns rather than 

absolute values, recognising the uncertainty with regard to the fallout reference inventory.  

 

Table 4.5 Measured total reference 137Cs inventory profiles form different sites of study 
area. 

 

 

 

Ref profile Site 1 Site 2 Site 3

(Bq m
-2

)

1 430 1346 1257

2 779 1482 1402

3 516 1178 1188

4 787 1228 1069

5 702 1058 1118

6 595 1297 1002

Mean 635 1265 1173

SE 59.6 59.5 58.5
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Table 4.6 Global fallout of 137Cs at different latitude band. 

 

Step 1. Derivation of initial plough layer mass 

137Cs used as a marker to estimate initial plough layer from 1963. Because 1963 highest 

137Cs fallout occurred globally.        

  

Pm = Pρ (
Fs

Fn
)

 

            (1) 

Pm is the mass of 1963 cultivation layer per unit area (kg m-2), 

Fs is fallout 137Cs inventory (Bq m-2) at slope transect profile (erosion to deposition)  

Fn is fallout 137Cs inventory (Bq m-2) at non eroding/stable profile (no erosion and 

deposition)  

P the cultivation layer depth (m), 

ρ the fine matter bulk density (kg m-3) measured without stone mass, 

Step 2. Carbon Concentration Index (CCI)-Specific CCI for 1963 plough mass 

CCI =
Cmz

Pm
             (2) 

 

CCI is Carbon Concentration Index (kg C kg-1 in initial cultivation layer) 

Cmz the measured carbon inventory to depth z m (kg C m-2) 

Pm is the initial cultivation layer (1963) remaining in the profile to depth z m (kg m-2) 

Lattitude Band
137

Cs fallout (derived from
 90

Sr)

(Degrees) (Bq cm
-2

)

70-80N 0.11

60-70N 0.28

50-60N 0.46

40-50N 0.52

30-40N 0.37

20-30N 0.28

10-20N 0.19

0-10N 0.13

0-10S 0.08

10-20S 0.07

20-30S 0.11

30-40S 0.12

40-50S 0.14

50-60S 0.08

60-70S 0.06

70-80S 0.04
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Step 3. Derive erosion and deposition rates (Walling and Quine, 1991; Quine, 1995; 

Zhang et al., 1990; Quine and Van Oost, 2007):  

Erosion (E, m yr-1)  and deposition  (D, m yr-1)   rates for each profile were estimated from 

the difference between the measured 137Cs inventory (Fs, Bq m-2) of each profile at erosion 

and deposition profiles along slope transect and reference 137Cs inventory (Fn, Bq m-2) at 

non eroding / stable /reference profile. 

          E =  P [1 − (
Fs

Fn
)

1

tb
]

 

                                                                                         (3) 

Fex =
∑ Si(Fn−Fsi)i=1,n

 

∑ SiEii=1,n 
 ρ

                                                                                                (4) 

 D =  
Fs−Fn 

tb∗Fex
                                                                                                               (5)  

P is plough layer depth (m) 

tb is time between sampling 1963 to 2013 (50 years) 

Fs is fallout 137Cs inventory (Bq m-2) at slope transect profile (erosion to deposition)  

Fn is fallout 137Cs inventory (Bq m-2) at non eroding/stable profile (no erosion and  

deposition)  

Fex is the fallout 137Cs inventory (Bq m-2) for exported soil from eroded areas. 

Si the surface area represented by sample i (m2) 

n the number of erosion points 

This formula 3 and 5 derive erosion and deposition depth (m yr-1) for each pits/profile after 

this converted to mass of soil loss/gain (kg m-2 yr-1) by multiplied with bulk density of plough 

layer. This individual pits/profile soil loss/gain converted represent area of erosion and 

deposition each fields. 
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Simulation of Carbon inheritance based on reference C profile shape 

Reference /Stable profiles 

 In order to adopt the approach used by Quine and Van Oost (2007), it is necessary to 

define the shape and SOC inventory of a stable equilibrium profile. Quine and Van Oost 

(2007) had access to 50-200 measurements per field and were able to define the reference 

profile by using those measurement points that appeared, on the basis of 137Cs inventory, 

to be stable. This is challenging in this study because fewer measurement points are 

available. The approach employed was, therefore, to use the depth distributions of SOC at 

the reference sites to tune the shape parameters in the SOC depth distribution model. As 

in the Quine and Van Oost (2007) study, this assumes that SOC is evenly distributed 

through the cultivation layer and, below this, declines exponentially with depth towards a 

minimum value. The total SOC inventory was defined by reference to the soil profile (or 

profiles) from within each field that had a 137Cs inventory closest to the fallout reference in 

use. This dual approach is adopted to account for potential differences in SOC inputs 

(manure) and exports (fuel/biomass) between the reference and study fields.  

Although it was possible to ask current land users about the cultivation depth that they 

employed, it was important to check this against the mixing depth evident in the 137Cs 

profiles. It was assumed that 137Cs would be evenly mixed through the cultivation layer 

(mixing depth). Depth increments that appeared to span the base of the mixing layer were 

identified and the depth of penetration of the mixing layer into the sample was derived using 

the ratio of 137Cs activity (mBq g-1) in the sample with that in the overlying samples (entirely 

within the mixing layer). This was undertaken for all samples that had 137Cs inventories 

lower than the reference inventory and the mean value was used as the cultivation (mixing) 

depth for the field. Using this approach, the following cultivation depths were derived: Site 

1: 0.14m; Site 2: 0.26m and Site 3: 0.24m.  

 

Step 4. Depth distribution model: this depth distribution model will help to simulate shape 

of reference C profile from cultivation layer to deep layer. This is necessary to simulate 

carbon inheritance impact by erosion and deposition. 

If z ≤ P  

 

Cz =  
Cc

P
                                                                                                                 (6) 
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If z ≥ P  

 

Cz = Cmin+ (
Ce

k
) e−k(z−P)                                                                                     (7) 

 

Ce =  (
Cc

P
) − Cmin                                                                                               (8)   

Where Cz is the carbon concentration at depth z (kg m-3), 

Cmin is a baseline SOC concentration (kg m-3) at 1m depth with considering 0.9 Cmin  fraction. 

Cc the reference cultivation layer carbon inventory (kg m-2) 

k depth attenuation co-efficient (m-1) 

z is depth (m) 

P is plough depth (m) 

C0 is SOC concentration (kg m-3) at 0 m depth of sub plough layer starting 

After assigning all parameters for depth distribution model to simulate reference C profile 

shape at end sum of predicted and measured C inventory difference value need to solved 

by solver programme to get best fit line of measured and predicted C in depth wise. 

From this reference profile shape I can extract Cmin, k and C0 values (Appendix Table 6.1) 

for simulating equilibrium C inventory for eroding and deposition profiles by assuming input 

and contents were in equilibrium but only allowing lateral redistribution of SOC and vertical 

redistribution of SOC within profile. 

 

This depth distribution model was applied for eroding and deposition sites and simulated 

carbon inheritance of each site by assuming with expectation of inputs and C content were 

in dynamic equilibrium and erosion had no influence on C dynamics 

Eroding sites (if measured 137Cs < reference site 137Cs inventory);  

Cic = Cc [1 −
E

P
]

td

+ ∑ [(Cmin + (
Ce

k
) ∫ e−kz dz

z=tE

Z=(t−1)E
) (1 −  

E

P
)

t

]t=1,td
                            (9) 

 

Ciz = Cic + Cmin(zmax −P) +  (
Ce

k
) 

 ∫ e−kz dz
z=Zmax +td E−P 

   

Z=tdE
                                             (10)  

 

 

Cx = Cc − Ciz + Cmin(zmax +  tdE) + (
Ce

k
) ∫ e−kz dz

z=Zmax +td E−P 
   

Z=0
                                 (11) 
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Cic is the inherited carbon inventory in the Cultivation layer (kg m-2),  

td is the time since the onset of disequilibrium (years) and here was set to 50 years on the 

basis of information from farmers (as there is some uncertainty in this value, the effect of 

variation in td was explored in sensitivity analysis),  

Ciz is the inherited carbon inventory to depth Zmax (kg m-2), 

Zmax is the depth of sampled profile (m),  

Cx is the carbon export (kg m-2)  

 

Aggrading sites (if measured 137Cs > reference site 137Cs inventory) 

Here important is to estimate of inherited carbon content of deposited sediment. An 

estimate of this for the study area can be derived by dividing total carbon export by the total 

volume of soil exported.  

 

Cero =
∑ CxiSii=1,n

 

∑ tdEiSii=1,n
 

                                                                                                           (12) 

 

Where Cero is the carbon export of soil exported from eroded area (kg C m-3), 

So C inheritance at cultivation layer and up to profile z depth at depositional sites are, 

 

Cic = Cc (
P

P+D
)

td

+ Cero D ∑ (
P

P+D
)

t 
t=1,td
 ,                                                                     (13) 

 

Ciz = Cc +  Cero tdD +  Cmin(zmax − P − tdD) + (
Ce

k
) ∫ e−kz dz

z=Zmax −td D−P 
   

Z=0
           (14) 

 

Step 5. Carbon Inheritance Index (CII) 

 

CII =
Ciz

Pm
                                                                                                                          (15) 

 

CCI vs CII provide C flux between atmosphere and soil. 

If CCI > CII indicate flux from atmosphere to soil, means C sink 

If CCI < CII indicate flux from soil to atmosphere, means C source 

Step 6. Sink/Source derivations        

 



68 
 

  Catm =   
(Cmz−Ciz)

td
                                                                                              (16) 

 

If result + sink to atmosphere 

If result - source to atmosphere 

SOC stock may be changed result of other factors than E/D (e.g. crop yield, management, 

climatic factors). But based on ref C inventory I could exclude this external force only I can 

estimate based on erosion and deposition. 

After estimating net C flux for each pits/profile of erosion and deposition location were 

converted to field unit area based of representation of erosion and deposition area. 

 

Notes: Site 2 field 3 PSF3 C flux estimation was not predicted (Figure.6.4) by Model 

by using normal reference 137Cs inventory (1685 Bq m-2) for study area particularly at 

deposition pit and need to use higher level of reference 137Cs inventory (2100 Bq m-2) 

to complete prediction of C flux in field. This may be due to higher accumulation of 

137Cs at deposition profiles. 
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4.4. Methodology for chapter 7 

Chapter 7 address research objective:  To study the effect of erosion- and deposition-

induced vertical soil/SOC mixing on soil respiration rates at various landscapes positions. 

The statistical data analysis in this chapter assumes the overall null hypothesis H0: 

1) H0 In eroded position, mixing topsoil with organic matter-poor subsoil will reduce 

decomposition rates as organic matter from topsoils may become bound onto 

unsaturated soil particles in the subsoil.  

2) H0 In depositional areas, mixing fresh organic matter from top soils into organic 

matter-rich subsoils will promote C release through a positive priming effect. 

Site description for soil respiration experiment 

Same site description, from there each site one fields were selected for soil respiration 

measurement (Figure 4.5). In result and discussion text described Site 1, Site 2 and Site 3 

which means to represent each site fields of DKF1, PSF3 and BGF3, respectively. 

Soil sampling for soil respiration 

The effect of vertical mixing was studied by measuring soil respiration in soil samples from 

eroding, mid-slope and depositional profiles by opening 1 m3 pits and samples were 

collected from near surface (0-15 cm) and at depth (45-60 cm) in isolation with five 

replicates and as 1:1 mixtures, each replication represent each face of pits (profile) and fifth 

replication randomly chosen any side of pits. Collected soil samples were stored in cold 

storage up to experiment setup. 

Another set of soil samples were collected in same pits with 3 replication. The sample 

collected in different soil depth increment ( 0-10, 10-20, 20-30, 30-50, 50-70, 70-100cm) 

with box dimension (10*10*5cm) collected soil samples were processed  ( air dried and 

oven dried at <60oC) and sieved using 2mm sieve and weighed <2 mm and >2 mm mass. 

This <2 mm particles used for further analysis of 137Cs (Walling and Quine, 1991) and pH. 
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Figure 4.5 Study area field shape for Site 1-DKF1 (Figure a), Site 2-PSF3 (Figure b) 

and Site 3- BGF3 (Figure c). 

Incubation experimental setup 

Fresh soil samples were coarsely sieved through 9.5mm sieve to minimise disturbance and 

obtain homogenise samples and removed large stones and visible roots. Soil moisture 

content was measured by drying soil samples at 105oC for 24 hrs. The soil water holding 

capacity (WHC) was determined by wetting soil for 2 hrs followed by draining through filter 

papers (Fisher brand, QT 270, Code FB59295, size 125 mm). The water content of soil at 

100% WHC measured gravimetrically by drying a subsample at 105oC for 24 hrs, and then 

fixed the WHC 60% for all soil samples. The soil samples kept incubation at 20oC (this is 

MAT of study area). The soils were prepared by maintaining 60%WHC as optimal water 

content for microbial activity. 100g fresh soil was placed inside the plastic pots (100ml), 

these plastic pots had three holes on lids that facilitate gas exchange but minimise drying. 

Soil pots were placed inside incubators (Sanyo Incubator, MIR-154) with temperature 

adjusted to 20o C.  The samples of five replicates of each depth soil is kept randomly 

within 3 incubators to ensure that allow soil types and horizons were presented in each 

incubator to avoid temperature fluctuation variation. Soil moisture was maintained at 

optimum of 60 % water holding capacity by regularly (weekly) weighing the soil pots 

and adding deionised water to compensate for moisture loss. 
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CO2 Flux measurement 

Soil respiration measurement were made over one year, initially weekly (to week 8), 

biweekly (from weeks 10 to 16), 4 weekly (weeks 20 and 24), 6 weekly (weeks 30 and 

36) and 8 weeks (weeks 44 and 52). In one-year period 19 measurement including 0-

day measurement. Measurement was conducted (Karhu et al., 2014) by placing soil 

plastic pots without lids inside a larger airtight 700 ml cylindrical plastic container. This 

incubation set up (soil pots with large plastic pots) was connected to an infrared gas 

analyser- EGM-4 (Environmental gas monitor; PP System, version 4.17) in a closed 

loop configuration. The first CO2 measurement was measured at 1 hr after closing 

containers and second measurement of CO2 concentration was recorded after 24 hrs. 

The individual fluxes rate were expressed per gram of initial SOC (mg CO2- C g-1 
SOC 

h-1) and finally calculated cumulative total C release for one year period (mg CO2- C 

g-1 
SOC). 

Vertical mixing of SOC / priming estimation 

The effect of vertical mixing on respiration rate was determined by comparing the measured 

rate of respiration from the mixed samples here after called Observed with an rate of activity 

based on the measurements made on individual depths here after called Expected 

(average respiration rates of 0-15cm and 45-60cm samples with respective proportion of 

SOC in each layers). When comparing Observed with Expected respiration for each slope 

positions if observed exceed expected then there is positive priming activity and if go less 

then there is negative priming activity. 

Soil chemical analysis 

Soil total Carbon and Nitrogen contents were analysed from the sieved <2mm soil 

samples of all replicates using a flash 2000 elemental analyser (thermos scientific). 

Inorganic carbon removed for soils had >6 pH. Inorganic carbon removed by following 

acid fumigation method (Harris et al., 2001; Walthert et al., 2010) and after IOC 

removal samples were measured for SOC. Soil pH was measured with Hand held pH 

meter from a soil slurry of 1:1 ratio by volume of soil to deionised water. 
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137Cs measurement 

100 gram of air dried <2 mm soil packed in plastic pots and measured the 137Cs activity 

using a high resolution gamma spectrometer (EG & ORTEC, USA). The counting time 

was at the order of 8, 16 and 24 hrs. 137Cs activity was determined by counting the 

661.7 keV gamma emissions. As a reference material soil provided by IAEA was used 

to check the detector working conditions. 137Cs activities were expressed in m Bq g-1 

or Bq kg-1 and corrected with respect to radioactive decay to sampling time. Total 137Cs 

inventory is defined as a sum of 137Cs activity of each soil layer in soil profile (corrected 

to unit area of sampling device and < 2mm soil mass) and it expressed in Bq m-2. 

Soil erosion and deposition and quantity of vertical soil/C mixing at each landscape 

positions estimated based on model developed by Quine and Van Oost (2007). 

Detailed formula presented in earlier chapter 5 methods. 

Statistical analysis 

One way anova performed to test the mean significance of each slope positions in transect 

for cumulative C release , soil respiration rate , SOC, TN, 137Cs  of top and sub soils. After 

Anova analysis adopted test Tukey HSD at 0.05. For each landscape position (erosion, mid 

slope and deposition), repeated measures two way ANOVAs were performed with 

Observed vs Expected as the within-subject factor and site as the between subject factor. 

To test priming effect at each slope positions pairs Observed vs Expected adopted Paired 

t.test.  Paired t test also executed for top and subsoil of each profiles to test significance 

difference of C release, SOC, TN, and CN ratio. 

All statistical analysis executed in R programme 3.1.2 version.  Cumulative C release 

estimated and plotted in Microsoft Excel 2010. 

4.5. Soil particle size distribution 

Two methods were used to quantify the particle size distribution of soil samples. First, 

dry sieving was used to separate into broadly size fractions samples along the slope 

transect from field BGF1 of Site 3. The method is described in Appendix 4.1 and the 

results are presented in Appendix Table 4.5 and Appendix Figure 4.5.  

Second, the International pipette method was used to measure particle size 

distributions in greater detail for selected samples from one field at each site (DKF1, 

PSF3 and BGF2). Surface (0-10 cm) and subsurface (30-50 cm) samples from 

upslope (P1) and downslope (P6) locations were analysed. Soil texture was classified 
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based on ISSS (International Soil Science Society) and all soils were found to be 

loams except Site 2 pit PSF3 P1 (upslope) that was classified as sandy loam texture. 

Full results are presented in Appendix Table 4.6 and are used to derive enrichment 

ratios for each particle size at each site and these are presented in Appendix Table 

4.6. 

4.6. Site 3 soil respiration chapter data   not included in main text and kept in 

Appendix 7 Series (included Appendix Figure 7.1- 7.5,   Table 7.1 to 7.7 and 

Appendix Text 7.1) 

Site 3 137Cs inventory pattern no clear and not significantly different at each slope 

position when compare with stable profile. Also this Site 3 had inorganic 

carbon/carbonate in all positions so it was not possible to interpret the CO2 flux data 

solely in the context of the organic C cycle. Due to this difficulty Site 3 omitted from 

result and discussion and only Site 1 and 2 interpreted. 

Also measured soil respiration from non-eroded field from all sites kept in Appendix 

Table 7.5. Measured SOC from fractionated samples kept in Appendix Table 7.6 and 

Appendix Text 7.1 describes review of methods for SOM fractionation by dry sieving. 

Appendix Table 7.7 describes soil moisture content and Water holding capacity of soils 

from various landscapes positions (soils used for respiration) 

4.7. Summary 

This chapter has provided an overview of the study sites and field/laboratory methods 

used to enable the testing of the hypothesis stated. The following results chapters will 

present and discuss the results in the context of the proposed null hypotheses.   

 

 

 

 

 

 

 

 

 

 



74 
 

5. Does soil redistribution affect spatial variation (vertical and lateral) of 

nutrients (SOC, TN and P) within agricultural fields from Low input and 

highly eroding region 

5.1 Introduction 

The spatial variation of nutrients caused by soil redistribution in agricultural fields 

under mechanised tillage is well studied (Quine and Zhang, 2002; Heckrath et al., 

2005; De Alba, 2004), but less so in low input farming systems (Quine et al., 1999; 

Thapa et al., 2001; Li and Lindstrom, 2001). It is within these low input agriculture 

lands that the highest soil erosion rates are observed. Furthermore, no study has 

focussed on the Indian Himalaya region (Singh et al., 2016; Ghosh et al., 2012).  This 

chapter addresses this existing research gap and seeks to quantify the impacts of 

erosion-induced soil redistribution on SOC and nutrients (lateral and vertical) within 

agricultural fields. The following null hypothesis is considered: 

H0: Erosion-induced redistribution of soils (top- / sub-soil) changes within field spatial 

variation of soil nutrient stocks and stoichiometry (C:N:P ratio), so that eroded sites 

will have lower SOC and nutrient stocks than sites of deposition.  

5.2 Summary of methods (for full methodology see Chapter 4) 

To address the objective stated above, three fields at each site were selected based 

on the status of erosion and deposition within the agricultural field and three fields from 

with low slopes that were expected to suffer from little or no erosion. In each eroding 

field, samples were taken along a topographic gradient, which represented a transition 

from eroding to deposition phases. Three pits were also opened in the level areas (i.e., 

no slope). After identifying sampling locations, 1m2 pits were opened at each to a 

maximum depth of 1 m (or less if rock was met) and soil samples were collected at 0-

10, 10-20, 20-30, 30-50, 50-70, 70-100 cm depth increments. All collected soil 

samples were air-dried and ground to pass a 2 mm sieve mesh.  
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All soil samples for each depth increment was analysed for 137Cs activity (gamma 

spectrometer), total C and total N (Thermos Scientific Flash 2000 elemental analyser). 

One of the three sites had a significant carbonate component, which was removed by 

acid fumigation methods (Harris et al., 2001; Walthert et al., 2010). Soil phosphorous 

(Total and Inorganic P) were measured using the Saunders and Williams (1955) method. 

With respect to site P only three slope positions where considered (1) eroding, (2) midslope 

and (3) depositional for each transect.  

One-way ANOVA was performed to determine whether there was a difference between 

slope positions (pits) in nutrients, SOC and 137Cs activity (n = 3).  Linear regression analysis 

was completed to determine the relationship between 137Cs tracer and other nutrients 

(SOC, total N and P).  

 

Notes : result presentation format 

The results were grouped and presented by site and field:   

At Site 1, Dhulkhot, the three sloping fields are named DKF1, DKF2, and DKF3 and 

the three low-slope fields: DK Ref1, DK Ref2 and DK Ref3. This site was at the lowest 

elevation (550 m) and closest to Dehradun (Figure 4.1). 

At Site 2, Pasauli, the three sloping fields are named: PSF1, PSF2 and PSF3 and 

three low-slope fields: PS Ref1, PS Ref2 and PS Ref3. This site was at intermediate 

elevation (685 m) and on one flank of a long low gradient ridge between 2 incised 

valleys (Figure 4.1). 

At Site 3, Bhatta Gaon, the three sloping fields are named: BGF1, BGF2 and BGF3 

and three low-slope fields: BG Ref1, BG Ref2 and BG Ref3. This site was at the 

highest elevation (1570 m) on a steep slope below a small village (Figure 4.1); the 

soils had a pH>6. 

On each slope, the pits are numbered from upslope to downslope (P1 to P5 or P6 or P7). 

Three profiles were collected and analysed from each pit. 

 

 

 

 



76 
 

5.3 Results 

5.3.1 Small-scale spatial variation in 137Cs activity and Inventory 

This is one of the first applications of the 137Cs technique in India and it is the first in 

the study region. Therefore, it was important to establish whether 137Cs behaviour in 

this area was similar to that seen in other applications of the technique over the last 3 

decades. This was evaluated by application of a robust and detailed sampling 

framework in which small-scale variation (n=3 within pit) was addressed as well as 

variation with depth, in space (along transects) and between fields (n=3 sloping fields 

at each site). In presenting results here, therefore, the first section addresses the 

small-scale variability observed within pits and within layers within pits. Patterns within 

fields are and within profiles are then briefly considered for each site. In this chapter 

comparisons are made between patterns of 137Cs variation (lateral and vertical) and 

patterns of C, N and P variation. This minimises the reliance on assumptions regarding 

the conversion of 137Cs inventories into erosion rates. The latter are not considered 

here but are derived in Chapter 6.  

 

Within-pit variability 

The 137Cs results presented in Tables 5.1 to 5.3 and Appendix Table 5.1 to 5.6 include 

measures mean inventory (activity per unit surface area), activity per unit mass and, 

the standard error based on the three independent measures from the same pit (or 

same layer within the same pit). This allows evaluation of the significance of small-

scale variation for using 137Cs as an erosion tracer in this environment. The coefficient 

of variation (CV) in whole profile inventories for individual pits is in most cases between 

5% and 20 % and it is of a similar magnitude to the CV of total C and total N. The 

variation is smallest in near surface layers of the profiles where 137Cs activities are 

highest, while higher levels of between sample variations are seen lower in the profiles 

as activity levels decline towards the detectable limit.  
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5.3.2 Vertical and lateral distribution of 137Cs, SOC, N and P at Site 1 

 

137Cs  

In fields DKF1 and DKF2 137Cs activities (per unit mass) were lower at upslope 

sampling points and maximum activity was observed up to 30 cm.  However, at 

downslope sample points the profile showed maximum activity up to 50 cm depth 

(Figure 5.3a and e), which is consistent with deposition at these sites. In field DKF1, 

137Cs inventories (per unit area) along the slope transect start from a minimum at pit 

1, rise to pit 3 and drop suddenly to pit 4. This seems consistent with the presence, in 

the past at least, of a barrier to soil redistribution between pits 3 and 4. This was most 

likely a temporary or semi-permanent bund that are widely used in the region to divide 

fields (Figure 5.6). Overall the 137Cs inventory within field eroding profiles located in 

upslope position was significantly lower (p < 0.05) than in the deposition soil profiles 

(Figure 5.1a, d and Table 5.1).  

In field DKF3, the pattern of 137Cs inventories is quite different, with relatively high 

inventories in the first 3 pits followed by a sharp drop to pit 4. While at first view this 

appears unusual, it is consistent with the field topography (Figure 4.2) that shows the 

upper part of the field has a low slope angle, whereas, profile 4 occurs on a steep 

section just below what may have been another former bund. There is no evidence of 

significant deposition in this field (Figure 5.4a).  As discussed in section 4.3, the 137Cs 

inventories observed in the reference fields of Site 1 are low compared to the value 

predicted based on rainfall and latitude (1685 Bq m-2) for this study region. The 137Cs 

activity profiles (Figure 5.4e and Table 5.1) show rapid decline with depth and very 

low activities. Therefore, it seems likely that, although level, these fields may have 

subject to disturbance through human activity since the period of maximum fallout. 

This may have been associated with deliberate levelling for cultivation. 

 

SOC  

In DKF1, although the broad pattern of SOC variation is similar to 137Cs variation, it is 

noticeable that absolute variation in SOC is lower (maximum is twice minimum) 

compared to 137Cs (maximum is 4 times minimum). Furthermore, the differences in  

137Cs between pits 3 and 4, which were attributed to the former presence of a bund,  

are not reflected in SOC inventories (Table 5.1 and Figure 5.1b,e and h). The SOC 
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concentration was lower at the upslope sampling points (P1, P2, P3, P4 and P5), 

concentrated in the top 30 cm with a sharp decline with depth thereafter. In the 

deposition slope samples (P6) SOC was abundant in the top 30 cm, however, in this 

instance there was no sharp decline in SOC with increasing depth (Figure 5.3b). In 

DKF2, the clear differences between P5 and P1-4 in 137Cs activity in the upper 30 cm 

is not seen in SOC concentrations, although the SOC inventory in the 0-10 cm 

increment in P5 is 50% larger than in P1-4  (Figure 5.3f). In field DKF3 the distinctive 

pattern of 137Cs inventories is not reflected in the SOC inventories, which show 

relatively little variation along the slope (Figure 5.4.b and Table 5.1). Although the 

reference fields of Site 1 are clearly depleted in 137Cs, their SOC concentrations and 

inventories are similar to those seen on the eroded sites (Figure 5.4f and Table 5.1). 

 

Total N 

In general, the patterns of lateral variation in total N are similar to those seen in total 

C and, therefore, the relationships with soil redistribution are similar. In field DKF1 total 

N concentrations were lower at the eroding profiles (P1-P5) of upslope positions and 

more concentrated in the top soil increments up to 30 cm. At depths below 30 cm in 

eroding positions there was a decline in concentration, compared to downslope 

deposition profile (P6) that had relatively high concentrations up to 50 cm depth with 

no sharp decline in increments below 50 cm depth (Figure 5.3c). However, in field 

DKF2, the total N concentration of eroding (P1-P4) and deposition (P5) profiles 

showed no clear difference (Figure 5.3g). In field DKF1, total N inventories in eroding 

upslope profiles were significantly lower (p<0.05) than in the deposition downslope 

profile P6 (Figure 5.1c and Table 5.1). In DKF2, no clear decline in total N inventories 

along the slope transect was observed (Figure 5.1f and Table 5.1). In field DKF3 there 

is relatively little variation in total N inventories along the slope with only P3, just 

upslope of the steep section, having an elevated inventory (Figure 5.1i and Table 5.1). 

The N depth profiles in the reference fields are fairly consistent and similar to those 

seen in the other fields, despite the suggestion that these fields may have been 

disturbed total N (Table 5.1 and  Figure 5.4g). 

 

C:N ratio 

In fields DKF1, the C:N ratio of the soil for highly eroding upslope profile P1 was higher 

than all other profiles (P2-P6) over the entire depth (Figure 5.3d). At all other profiles 
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(P2-P6) no clear difference were observed. In Field DKF3, higher C:N ratios were also 

evident in the upper depth increments of the eroding profiles (P1-P2). In contrast, in 

field DKF2 almost the opposite pattern was observed, with eroding upslope profiles 

(P1-P4) having a narrower C:N ratio than down slope deposition profile (P5) in the 

entire soil depth (Figure 5.3h). In the three profiles from the reference fields of Site 1, 

the C:N ratio is very similar over the upper 30 cm (Figure 5.4h) although the profiles 

diverge below this. 

 

Total and Organic P (and C:OP ratio) 

In field DKF1, OP concentrations (Figure 5.5a) were lower at the midslope profile (P3), 

but in this field highly eroding upslope profile (P1) and deposition downslope profile 

(P6) had similar OP concentrations in top increment, but deeper depth increments at 

the deposition profile (P6) had relatively increased OP concentration. The OP 

inventories in at erosion profiles (P1 and P3) were significantly lower (p<0.05) than at 

the deposition profile (P6) (Figure 5.2a and Table 5.1).  P3 was located at the mid 

slope position, but was poor in nutrients compared to upslope highly eroding profiles. 

In fields DKF1, TP concentrations (Figure 5.5b) were lower at eroding profiles (P3) of 

mid slope position but in this field highly eroding profile (P1) and deposition profile (P6) 

were similar in TP concentrations over the entire depth of the profiles. TP inventories 

(Figure 5.2b and Table 5.1) in erosion profiles (P1 and P3) was significantly lower 

(p<0.05) than in the deposition profile (P6). In field DKF1, C:OP ratio (Figure 5.5c) was 

less at eroding profile (P1) than deposition profile (P6) in the top 20 cm depth 

increment, but below that all profiles had similar C:OP ratios. Particularly at top layer 

of P3 looks very wider C:OP ratio.  

In fields DKF2, OP concentrations (Figure 5.5d) were lower at the upslope profile (P1) 

compared with the mid slope (P3) and deposition profile (P5) which were similar in 

significantly lower. In fields DKF2 TP concentration (Figure 5.5e) were lower at eroding 

profile (P1) and deposition profile (P6) which were similar at the entire soil depth, 

compared to the mid slope profile (P3) that contained more TP. OP and TP inventories 

in erosion profiles (P1 and P3) were significantly lower (p<0.05) than respective 

inventories in the deposition profile (P5) (Figure 5.2c, d and Table 5.1).  In field DKF2 

C:OP ratio (Figure 5.5f) was similar in the top 10 cm increment of all profiles, but after 

that P1 and P5 were similar and P3 had wider C:OP ratio 
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Table 5.1 Total Inventory of 137Cs, SOC, total N, OP and TP to 50 cm soil depth along 

the slope transects at Site 1 (DKF1, DKF2, DKF3 and DK Ref fields), For each profile 

n = 3, differences in inventories were tested by one way Anova at p = 0.05, significant 

sub-sets are denoted. CV is the coefficient of variation in total inventory of three 

replicates (soil pit faces). Mean values ± SE are presented 

 

 

 



81 
 

  

Figure 5.1 Total Inventory of 137Cs, SOC, and total N  to 50 cm soil depth at profiles 
along a slope transect within field of Site 1 (DKF1:a-c , DKF2: d-f and DKF3: g-i), For 
each profile n = 3 and the error bars reflect standard error.  
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Figure 5.2 Total Inventory of OP and TP to 50 cm soil depth at profiles along a slope 
transect within field of Site 1 (DKF1: a-b, and DKF2: c-d), P analysed as a composite 
sample of each depth layer. 
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Figure 5.3 Vertical distributions of 137Cs, SOC, total N and C: N in soil profiles along the slope transects within field Site 1 (DKF1: a-
d, and DKF2: e-h). Error bars are ± SE (n = 3). 
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Figure 5.4 Vertical distributions of 137Cs, SOC, total N and CN ratio in soil profiles along the slope transects within field Site 1 (DKF3: 
a-d, and DK Ref: e-h). Error bars are ± SE (n = 3). 
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Figure 5.5 Vertical distributions of OP, TP and CP ratio in profiles in Site 1 (DKF1: a-c, and DKF2: d-f). Each depth layer made it into 
composite and analysed up to 50 cm  
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Figure 5.6 Field bund structure marked in image
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5.3.3 Vertical and lateral distribution of 137Cs, SOC, N and P at Site 2 

 

137Cs 

At Site 2, fields PSF2 and PSF3 show similar patterns of 137Cs inventories to DKF1 at 

Site 1. As in the latter field, the patterns suggest that there may have been a bund or 

other barrier between pits 3 and 4 in the past. Field PSF1 has a different pattern with 

only 1 pit with a low inventory and 4 pits showing high inventories consistent with net 

deposition. It is important to note that this field lies at a lower elevation on the ridge, 

where Site 2 is located, and may receive soil eroded from fields upslope (including 

PSF2 and PSF3). There was lower level of activity and lower depth penetration at the 

upslope low inventory profiles, with maximum activity found up to 30 cm. Whereas in 

the high inventory downslope profiles (especially pit 6 in PSF2 and pits 2-6 in PSF1), 

the maximum activity was evident up to 50 cm depth (Figure 5.9a, e and 5.10a and 

Table 5.2), confirming the redistribution of eroded material to the lower slopes within 

the study area. Overall the 137Cs inventories within the site showed clear statistically 

significant differences (p < 0.05) between topographic locations significantly lower 

(Figure 5.7a,d, g and Table 5.2 ). The inventories and depth distributions from the 

reference sampling locations show that Ref 2 is unlike Ref 1 and Ref 3. Ref 2 is 

depleted in 137Cs throughout the profile and cannot be considered to be a reliable 

reference profile (Figure 5.10e and Table 5.1). In contrast, Ref 1 and Ref 3 have similar 

profiles and inventories up to 50 cm depth (1335 ± 88 Bq m-2 and 1194 ± 71 Bq m-2, 

respectively) and although these inventories are lower than the expected predicted 

fallout for the area (1685 Bq m-2) they appear to be relatively stable sites. This has 

informed the choice of reference inventories used in the sensitivity analysis (section 

6.2.4). 

 

SOC 

In contrast to the limited relationship between SOC and 137Cs seen at Site 1 (DK), at 

Site 2 the broad trends in 137Cs inventories are seen in all fields in the SOC inventories, 

with a strong tendency for SOC to increase down-field. In field PSF1, SOC 

concentrations were lower at the eroding profile (P1) of upslope position and more 

concentrated in the top layer up to 10 cm. Below 10 cm there was a sharp decline in 

concentration, compared to the downslope slope profile (P2-P6) (Figure 5.9b) where 

SOC concentrations were increased up to 30 cm depth with no sharp decline in SOC 
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concentration in deeper soil increments. In this field the top 0-10 cm had similar SOC 

concentrations along the slope transect at all profiles from eroding to deposition but 

deeper soil increments had higher SOC concentrations in deposition profiles. SOC 

inventory along slope (Figure 5.7b and Table 5.2) showed that the upslope profile (P1) 

had significantly lower SOC inventories (P<0.05) than the other profiles (P2-P6).  

In field PSF2, the SOC concentration of the top 10 cm increment at eroding upslope 

profiles (P1-P2) was similar to that seen in deposition mid and downslope (P3-P7) 

profiles. Deeper soil increments of eroding profiles had less SOC concentrations than 

deposition profiles (Figure 5.9f). Profile 5 located downslope is clearly differentiated 

by SOC concentration compared with the eroding profiles upslope. SOC 

concentrations increased in deposition profiles indicates the redistribution of eroded 

material redeposited at bottom and lower slope position within the field. SOC 

inventories along the slope (Figure 5.7e and Table 5.2) transect within field showed 

that highly eroding upslope profiles (P1-P2) had significantly lower SOC (p<0.05) than 

deposition (mid and downslope) profiles (P3-P7). 

As in the other fields at this site, in field PSF3 SOC concentration in the  top 10 cm 

increment of the upslope ( P1) ,mid and downslope (P3-P6) profiles were similar, with 

deeper depths of the eroding upslope profile containing less SOC than the downslope 

deposition profile (Figure 5.10b). SOC concentration is increased in deposition profiles 

indicating redistribution of eroded material redeposited at bottom and lower slope 

position of within field. The SOC inventories along (Figure 5.7h and Table 5.2) the 

slope transect, again show eroding upslope profiles (P1-P2) to be significantly lower 

depleted in SOC (p<0.05) compared to deposition, mid and downslope profiles (P3-

P6). For Site 2, the 137Cs profiles from Ref 1 and Ref 3 are very similar but Ref 2 

appeared to have been disturbed (Figure 5.10f). The total SOC inventory (Table 5.2) 

up to 50 cm depth in Ref 1 was 3.90 ± 0.20  kg m-2, Ref 2 was 5.47 ± 0.68  kg m-2  for 

Ref 3 was 3.49 ± 0.43 kg m-2. 

 

Total N 

As at Site 1, the patterns of lateral variation in total N are similar to those seen in total 

C and, therefore, the relationships with soil redistribution are similar. In field PSF1, 

profiles P1 and P2 differ markedly from profiles P3-P6, which are all similar. The total 

N concentrations were lower at the eroding profile (P1) at the upslope position and 

more concentrated top soil increment up to 10 cm followed by a sharp decline of 
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concentration at lower depth increments. Although P2 was at a depositional location, 

based on the high 137Cs inventory there and the deep 137Cs penetration, it has low total 

N concentrations, comparable to P1 over the upper 30 cm. The remaining the 

depositional profiles (P3-P6) have higher total N concentrations up to 30 cm depth and 

no sharp decline in total N concentration below that (Figure 5.9c). Total N inventories 

in eroding P1 and depositional P2 were not significantly different from each other but 

are both significantly lower (p<0.05) than the inventories in the other profiles (P3-P6).  

In field PSF2, total N concentrations in the top 30 cm increments of eroding upslope 

P1-P2 and downslope depositional P3-P7 profiles were similar, but at depths below 

that the total N concentration at eroding profiles was lower than in the deposition 

profiles (Figure 5.9g). P5 located at the depositional site was clearly differentiated 

based on its total N concentration compared with eroding profiles. The total N 

inventories (Figure 5.7f and Table 5.2) of the eroding upslope profiles (P1-P2) were 

significantly lower (p<0.05) than those in the deposition profiles (P3-P7).  

In field PSF3, total N concentration (Figure 5.10c) was similar from eroding to 

deposition profiles but was slightly enriched at deposition profiles (P6). Total N 

inventories (Figure 5.7i and Table 5.2) within erosion profiles (P1-P4) were 

significantly lower (p<0.05) than in deposition downslope slope profiles (P5-P6). For 

Site 2 the reference field total N concentration (Figure 5.10g) total N inventories (Table 

5.2) up to 50 cm depth were: Ref 1 (0.30 ± 0.008 kg m-2), Ref 2 (0.41 ± 0.050 kg m-2) 

and Ref 3 (0.27 ± 0.022 kg m-2). 

 

C:N ratio 

In field PSF1, the C:N ratio (Figure 5.9d) for highly eroding profile P1 was higher than 

all other profiles (P2-P6) in the entire soil depth and the absolute values are very high. 

In profile P2, the C:N ratio is wider than in the other depositional profiles ( P3-P6) and 

is more similar to eroding profile P1. For all other depositional profiles (P3-P6), no 

clear differences were observed.  In field PSF2 (Figure 5.9h) almost opposite pattern 

was observed, with highly eroding profiles (P1) found to have narrower C:N ratios than 

other profiles (P2-P7) in entire soil depth along slope transect. In PSF3, the C:N ratio 

showed a similar pattern to PSF2 (Figure 5.10d). Eroding profiles (P1 and P2) were 

found to have narrower C:N ratios than other profiles in entire depth profile along slope 

transect. Site 2 reference profiles looks similar C:N ratio for Ref 1 and Ref 3 but Ref 2 

looks abnormal (Figure 5.10h ). 
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Total and Organic P (and C:OP ratio) 

In field PSF1, OP concentrations (Figure 5.11a) were lower at eroding upslope profile 

(P1) than midslope (P3) and downslope profiles (P6). The OP inventory in  erosion 

profile (P1) was significantly lower (p<0.05) than in downslope profile (P6) and equal 

to mid slope P3 (Figure 5.8a and Table 5.2). In field PSF1 TP concentrations (Figure 

5.11b) were lower at eroding upslope profiles (P1) than mid slope (P3) and deposition 

profile (P6). The TP inventory in erosion profile (P1) was significantly lower (p<0.05) 

than mid-slope (P3) and deposition profiles (P6) (Figure 5.8b and Table 5.2). In field 

PSF1, the C:OP ratio (Figure 5.11c) was lower at eroding profiles (P1) than mid (P3) 

and deposition profiles (P6) below 10 cm depth, but the top 10 cm depth increment of 

all profiles had similar C:OP ratios. 

 

In field PSF2 OP concentrations (Figure 5.11d) were lower at the eroding upslope 

profile (P1) than the mid slope (P3) and deposition profiles (P7). However, the mid 

slope profile had increased OP concentrations compared to other profiles. The OP 

inventory in erosion profile (P1) was significantly lower (p<0.05) than mid and 

deposition profile (P7) (Figure 5.8c and Table 5.2). In field PSF2, TP concentrations 

(Figure 5.11e) were lower at mid slope profile (P3) than eroding slope (P1) and 

deposition profiles (P7). Though eroding profile P1 and deposition (P7) profile TP 

concentrations were similar for the top 20 cm increment, soil below that increment in 

the deposition profile contained more TP than others. The TP inventory in erosion 

profile (P1) was significantly lower (p<0.05) than mid (P3) and deposition profiles (P7) 

(Figure 5.8d and Table 5.2). In field PSF2, the C:OP ratio (Figure 5.11f) was less at 

mid (P3) and deposition profiles (P7) than eroding (P1) profile. Eroding profile seems 

to have wider C: OP ratio than other profiles. 

 

In field PSF3, OP concentrations (Figure 5.12a) were lower at eroding upslope profile 

(P1) than mid slope (P4) and deposition profiles (P6). The OP inventory in erosion 

profile (P1) was significantly lower (p<0.05) than in deposition profile (P6) but equal to 

mid slope profile P4 (Figure 5.8e and Table 5.2). In field PSF3 TP concentrations 

(Figure 5.12b) were lower at eroding (P1) and mid slope profiles (P4) than deposition 

profile (P6).  The TP concentration over the whole depth of the deposition profile was 

higher than seen in other profiles. The TP inventory in erosion profiles (P1) was 

significantly lower (p<0.05) than in the deposition profile (P6) but equal to the mid 
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slope profile (Figure 5.8f and Table 5.2). In field PSF3, the C:OP ratio (Figure 5.12c) 

was similar in the top 10 cm increment of all profiles but after that the ratio was lower 

in the eroding profile than in the deposition and mid slope profiles. 

Site 2 reference OP inventory (Table 5.2) for Ref 1 is 0. 06 and Ref 3 is 0.08 (kg m-2) 

and TP inventory Ref 1 is 0.15 and Ref 3 is 0.20 kg m-2. The OP and TP concentrations 

and C:OP ratio for reference profile from Site 2 are presented in Figure 5.12d,e and f. 
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Table 5.2 Total Inventory of 137Cs, SOC, total N, OP and TP to 50 cm soil depth along 
the slope transects at Site 2 (PSF1, PSF2, PSF3 and PS Ref fields). For each profile 
n = 3, differences in inventories were tested by one way Anova at p = 0.05, significant 
sub-sets are denoted. CV is the coefficient of variation in total inventory of three 
replicates (soil pit faces). Mean values ± SE are presented. 

 

Pits
137

Cs Inventory CV SOC Inventory CV TN Inventory CV OP Inventory TP Inventory

of PSF1 (Bq m
-2

) %  (kg m
-2

) %  (kg m
-2

) %  (kg m
-2

)  (kg m
-2

)

P1 260   ± 48a 32.0 3.54 ± 0.25a 12.0 0.19 ± 0.02a 19.0 0.10a 0.19a

P2 2038 ± 36b 3.0 5.13 ± 0.13b 4.0 0.29 ± 0.06a 35.0

P3 2447 ± 126c 9.0 5.45 ± 0.22b 7.0 0.45 ± 0.02b 10.0 0.12ab 0.24b

P4 2146 ± 109bc 9.0 7.39 ± 0.19c 4.0 0.54 ± 0.01b 5.0

P5 1999 ± 63b 5.0 7.61 ± 0.16c 3.0 0.56 ± 0.03b 9.0

P6 2127 ± 16bc 1.0 7.99 ± 0.35c 8.0 0.62 ± 0.02bc 4.0 0.20b 0.36c

Pits
137

Cs Inventory CV SOC Inventory CV TN Inventory CV OP Inventory TP Inventory

of PSF2 (Bq m
-2

) %  (kg m
-2

) %  (kg m
-2

) %  (kg m
-2

)  (kg m
-2

)

P1 674   ± 68 a 18.0 1.88 ± 0.10a 9.0 0.19 ± 0.009a 8.0 0.03a 0.10a

P2 1061 ± 44ab 7.0 2.57 ± 0.13a 8.0 0.22 ± 0.012a 10.0

P3 1316 ± 171b 22.0 3.54 ± 0.02b 1.0 0.28 ± 0.011ab 7.0 0.10b 0.16b

P4 1922 ± 41c 4.0 5.07 ± 0.14c 5.0 0.36 ± 0.007c 3.0

P5 1483 ± 112bc 13.0 7.19 ± 0.06e 1.0 0.54 ± 0.018e 6.0

P6 1803 ± 27bc 3.0 5.91 ± 0.13d 4.0 0.48 ± 0.010ed 3.0

P7 2067 ± 215c 18.0 5.76 ± 0.36cd 11.0 0.46 ± 0.027d 10.0 0.12c 0.30c

Pits
137

Cs Inventory CV SOC Inventory CV TN Inventory CV OP Inventory TP Inventory

of PSF3 (Bq m
-2

) %  (kg m
-2

) %  (kg m
-2

) %  (kg m
-2

)  (kg m
-2

)

P1 416   ± 62a 26.0 2.84 ± 0.74a 4.0 0.25 ± 0.002a 2.0 0.08a 0.15a

P2 990   ± 173a 30.0 4.08 ± 0.14a 6.0 0.32 ± 0.002a 1.0

P3 1751 ± 141b 14.0 4.53 ± 0.29ab 11.0 0.32 ± 0.014a 8.0 0.11a 0.20ab

P4 1409 ± 54ab 7.0 4.74 ± 0.43ab 16.0 0.31 ± 0.027a 15.0

P5 1614 ± 60ab 6.0 5.55 ± 0.37bc 11.0 0.35 ± 0.021ab 10.0

P6 2707 ± 248c 16.0 5.85 ± 0.25bc 7.0 0.41 ± 0.027ab 11.0 0.17b 0.31b

Pits
137

Cs Inventory CV SOC Inventory CV TN Inventory CV OP Inventory TP Inventory

of PS Ref (Bq m
-2

) %  (kg m
-2

) %  (kg m
-2

) %  (kg m
-2

)  (kg m
-2

)

Ref 1 1335 ± 88 11.0 3.90 ± 0.20 9.0 0.30 ± 0.008 5.0 0.06 0.15

Ref 2 625   ± 232 64.0 5.47 ± 0.68 21.0 0.41 ± 0.050 21.0

Ref 3 1194 ± 71 10.0 3.49 ± 0.43 21.0 0.27 ± 0.022 14.0 0.08 0.20
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Figure 5.7 Total Inventory of 137Cs, SOC, and total N to 50 cm soil depth at profiles 
along a slope transect within field of Site 2 (PSF1: a-c, PSF2: d-f, and PSF3: g-i). For 
each profile n = 3 and the error bars reflect standard error. 
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Figure 5.8 Total Inventory of OP and TP to 50 cm soil depth at profiles along a slope 
transect within field of Site 2 (PSF1: a-b, PSF2:c-d, and PSF3: e-f). P analysed as a 
composite sample of each depth layer. 
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Figure 5.9 Vertical distributions of 137Cs, SOC, total N and C:N  in soil profiles along the slope transects within field  Site 1 (PSF1: a- 
d, and  PSF2: e-h). Error bars are ± SE (n = 3). 
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Figure 5.10 Vertical distributions of 137Cs, SOC, total N and C:N in soil profiles along the slope transects within field  Site 1 (PSF3:a- 
d, and PS Ref: e-h). Error bars are ± SE (n = 3). 
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Figure 5.11 Vertical distributions of OP, TP and CP ratio in profiles in Site 2 (PSF1: a-c, and PSF2: d-f). Each depth layer made it 
into composite and analysed up to 50 cm 
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Figure 5.12 Vertical distributions of OP, TP and CP ratio in profiles in Site 2 (PSF3: a-c, and PS Ref: d-f). Each depth layer made it 
into composite and analysed up to 50 cm 
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5.3.4 Vertical and lateral distribution of 137Cs, SOC, N and P at Site 3 

 

137Cs 

The patterns of 137Cs inventories in all 3 fields at Site 3 are consistent with field 

topography (Figure 4.2g,h, and i). Each field has a distinct change of slope along the 

transect and this is reflected in the inventories. Low activity was measured in upslope 

profiles or those on steep slope sections (probably below a former bund) such as 

profiles 4 and 5 from BGF2 and profiles 3 and 4 from BGF3. At these maximum activity 

is observed up to 30 cm. A maximum activity of 30 cm was also observed in BGF2 

profile 6, however, this was the maximum soil depth at this location (Figure 5.15a, e). 

High activities (close to 10 Bq kg-1) were also seen in the pits with high inventories in 

BGF2 (P6) and BGF3 (P2). The profile distribution of 137Cs at these profiles is 

consistent with redeposition of eroded material from upslope at these locations on the 

lower slopes. The BGF1 deposition downslope 137Cs activity was lower than BGF2 

which may be due to continuous loss of soil beyond this location because the field is 

located on steep hills and there was no clear boundary to prevent soil loss, (which is 

present in BGF2). In BGF1 pit P7 was located at the other corner of the field transect 

and showed comparatively less activity than the deposition profile (it is also from a 

location with a slightly higher elevation than P6).   

Overall, the 137Cs inventories within Site 3 show statistically significant 

differences significantly lower (p < 0.05) between topographic positions which appear 

to have been sources of eroded soil and those that have received deposition (Figure 

5.13 a, d, g and Table 5.3). The reference field (BG Ref3) of Site 3 have a 137Cs activity 

(Figure 5.16e and Table 5.3) lower than predicted fallout (1685 Bq m-2) for this study 

region but close to those seen at Site 2 (BG Ref 1: 1282 ± 63, BG Ref 2: 1063 ± 33  

and BG Ref 3: 799± 40 Bq m-2).  

 

SOC 

As at Site 2, the broad trends in 137Cs inventories are seen in all fields in the SOC 

inventories, with a tendency for SOC to increase down-field. In field BGF1, SOC 

concentrations were lower at the eroding profile (P1-P5) of upslope and midslope 

positions and more concentrated in the top soil up to 10 cm depth. Below that there 

was a sharp decline of concentration, but the deposition down slope profile (P6) had 
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increased SOC (Figure 5.15b). Although P7 was located at a downslope location, its 

SOC inventory and concentration reflect the 137Cs pattern and are significantly lower 

than P6. SOC inventory along the slope transect (Figure 5.13b and Table 5.3) at 

eroding and mid-slope profiles (P1-P5) are significantly lower (P<0.05) than deposition 

downslope profile (P6). In field BGF2, SOC concentration was lower at eroding profile 

(P1-P5) of eroding and mid-slope positions and more concentrated in the top soil up 

to 10 cm. Below 0-10 cm there was a sharp decline of concentration compared to the 

deposition (Figure 5.15f) slope profile (P6) which had relatively increased carbon 

concentrations. SOC inventory along (Figure 5.13d and Table 5.3) slope profiles at 

eroding and mid-slope positions (P1-P5) were significantly lower (P<0.05) than 

deposition downslope profile (P6). In field BGF3, SOC concentration (Figure 5.16b) 

showed a clear pattern along the slope (Figure 5.13h and Table 5.3) transect, but the 

large difference seen between the upper (P1 and P2) and lower (P3-P5) parts of the 

field seen in 137Cs activity is not as clear in the SOC data. However, if the data is 

separated into P1-P2 and P3-P5 then there is a closer fit. For Site 3, there is more 

variation in the SOC profiles than in the 137Cs profiles, which may indicate that C input 

or biomass removal rates vary between the reference fields.  Total SOC inventory 

(Table 5.3) up to 50 cm depth was Ref 1 (8.30 ± 0.42 kg m-2), Ref 2 (5.63 ± 0.17 kg m-

2) and Ref 3 (3.36 ± 0.13 kg m-2). 

 

Total N 

As at Sites 1 and 2, the patterns of lateral variation in total N are broadly similar to 

those seen in total C and, therefore, the relationships with soil redistribution are similar. 

In field BGF1, total N concentrations were lower at eroding profile (P1-P5) of upslope 

positions and more concentrated in the top soil increment up to 10 cm depth, after 

which there was a sharp decline of concentration, apart from deposition downslope 

slope profile (P6) which had increased total N concentrations (Figure 5.15c). Although 

P7 was located in the deposition profile, it did not have a large total N concentration, 

possibly reflecting its location at a field boundary susceptible to soil loss by runoff. 

Total N inventories (Figure 5.13c and Table 5.3) from eroding profiles (P1-P5) were 

again significantly lower (p<0.05) than the inventory of the deposition downslope 

profile (P6).  In field BGF2, total N concentrations were lower at the eroding profile 

(P1-P5) of upslope positions and more concentrated in the top soil increment up to 10 

cm depth, with a sharp decline of concentration below that. The deposition slope 
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profile (P6) had comparatively increased total N concentrations (Figure 5.15g).  As in 

BGF1, there was a statistically (p<0.05) significant difference in total N inventory 

(Figure 5.13f and Table 5.3) between eroding profiles (P1-P5) and the depositional 

profile (P6). In field BGF3, total N concentration (Figure 5.16c) is easier to interpret 

when data are separated into two distinct areas, P1-P2 and P3-P5. In both zones, 

there is an increase in total N inventories towards the depositional section, mirroring 

the increase in both 137Cs and total C inventories. For Site 3 the reference field total N 

concentration profiles are similar shapes but have differing maximum concentrations 

(Figure 5.16g) and this is reflected in the total N inventories (Table 5.3) up to 50 cm 

depth: Ref 1 (0.64 ± 0.014 kg m-2), Ref 2 (0.44 ± 0.051 kg m-2) and Ref 3 (0.26 ± 0.025 

kg m-2). 

 

C:N ratio 

In fields BGF1, the C:N ratio for highly eroding profiles (P1-P3) of deeper soil 

increments layer (below 20 cm) was higher than all other profiles (P4-P7), but up to 

20 cm all profiles had similar C:N ratios (Figure 5.15d). However, in field BGF2, except 

P4, all profiles have similar C:N ratios. P4 was described as an eroding slope and it 

has a wider C:N ratio than other profiles (Figure 5.15h). In BGF3 there was no clear 

pattern of C:N ratios observed (Figure 5.16d). Site 3 reference profile looks similar C:N 

ratio for Ref1 and Ref 2 but Ref 3 looks abnormal (Figure 5.16h). 

 

Total and Organic P (and C:OP ratio) 

In field BGF1, OP concentrations (Figure 5.17a) were lower at eroding upslope profiles 

(P1) and mid slope (P3) than downslope deposition profiles (P6). Deposition 

downslope profiles had comparatively higher OP concentrations over the entire soil 

depth. The OP inventory in erosion profiles (P1) was significantly lower (p<0.05) than 

the deposition profile (P6) and equal to mid slope P3 (Figure 5.14a and Table 5.3).  In 

field BGF1, TP concentrations (Figure 5.17b) were lower at the eroding profile (P1) 

than mid slope (P3) and deposition profiles (P6). The TP concentrations in deposition 

profiles was higher than in the mid slope profile at 10 cm depth; after that the mid slope 

profile TP concentration was higher than the deposition profile. The TP inventory in 

erosion profile (P1) was significantly lower (p<0.05) than mid-slope (P3) but equal to 

deposition profile (P6) (Figure 5.14b and Table 5.3).  In field BGF1 C:OP ratio (Figure 

5.17c) of top soil 10 cm layer of eroding and deposition profiles were similar but the 



102 
 

mid slope profiles have higher ratios than both other profiles. Below 10 cm increments 

in the mid and deposition profiles C:OP ratios were equal but the eroding profile looks 

wider at 20 cm depth after that all profiles have similar C:OP ratios. 

In field BGF2 OP concentrations (Figure 5.17d) of top 10 cm increments were lower 

at eroding upslope profile (P1) than deposition downslope (P6) than mid slope profile 

(P3). Below that at 20 cm depth all profiles had similar OP concentrations. After that 

eroding and mid slope profiles were similar with lower OP concentrations than the 

deposition profile. There was no significant (P>0.05) difference in OP inventory 

between all profiles (Figure 5.14c and Table 5.3).  In field BGF2 TP concentration 

(Figure 5.17e) were almost equal at top 10 cm depth of all profiles and below that 

depth the concentration in the eroding profile was lower.  The mid slope and deposition 

profiles had similar TP concentrations at 20 cm depth and below that the deposition 

profile had higher TP concentrations that the mid slope profiles. There was no 

significant (p>0.05) difference in TP inventory of all the profiles (Figure 5.17e and 

Table 5.9). In field BGF2, the C: OP ratio (Figure 5.17f) of the top 10 cm increment of 

eroding and deposition profiles was similar, but mid slope profiles have lower C: OP 

ratios than both other profiles. Below 10 cm, the eroding profile has lower C: OP ratio 

than other profiles in entire depth.  The C: OP ratio of the mid slope profile is lower at 

20 cm and equal at 30 cm depth to the deposition profile. 

 

In field BGF3, OP concentrations (Figure 5.18a) of the top 10 cm increment were lower 

at eroding upslope profile (P1) than mid (P2) and downslope deposition profiles (P5). 

Below 20 cm, the P5 deposition profile has lower than OP concentrations than others 

but the mid slope profile had higher OP concentrations, and after this depth eroding 

profile had relatively lower OP concentration. The OP inventory in the eroding profile 

(P1) is significantly (p < 0.05) lower than in the mid and deposition profiles (Figure 

5.14e and Table 5.3). In field BGF3, TP concentrations (Figure 5.18b) were similar in 

the top 10 cm increment of all profiles, and below that the deposition profiles had lower 

concentrations. Eroding and mid slope profiles had similar TP concentrations at 20 cm 

depth, but below that the mid slope profile had lower concentrations than the eroding 

profile. The TP inventory in  the eroding profile (P1) is significantly (p < 0.05) lower 

than in the mid and deposition profiles (Figure 5.14f and Table 5.3). In field BGF3, the 

C:OP ratio (Figure 5.18c) of top 10 cm increment of the eroding profile was higher than 

deposition and mid slope profile. Below 20 cm, the deposition profile had relatively 
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higher C:OP rations than the mid and eroding slope profiles. At 30 cm deposition and 

mid slope profile had equal C OP ratios which were lower than eroding slope positon, 

after this depth mid slope lower than deposition. 

 

At Site 3 the reference OP and TP inventories are respectively 0.04 and 0.40 kg m-2 

for Ref 1 and 0.06 and 0.31 kg m-2 for Ref 2. OP and TP concentrations and C: OP 

ratio variation with depth for the reference profiles are presented in Figure 5.18 d,e 

and f. 
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Table 5.3 Total Inventory of 137Cs, SOC, total N, OP and TP to 50 cm soil depth along 
the slope transects at Site 3 (BGF1, BGF2, BGF3 and BG Ref fields). For each profile 
n = 3, differences in inventories were tested by one way Anova at p = 0.05, significant 
sub-sets are denoted. CV is the coefficient of variation in total inventory of three 
replicates (soil pit faces). Mean values ± SE are presented. 

 

 

 

 

Pits
137

Cs Inventory CV SOC Inventory CV TN Inventory CV OP Inventory TP Inventory

of BG F1 (Bq m
-2

) %  (kg m
-2

) %  (kg m
-2

) %  (kg m
-2

)  (kg m
-2

)

P1 524   ± 46a 15.0 3.75 ± 0.38a 17.0 0.35 ± 0.027b 13.0 0.04a 0.37a

P2 728   ± 22a 5.0 4.07 ± 0.09ab 4.0 0.30 ± 0.013b 8.0

P3 727   ± 61a 15.0 2.51 ± 0.14a 10.0 0.20 ± 0.001a 1.0 0.04a 0.86b

P4 1093 ± 63b 10.0 4.37 ± 0.49ab 19.0 0.42 ± 0.006c 2.0

P5 1308 ± 16b 2.0 4.83 ± 0.12ab 4.0 0.45 ± 0.019c 7.0

P6 1420 ± 43bc 5.0 6.47 ± 0.22c 6.0 0.58 ± 0.009d 3.0 0.07b 0.49a

P7 932   ± 59ab 11.0 5.14 ± 0.18b 6.0 0.53 ± 0.034cd 11.0

Pits
137

Cs Inventory CV SOC Inventory CV TN Inventory CV OP Inventory TP Inventory

of BG F2 (Bq m
-2

) %  (kg m
-2

) %  (kg m
-2

) %  (kg m
-2

)  (kg m
-2

)

P1 815   ± 89a 19.0 3.82 ± 0.37a 17.0 0.40 ± 0.054a 24.0 0.06a 0.31a

P2 832   ± 93a 19.0 3.95 ± 0.68a 30.0 0.33 ± 0.055a 29.0

P3 1404 ± 46b 6.0 4.81 ± 0.09a 3.0 0.45 ± 0.031a 12.0 0.07a 0.37a

P4 823   ± 77a 16.0 4.47 ± 0.41a 16.0 0.37 ± 0.035a 17.0

P5 1043 ± 67ab 11.0 4.58 ± 0.34a 13.0 0.36 ± 0.017a 8.0

P6 2431 ± 231c 16.0 6.23 ± 0.79ab 22.0 0.65 ± 0.011ab 30.0 0.05a 0.34a

Pits
137

Cs Inventory CV SOC Inventory CV TN Inventory CV OP Inventory TP Inventory

of BGF3 (Bq m
-2

) %  (kg m
-2

) %  (kg m
-2

) %  (kg m
-2

)  (kg m
-2

)

P1 1246 ± 178ab 25.0 3.94 ± 0.31a 13.0 0.48 ± 0.030ab 11.0 0.02a 0.32a

P2 1471 ± 142ab 17.0 5.25 ± 0.18b 6.0 0.68 ± 0.028b 7.0

P3 770   ± 72a 16.0 3.80 ± 0.13a 6.0 0.36 ± 0.012a 6.0 0.08b 0.46b

P4 642   ± 22a 6.0 3.54 ± 0.20a 10.0 0.42 ± 0.017a 7.0

P5 1024 ± 98a 16.0 7.19 ± 0.33c 8.0 0.65 ± 0.037b 10.0 0.07b 0.43b

Pits
137

Cs Inventory CV SOC Inventory CV TN Inventory CV OP Inventory TP Inventory

of BG ref (Bq m
-2

) %  (kg m
-2

) %  (kg m
-2

) %  (kg m
-2

)  (kg m
-2

)

Ref 1 1282 ± 63 8.0 8.30 ± 0.42 9.0 0.64 ± 0.014 4.0 0.04 0.40

Ref 2 1063 ± 33 5.0 5.63 ± 0.17 5.0 0.44 ± 0.051 20.0 0.06 0.31

Ref 3 799   ± 40 9.0 3.36 ± 0.13 7.0 0.26 ± 0.025 17.0 0.03 0.41
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Figure 5.13 Total Inventory of 137Cs, SOC, and total N to 50 cm soil depth at profiles 
along a slope transect within field of Site 3 (BGF1: a-c, BGF2: d-f, and BGF3: g-i). For 
each profile n = 3 and the error bars reflect standard error.
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Figure 5.14 Total Inventory of OP and TP to 50 cm soil depth at profiles along a slope 
transect within field of Site 3 (BGF1: a-b, BGF2: c-d, and BGF3: e-f). P analysed as a 
composite sample of each depth layer 
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Figure 5.15 Vertical distributions of 137Cs, SOC, total N and C:N  in soil profiles along the slope transects within field  Site 1 (BGF1: 
a-d, and BGF2: e-h). Error bars are ± SE (n = 3). 
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Figure 5.16 Vertical distributions of 137Cs, SOC, total N and C:N in soil profiles along the slope transects within field  Site 1 (BGF3: 
a- d, and BG Ref: e-h). Error bars are ± SE (n = 3).          
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Figure 5.17 Vertical distributions of OP, TP and CP ratio in profiles in field Site 3 (BGF1: a-c, and BGF2: d-f). Each depth layer made 
it into composite and analysed up to 50 cm 
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Figure 5.18 Vertical distributions of OP, TP and CP ratio in profiles in field Site 2 (BGF3: a-c, and BG Ref: d-f). Each depth layer 
made it into composite and analysed up to 50 cm. 
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Table 5.4 Descriptive statistics for total inventory of 137Cs, SOC, and total N to 50cm 

depth for all three sites slope field. 

 

 

Sites Field id Parameters Min Max Median Mean

DKF1
 137

Cs (Bq m
-2

) 472 2196 739 996

Site 1 DKF1 SOC   (kg m
-2

) 2.89 5.80 3.74 3.98

DKF1 TN      (kg m
-2

) 0.21 0.49 0.33 0.34

DKF2
 137

Cs (Bq m
-2

) 180 2046 680 796

Site 1 DKF2 SOC   (kg m
-2

) 1.69 4.67 3.66 3.49

DKF2 TN      (kg m
-2

) 0.20 0.49 0.37 0.36

DKF3
 137

Cs (Bq m
-2

) 84 1839 729 701

Site 1 DKF3 SOC   (kg m
-2

) 2.82 4.77 3.73 3.68

DKF3 TN      (kg m
-2

) 0.32 0.60 0.35 0.37

PSF1
 137

Cs (Bq m
-2

) 202 2680 2094 1836

Site 2 PSF1 SOC   (kg m
-2

) 3.18 8.68 6.39 6.18

PSF1 TN      (kg m
-2

) 0.17 0.65 0.49 0.44

PSF2
 137

Cs (Bq m
-2

) 566 2446 1546 1475

Site 2 PSF2 SOC   (kg m
-2

) 1.73 7.31 5.11 4.56

PSF2 TN      (kg m
-2

) 0.17 0.58 0.37 0.36

PSF3
 137

Cs (Bq m
-2

) 332 3161 1504 1481

Site 2 PSF3 SOC   (kg m
-2

) 2.73 6.29 4.66 4.60

PSF3 TN      (kg m
-2

) 0.25 0.44 0.32 0.33

BGF1
 137

Cs (Bq m
-2

) 477 1500 961 962

Site 3 BGF1 SOC   (kg m
-2

) 2.23 6.83 4.36 4.29

BGF1 TN      (kg m
-2

) 0.19 0.60 0.42 0.40

BGF2
 137

Cs (Bq m
-2

) 676 2816 1000 1225

Site 3 BGF2 SOC   (kg m
-2

) 2.82 7.75 4.56 4.64

BGF2 TN      (kg m
-2

) 0.25 0.86 0.40 0.43

BGF3
 137

Cs (Bq m
-2

) 613 1694 892 1031

Site 3 BGF3 SOC   (kg m
-2

) 3.15 7.56 4.13 4.74

BGF3 TN      (kg m
-2

) 0.34 0.71 0.51 0.52
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5.3.5 Relationship between 137Cs, SOC and total N   

Relationship between total inventory of 137Cs and SOC and total N were tested for all 

study site to the sampling depth of 50 cm and found positive and strong statistically 

significant relationship for Site 1- (Figure 5.19a,b) field 1 (137Cs vs SOC, r2 = 0.35, p < 

0.05 ; 137Cs vs total N, r2 = 0.38, p < 0.05); for Site 1- field 2 (Figure 5.19c,d) strong 

relationship found for SOC not for total N  (137Cs vs SOC, r2 = 0.36, p < 0.05 ; 137Cs vs 

total N, r2 = 0.06, p = 0.39). For Site 2- (Figure 5.20a,b) field 1 (137Cs vs SOC, r2 = 0.43, 

p < 0.05; 137Cs vs total N, r2 = 0.47, p < 0.05);  Site 2- (Figure 5.20c,d)  field 2  (137Cs 

vs SOC, r2 = 0.55, p <0.05; 137Cs vs total N, r2 = 0.54, p < 0.05) and   for Site 2- (Figure 

5.20e,f) field 3 (137Cs vs SOC, r2 = 0.65, p < 0.05 ; 137Cs vs total N, r2 = 0.70, p <0 .05)  

has statistical strong relationship between 137Cs and SOC and total N  inventory this 

indicate they moved along similar pathways . In Site 3-(Figure 5.21a,b)  field 1 (137Cs 

vs SOC, r2 = 0.55, p < 0.05; 137Cs vs total N, r2 = 0.52, p < 0.05) and  Site3- (Figure 

5.21c,d) field 2  (137Cs vs SOC, r2 = 0.72, p < 0.05; 137Cs vs total N, r2 = 0.78, p<0.05)  

were found statistically strong significant relationship between 137Cs vs SOC and total 

N but in Site 3- (Figure 5.21e,f) field 3 (137Cs vs SOC, r2 = 0.16, P = 0.141 ; 137Cs vs 

total N, r2 = 0.55, p < 0.05)  has statistical strong relationship between 137Cs and total 

N  inventory  not with SOC . Descriptive statistics of total inventory of 137Cs and SOC 

and total N were tested up to 50 cm depth of all sites and results presented in Table 

5.4, it display lowest and highest pattern of all inventories in this study region. 

5.3.6 Relationship between 137Cs activity and SOC and total N concentration 

Relationship between 137Cs activity and SOC and total N concentration were tested 

for all study sites to the sampling depth of 50 cm with different increment and result 

presented in Table 5.5 and Figure 5.22a-d, Figure 5.23a-f, and Figure 5.24a-f. Along 

the slope field relationship between 137Cs activity and SOC and total N concentration 

at top soil most of the field found less r2 values than deep soil.  

5.3.7 Relationship between 137Cs and P (OP and TP) 

Relationship between total 137Cs and OP and TP inventory were tested for all study 

site to the sampling depth of 50 cm and found positive and strong statistically 

significant relationship  for Site 1- Combined (Figure 5.25a,b) first  two field  (137Cs vs 

OP, r2 = 0.62, p< 0.05; 137Cs vs TP, r2 = 0.54, p < 0.05) and Site 2- combined (Figure 

5.25c,d) three field (137Cs vs OP, r2 = 0.51, p < 0.05 ; 137Cs vs TP, r2 = 0.58, p < 0.05) 

but in Site3-combined (Figure.5.25e,f) three field  (137Cs vs OP, r2 = 0.06, p= 0.22; 
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137Cs vs TP, r2 = 0.07, p = 0.19) no significant  relationship between total  137Cs and 

OP and TP inventory.  
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Figure 5.19 Relationship between individual profile face total inventories of 137Cs, 
SOC and total N within fields of Site 1 (DKF1: a-b, and DKF2: c-d). All inventories to 
0.5 m. Linear regression analysis performed and tested significance 
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Figure 5.20 Relationship between individual profile face total inventories of 137Cs, 
SOC and total N within fields of Site 2 (PSF1: a-b, PSF2: c-d, and PSF3: e-f). All 
inventories to 0.5 m. linear regression analysis performed and tested significance 
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Figure 5.21 Relationship between individual profile face total inventories of 137Cs, 
SOC and total N within fields of Site 3 (BGF1: a-b, BGF2: c-d, and BGF3: e-f). All 
inventories to 0.5 m. Linear regression analysis performed and tested significance 
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Figure 5.22 Relationship between individual depths profile face activity of 137Cs, 
concentration of SOC and total N within fields of Site 1 (DKF1: a-b, and DKF2: c-d). 
All activity and concentration to 0.5 m.  
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Figure 5.23 Relationship between individual depths profile face activity of 137Cs, 
concentration of SOC and total N within fields of Site 2 (PSF1: a-b, PSF2: c-d, and 
PSF3: e-f). All activity and concentration to 0.5 m. 
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Figure 5.24 Relationship between individual depths profile face activity of 137Cs, 
concentration of SOC and total N within fields of Site 3 (BGF1: a-b, BGF2: c-d, and 
BGF3: e-f). All activity and concentration to 0.5 m. 
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Figure 5.25 Relationship between total inventory of 137Cs, OP and TP for Site 1 (a-b), 
Site 2 (c-d) and Site 3(e-f). 
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Table 5.5 Linear regression result between 137Cs activity, SOC and total N 
concentration for three sites field and with depth increment 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 r2 values for 137Cs (Bq kg-1) vs SOC (g kg-1)  r2 values for 137Cs (Bq kg-1) vs TN (g kg-1) 

Depth (cm) Depth (cm)

Site field 5 15 25 40 0-50 5 15 25 40 0-50

Site 1 DKF1 0.00 0.07 0.01 0.23 0.33 0.12 0.14 0.02 0.13 0.38

DKF2 0.24 0.34 0.38 0.36 0.14 0.15 0.37 0.21 0.03 0.00

Site 2 PSF1 0.07 0.04 0.12 0.08 0.23 0.22 0.20 0.19 0.18 0.34

PSF2 0.05 0.00 0.06 0.22 0.28 0.00 0.00 0.18 0.27 0.36

PSF3 0.03 0.22 0.11 0.24 0.16 0.00 0.17 0.00 0.00 0.17

Site 3 BGF1 0.05 0.53 0.28 0.68 0.70 0.04 0.55 0.28 0.20 0.71

BGF2 0.38 0.72 0.90 0.19 0.85 0.49 0.77 0.94 0.16 0.89

BGF3 0.01 0.72 0.49 0.06 0.80 0.22 0.89 0.88 0.44 0.9
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5.4 Discussion  

5.4.1 Vertical and lateral distribution of 137Cs activity and Inventory 

Validity of using 137Cs as a tracer 

The detailed examination of small-scale variation (n=3 within pit) as well as variation 

with depth, in space (along transects) and between fields (n=3 sloping fields at each 

site) allows evaluation of the validity of using 137Cs as a tracer in this environment. In 

contrast to suggestions by (Parsons and Foster, 2011 and 2013) relatively low CV 

were observed in both profile inventories and activities for samples from the same 

depth within each pit (Presented in Tables 5.1 to 5.3). These results suggest that 

reliable and replicable measures of 137Cs inventories can be obtained from these soils 

which is a fundamental requirement for use of the technique in erosion assessment. 

Furthermore, when depth profiles are compared with total profile inventories 

(Presented in Tables 5.1 to 5.3 and Figures 5.1, 5.3 to 5.4,5.7, 5.9 to 5.10 and 

5.13,5.15 to 5.16), there are 2 strong lines of evidence that 137Cs has been 

redistributed in association with sediment. Firstly, in profiles with low inventories, the 

137Cs is strongly concentrated in the upper one or two depth increments; this indicates 

that there is minimal down-profile migration of 137Cs in solution. Low inventories at 

these locations are the product of low activities in the surface horizons, consistent with 

progressive dilution of the cultivation layer with former subsoil as soil, lost by erosion, 

is replaced by cultivating deeper into formerly sub-plough layers. The second line of 

evidence comes from those profiles with greatly elevated 137Cs inventories; these also 

show elevated 137Cs activities to depths in the soil profile that significantly exceed the 

cultivation depth. This is consistent with movement of 137Cs in association with eroded 

and redeposited soil, such that former cultivation layer is excluded from the actively 

mixed layer by ‘burial’. That is, as deposition takes place, the absolute depth (with 

respect to datum) of cultivation is reduced – the base of the cultivation layer rises, year 

on year. Given these observations, I have confidence that 137Cs can be used as a 

tracer of soil redistribution within this environment and that those areas with depleted 

137Cs inventories can be considered to have suffered erosion and those areas with 

elevated inventories can be treated as subject to deposition. However, given the 

uncertainties with respect to definition of the fallout reference inventory (section 4.3), 

in this chapter, no attempt is made to derive erosion rates from the 137Cs data. Instead, 
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in this chapter 137Cs is used as a tracer of soil redistribution but this is achieved by 

comparing spatial patterns of C, N and P directly with spatial patterns of 137Cs. 

The spatial patterns of 137Cs inventories are consistent with progressive downslope 

movement of soil from upslope to downslope as a result of water and tillage erosion 

(Govers et al., 1996; Quine et al., 1999; Thapa et al., 2001; Van Oost et al., 2005a). 

In 7 of the 9 fields, minimum 137Cs inventories are found in the uppermost profile, which 

is often seen in terraced environments and attributed to the influence of tillage erosion 

(e.g. Quine et al., 1999) because if the direction of flow of runoff is down the field, it is 

assumed that there would be insufficient flow to generate high erosion rates at these 

upslope locations. Furthermore, in a number of the fields, an abrupt change in 137Cs 

activity and inventory is seen close to the mid slope (typically between P3 and P4). 

This is often represented in a sharp drop from a local high 137Cs inventory to a very 

low inventory. This pattern would be consistent with former sub-division of the fields 

at these locations by a field bund that would prevent soil translocation by tillage across 

the bund line and, therefore, lead to soil and 137Cs depletion below the bund.  

In addition to evidence for tillage erosion, there is also ample evidence of the influence 

of intense water erosion where 137Cs inventories are depressed over much of the field 

area, for example in DKF1 (lower half), DKF2, BGF2 and BGF3 (lower-half). This is 

also reflected in the absolute values of the mean inventories for most fields which lie 

significantly below the estimated fallout to the area (this is discussed further in Chapter 

6).  Overall, the spatial patterns of 137Cs activity profiles and inventories along the 

slope transects are consistent with erosion induced soil redistribution leading to 

transfer of eroded from the upper slopes and some redeposition in lower parts of the 

fields. Similar observations of erosion-induced spatial variation of 137Cs activity and 

inventories within field have been found by other study (Quine and Zhang, 2002; 

Vandenbygaart et al., 2012; Nosrati et al., 2015).  
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5.4.2 Vertical and lateral distribution of SOC concentration and inventory and 

relationships with 137Cs 

Overall, the pattern of SOC concentrations and inventories in all of the fields is similar 

and the existence of statistically significant correlations between 137Cs and SOC 

(concentrations and inventories) suggests that soil redistribution is an important 

control on SOC distributions. There is a general pattern that SOC concentrations in 

the eroding (low-137Cs) upslope profiles are lower than in depositional (high-137Cs) 

downslope profiles. Also, in the eroding profiles, the highest SOC concentrations are 

only seen in the upper 10 cm after which a sharp decline is seen; whereas in deposition 

profiles higher concentrations are seen up to 30 cm and there is no sharp decline. 

Similar result also found by other study (Vandenbygaart et al., 2012, Norsati et al., 

2015). The topographic association between low SOC inventories over the upper parts 

of fields and high inventories over the lower areas and the correlation between SOC 

and 137Cs inventories, both provide strong evidence of the creation of spatial variation 

through redistribution of eroded material within the fields as has been reported in a 

number of previous studies (Quine and Zhang, 2002; Van Oost et al., 2005a; Zhang 

et al., 2006; De gryze et al., 2008; Vandenbygaart et al., 2012; Li et al., 2013;  Norsati 

et al., 2015).  

Despite these broad patterns of similarity between 137Cs and SOC distributions, a 

number of clear differences are also seen. Firstly, the range of variation differs 

markedly between 137Cs and SOC, with SOC showing smaller proportional differences 

between the lowest and highest SOC inventories. Secondly, the abrupt changes found 

in 137Cs inventories that have been interpreted as the result of former field sub-division 

are either not seen or not as clearly seen in the SOC inventories. Therefore, when 

SOC inventories are regressed against 137Cs inventories, although statistically 

significant relationships are found for the great majority of fields, R2 values range from 

0.35 to 0.72. This indicates that while soil redistribution has altered the spatial 

variability of SOC, there are other important controls on the spatial pattern of SOC. 

The finding of erosion control on SOC distribution is consistent several previous 

studies (Ritchie and McCarty, 2003; Afshar et al., 2010; Martinez et al., 2010; 

Vandenbygaart et al., 2012; Nosrati et al., 2015); however, the strength of the 

relationships found here are stronger in 7 out of 9 fields (Figure 5.19 to 5.21).  

In addition to exploring the relationships between total 137Cs and total SOC inventories, 

in this study, new insights into the controls on SOC inventories were sought be 
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comparing 137Cs activity and SOC concentration for separate depth increments (Table 

5.5 and Figure 5.22 to 5.24). These figures are quite complicated to interpret because of 

the range of controls that influence both SOC and 137Cs. Some general patterns can 

be suggested: 

 Higher 137Cs activities per unit mass are indicative of higher proportions of 

1960s plough soil (peak fallout occurred in 1963 and 80% fallout occurred 

before 1964 and it is assumed that the initial fallout was mixed evenly through 

the plough layer as in Quine and Van Oost, 2007) 

 Lower 137Cs activities per unit mass indicate either high proportions of subsoil 

mixed into cultivation layer or low probability of the layer having been near the 

surface in the fallout period.  

 High 137Cs and high SOC in the upper most depth increment is consistent with 

a stable or depositional soil in receipt of surface inputs of SOM. 

 Low 137Cs and high SOC in the upper most depth increment could be 

considered to be evidence of effective dynamic replacement in which SOC 

levels are maintained despite subsoil dilution. 

 High 137Cs and high SOC in a lower depth increment could be consistent with 

preservation of SOC in buried cultivation layer. 

 High 137Cs and low SOC in a lower depth increment would suggest that former 

cultivation layer has been buried but lost much of the initial SOC.  

 

Based on these broad patterns, three examples can be examined that illustrate some 

of the variation in behaviour (Figure 5.26). At Site 1, field DKF2 (Figure 5.26a) two of 

these patterns are evident. First, high SOC concentrations are seen in the upper-most 

depth increment even where 137Cs activity per unit mass is relatively low. Second, 

there are a group of samples from the 10-20 and 20-30 cm depth increments that have 

high 137Cs activity, indicating a substantial proportion of former plough soil, but low 

SOC concentration compared to current plough soil, indicating loss of C from this 

buried plough soil. At Site 2, field PSF3 (Figure 5.26b), there is again evidence of 

dynamic replacement in high SOC concentrations in surface samples that are depleted 

in 137Cs. However, the behaviour of deeper soils contrasts with the previous site and 

there is evidence of deeper soil increments with high SOC concentration, indicative of 

effective preservation. At Site 3, field BGF3 (Figure 5.26c), C concentrations in the 
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surface increments are significantly higher for the same 
137

Cs activity than deeper soil 

increments. This emphasises the importance of the redistribution of this surface layer 

in determining within field SOC variability.  

 

 

 

 

Figure 5.26 Depth wise 137Cs and C reflect possible mechanism on C dynamic based 
on redistribution process (a-DKF2 from Site 1; b-PSF3 from Site 2 and c-BGF2 from 
Site 3) 

 

Figures 5.22-5.24 and Figure 5.26 all make clear the variation in SOC concentration 

among the sites. Mean SOC concentrations at Site 1 are lowest (nearly 1% SOC); 

followed by Site 2 (nearly 1.5% SOC); and Site 3 has the highest (2.5% of SOC). This 

variation may be due to usage of organic inputs for crop growth and due to 

microclimate pattern. At the study Site 1, near to the city (Dehradun), the farmers use 

less forest litter as manure due to both ease of access and regulation; whereas, at 

Sites 2 and 3 away from the city and near to forest they use more forest litter as a 

manure and animal and house hold waste as manure for crop production. Also the 

higher SOC concentration at Site 3 may be due to climatic effects related to the higher 

elevation (1600m), including a comparatively low temperature (approximately 3oC 

lower than other sites) and higher rainfall (approximately 200mm more than other 
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sites). These may contribute to lower mineralisation of SOC and more crop and 

biomass production than at other sites. 

5.4.3 Vertical and lateral distribution of total N concentration and Inventory and 

Relationships with 137Cs 

In general, the patterns of total N concentrations and inventories in all fields are similar 

and the existence of statistically significant correlations between 137Cs and total N 

(concentrations and inventories) suggest that soil redistribution is an important control 

on total N distributions. Similar to SOC, total N concentrations in the eroding upslope 

profiles are lower than in depositional downslope profiles. In eroding and deposition 

profiles, total N concentrations in the upper 10 cm layer are almost equal; however, it 

is observed that N concentration declines rapidly below 10 cm in eroding profiles but 

the decline is much more gradual in depositional profiles. The pattern of low total N 

inventories in the upper parts of the fields and high inventories over the downslope 

areas and correlation between total N and 137Cs inventories, both provide strong 

evidence of spatial variation due to redistribution of eroded material within fields 

(Quine and Zhang, 2002; De Gryze et al., 2008; Berhe et al., 2014). 

The relationships between 137Cs and total N inventories were tested for all study site 

to the sampling depth of 50cm. Positive and strong statistically significant relationships 

were found for the majority of the sites (7 out of 9) and R2 values ranged from 0.38 to 

0.78 (Figure 5.19 to 5.21). One exception was Site 1, field DKF2, where there was no 

relationship between 137Cs and total N inventory (R2 = 0.06). The reason for this is not 

known but may be due to the pattern of fertilizer application by the farmers. In all the 

other fields strong significant relationship between 137Cs and total N were found, which 

indicate that erosion induced soil redistribution has altered the spatial variability of total 

N. This finding is consistent with similar relationships noted in other studies (Quine 

and Zhang, 2002; Vandenbygaart et al., 2012). The total N concentrations/inventory 

relationships with 137Cs are very similar to those seen with SOC. 
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5.4.4 Vertical and lateral distribution of P (total and Organic P) concentration 

and Inventory and Relationships with 137Cs 

The pattern of P inventories in field from (Site 1 and Site 2) exist statistically significant 

correlation with 137Cs suggest that soil redistribution is an important control on P 

redistribution but this pattern not exist in Site 3. This indicate the P pattern with 137Cs 

may be influenced by other parameters such as   CaCO3 level, weathering and release 

of P (Theocharopoulos et al., 2003; Ni and Zhang, 2007) because Site 3 fall under 

calcareous but other sites are fall in acidic type. Similar like SOC and total N, the P 

concentrations in the upslope profiles are lower than downslope deposition profiles. 

Also the pattern of P in top 10 cm soil layer almost similar concentration in all slope 

positions, this pattern also almost similar with SOC and total N. The pattern of low 

inventories of P at eroding part and high in aggradation part of field provide strong 

evidence of spatial variation due to redistribution of eroded material within fields 

(Quine and Zhang, 2002; Li et al., 2013).  

5.4.5 Vertical and lateral distribution of C:N  and C:OP ratio 

CN ratio along slope transect from eroding upslope to deposition downslope point exist 

three different pattern in my study area. Some fields eroding profile found narrow C:N 

ratios ( DKF2, PSF2 , PSF3) and some eroding upslope profile found  wider CN ratio 

(DKF1, PSF1). In Site 3 (BGF1 and BGF2) there was no clear pattern observed for 

C:N ratios. Similar results were also found by other study (Vandenbygaart et al., 2012). 

This pattern of narrow C:N ratios at eroding profiles may be due to loss of top soil and 

mixing of subsoil with narrow C:N ratio creating this dilution.  

The C:OP ratios show wide variation and no consistent pattern. In some fields top soil 

along the entire slope looks similar but in deep layers eroding upslope profiles have 

narrow ratios than deposition profiles.  In other fields, eroding profile have narrower 

C:OP ratios than deposition profiles over the entire depth. Quinton et al., 2010 reported 

more P variation within agricultural fields than other nutrients. This may be due to 

fertilization, weathering and other soil properties influence on P dynamics. 
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5.5. Conclusion 

The data analysis undertaken in this chapter had the primary objective of addressing 

research objective 1: To quantify the impacts of erosion-induced soil redistribution on 

SOC and nutrients (lateral and vertical) within agricultural fields. Additionally, this 

research objective also provides a foundation for the following research objectives and 

chapters. The analysis carried out in this chapter assumed the overall null hypothesis: 

H0: Erosion-induced redistribution of soils (top- / sub-soil) changes within field spatial 

variation of soil nutrient stocks and stoichiometry (C:N:P ratio), so that eroded sites 

will have lower SOC and nutrient stocks than sites of deposition.  

 

This null hypothesis cannot be rejected for the following reasons: 

 Statistically significant differences were found in nutrient and SOC 

concentrations and inventories between profiles in different topographic 

settings, with upslope profiles containing (p<0.05) lower nutrient and SOC 

inventories than downslope profiles.  

 In the majority of fields, strong statistically significant relationships were found 

between 137Cs inventories and nutrients (total N, and P) and SOC.  

5.6. Key findings   

 137Cs 

 Upslope and midslope 137Cs activity profiles show lower activity in the upper 30 

cm and lower depth penetration of 137Cs. These are properties consistent with 

erosion. Several downslope profiles are enriched in 137Cs in the upper 30 cm 

and demonstrate depth penetration to 50 cm depth. These are properties 

consistent with deposition. 

 The lateral pattern of 137Cs inventories along the slope transects, typically 

showed statistically significantly lower inventories in upslope and midslope 

profiles than downslope profiles.  

 These patterns are consistent with 137Cs redistribution in association with soil 

redistribution and the suitability of 137Cs as an erosion tracer in this 

environment. 
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 Abrupt changes in 137Cs inventory after midslope positions in a number of fields 

are considered most likely to be the result of the former presence of a field bund 

(temporary boundary) that farmers have removed.  

SOC 

 In up and midslope profiles, SOC exhibits high concentrations in only the top 

layers and then declines sharply. In deposition profiles, SOC concentrations 

are high to greater depths and only a gradual decline in concentration is 

observed.  

 The absence of significant variation in SOC in the uppermost layer (0-10 cm) is 

consistent with rapid dynamic replacement of SOC at eroded locations.  

 The lateral pattern of SOC inventories along the slope transects, typically 

showed statistically significantly lower inventories in upslope and midslope 

profiles than downslope profiles.  This mirrors the pattern seen in 137Cs 

inventories. 

 The abrupt changes in 137Cs along the slope transect, attributed to the former 

presence of filed bunds, are not seen in SOC. This suggests that the timescale 

of recovery of SOC is relatively short (shorter than the half century associated 

with 137Cs).  

Total N 

 In up and midslope profiles, total N exhibits high concentrations in only the top 

layers and then declines sharply. In deposition profiles, total N concentrations 

are high to greater depths and only a gradual decline in concentration is 

observed. This is consistent with the pattern observed in SOC. 

 Total N is less consistent in pattern than SOC and while some fields display 

similar concentrations in the surface layers over the whole field, others do not.  

 The lateral pattern of total N inventories along the slope transects, typically 

showed statistically significantly lower inventories in upslope and midslope 

profiles than downslope profiles.  This mirrors the pattern seen in 137Cs and 

SOC inventories. 

 As in the case of SOC, the abrupt changes in 137Cs along the slope transect, 

attributed to the former presence of field bunds, are not seen in total N. This 

suggests that the timescale of recovery of total N is also relatively short (shorter 

than the half century associated with 137Cs). 
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 Overall, the along slope within field redistribution pattern is similar for SOC and 

total N inventories. 

CN ratio  

 Some eroding profiles have narrow C:N ratio and some have wider C:N ratio 

and some field don’t have clear pattern of C:N ratio. 

OP, TP and C OP ratio 

 A clear pattern of OP and TP inventory depletion in upslope and enrichment in 

downslope profiles was observed for acidic soils.  

 No relationships between topography and OP and TP were seen in the 

calcareous fields. 

Linear regression for 137Cs vs SOC and total N and P 

 In the great majority of the fields, strong statistical relationships were found 

between 137Cs and SOC and total N inventories.  

 Strong significant relationships were found between 137Cs and OP and TP 

inventories in acidic soils but not in calcareous soils.  
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6. Effect of soil redistribution on the net flux of C between soil and the 

atmosphere within the agricultural fields   

6.1. Introduction  

The review of the literature in chapter 2 and statement of objectives in chapter 3 

highlighted the continuing debate concerning the significance and effect of soil 

redistribution on net C flux between the soil and the atmosphere (Stallard, 1998; Lal 

et al., 2004; Berhe et al., 2007; Van Oost et al., 2007; Lal and Pimentel, 2008; Doetterl 

et al., 2016). Where these studies investigated agricultural fields, these were typically 

in receipt of high nutrient inputs and subject to mechanised farming processes (Quine 

and Van Oost, 2007; Van Oost et al., 2007). Highly eroding field loss onsite nutrients 

affect crop growth, reduce net return of biomass and finally reduce C sink. Eroded field 

managed well with proper nutrient supply, crop production will maintained and C sink 

continued (Li et al., 2015). There is a need for similar but comparative studies in low 

input/ low productivity farm lands, where net return of biomass will be low. Based on 

this existing research gap, I conducted this study in a highly eroding (Singh and Gupta, 

1982; Narayana and Ram Babu, 1983; Khola and Sastry., 2005; Singh et al., 2016), low input 

farm land area low productivity within the foothills of the Indian Himalaya. As a result 

of low input of fertilizers, cultivation on slopes and high erosion the study area is 

considered to be an area of low crop productivity when compared with the national 

average for India and with developed countries (mechanised farm lands) (Tiwari et al., 

2005; Tiwari, 2007; Madhu and Sharda, 2011; Ghosh et al., 2012; Singh et al., 2016; 

FAO-Stat, 2016). This low productivity equates to a low return of biomass, which 

consequently means a lower return of C to soil. This study area also uses farm 

residues to feed agricultural farm stock (e.g., farm animals, fuels), which further alters 

the C return to the soil (Bhattacharyya et al., 2009). As described in Chapter 4, I used 

137Cs fallout and SOC inventories following the approach adopted by Quine and Van 

Oost (2007) in order to assess the following null hypothesis: 

H0: Erosion-induced soil redistribution results in a net carbon sink when continuous crop 

production is maintained, despite low fertiliser inputs, low crop productivity and high 

biomass removal.  
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The methods used are described in detail in Chapter 4 (section 4.3) and the SOC and 

137Cs data have been discussed in Chapter 5. Here the focus is on the calculated soil 

redistribution rates and the derived net C fluxes between soil and atmosphere at each 

soil profile and within each field. Additional data used in calculations are included in 

Appendix Table 6.1 to 6.3. 

6. 2. Result  

As discussed in section 4.3, there is significant uncertainty in determining the 137Cs 

fallout reference inventory and, therefore, the value derived using global data (1685 

Bq m-2) is used as the default in sections 6.2.1 – 6.2.3 and sensitivity to this 

assumption is explored by varying reference inventory in section 6.2.4. 

6.2.1. Point/profile scale and field scale soil redistribution rates and budgets 

Site1  

Soil redistribution rates (derived from 137Cs data using the methodology outlined in 

section 4.3) for Site 1 (DKF1 to DKF3) are presented in Table 6.1. Negative values 

indicate net soil loss and those that are positive value indicate net soil deposition. The 

data in Table 6.1 indicate that (under the assumptions noted above with respect to 

reference inventory) the site as a whole is dominated by erosion, with only the lower-

most pits in fields DKF1 and DKF2 being subject to net deposition. The within-field 

patterns are as discussed in Chapter 5. Within field 1, there is reduction in erosion rate 

over the first three pits followed by a sharp increase in erosion, possibly reflecting the 

former position of a bund (line of zero downslope flux) upslope of pit 4.  Field 2 shows 

a simpler pattern of elevated erosion over most of the field area, consistent with 

significant water erosion, while field 3 shows lower erosion rates over the upper, lower 

gradient part of the field and a significant increase in erosion rate over the steeper 

section (Figure 4.2c). Individual point rates vary as follows in DKF1 soil loss range 

from 0.72 ± 0.15 to 3.81 ± 0.13 kg m-2 y-1 and soil deposition is 1.14 ± 0.35 kg m-2 y-1. 

In field DKF2 four pits fall under soil loss and rates range from 3.10 ± 0.67 to 6.00 ± 

0.60 kg m-2 y-1 and one pit under deposition is 0.44 ± 0.45 kg m-2 y-1. For field DKF3 all 

pits under eroding condition and rates range from 0.96 ± 0.77 to 7.49 ± 0.98 kg m-2 y-

1.  Field-scale summary data are reported in Table 6.4 and show some consistency 

between fields with mean erosion rates varying from 2.4 to 3.2 kg m-2 y-1 and export 

rates varying from 2.3 to 3.2 kg m-2 y-1, reflecting the minimal within-field sediment 

deposition in fields 1 and 2 of 0.1 kg m-2 y-1.  
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Site 2  

Soil redistribution rate for Site 2 (PSF1 to PSF3) are presented in Table 6.2. Data in 

this table reflect all three fields upslope pits (P1 and P2) eroded higher than others 

mid slope (except field 1) and all fields lower most pits deposition occurs. Compare 

with other two sites (Site 1and 3) this site has lower net erosion but higher deposition 

than others. This higher deposition indicates these fields comparatively large area 

under concave slope than other sites (Figure 4.2d to f). Site 2 in Figure 5.8 all 3 fields 

137Cs show pattern consistent with former presence of a bund after mid slope (P3/P4) 

– this is reflected in within-field patterns of soil erosion (Table 6.2) and nutrient 

changes. Field 1 is unusual in having high inventories over much of the field area – 

may be receiving soil from other fields upslope.  In PSF1 one pit fall under eroding 

/soil loss location and remaining pits fall under deposition/ soil gain area, soil 

deposition range from 0.83 ± 0.17 to 2.01± 0.33 kg m-2 y-1 and soil loss is 3.76 ± 0.34 

kg m-2 y-1. In field PSF2 four pits were fall under soil loss and it range from 0.37 ± 0.21 

to 2.57 ± 0.28 kg m-2 y-1 and three pits under deposition and it range from 0.27 ± 0.06 

to 0.86 ± 0.49 kg m-2 y-1. In field PSF3 five pits were fall under soil loss and it range 

from 0.53 ± 0.22 to 4.52 ± 0.39 kg m-2 y-1 and one pit under deposition is 1.28 ± 0.52 

kg m-2 y-1. The summary of soil redistribution rate for each field of Site 3 presented in 

Table 6.4, the fields with mean erosion rates varying from 0.53 to 1.41 kg m-2 y-1, export 

rates from -0.40 to 1.12 kg m-2 y-1, and within-field sediment deposition is 0.28 to 1.01 

kg m-2 y-1.  

Site 3 

For Site 3 (BGF1 to BGF3) Soil redistribution rate presented in Table 6.3. Except one 

pit (P6) in field 2 (BGF2) received soil deposition remaining all pits in Site 3 fields were 

under exposed soil erosion.  This Site 3 erosion rates were higher than Site 2 but not 

as high as Site 1. In field 2 (BGF2) after P3 increase erosion rate reflecting possible 

former position of field bund like Site 1 field 1. Similar pattern exists in field 3 (BGF3) 

after P2 but here still field bund exits this pattern confirmed by 137Cs inventory and 

topography changes (Figure 4.2g to I and 5.9g). In field 1 and 2 upper slope part of 

field eroded more than other part. But in field 3 upper part of field less eroded than 

lower part of field this reflect effect of presence of field bund after P2.The range of soil 

loss for the field BGF1 is from 0.53 ± 0.09 to 3.57± 0.25 kg m-2 y-1   and for field BGF3 

is from 0.44 ± 0.31 to 2.94 ± 0.10 kg m-2 y-1. For the field BGF2 five pits were fall under 
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eroding/soil loss location and one pit fall under deposition/soil gain area.  In this field 

BGF2 soil loss range from 0.56 ± 0.10 to 2.25 ± 0.33 kg m-2 y-1 and soil deposition is 

1.85 ± 0.57 kg m-2 y-1. Over all summary of soil redistribution rate presented in Table 

6.4, the fields with mean erosion rates varying from 1.53 to 2.02 kg m-2 y-1, export rates 

range from 1.31 to 2.02 kg m-2 y-1, and within-field sediment deposition is 0.22 kg m-2 

y-1.  
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Table 6.1 Site 1 DhulKhot (DK); profile scale soil redistribution rate (SR), CCI, CII and Net C flux  derived using the following 

parameters: 137Cs inventory 1685 Bq m-2, reference C inventory 4.6 kg m-2 up to 50 cm  and plough depth (PD) 0.14 m. Mean values 

± SE (n = 3) are presented. 

 

 

Sites Fields Profile Mid Length(m)SR rate (kg m
-2 

y
-1

)CCI (g m
-2 

y
-1

) CII (g m
-2 

y
-1

) Net C flux (g m
-2 

y
-1

)

Site 1 DKF1 P1 10.1  -3.53 ± 0.13 55.8 ± 1.24 65.7 ± 2.1  -10.6 ± 0.6

P2 12.2  -1.94 ± 0.08 42.3 ± 1.17 44.5 ± 0.9  -4.0   ± 0.6

P3 12.9  -0.72 ± 0.15 27.1 ± 1.77 33.1 ± 1.2  -15.7 ± 2.0

P4 14.3  -3.81 ± 0.13 74.3 ± 5.24 70.5 ± 2.4      3.6 ± 2.6

P5 10.5  -3.53 ± 0.10 84.9 ± 4.28 65.7 ± 1.7 20.7    ± 3.3

P6 5.9   1.14 ± 0.35 27.4 ± 2.76 24.2 ± 1.0 12.1    ± 5.9

Site 1 DKF2 P1 8.2  -6.00 ± 0.60 119.8 ± 22.2 125.9 ± 20.0  -3.2    ± 4.1

P2 10.8  -3.27 ± 0.30 72.3 ± 8.15 62.0 ± 4.8 11.3    ± 3.0

P3 10.7  -3.10 ± 0.67 35.3 ± 3.03 52.5 ± 9.1  -19.2  ± 2.8

P4 11.1  -3.16 ± 0.42 61.9 ± 7.79 60.6 ± 6.5 1.3       ± 3.8

P5 9.2   0.44 ± 0.45 26.6 ± 2.48 26.9 ± 1.7  -1.7     ± 3.8

Site 1 DKF3 P1 8.0  -0.96 ± 0.77 33.7   ± 6.92 36.8 ± 5.5  -9.3     ± 6.1

P2 18.1  -1.82 ± 0.27 44.8   ± 4.62 43.3 ± 2.8 2.1       ± 3.7

P3 15.2  -2.01 ± 0.19 47.3   ± 2.51 45.3 ± 2.2 3.8       ± 5.9

P4 8.9  -7.49 ± 0.98 268.3 ± 103 196.8 ± 56.4 15.8     ± 5.5

P5 8.8  -5.63 ± 0.86 139.8 ± 32.1 117.0 ±22.4 10.2     ± 3.5

P6 14.9  -3.48 ± 0.42 54.5   ± 7.43 65.6    ±7.2  -12.4   ± 2.2
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Table 6.2 Site 2 Pasauli (PS); profile scale soil redistribution rate (SR), CCI, CII and Net C flux derived using the following parameters 

for PSF1 and PSF2: 137Cs inventory 1685 Bg m-2, reference C inventory 5.3 kg m-2 up to 50 cm; plough depth 0.19 m for PSF1 and 

0.26 m  for PSF2. For PSF3, the following were used 137Cs inventory 2100 Bq m-2 and reference C inventory 6.09 kg m-2 up to 50cm.  

 

Sites Fields Profile Mid Length (m)SR rate (kg m
-2 

y
-1

)CCI (g m
-2 

y
-1

) CII (g m
-2 

y
-1

) Net C flux (g m
-2 

y
-1

)

Site 2 PSF1 P1 9.9  -3.76 ± 0.34 244  ± 48.2 104 ± 9.98 39.6 ± 6.78

P2 10.7   0.93 ± 0.09 42.0 ± 1.13 40.7 ± 0.21 3.27 ± 2.54

P3 9.5   2.01 ± 0.33 37.2 ± 0.80 38.3 ± 0.75  -3.09± 1.78

P4 10.5   1.22 ± 0.29 57.7 ± 3.01 40.0 ± 0.63 45.0 ± 4.47

P5 12.3   0.83 ± 0.17 63.6 ± 0.77 40.9 ± 0.38 54.3± 1.27

P6 10.1   1.17 ± 0.04 62.7 ± 2.71 40.1 ± 0.09 57.5 ± 6.96

Site 2 PSF2 P1 10.5  -2.57 ± 0.28 33.8 ± 1.60 51.9 ± 1.84  -20.2 ± 1.76

P2 9.7  -1.30 ± 0.11 29.3 ± 2.52 44.4± 0.57  -26.9 ± 4.62

P3 10.5  -0.74 ± 0.39 33.6 ± 4.85 41.8 ± 1.87  -19.5 ± 8.16

P4 15.2   0.54 ± 0.09 31.7 ± 1.42 36.9 ± 0.23  -16.7 ± 4.16

P5 19.8  -0.37 ± 0.21 59.0 ± 5.01 40.0 ± 0.97 45.4 ± 6.29

P6 20.3   0.27 ± 0.06 39.4 ± 0.58 37.6 ± 0.16 5.51 ± 1.87

P7 17.9   0.86 ± 0.49 34.0 ± 2.67 36.2 ± 1.14  -8.57 ± 7.60

Site 2 PSF3 P1 10.3  -4.52 ± 0.39 107  ± 16.3 69.7 ± 4.51  18.8 ± 3.90

P2 9.7  -2.19 ± 0.54 67.4 ± 16.3 49.7 ± 3.51 17.5 ± 10.3

P3 10.6  -0.53 ± 0.22 39.5 ± 4.52 40.7 ± 1.01  -4.03 ± 9.44

P4 10.5  -1.12 ± 0.11 50.7 ± 6.19 43.5 ± 0.54 13.0 ± 10.3

P5 9.2  -0.74 ± 0.10 51.5 ± 2.20 41.7 ± 0.48 21.4 ± 5.65

P6 14.8   1.28 ± 0.52 32.7 ± 1.59 35.5 ± 1.11  -10.7 ± 2.73
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Table 6.3 Site 3 Bhatta Gaon (BG); profile scale soil redistribution rate (SR), CCI, CII and Net C flux  derived using the following 

parameters: 137Cs inventory 1685 Bg m-2, reference C inventory 5.5 kg m-2 up to 50 cm and plough depth 0.24 m. Mean values ± SE 

(n = 3) are presented. 

 

 

Sites Fields Profile Mid Length(m) SR rate (kg m
-2 

y
-1

) CCI (g m
-2 

y
-1

) CII (g m
-2 

y
-1

) Net C flux (g m
-2 

y
-1

)

P1 7.8  -3.57 ± 0.25 78.5 ± 0.96 67.6 ± 3.50 11.1 ± 5.54

Site 3 BGF1 P2 9.7  -2.56 ± 0.09 61.6 ± 2.45 55.0 ± 0.95 8.65 ± 2.18

P3 9.1  -2.58 ± 0.27 38.2 ± 1.42 55.4 ± 2.90  -22.5 ± 0.97

P4 7.6  -1.33 ± 0.17 44.3 ± 6.01 44.3 ± 1.23  -0.43 ± 10.3

P5 6.9  -0.77 ± 0.04 40.6 ± 0.96 40.5 ± 0.24 0.29 ± 2.28

P6 5.1  -0.53 ± 0.09 50.0 ± 0.47 35.5 ± 0.48 37.7± 3.02

P7 3.8  -1.82 ± 0.20 60.9 ± 3.11 48.2 ±1.70 21.4 ± 2.89

Site 3 BGF2 P1 7.1  -2.25 ± 0.33 51.7 ± 0.86 52.2 ± 3.07 0.00 ± 3.61

P2 7.8  -2.18 ± 0.32 51.6 ± 4.74 51.6± 2.88 1.77 ± 10.2

P3 7.7  -0.56 ± 0.10 37.7 ± 1.88 39.1 ± 0.60  -3.73 ± 3.45

P4 7.7  -2.21 ± 0.29 59.7 ± 1.46 51.8 ± 2.85 12.6 ± 5.13

P5 6.7  -1.48 ± 0.20 48.4 ± 2.94 45.4 ±1.58 5.69 ± 5.64

P6 5.0   1.85 ± 0.57 28.0 ± 1.21 28.8 ± 0.85  -2.44 ± 5.21

P1 7.8  -0.99 ± 0.48 35.5 ± 2.91 38.3 ± 2.88  -6.28 ± 1.91

Site 3 BGF3 P2 10.1  -0.44 ± 0.31 39.8 ± 3.50 38.5± 1.87 2.82± 4.13

P3 10.7  -2.41 ± 0.29 54.9 ± 3.60 53.7 ±2.93 1.48 ± 1.53

P4 10.5  -2.94 ± 0.10 60.7 ± 3.33 59.2 ± 1.19 1.80 ± 3.70

P5 5.9  -1.55 ± 0.31 78.0 ± 4.39 46.1± 2.49 58.7 ± 2.66
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Table 6.4 Soil redistribution budgets for all sites based on profile data. 

 

 

Site 1 Dhoolkhot Site 2 Pasauli Site 3 Bhatta Gaon

 DKF1  DKF2  DKF3 PSF1 PSF2  PSF3  BGF1  BGF2  BGF3 Mean SE

(Soil redistriubution rate in  kg m-2 y-1)

Eroded area % of field 91.1 81.7 100.0 16.1 48.6 77.2 100.0 88.0 100.0 78.1 9.5

Mean Erosion /subsoil excavation rate  2.67 3.74 3.24 3.76 1.08 1.83 2.02 1.74 1.73 2.42 0.32

Cultivation layer export 1.71 2.15 1.84 1.71 0.81 1.16 1.40 1.28 1.22 1.47 0.14

Subsoil in export 0.95 1.59 1.42 2.06 0.28 0.67 0.62 0.46 0.51 0.95 0.20

Fraction of cultivation layer in export 0.64 0.58 0.57 0.45 0.74 0.63 0.69 0.74 0.71 0.64 0.03

Deposition area % of field 8.92 18.32 0.00 83.90 51.41 22.79 0.00 12.00 0.00 21.93 9.45

Mean Deposition 1.14 0.44 0.00 1.20 0.54 1.28 0.00 1.85 0.00 0.72 0.23

Burial of Initial cultivation layer 0.84 0.39 0.00 0.75 0.45 0.88 0.00 1.15 0.00 0.50 0.15

Initial cultivation layer in import 0.73 0.25 0.00 0.55 0.40 0.81 0.00 1.36 0.00 0.46 0.15

Sub soil in import 0.41 0.19 0.00 0.66 0.14 0.47 0.00 0.49 0.00 0.26 0.08

Burial of imported Initial cultivation layer 0.19 0.03 0.00 0.20 0.07 0.25 0.00 0.51 0.00 0.14 0.06

Burial of imported subsoil 0.11 0.02 0.00 0.25 0.02 0.15 0.00 0.18 0.00 0.08 0.03

Replacement of cultivation soil by subsoil 0.30 0.17 0.00 0.41 0.12 0.32 0.00 0.31 0.00 0.18 0.05

in cultivation layer

Whole field

Whole field area (ha) 0.13 0.15 0.16 0.13 0.32 0.10 0.06 0.05 0.05 0.13 0.03

Whole field slope % 2.91 2.24 2.84 5.89 6.59 6.15 1.84 4.05 4.21 4.08 0.59

Mean erosion rate 2.43 3.06 3.24 0.61 0.53 1.41 2.02 1.53 1.73 1.84 0.32

Mean aggradation rate 0.10 0.08 0.00 1.01 0.28 0.29 0.00 0.22 0.00 0.22 0.11

Net export rate 2.33 2.98 3.24 -0.40 0.25 1.12 2.02 1.31 1.73 1.62 0.40
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6.2.2. Point/profile scale CCI (Carbon Concentration Index) and CII (Carbon 

Inheritance Index) comparison with SR rate 

As discussed in section 4.3, the Carbon Inheritance Index (CII) is a measure of the 

expected C content of a profile (per unit mass of 1963 plough soil) if equilibrium 

conditions were maintained across the field and inventories were, therefore, 

determined by soil redistribution. The Carbon Concentration Index (CCI) is expressed 

in the same units and provides a measure of the SOC currently in the profiles. 

Therefore, where CCI exceeds CII, this provides evidence of net sequestration of 

atmospheric C, whereas where CII exceeds CCI this suggests net loss of C from the 

soil to the atmosphere. In this section, CCI and CII are plotted against soil redistribution 

rates (as reported in 6.2.1) to allow the control of erosion on CCI, CII and net exchange 

with the atmosphere to be explored. 

Site1  

The CCI and CII for Site 1 are compared and presented in Table 6.1 and Figure 6.1. 

At Site1, profiles are equally split between those in which CCI exceeds CII and in which 

CII exceeds CCI; however, in all cases the values similar, suggesting that the C stocks 

in these fields are close to equilibrium. The largest deviations between CCI and CII 

are seen in the most eroded locations, whereas in profiles where deposition has 

occurred there is very little difference. Large differences between CCI and CII values 

in the most eroded profiles indicate that erosion has induced significant disequilibrium 

between inputs, respiration and inventory and has facilitated sequestration of C in the 

most eroded places (Figure 6.1 d-f). In Site 1 the net C flux from atmosphere to soil at 

the eroded profiles ranges from -19.2 ± 2.8 to 20.7 ± 3.3 g m-2 y-1 and in deposition 

area ranges from  -1.7 ± 3.8 to 12.1 ± 5.9 g m-2 y-1 (negative values indicate a flux from 

soil to atmosphere). 

Site 2 

At Site 2, the pattern is more complex (Figure 6.2). In the eroded area of field PSF1 

and of field PSF3 broadly the same pattern is seen, with the most eroded sites 

associated with high CCI values and the largest differences between CCI and CII. In 

contrast, at field PSF2, differences between CCI and CII are relatively small and the 

eroded areas of the field are associated with CCI values that are lower than CII values. 

These results appear to indicate that high erosion rates are driving a net sink in the 

most highly eroding areas of fields 1 and 3 but a net source from the most highly 

eroding areas in field 2. In Field PSF1 (Figure 6.2d) there is only one profile in the 
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eroded area and this exhibits a field net C flux from atmosphere to soil of 39.6 ± 6.78 

g m-2 y-1, whereas the deposition locations range from -3.09 ± 1.78 to 57.5 ± 6.96 g m-

2 y-1. Overall field PSF1 acted as a net C sink.  In PSF2 (Figure 6.2e) eroded pits (P1–

P3) acted as a net C source range from -19.5 ± 8.16 to -26.9 ± 4.62 g m-2 y-1 and also 

two deposition pits (P4 and P6) acted as a net C source range from -8.57 ± 7.60 to -

16.7± 4.16 g m-2 y-1. P5 eroded pit and P6 depositional pit acted as a net C sinks of 

45.4± 6.29 g m-2 y-1 and 5.51 ± 1.87 g m-2 y-1, respectively.  In field PSF3 (Figure 6.2f) 

eroded pits (P1,P3,P4 and P5) exhibit net C fluxes from atmosphere to soil that range 

from 13.0 ± 10.3 to 21.4 ± 5.65 g m-2 y-1.  Deposition pit (P6) and one eroded pit (P2) 

acted as a C source with net C fluxes of -10.7 ± 2.73 and -4.03 ± 9.44 g m-2 y-1, 

respectively. 

Note: For Site 2 field PSF3 C flux estimation was undertaken using a higher level of 

reference 137Cs inventory (2100 Bq m-2) to account for lateral redistribution of sediment 

to the field. 

Site 3 

The CCI and CII values for Site 3 are presented in Figure 6.3 and exhibit patterns that 

are similar to Sites 1 and 2. Most eroded locations acted as C sink and very few 

erosional pits and one depositional pit acted as a C source.  The large differences 

between CCI and CII values in the most eroded profiles indicate that erosion has 

induced significant disequilibrium and has facilitated high rates of sequestration in the 

most eroded places (Figure 6.3 d-e).  In Site 3 the net C flux from atmosphere to soil 

at eroded pits range from 0.00 ± 3.61 to 58.7 ± 2.66 g m-2 y-1. Few eroded pits acted 

as C source with a range from -0.43 ± 10.3 to -22.5 ± 0.97 g m-2 y-1 and one 

depositional pit also acted C source at -2.44 ± 5.21 g m-2 y-1.   

All sites 

For each site, the C flux and soil redistribution data from all 3 fields are presented on 

a single plot in Figure 6.5a to c; while figure 6.5d allows all data to be compared on a 

single plot. These figures reveal that with few exceptions the relationships between C 

flux between soil and atmosphere and soil redistribution rates are broadly similar. With 

the exception of PSF1 and a small number of pits in other fields, fluxes vary between 

+30 and -30 g m-2 y-1.  
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6.2.3. Field-scale and Site C budgets 

Following the approach of Quine and Van Oost (2007), carbon budgets were 

developed for each field in which carbon stores and transfers are inferred using both 

the equilibrium and measured SOC profile data. The resultant budgets are presented 

in Table 6.5.  At Site 1, the lateral C fluxes reflect high rates of carbon erosion and 

minimal deposition referred to above and average C erosion, redeposition and net 

export for all fields is 28.0 ± 2.07, 0.58 ± 0.29 and 27.5 ± 2.28 g C m-2 y-1, respectively.   

The vertical C flux between atmosphere and soil for eroding area, depositional area 

and whole area are -0.78± 0.87, 0.26 ± 0.42 and -0.52 ± 0.91 g C m-2 y-1, respectively. 

For Site 1, the net exchange with the atmosphere is only ca 2% of the lateral erosion 

flux and, as noted above, the similarity between CCI and CII at this site suggests that 

C stocks are close to equilibrium. Therefore, if more than 2% of the exported C is 

sequestered, the in-field source would be cancelled and a landscape-scale net sink 

would be created.  

 

Site 2 contrasts strongly with Sites 1 and 3 because a large proportion of the eroded 

SOC is redeposited within the fields with only a very minor part exported from the field. 

This is seen most clearly in the field level statistics, average C erosion, C redeposition 

and net C export, which are 12.09 ± 0.72, 10.7 ± 3.89 and 1.35 ± 4.4 g C m-2 y-1, 

respectively. Furthermore, at Site 2, the pattern of vertical C fluxes between soil and 

atmosphere also differs from that seen at other sites, with comparatively low fluxes at 

eroding profiles and high fluxes at deposition profiles.  Again, this is seen clearly in the 

summary for vertical C flux statistics for eroding, deposition and the whole field: 3.84 

± 1.29, 7.34 ± 9.98 and 11.2 ± 11.3 g C m-2 y-1, respectively.  Overall, the eroded and 

deposited area acted as a net C sink, although because of the high standard error on 

the estimates this must be treated with caution. Nevertheless, the result suggests that, 

as at the other sites, there is no evidence of a net source of C to the atmosphere as a 

result of soil redistribution here.  

 

As was, the case at Site 1, erosion dominates at Site 3 and the average C erosion, C 

redeposition, net C export for all fields are 37.6 ± 2.66, 1.49 ± 1.49 and 36.2 ± 3.96 g 

C m-2 y-1, respectively.   In this site vertical C flux between soil to atmosphere for 

eroding, deposition and whole field is 5.20 ± 1.49, -0.10 ± 0.10 and 5.10 ± 1.57 g C m-

2 y-1, respectively.  The eroded area acted as a net C sink but deposition area acted 
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as a small source or was in an equilibrium condition. For Site 3 for all fields, the 

average net C flux shows the fields acted as net C sinks even if the C export is 

discounted (assumed lost back to the atmosphere), this C sink may be due to 

continuous C input. If part of the exported C is preserved in depositional areas away 

from the fields, then the C sink strength will be further increased. 

Taking the mean values for all the study sites near Dehradun, India, the lateral C fluxes 

demonstrate the dominance of erosion with average C erosion, redeposition, net 

export of 25.49± 3.486, 4.27 ± 2.02 and 21.7 ± 5.54 g C m-2 y-1, respectively (Table 

6.6). Across these sites, vertical C fluxes between from atmosphere to soil for eroding, 

deposition and whole field are 2.8 ± 1.10, 2.50 ± 3.13 and 5.3 ± 4.1 g C m-2 y-1, 

respectively.  Combining all sites in the study area, the net C flux from atmosphere to 

soil is  5.3 ± 4.1 g C m-2 y-1 even if it is assumed that all exported C is lost to atmosphere 

(21.7 ± 5.54g C m-2 y-1). The C stocks at the sites appear to be in dynamic equilibrium. 



144 
 

 

 

Figure 6.1 Profile /point scale relationship between SR rate, CCI and CII (top: a-DKF1, b-DKF2 and c-DKF3) and net C flux (bottom: 

d-DKF1, e-DKF2 and f-DKF3) for different field of Site 1 Dhulkhot (DK). Mean values ± SE (n = 3) are presented. 
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Figure 6.2 Profile / point scale relationship between SR rate, CCI and CII (Top: a-PSF1, b-PSF2 and c-PSF3) and net C flux (Bottom: 

d-PSF1, e-PSF2 and f-PSF3) for different field of Site 2 Pasauli (PS). Mean values ± SE (n=3) are presented. 
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Figure 6.3 Profile/point scale relationship between SR rate, CCI and CII (Top: a-BGF1, b-BGF2 and c-BGF3) and net C flux (Bottom: 

d-BGF1, e-BGF2 and f-BGF3) for different field of Site 3 Bhatta Gaon (BG). Mean values ± SE (n = 3) are presented. 
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Figure 6.4 Profile / point scale SR rate, CCI, CII and Net C flux for different fields of Site 2 by using default parameter of 137Cs 
inventory 1685 Bq m-2, reference C inventory 5.3 kg m-2 up to 50 cm and plough depth 0.26 m for where model not predicting at 
deposition profile (PSF1 and PSF3). Mean values ± SE (n = 3) are presented. 
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Figure 6.5 Profile /point scale relationship between net C flux and soil redistribution rate combined for all fields of Site 1(a), Site 2(b), 
Site 3(c) and all site fields(d). 
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Table 6.5 Soil carbon budget for fields from Dehradun, India Site 1, 2 and 3. Ep- 
eroding profile, Dp- deposition profile, Ea –eroding area, Da- deposition area, F –
whole field. 

 

Soil Carbon Budget for India site 1 (Dhulkhot - DK)

DKF1 DKF2 DKF3

Ep Dp Ea Da F Ep Dp Ea Da F Ep Dp Ea Da F

Carbon stores  (kg C m
-2

)

Measured 3.69 5.39 3.4 0.48 3.84 3.26 4.51 2.66 0.83 3.49 3.71 0.00 3.71 0.00 3.71

Simulated 3.77 4.78 3.4 0.43 3.86 3.38 4.60 2.76 0.84 3.60 3.66 0.00 3.66 0.00 3.66

Excess measured -0.08 0.61 -0.1 0.05 -0.01 -0.12 -0.08 -0.09 -0.02 -0.11 0.05 0.00 0.05 0.00 0.05

Carbon transfers (g m
-2

 y
-1

)

Subsoil C transferred to plouh layer 21.7 19.8 29.3 23.9 25.2 25.2

Subsoil C retained Plough layer 13.69 12.5 16.37 13.37 13.99 13.99

Subsoil C eroded/exported 8.05 7.3 12.91 10.55 11.18 11.18

Plough soil  C eroded/exported 18.3 16.7 23.0 18.8 19.6 19.6

Burial of Initial cultivation layer C 8.99 0.80 4.15 0.76 0.00 0.00

Burial of aggraded Carbon 2.62 0.23 0.45 0.08 0.00 0.00

Addition of aggraded C to plough layer 7.44 0.66 4.11 0.75 0.00 0.00

Excess C  Sequestration from atmospheric -1.5 12.1 -1.4 1.08 -0.3 -2.3 -1.7 -1.9 -0.31 -2.2 0.9 0.00 0.9 0.00 0.9

Export from the field 23.1 28.5 30.8

Soil Carbon Budget for India site 2 (Pasauli - PS)

PSF1 PSF2 PSF3

Ep Dp Ea Da F Ep Dp Ea Da F Ep Dp Ea Da F

Carbon stores  (kg C m
-2

)

Measured 3.54 6.75 0.57 5.66 6.23 4.44 5.62 2.16 2.89 5.05 2.43 5.85 1.88 1.33 3.21

Simulated 1.56 5.13 0.25 4.30 4.55 4.22 5.90 2.05 3.03 5.08 2.23 6.38 1.73 1.45 3.18

Excess measured 1.98 1.63 0.32 1.36 1.68 0.22 -0.28 0.11 -0.14 -0.04 0.19 -0.53 0.15 -0.12 0.03

Carbon transfers (g m
-2

 y
-1

)

Subsoil C transferred to plouh layer 25.6 4.13 9.74 4.73 7.19 5.55

Subsoil C retained Plough layer 9.83 1.58 7.15 3.48 4.84 3.73

Subsoil C eroded/exported 15.82 2.55 2.59 1.26 5.75 4.44

Plough soil  C eroded/exported 53.2 8.57 25.2 12.2 9.37 7.23

Burial of Initial cultivation layer C 23.5 19.7 14.2 7.29 27.4 6.24

Burial of aggraded Carbon 8.25 6.92 2.26 1.16 9.05 2.06

Addition of aggraded C to plough layer 13.8 11.61 11.5 5.93 19.9 4.55

Excess C  Sequestration from atmospheric 39.6 32.5 6.38 27.3 33.7 4.4 -5.54 2.14 -2.85 -0.7 3.88 -10.7 3.00 -2.43 0.57

Export from the field -7.41 6.41 5.06

Soil Carbon Budget for India site 3 (Bhatta Gaon - BG)

BGF1 BGF2 BGF3

Ep Dp Ea Da F Ep Dp Ea Da F Ep Dp Ea Da F

Carbon stores  (kg C m
-2

)

Measured 4.22 0.00 4.22 0.00 4.22 4.33 6.23 3.81 0.75 4.55 4.53 0.00 4.53 0.00 4.53

Simulated 3.98 0.00 3.98 0.00 3.98 4.16 6.35 3.66 0.76 4.43 4.13 0.00 4.13 0.00 4.13

Excess measured 0.24 0.00 0.24 0.00 0.24 0.16 -0.12 0.14 -0.01 0.13 0.40 0.00 0.40 0.00 0.40

Carbon transfers (g m
-2

 y
-1

)

Subsoil C transferred to plouh layer 20.96 20.96 18.87 16.61 18.26 18.26

Subsoil C retained Plough layer 14.05 14.05 13.50 11.88 12.50 12.50

Subsoil C eroded/exported 6.91 6.91 5.37 4.73 5.76 5.76

Plough soil  C eroded/exported 35.6 35.6 32.6 28.7 31.2 31.2

Burial of Initial cultivation layer C 0.00 0.00 29.41 3.53 0.00 0.00

Burial of aggraded Carbon 0.00 0.00 14.01 1.68 0.00 0.00

Addition of aggraded C to plough layer 0.00 0.00 23.33 2.80 0.00 0.00

Excess C  Sequestration from atmospheric 4.8 0.00 4.8 0.00 4.8 3.3 -2.4 2.9 -0.29 2.6 8.0 0.00 8.0 0.00 8.0

Export from the field 42.5 28.9 37.0
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Table 6.6 Complete Soil redistribution and C flux budget for study area.  E-erosion, D-
deposition and EX-export 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

lateral sediment flux lateral C flux Vertical  C flux

Area % (kg m
-2 

y
-1

) (g C m
-2 

y
-1

) (g C m
-2 

y
-1

)

Site Fields E D E D EX E D EX E D Field

Site 1  DKF1 91.1 8.9 2.43 0.10 2.33 24.0 0.90 23.1 -1.4 1.08 -0.3

Site 1  DKF2 81.7 18.3 3.06 0.08 2.98 29.3 0.83 28.5 -1.9 -0.31 -2.2

Site 1  DKF3 100 0.00 3.24 0.00 3.24 30.8 0.00 30.8 0.9 0.00 0.9

Site 2  PSF1 16.1 83.9 0.61 1.01 -0.40 11.1 18.5 -7.41 6.38 27.3 33.7

Site 2  PSF2 48.6 51.4 0.53 0.28 0.25 13.5 7.09 6.41 2.14 -2.85 -0.7

Site 2  PSF3 77.2 22.8 1.41 0.29 1.12 11.7 6.61 5.06 3.00 -2.43 0.57

Site 3  BGF1 100 0.00 2.02 0.00 2.02 42.5 0.00 42.5 4.8 0.00 4.8

Site 3  BGF2 88.0 12.0 1.53 0.22 1.31 33.4 4.48 28.9 2.9 -0.29 2.6

Site 3  BGF3 100 0.00 1.73 0.00 1.73 37.0 0.00 37.0 8.0 0.00 8.0

Mean 78.1 21.9 1.84 0.22 1.62 25.9 4.27 21.7 2.8 2.50 5.3

SE 9.45 9.45 0.32 0.11 0.40 3.86 2.02 5.54 1.10 3.13 4.12
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6.2.4. Sensitivity analysis 

In Section 4.3, the uncertainty regarding the 137Cs fallout reference inventory was 

discussed. Comparison of the estimate of fallout derived from global data with that 

based on in-field measurement, leads to the interpretation that even the level, 

apparently stable fields may have suffered net 137Cs and soil loss. Nevertheless, the 

uncertainty bounds on the estimate of fallout based on global data are wide (the 

latitudinal bands are 10o) and, therefore, in this section the sensitivity of the results to 

the selected 137Cs inventory is explored. Other key variables in the assessment of sink 

strength are the estimated SOC equilibrium inventory, because this has a strong 

control over expected inventories, and the cultivation (mixing) depth, because this 

controls the 137Cs and C concentration in redistributed soil and the disequilibrium 

period (td), because this determines the period over which the observed changes have 

occurred. Therefore, sensitivity analysis also explores the effect of varying these 

parameters. The sensitivity analysis explored the effect on estimated soil redistribution 

rate, CCI, CII and net sink strength of variation in reference 137Cs fallout inventory, 

equilibrium SOC inventory, plough depth, and disequilibrium period. 

 

Variability in 137Cs inventory 

The effect of using a significantly higher and significantly lower 137Cs reference 

inventory (1300, 1685 and 2100 Bq m-2) was explored. Inevitably, these result in 

changes in estimated soil redistribution rates; however, relatively little change is seen 

in the patterns of CCI and CII (Plots a to c in Figures 6.6, 6.7 and 6.8 for Sites 1 2 and 

3, respectively).  Using 137Cs reference inventory values from 1300 to 2100 Bq m-2, C 

flux varied for eroded, deposition areas and whole field vary respectively, as follows 

for Site 1: -5.1 to 4.3, -3.7 to 1.6 and -6.7 to 4.3 g C m-2 yr-1 , Site 2:  -7.0 to 7.8, -2.43 

to 22.0 and 0.57 to 28.6 g C m-2 yr-1  , and  for Site 3 -8.2 to 22.8, -0.58 to 2.43 and -

5.8 to 22.8 g C m-2 yr-1 . These results highlight the importance of reliable reference 

inventories and suggest that further investigation to support refinement of reference 

inventories would be beneficial. 

Variability in reference C inventory  

The default reference C inventory of each site (Site 1: 4.59, Site 2: 5.30 and Site 3:5.50 

kg m-2) compared with lower (decided based on measured C inventory at stable 

profiles) and higher level (used same quantity increase as decreased for lower level) 
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of  C and looked the pattern of CCI vs CII (plots d to f in Figure 6.6; Figure 6.7; Figure 

6.8) results consistent with earlier observation above, high level of CCI observed than 

CII in all fields of eroded locations except certain aggraded point CII is higher than 

CCI. It’s clearly indicating C flux from atmosphere to soil at most eroded location. Using 

the range of reference C inventory in the sensitivity analysis, the C flux varied for 

eroded, deposition areas and whole field vary respectively, as follows for Site 1: -8.4 

to 10.8, -2.3 to 2.3 and -9.7 to 10.8 g C m-2 yr-1 , Site 2:  -4.7 to 15.8, -13.6 to 18.8 and 

-18.3 to 34.6 g C m-2 yr-1  , and  for Site 3 -5.9 to 24.9, -2.9 to 2.3 and -8.8 to 24.9 g C 

m-2 yr-1 . 

Variability in Plough Depth (PD) 

Like reference 137Cs and C inventory sensitivity analysis performed for changing 

different level of PD of each site measured value (measured PD for Site 1: 0.14, Site 

2: 0.19 and 0.26, Site 3: 0.24 m). Various level of PD compared with SR, CCI and CII, 

in all condition the pattern of CCI with CII not changed (Figure 6.6g-i) to resulted 

pattern of default PD and it shows CCI is higher than CII at most eroded location in 

Site 1. Similar pattern also observed for Site 2 (Figure 6.7g-i) and Site 3 (Figure 6.8g-

i). Using the range of plough depths in the sensitivity analysis, the C flux varied for 

eroded, deposition areas and whole field vary respectively, as follows for Site 1: -6.3 

to 0.92, -2.9 to 1.08 and -6.8 to 0.92 g C m-2 yr-1 , Site 2:  0.63 to 14.2, -2.85 to 41.9 

and -0.70 to 48.4 g C m-2 yr-1  , and  for Site 3; 2.86 to 21.8, -0.29 to 3.3 and 2.57 to 

21.8 g C m-2 yr-1 . 

Variability in Disequilibrium Period (td) 

As for the other variables, sensitivity analysis was performed for different 

disequilibrium periods (td was set to 40, 50, 70, 100 years). Using these values of td, 

the predicted (CII) values decrease with increase of td at the most eroded parts of field 

and increase at deposition sites in the fields (Figure 6.9a-c for Site 1; Figure 6.9d-f for 

Site 2 and Figure 6.9g-I for Site 3). As has been noted above, with a td period of 50 

years most of the eroded sites exhibit a CCI that exceeds CII; therefore, if td is 

increased there will be an increased tendency for this pattern (as CII is depressed). 

Using the range of disequilibrium periods (different td is 40, 50, 70, 100 years) in the 

sensitivity analysis, C flux was found to vary for eroded, deposition areas and whole 

field respectively, as follows for Site 1: -4.7 to 11.8, -2.1 to 1.3 and -4.8 to 11.8 g C m-
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2 yr-1 , Site 2: -0.12 to 9.24, -7.7 to -0.86 and -2.36 to -0.57 g C m-2 yr-1  , and  for Site 

3; 0.22 to 22.0, -12.3 to 0.83 and 0.22 to 22.0 g C m-2 yr-1 . 
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Figure 6.6 Profile/point scale relationship between SR rate, CCI and  CII for different 
reference 137Cs (1300, 1685 and 2100 Bq m-2)   inventory (Top : a-DKF1, b-DKF2 and 
c-DKF3), different reference  C  (3.5, 4.59 and 5.5 kg m-2)   inventory  (mid: d-DKF1, 
e-DKF2 and f-DKF3)  and for different (14, 20 and 25 cm) plough depth (Bottom: g-
DKF1, h-DKF2 and i-DKF3)   of  fields to Site 1 Dhulkhot. 
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Figure 6.7 Profile/point scale relationship between SR rate , CCI and  CII for different 
reference 137Cs ( 1300, 1685 and 2100 Bq m-2)   inventory (top : a-PSF1, b-PSF2 and 
c-PSF3), different reference  C  (3.3, 4.3, 5.3 and 6.3  kg m-2)   inventory  (mid:  d-
PSF1, e-PSF2 and f-PSF3)  and for different ( 14, 20 and 26 cm) plough depth (bottom: 
g-PSF1, h-PSF2 and i-PSF3) of fields to Site 2 Pasauli (PS). 
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Figure 6.8 Profile/point scale relationship between SR rate , CCI and  CII for different 

reference 137Cs ( 1300, 1685 and 2100 Bq m-2)   inventory (Top : a-BGF1, b-BGF2 and 

c-BGF3), different reference C (4.5,5.5 and 6.5 kg m-2)  inventory ( mid: d-BGF1, e-

BGF2 and f-BGF3) and for different (14, 20 and 24 cm) plough depth (Bottom: g-BGF1, 

h-BGF2 and i-BGF3) of fields to Site 3 Bhatta Gaon (BG).  

Soil redistribution rate (kg m
-2

 year
-1

)

0

10

20

30

40

50

60

70

80

90

-4 -3 -2 -1 0

In
d

e
x

 (
g

 C
 k

g
-1

) 
in

 1
9

6
3

 p
lo

u
g

h
 s

o
il

d

0

10

20

30

40

50

60

70

-3 -2 -1 0 1 2 3

e

0

10

20

30

40

50

60

70

80

90

-4 -3 -2 -1 0

CCI

CII (Cref=4.5)

CII (Cref=5.5)

CII (Cref=6.5)

f

0

20

40

60

80

100

120

-6 -4 -2 0 2

In
d

e
x

 (
g

C
 k

g
-1

 )
 i
n

 1
9

6
3

 p
lo

u
g

h
 s

o
il

0

10

20

30

40

50

60

70

80

-4 -2 0 2 4

b

0

20

40

60

80

100

120

-4 -2 0 2

CCI 1300

CII 1300

CCI 1685

CII 1685

CCI 2100

CII 2100

c

0

20

40

60

80

100

120

140

160

-4 -3 -2 -1 0

In
d

e
x

 (
g

C
 k

g
-1

 )
 i
n

 1
9

6
3

 
p

lo
u

g
h

 s
o

il

g

0

20

40

60

80

100

120

-3 -2 -1 0 1 2 3

h

0

20

40

60

80

100

120

140

-4 -3 -2 -1 0

CCI  14cm

CII 14cm

CCI 20cm

CII 20cm

CCI 24cm

CII 24cm

i

a



  157 
  
 

 

 

Figure 6.9 Profile/point scale relationship between SR rate , CCI and  CII for different 
disequilibrium period ( td:  40,50,70,100 years)  (Top : a-DKF1, b-DKF2 and c-DKF3), 
( mid: d-PSF1, e-PSF2 and f-PSF3), (Bottom: g-BGF1, h-BGF2 and i-BGF3) for all 
fields at different sites 
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6.3. Discussion 

6.3.1. Profile and field scale soil redistribution rates and budget  

In general, all three sites studied are dominated by erosion and areas of net deposition 

of soil represent only a small percentage of the total. The only exception to this is Site 

2, in which one of the three fields is dominated by net deposition and it is likely that 

this receives sediment transported from other fields (including 2 and 3) located further 

up the valley slope. Caesium-137 data provide more detail regarding within-field soil 

redistribution than other approaches and there is, therefore, a lack of data with which 

to evaluate the spatial patterns. However, the average erosion rate and net export rate 

across all sites of 1.84 ± 0.32 and 1.62 ± 0.40 kg m-2 y-1, respectively, (Table 6.6) can 

be compared with published studies. The latter have suggested that average erosion 

rates in the region are comparable (> 20 t ha y-1) with other erosion estimates (Singh 

and Gupta, 1982; Narayana and Ram Babu, 1983; Khola and Sastry, 2005 Singh et 

al., 2016). My results found the soil erosion for this area fall between slight (<5 t ha-1y-

1) to severe (80 t ha-1y-1) erosion class for each pits. But in overall average total net 

soil erosion/loss based on area of field fall under moderate erosion (10-20 t ha-1y-1) 

class which is loss of 16.2 t ha y-1. This similar value of soil erosion also measured by 

Singh et al., 2016 in unmanaged and managed agriculture slope field based on run off 

plot studies. This measured soil loss value is higher than the soil loss tolerance level 

of 2.5 to 12.5 t ha-1y-1 for this region proposed by Mandal et al., 2010. The high rates 

of net soil export from the fields clearly indicate that water erosion due to high intensity 

rainfall on the steeply sloping fields is the major soil redistribution process. However, 

some of the patterns of within field variation, including maximum erosion rates close 

to upslope boundaries (DKF2, DKF1, BGF1, PSF2, PSF1, PSF3 and BGF2) and 

maximum deposition rates close to downslope boundaries (DKF1, DKF2, PSF1, 

PSF2, PSF3and BGF2) are consistent with patterns of soil redistribution by tillage 

observed in other low intensity systems where animal draft dominates (Li and 

Lindstrom, 2001; Quine et al., 1999; Thapa et al., 2001). 

The magnitude of the erosion rates and the consequently high subsoil to plough soil 

fluxes in the eroding areas (summarised in Figure 2.3) create conditions favourable 

for carbon sequestration by dynamic replacement (Harden et al., 1999; Van Oost et 

al., 2007). Nevertheless, the high rates of water erosion, high mean annual 
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temperatures and high precipitation are also conducive to high rates of SOC 

mineralisation.  

6.3.2. Discussion of net C fluxes 

The study area C fluxes for each site average indicate that export of eroded C is very 

high: 98%, 8% and 96 % for Site 1, Site 2 and Site 3 respectively. Taking the mean 

for all sites, 84% of the eroded C is exported from the field and only 16% of C 

redeposited within field (Table 6.5 and 6.6).  This export of C is high compared to 

mechanised and high input farming lands where only small portion of eroded C is 

typically exported from the field (e.g. 22% in Van Oost et al., 2007). However, the 

result found here is similar to that found for a field in a highly eroding non-mechanised 

agricultural field in the Loess Plateau in China (Li et al., 2015).  Therefore, the fate of 

exported C is very important to know if the budget of erosion induced C flux is to be 

closed and the full source or sink analysis completed (Hoffmann et al., 2013; Li et al., 

2015; Wang et al., 2015). There remains disagreement between those who suggest 

that exported SOC is stored and preserved in low aerated environments that can act 

as C sinks (Ran et al., 2014; Vandenbygaart et al., 2015; Wang et al., 2015 a, b) and 

those who suggest that some or most exported SOC is reemitted to atmosphere as C 

source (Lal and Pimentel, 2008).  

 

In my study restricted up to within field SOC redistribution and it dynamics and not 

addressed on fate of exported C (remain priority for future research). Interestingly in 

my fields part of eroded SOC deposited bottom slope of field and get buried below the 

cultivation layer and get stored this I can confirmed by measuring spatial variation of 

SOC with help of 137Cs tracer (results Chapter 5) within field particularly enriched SOC 

concentration at deposition area. Also I conducted soil respiration measurement for 

deposition position top, sub and mixed of both soils to know the fate of 

deposited/buried SOC within field in Chapter 7 results. The results supported buried 

soil SOC (assumed top soil SOC) less mineralised even provided optimum condition. 

This less mineralisation due to reaggregation and physical separation facilitate (Six et 

al., 2002; Doetterl et al., 2012; Vandenbygaart et al., 2015) buried SOC store long time 

and cause C sink but this buried SOC more vulnerable to loss if it get exposed by 

changing land use or mixed fresh SOC with old by priming action which I found in 

Chapter 7 (Fontaine et al., 2007; Van Oost et al., 2012; Wang et al., 2015)  
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The measured and predicted C Inventories (based on equilibrium conditions) in the 

eroded area of all three sites (with the exception of PSF1) are similar. At DK, the 

measured inventories are on average 99% of the predicted inventories; while at PS 

and BG (with the exception of PSF1) the measured inventories are on average 107% 

of the predicted inventories. There is, therefore, no evidence for disequilibrium driving 

a significant source; while at PS and BG there is consistent evidence of net 

sequestration. This dynamic replacement of eroded C at eroded locations is thought 

to be due to mixing of less C saturated with high minerals surface subsoil with plough 

soil cause disequilibrium which facilitate dynamic replacement of C (Stallard, 1998; 

Harden et al., 1999; Quine and Van Oost, 2007; Van Oost et al., 2007; Berhe et al., 

2007, 2008; Dungait et al., 2013; Li et al., 2015; Doetterl et al., 2015, 2016; Nie et al., 

2016). Nevertheless, the rate of dynamic replacement of C at eroded sites is far lower 

than the rate of lateral carbon export by erosion and, therefore, the net C inventories 

at the eroded area of each site when compared with reference C inventories (up to 

0.5m) demonstrates a deficit of 23 % , 35% and  21%  of C for Site DK, Site PS and 

Site BG, respectively. Therefore, the eroded areas of the field are subject to net 

reduction in C stocks.  

At depositional locations, the situation is mixed. In 3 of the 5 fields with areas of net 

deposition, the measured inventories are very close to the predicted inventories (92-

98%). In the remaining 2 fields (DKF1 and PSF1) the measured inventories 

significantly exceed the predicted inventories (113% and 132%, respectively). This 

suggests that burial of deposited C has led to protection and facilitated some C sink 

formation (Van Oost et al., 2007). This is particularly evident in Site PSF1 in which the 

deposition area occupies a large proportion of the field and has the highest net 

sequestration. The high C sink in the depositional area in Site 2 field PSF1 may be 

due to high redeposition of sequestered SOC from the eroded area within the field and 

imported from other fields. While surprising, similar patterns have been reported in 

some previous studies (Quine and Van Oost, 2007). 
   

In summary, despite high rates of erosion, all fields in this study acted as small local 

C sink; and there is no evidence for a net C source to the atmosphere. This finding is 

comparable with other recent studies (Quine and Van Oost, 2007; Van Oost et al., 

2007; Li et al., 2015). In this study, the area of net deposition of C within fields is low 

compared to studies from mechanised farm lands. In this study, most of eroded C was 

found to have been exported outside the field and this has significant implications for 

the net carbon balance. If the majority of the exported C is rapidly returned to the 

atmosphere then this would tip the landscape-scale system towards a net source of C 
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to the atmosphere. Therefore, investigation of the fate of the exported C remains a 

priority for future study. Finally, it is interesting to note that the eroded areas of the 

studied fields all acted as C sink with similar magnitude to those typically seen in 

mechanised farm lands (Van Oost et al., 2007) despite relatively low nutrient inputs.  

6. 4. Conclusion 

This chapter addressed research objective 2: To quantify erosion-induced soil carbon 

redistribution on the net effect of carbon exchange between soil and atmosphere in 

low input/productivity and highly eroding agricultural fields from the foothills of the 

Indian Himalaya by using 137Cs fallout and SOC inventories. This objective seeks to 

determine whether C sink exit in low input/productivity farm lands where net return of 

biomass is less. The analysis for this research objective assumed the overall null 

hypothesis: 

H0: Erosion-induced soil redistribution results in a net carbon sink when continuous crop 

production is maintained, despite low fertiliser inputs, low crop productivity and high 

biomass removal 

Soil redistribution rate and C flux derived for study site of low input/productivity non 

mechanised and highly eroding agricultural fields from foot hills of Indian Himalaya, 

Dehradun, India. For all the study fields from Dehradun, India the average sediment 

erosion, deposition and net export is 1.84 ± 0.32, 0.22 ± 0.11 and 1.62 ± 0.40 kg m-2 

y-1, respectively. This result depicts around 88% of sediment exported from field and 

only 12% of sediment redeposited within field. This result of soil loss measured based 

on 137Cs tracer technique comparable with other study measured soil loss for this area 

based on runoff plot study. This study confirmed again 137Cs tracer technique more 

suitable for erosion studies. Over all to the study area all fields  lateral C flux such as 

average C loss, redeposition, net export for all field is 25.5± 3.5, 4.3 ± 2.0 and 21.7 ± 5.5  

g C m-2 y-1, respectively.   In this site vertical C flux between soil to atmosphere for 

eroding, deposition and whole field is 2.8 ± 1.10, 2.50 ± 3.13 and 5.3 ± 4.1 g C m-2 y-1, 

respectively.   Complete study fields eroded area acted as net C sink higher than 

deposition area. For all fields average net C flux is 5.3 ± 4.1 g C m-2 y-1 from atmosphere 

to soil sequestered even after assuming all exported C lost to atmosphere (21.7 ± 5.54 

g C m-2 y-1). If I consider part of exported C preserved in burial /depositional area then 

C sink strength further increased.  This study further confirmed dynamic replacement 

of eroded C at eroded location of highly eroding low input /low productivity agricultural 
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fields. Even at deposition area of within field also net C sink found due to continuous 

deposition C from eroded area  and it burial at deposition area of field. In final my study 

conclude 137Cs tracer technique much suitable for erosion and C dynamic studies,  the 

fields from low input /highly eroding field acted C sink  and need to further study about 

fate of exported C from field. Because 84% of C exported from field if partly preserved 

the sink strength of these fields further increase and almost comparable with C sink 

estimated in mechanised fields because this field C exported from the field is very less. 

Based on these result the null hypothesis for this research objective cannot be rejected 

and it is accepted that erosion induced soil redistribution act as a net C sink or creates 

SOC stock equilibrium under low input/productivity farm lands. 

6.5. Key Findings 

 Study area fall under high erosion category and maximum eroded sediment 

exported from the field very less redeposited within field 

 Fields under eroded area completely acted as a C sink and but some field of 

deposition area acted C sink and source over all field level acted C sink but this 

C sink is less than mechanised farm lands.  

 Interesting finding from this field maximum eroded C exported from the field 

which is opposite to mechanised farm lands where maximum eroded C 

redeposited within field only small fraction exported.  

 Remaining priority on fate of exported C from the field decide ultimate C sink. 

Need further study on this. 
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7. Erosion as a carbon sink: effects of lateral and vertical carbon 

redistribution on decomposition rates?   

7. 1. Introduction 

Previous studies of the effect of soil redistribution on soil respiration rates at eroding 

and deposition topographic sites have been conducted along a soil depth gradient 

(Doetterl et al., 2012; Wang et al., 2013; Vandenbygaart et al., 2015; Wang et al., 

2015) and found that spatial variation of soil respiration rates and overall result 

supported erosion induced redistribution of soil/SOC facilitate C sink to  atmospheric 

CO2 by dynamic C replacement at eroded positions and burial of eroded C at 

deposition positions.  However, to the authors knowledge there has been no study 

regarding the effect of erosion/redistribution induced vertical mixing on respiration 

rates or on the potential priming effect it may have.  Microcosm incubation experiments 

were conducted to determine whether there were differences in soil respiration from 

different soil layers of eroding and deposition topographic landscape positions in (a) 

separate layers and (b) mixed layers for a period of a year. Complete methods and 

experimental setups are described in Section 4.4. In this chapter result and discussion 

section used Site 1 and Site 2, which means Site 1 represent field DKF1 and Site 2 

represent field PSF3. 

Chapter 7 addresses the research objective 3: To study the effect of erosion- and 

deposition-induced vertical soil/SOC mixing on soil respiration rates at various landscapes 

positions. 

Specifically this chapter addresses the following null hypotheses: 

1) H0: In eroded position, mixing topsoil with organic matter-poor subsoil will reduce 

decomposition rates as organic matter from topsoils may become bound onto 

unsaturated soil particles in the subsoil.  

2) H0: In depositional areas, mixing fresh organic matter from top soils into organic 

matter-rich subsoils will promote C release through a positive priming effect. 
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7. 2. Results  

7.2.1. Caesium -137 (137Cs) inventory distribution 

The comparison of the 137Cs activity along the topographic gradient (up to 50 cm 

depth) indicates that in both sites (Site 1 and 2) confirmed that the eroding sample pits 

had a lower 137Cs activity than the deposition soil pits. Table 7.1 shows the soil 

redistribution rate (SR) estimated for each pit along the topographic gradient and the 

convention used is that negative values indicate soil loss, whilst positive value indicate 

deposition (soil gain). Both sites eroding and mid-slope positions appear to be losing 

soil, whilst the deposition position indicates soil gain. The depth distribution of 137Cs is 

clearly different between topography pit locations. The eroding sites had activity up to 

30 cm, whilst deposition locations had 137Cs activity down to 50 cm depth.  Mid-slope 

soil pits showed intermediate activity for both sites. Overall, Site 2 showed evidence 

of higher activity than Site 1.  

7.2.2. Soil and C mixing (lateral and vertical redistribution) at each landscape 

(eroding and deposition) 

Based on the model proposed by Quine and Van Oost (2007) (described in section 

4.3) lateral and vertical soil C mixing is calculated for eroding (all eroding profiles 

combined) and deposition positions for each sites. For Site 1 and Site 2, soil erosion, 

deposition and net export was calculated as 1.92 ± 0.51, 0.20 ± 0.09 and 1.72 ± 0.60 

kg m-2 y-1, respectively (Table 7.2). Of the net export of soil around 64% and 36% of 

the plough and sub plough soil is lost every year, respectively. Currently at eroding 

landscape positions (position based) 47% is sub-plough and 53% is ploughed soil 

(Figure 7.2), this indicates at eroding position equal proportion of plough and sub-

plough soil present at current plough layer. At the deposition position due to 

continuous soil accumulation the initial plough soil layer has been buried, and imported 

plough and sub-plough layer has been buried by 0.86 ± 0.02, 0.22 ± 0.03 and 0.13 ± 

0.03 kg m-2 y-1, respectively. At present in the deposition position, the plough layer is 

a mixture of imported plough, sub-plough and initial plough layer in proportions of 44%, 

27% and 29%, respectively. This indicates though that there is plough layer soil now 

buried below the cultivation depth, and at present the maximum plough depth is within 

the plough layer (initial and imported) of deposition positions. Individual site based soil 
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erosion, deposition and mixing profiles are presented in Table 7.2. It is also clearly 

evident that Site 1 has experience a higher rate of erosion than Site 2.   

If both sites are combined (Site 1 and Site 2) and the area of occupation of each 

landscape position (erosion, mid slope and depositional) considered, then C erosion, 

deposition and net export is 17.8 ± 6.2, 3.75 ± 2.86 and 14.1 ± 9.02 g C m-2 y-1, 

respectively (Table 7.3). Of the net exported C, it is estimated that 62% and 38% are 

derived from the plough and sub-plough layers, respectively. At deposition positions, 

as a result of the continuous soil aggradation there is 18.2 ± 9.19, 4.96 ± 2.93 and 

0.65 ± 0.06 g C m-2 y-1 of buried initial plough layer, imported plough and sub-plough 

layer C, respectively. The plough layer of the deposition site consists of a mixture of 

imported sub plough, plough, initial plough and plant derived new C. This indicates 

that although some of the initial plough layer C buried is below the cultivation depth, 

presently plough layer at deposition positions is enriched with plough soil C. Again, 

Site 1 shows evidence of having a higher rate of erosion than Site 2. 

7.2.3. Soil organic carbon (SOC), Total Nitrogen (TN) and CN ratio 

SOC, TN concentration, and C:N ratio was greater at Site 2. At both sites, top soil had 

a significantly greater (p < 0.05) SOC and TN content than the sub-soil. Overall in both 

sites the eroding position (Table 7.4, 7.5 and Figure 7.1c, d) has less SOC and TN 

than other topographic position (mid-slope and deposition). C:N for both sites and soils 

along topographic gradient showed no significant (p > 0.05) difference. SOC 

concentration (Table 7.4) of the top 15 cm was significantly (p < 0.05) higher at 

deposition profile than eroding or the mid-slope profiles of Site 1. In Site 2 the 

deposition profile had a significantly (p < 0.05) higher SOC concentration than mid-

slope and eroding profiles, with mid-slope also having a significantly higher 

concentration than the eroded profiles (p < 0.05). In both sites eroding pits (eroding 

and mid-slope) SOC concentration is significantly (p < 0.05) lower than in the 

deposition sampling pits in both depths. For sub-soil (45-60 cm) SOC concentration 

was significantly (p < 0.05) higher in the deposition profiles than the other profiles at 

both sites (Table 7.4). TN concentration (Table 7.4) of top (0 - 15 cm) soils did not 

significantly (p > 0.05) differ along the topographic gradient for Site 1. However, in Site 

2 the deposition and mid-slope profiles had a significantly (p < 0.05) higher TN content 

than eroding profiles. Furthermore, there was no significant (p > 0.05) difference 
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between deposition and mid-slope profiles for Site 2. For sub-soil (45 - 60cm) TN 

concentration was significantly (p < 0.05) lower at eroding sampling pits than other 

position profiles of Site 1 (Table 7.4). In Site 2 TN concentration in the sub-soil layer 

was significantly (p < 0.05) higher in the mid-slope than the eroding profile. However, 

there were no significant (p > 0.05) differences between the eroding and deposition 

profiles. In addition, there was no significant difference observed between the mid-

slope and deposition profile (p > 0.05). C:N of the top soil and sub-soils showed no 

significant difference (p > 0.05) for both sites. For both sites the mid-slope and 

deposition profiles C:N was significantly (p < 0.05) higher in the sub-soil than top soil.  
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Table 7.1 Total 137Cs inventory, soil pH and other properties along the slope transect. Within a site, values labelled with different 

letters differ significantly (p < 0.05). Mean values ± 1SE (n = 3) are presented. Here Site 1 = field DKF1 and Site 2 = field PSF3. 

 

LIA: Low input agriculture - acidic 

 

 

 

Sites Positions
137

Cs (Bq m
-2

) SR rate (kg m
-2 

y
-1

) Depth (cm) Soil pH Lattitude Langitude Elevation (m)

Site 1 (LIA) Eroding   562   ± 23
a

 -3.53 ± 0.13 <70   5.09 ± 0.05 30
o
21.052

,
 N 77

o
53.483

, 
E 538

Mid-slope   1352 ± 63
b

 -0.72 ± 0.15 <90   5.19 ± 0.04 30
o
21.062

,
 N 77

o
53.472

,
 E 537

Deposition   2065 ± 117
c

  1.14 ± 0.35 >100   5.10 ± 0.04 30
o
21.076

,
 N 77

o
53.457

,
 E 536

Site 2 (LIA) Eroding  417    ± 63
a

 -4.52 ± 0.39 <70   5.17 ± 0.05 30
o
27.205

,
 N 77

o
52.759

, 
E 674

Mid-slope 1409   ± 54
b

 -1.12 ± 0.11 >100  4.93  ± 0.12 30
o
27.191

,
 N 77

o
52.767

,
 E 673

Deposition   2707 ± 248
c

  1.28 ± 0.52 >100  4.99  ± 0.07 30
o
27.181

, 
N 77

o
52.773

, 
E 672
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Table 7.2 Soil lateral and vertical redistribution (kg m-2 y-1) budget for India sites  based 

on profile means  from Segment (E/D) and field area. Mean values ± SE (n=2 sites 

value) are presented 

 

 

 

 

 

Site 1 Site 2

Parameters  DKF1  PSF3 Mean SE

Eroded area % of field and mixing 91.1 77.2 84 6.94

Mean Erosion /subsoil excavation rate 2.67 1.83 2.25 0.42

Cultivation layer in export 1.71 1.16 1.44 0.28

Subsoil in export 0.95 0.67 0.81 0.14

Cultivation soil lost in 50 yrs (kg m
-2

) 85.7 57.8 71.8 13.9

Subsoil lost in 50 yrs (kg m
-2

) 47.7 33.6 40.6 7.0

Remaining cultivation soil at eroding positions(kg m
-2

) 76.3 82.4 79.4 3.1

Subsoil  mixed at eroding plough layer (kg m
-2

) 86 58 72 13.9

Fraction of cultivation layer in export 0.64 0.64 0.64 0.00

Fraction of subsoil at eroding cultivation soil 0.53 0.41 0.47 0.06

Aggraded area % of field and mixing 8.92 22.8 15.9 6.94

Mean Deposition 1.14 1.28 1.21 0.07

Initial cultivation import /deposit 0.73 0.77 0.75 0.02

Subsoil deposit/import 0.41 0.51 0.46 0.05

Burial of Initial cultivation layer 0.84 0.87 0.86 0.02

Burial of imported Initial cultivation layer 0.19 0.24 0.22 0.03

Burial of imported subsoil 0.11 0.16 0.13 0.03

Replacement of imported cultivation soil 0.54 0.53 0.53 0.01

 to initial cultivation layer

Replacement of imported sub soil in cultivation layer 0.30 0.35 0.33 0.02

Presence of remaining initial cultivation 0.30 0.40 0.35 0.05

Whole field

Whole field area ha 0.13 0.10 0.11 0.02

Eroded Area ha 0.12 0.08 0.10 0.02

Aggraded Area ha 0.01 0.02 0.02 0.01

Whole field slope % 2.91 6.15 4.53 1.62

Mean erosion rate 2.43 1.41 1.92 0.51

Mean aggradation rate 0.10 0.29 0.20 0.09

Net export rate 2.33 1.12 1.72 0.60

Net export of plough soil 1.50 0.72 1.11 0.39

Net export of subplough 0.83 0.40 0.62 0.21
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Table 7.3 C lateral and vertical redistribution (g C m-2 y-1) budgets for the study sites 

sites based on profile means from erosional and depositional segments and the whole 

field area. Mean values ± SE (n = 2 sites value) are presented. 

 

 

 

 

 

Site 1 Site 2

Parameters  DKF1  PSF3 Mean SE

Eroded area % of field and mixing 91.1 77.2 84.1 6.94

Mean C Erosion /subsoil excavation rate 26.3 15.1 20.7 5.61

Cultivation layer C in export 18.3 9.4 13.8 4.46

Subsoil C in export 8.05 5.75 6.90 1.15

Cultivation soil C lost in 50 yrs (g C m
-2

) 914 468 691 223

Subsoil C lost in 50 yrs (g C m
-2

) 403 287 345 57.65

Remaining cultivation soil C at eroding positions(g C m
-2

) 815 3902 2359 1544

Subsoil  C mixed at eroding plough layer (g C m
-2

) 914 468 691 223

Fraction of cultivation layer C in export 0.69 0.62 0.66 0.04

Aggraded area % of field and mixing 8.92 22.79 15.85 6.94

Mean  C Deposition 10.1 29.0 19.5 9.47

Initial cultivation C import /deposit 7.80 25.3 16.5 8.74

Subsoil C deposit/import 2.26 3.73 3.00 0.73

Burial of Initial cultivation layer C 8.99 27.4 18.2 9.19

Burial of imported Initial cultivation layer C 2.03 7.89 4.96 2.93

Burial of imported subsoil C 0.59 0.72 0.65 0.06

Replacement of imported cultivation soil C 5.77 17.4 11.6 5.81

 to initial cultivation layer C

Replacement of imported sub soil C in cultivation layer C 1.67 1.58 1.63 0.05

Whole field

Whole field area ha 0.13 0.10 0.11 0.02

Eroded Area ha 0.12 0.08 0.10 0.02

Aggraded Area ha 0.01 0.02 0.02 0.01

Whole field slope % 2.91 6.15 4.53 1.62

Mean C erosion rate 24.0 11.7 17.8 6.16

Mean C aggradation rate 0.90 6.61 3.75 2.86

Net C export rate 23.1 5.06 14.1 9.02

Net export of plough soil C 16.0 1.47 8.72 7.24

Net export of subplough C 7.13 3.59 5.36 1.77
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Figure 7.1 Depth distribution of 137Cs and SOC inventory in profiles from different 
slope positions at Site 1 -Low Input Acidic (Figure 7.1a and c) and Site 2-Low Input 
Acidic (Figure 7.1b and d). Mean values ± 1SE (n = 3) are presented    

 

 

 

Figure 7.2 Percentages mixing of soils at eroding and deposition positions plough 
layer for both sites 
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Table 7.4 SOC, TN and C:N of Site1 and  Site 2 by position and depth. Within a site and depth interval, values labelled with different 

letters differ significantly (p < 0.05). Mean values ± 1SE (n = 5) are presented. 

 

 

 

Table 7.5 SOC and TN inventory up to 70 cm in depth by position. Mean values ± 1SE (n = 3) are presented. 

Sites SOC (g kg
-1

) TN (g kg
-1

) CN ratio

Depth (cm) 0-15 45-60 0-15 45-60 0-15 45-60 

Eroding 9.60 ± 0.12
a

4.38 ± 0.18
a

0.64 ± 0.03
a

0.21 ± 0.03
a

15.1 ± 0.78
a

18.6 ± 0.81
a

Site 1 Mid-slope 9.02 ± 0.12
a

6.75 ± 0.18
b

0.85 ± 0.14
a

0.39±0.01
b

11.7 ± 1.56
a

17.5 ± 0.76
a

Deposition 12.6 ± 0.32
b

8.05 ± 0.15
c

0.88 ± 0.05
a

0.41±0.04
b

14.4 ± 0.44
a

20.2 ± 1.58
a

Eroding 13.6 ± 0.75
a

6.94 ± 0.66
a

1.22 ± 0.07
a

0.81 ± 0.04
a

11.3 ± 0.84
a

10.5 ± 0.53
a

Site 2 Mid-slope 16.4 ± 0.63
b

11.8 ± 0.90
b

1.53 ± 0.05
b

0.99 ± 0.06
b

10.7 ± 0.12
a

11.9 ± 0.24
a

Deposition 19.5 ± 0.57
c

12.1 ± 0.45
c

1.72 ± 0.07
c

0.92 ± 0.03
a

11.3 ± 0.11
a

13.2 ± 0.08
a

Sites Positions SOC (kg m
-2

) TN (kg m
-2

)

Up to 70 cm depth

Eroding 3.29 ± 0.07 0.23 ± 0.03

Site 1 Mid-slope 4.63 ± 0.12 0.42 ± 0.02

Deposition 5.39 ± 0.32 0.46 ± 0.03

Eroding 3.29 ± 0.09 0.30 ± 0.00

Site 2 Mid-slope 6.19 ± 0.41 0.39 ± 0.02

Deposition 7.39 ± 0.14 0.50 ± 0.02
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7.2.4. Soil respiration cumulative pattern over the experimental period 

 

Top Soils 

Total cumulative C release from top soils was greater in the Site 1 soils. The top soils 

of Site1 at the eroding and mid-slope sampling pits showed significantly (p < 0.05) 

higher respiration rates than in Site 2. However, in deposition profiles, top soil 

respiration rates did not differ between of Site 1 and Site 2. After one year of  

incubation, the cumulative C release per unit SOC (gram) for top soils (Figure 7.3.a, b 

and Figure 7.5a,b) of different landscape positions along the slope transect were not 

significantly (p > 0.05) different (Site 1: eroding: 103.4 ± 6.2, mid-slope: 102.6 ± 6.0, 

deposition: 84.6 ± 6.0 mg CO2-C g-1 
SOC; and Site 2: eroding: 70.6 ± 7.0, mid-slope: 

61.8 ± 3.0, deposition: 71.9 ± 4.0 mg CO2-C g-1 
SOC).  

Although, there was no significant difference in cumulative C release at different 

landscape positions for top soils at both sites, over the period there was a trend for 

greater C release rates from eroding profiles (Figure 7.3 a, b). Initially respiration rates 

were higher in this eroded soils compared to the other sampling sites, but later in the 

incubation a decrease in respiration was observed relative to the other positions.  

For Site 1, respiration rates between landscape positions were equivalent up to day 

56 (Figure 7.4a). Samples collected from the eroding locations showed higher 

respiration rates than the mid-slope and deposition profiles between days 56 and 140. 

Thereafter, all profiles converged in terms of respiration and stabilized between 140-

364 days. Site 2 (Figure 7.4b) initially had a higher respiration rate in the eroding 

profiles in comparison to the other sampling sites (up to 49 days). Thereafter the rate 

decreased between 49-98 days and converged with the respiration rates evident from 

the other sampling locations, stabilising after 250 days. 

Sub-Soils 

When comparing both sites the total cumulative C release for sub soils, in Site 1 was 

higher than Site 2. However, sub-soil cumulative C release from eroding and mid-

slope profiles in both sites show no significant (p > 0.05) difference. The deposition 

profiles of Site 1 show significantly (p < 0.05) highly respiration than Site 2. For sub-
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soils after the one year incubation period the cumulative C release per unit SOC (gram) 

(Figure 7.3c, d and Figure 7.5a,b) was significantly greater from eroding profiles (p < 

0.05) than the other sampling locations in both the sites (Site 1. eroding: 20.4 ± 1.1, 

mid-slope: 16.2 ± 1.1, deposition: 14.0 ± 1.3 mg CO2- C g-1 
SOC and Site 2. eroding: 

14.0 ± 1.6, mid- slope: 9.7 ± 1.2, deposition: 9.5 ± 0.6 mg CO2- C g-1 
SOC). Cumulative 

C release did not differ between mid-slope and deposition locations (p > 0.05) for both 

sites.   

The flux rate trend over the experimental period for Site 1 and Site 2 show that the 

eroding profiles had a higher respiration rate than other positions (7.3c, d). 

Stabilization for sub-soils of both sites occurred rapidly by day 100 (7.4c, d). 

7.2.5. Mixed–soils observed Vs expected cumulative respiration 

After the year long incubation the mixed soil cumulative C release were compared with 

observed and expected cumulative C release at each slope position for both the sites 

as illustrated in Figure 7.5a,b.  

The observed cumulative C release in deposition profiles were significantly (p < 0.05) 

highly than expected based on the respiration rates of top and sub-soils when 

incubated separately. 11.2% more C was released than expected representing an 

excess of 2.5 to 10 mg CO2-C g-1 
SOC at Sites 2 and 1, respectively. When the 

analysis was carried within a sites, differences between observed and expected 

release at the depositional sites were no longer significantly (p > 0.06). At the other 

sampling positions showed no difference between observed and expected C release. 
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Figure 7.3 Cumulative CO2-C release from the 0-15 cm (a,b) and 45-60 cm (c,d) depths from Site 1 (a,c) and  Site 2 (b,d). Mean 
values ±1SE (n = 5) are presented. 
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Figure 7.4 Soil respiration rate from the 0-15 cm (a,b) and 45-60 cm (c,d)  depths from Site 1 (a,c) and  Site 2 (b,d) . Mean values ± 
1SE (n = 5) are presented.  

0.00

0.01

0.02

0.03

0.04

0.05

0 100 200 300 400

a

0.00

0.00

0.00

0.01

0.01

0.01

0.01

0.01

0 100 200 300 400

c

0.00

0.00

0.00

0.00

0.00

0.01

0.01

0.01

0 50 100 150 200 250 300 350 400

d

Incubation time (days)

C
O

2
-C

 r
e

le
a

s
e

ra
te

 (
m

g 
C

  g
-1

SO
C

 h
-1

) T
o

p
 s

o
il

 0
-1

5
 c

m
Su

b
-

so
il

 4
5

-6
0

 c
m

Site 1

0.00

0.01

0.02

0.03

0.04

0.05

0 50 100 150 200 250 300 350 400

Eroding

Mid-Slope

Depoistion

b



  176   
 

 

 

 

Figure 7.5 Cumulative CO2-C release per gram SOC from the 0-15 cm, 45-60 cm depths, observed and expected (mixed soil) 
incubated different landscape positions from Site 1 (a) and Site 2 (b). Mean values ±1SE (n = 5) are presented.  
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7.2.6. Absolute difference between observed vs expected cumulative respiration 

release in mixed soils 

 

The absolute difference of C release between observed and expected for the mixed 

soils from various landscape positions were estimated for the different sites, landscape 

position and for different time periods within the incubation (Figure 7.6a and b). It is 

important to note that for the depositional soils from Site 1, rates of C release were 

greater than expected in the mixed soils in all time periods. The same pattern was not 

observed for the depositional soils at Site 2. There was a suggestion of greater than 

expected C release from the mixed mid-slope soils in Site 2 but the overall difference 

was not statistically significant (Figure 7.5a,b)  
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Figure 7.6 Absolute cumulative difference of C release between observed vs expected at different time interval of within 364 days 
for various landscape positions from Site 1 (a) and Site 2 (b). Mean values ±1SE (n = 5) are presented 
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7.3. Discussion  

 7.3.1. 137Cs  inventory, SOC and TN concentration and CN ratio 

The 137Cs inventory pattern along the slope clearly confirmed erosion and deposition 

has occurred in Site 1 and Site 2 (Table 7.1 and Figure 7.1a.b). The sites concur with 

other studies such as Walling and Quine (1991) and Quine and  Zhang (2002). The 

low total 137Cs activity and lower depth distributed at eroding profiles (eroding and mid-

slope) was evident in comparison to deposition sampling sites that had higher total 

137Cs activity and to a greater depth. The eroding locations have lost a considerable 

amount of soil in comparison to the mid-slope sampling locations in both sites. 

Depositional locations at both sites had considerable gains in soil, with Site 2 reflecting 

a higher rate of deposition than Site 1. The low input/non-mechanized study sites show 

a net soil export from the higher than mechanized/high input farm lands (Van Oost et 

al., 2007). This may be due to water erosion, which is the major form of erosion in this 

region, whilst in mechanized agriculture tillage is predominant erosion causing agent 

(Singh et al., 1992; Quine and Zhang, 2002; Singh et al., 2016).  

Soil erosion processes lead to high loss of top soil, which contains C and nutrients. 

Thereafter, some of this eroded material will be redeposited and buried at deposition 

sites, with the remaining material being exported from the farming area. In the eroded 

profiles there were almost equal amounts of top and sub-soil due to the losses 

observed and the tendency of C to move towards the surface (Harden et al.., 1999; 

Quine and Zhang, 2002; Van Oost et al., 2005; Quine and Van Oost et al., 2007). The 

sub-soil, with low SOC content, rises to surface and becomes mixed with the top soil, 

which creates a disequilibrium, which facilitates either the soil to sequester more 

atmospheric C or cause C loss through priming. At the deposition sampling sites burial 

of topsoils occurs with the deposited soil containing approximately 27% sub-plough 

soil originating from the eroded areas.  

Redistribution of soils and sediments has implications for carbon budgets. Top and 

sub-soils at the eroded sampling sites had significantly lower SOC concentration 

(Table 7.4) than deposition profiles for both sites (1 and 2). This is likely to be a result 

of continuous deposition and burial (Van Oost et al., 2005, 2012; Wang et al., 2013; 

Doetterl et al., 2012, Vandenbygaart et al., 2012, 2015). In this study the continuous 

top soil loss at the eroding sampling sites leads to an almost equal proportion of top 
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and sub-soil being present in the eroding profile plough layer. So if there is no dynamic 

replacement of new photosynthate at the eroding sampling sites then the top soil SOC 

should be equal or slightly higher than the sub-soil SOC concentration (Quine and 

Zhang, 2002; Van Oost et al., 2005). However, in the eroding sampling sites, the top 

soil has almost double the amount of SOC as compared to the sub-soil, which 

suggests that there is a   dynamic replacement of SOC. 

Similarly at deposition sampling sites the proportion of top- to sub-soil is greater, with 

SOC almost equal to current SOC concentration of top soil at this position; this is likely 

a result of burial (Van Oost et al., 2012; Wang et al., 2014, 2015). However, in my 

study sites C contents do still decline with depth suggesting that there is a has been 

some loss of SOC during burial. In deposition profiles the sub-soil SOC is higher than 

in the eroding profiles, this confirms continuous burial of top soil SOC (Vandenbygaart 

et al., 2012). 

Soil redistribution processes influence TN concentration across a topographic gradient 

(Quine and Zhang, 2002; Zhang et al., 2006; Vandenbygaart et al., 2012). The top soil 

TN concentration along the slope at Site 1 showed no significant difference between 

sampling pits. However, in Site 2 the eroding sampling points had a significantly lower 

TN concentration than either the mid-slope or deposition profiles. The result observed 

in Site 1 maybe a due to the farmers applying fertilizers as this plot was under intense 

cultivation. In the sub-soil, TN concentration was significantly lower at eroding 

sampling points than mid-slope or deposition sampling locations in Site 1. However, 

in Site 2 the mid-slope profiles showed a higher concentration than either the eroding 

or deposition sampling points. The spatial pattern of TN is likely to be caused by soil 

redistribution processes, which ultimately also affect C flux (e.g., through crop 

production and microbial activity (Hartley et al., 2010)). 

There is no significant difference observed along the topographic gradient with respect 

to the CN ratio of top and sub-soil (Table 4). However, when top- and sub-soil C:N is 

directly compared at each slope stage, some differences were observed. Within the 

eroding profiles top and sub-soil show no significant difference, however, within mid-

slope and deposition profiles the sub-soil CN ratio is significantly higher than within 

the top soils. This suggests that buried SOC may contain a labile portion which is 

relatively fresh in terms of SOC (with a wider range of C:N). In the eroding sampling 
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sites the top- and sub-soil SOC is older and more passive and the C:N has a narrower 

range (Wang et al., 2013;  Vandenbygaart et al., 2012) . 

7.3.2. Cumulative C release 

In this study there was no significant difference between eroding, mid-slope and 

deposition positions with respect to top- and sub-soil C release. After one year of 

incubation, top soils from eroding, mid-slope and deposition sampling profiles showed 

no significant difference between Site 1 and Site 2 for cumulative C release (Figure 

7.5a, b). Although there is a significant difference in SOC concentration along slope 

positions with respect to the top soils, there was no different in C mineralization per 

unit SOC. This may be due to a continuous plant derived SOC uniformly being added 

to the top soils of all positions, or more labile SOC being replaced at eroding positions 

(equal to the amounts in the mid-slope and deposition sampling locations). Similar 

results have also been reported by other authors for similar landscape level studies 

(Doetterl et al., 2012; Wang et al., 2013). At deeper depth, rates of decomposition per 

unit SOC were lower in the depositional sites than in the eroded locations despite the 

buried layers likely to contain a greater amount of relatively young organic matter 

(137Cs activity much greater in depositional sites at depth). Either there is a small 

amount of labile C in the eroded deep layers responsible for the higher rate of 

respiration per unit SOC, or the burial is effective in reducing rates of decomposition 

in the depositional areas potentially through reaggregation and physical protection (Six 

et al., 2002; VonLutzow et al., 2006; Doetterl et al., 2012; Vandenbygaart et al., 2015). 

Vertical mixing 

Based on 137Cs tracer technique this study confirms for the two sites that vertical 

mixing/redistribution of SOC within the top and sub-soils occurs at both eroding and 

deposition sampling positions. To determine whether this should result in carbon 

uptake or release, I aimed to test two hypotheses. Firstly, in eroded sites, mixing 

topsoil with organic matter-poor subsoil will reduce decomposition rates as organic 

matter from topsoils may become bound onto unsaturated soil particles in the subsoil. 

This can be measured by comparing observed and expected C release for eroded 

sites locations. I observed no significant (Figure 7.5 a, b) difference between observed 

and expected cumulative C release in this soil samples and thus reject this hypothesis. 

Equally I did not observe any evidence for positive priming effects associated with 
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could have been caused by fresh organic matter in the topsoil promoting 

decomposition of older subsoil C. This may be related  to the relatively low organic 

matter content of subsoils in eroded areas and/or a predominance of physically or 

chemically protected SOC (Quine and Van Oost., 2007; Six et al., 2002). This result 

confirms that the mixing of the top and sub-soil SOC at the eroding position does not 

cause sizeable losses of C due to priming or promote C sequestration onto 

unsaturated soil particles (Kuzyakov et al., 2000; Fontaine et al., 2007; Salome et al., 

2010). Despite this, as highlighted above there remains the potential for dynamic 

replacement of eroded C in these areas as evidenced by the high C contents in the 

eroded surface samples which should have been a mixture of top and subsoils. 

My second hypothesis was that in depositional areas, mixing fresh organic matter from 

top soils into organic matter-rich subsoils will promote C release through a positive 

priming effect. This hypothesis was supported by the results with greater than 

expected losses from the combined soils, compared with the results from the individual 

incubations (Figure 7.5 a, b). When depositional subsoils were incubated on their own 

the rate of respiration per unit SOC was lower than in eroded locations despite the 

expectation that there should be more young C present in these samples. If the 

assumption is made that the additional C released was from the mixed samples was 

derived from the sub-soil part of the mixture (justifiable given that it was the subsoils 

that differed more between eroded and depositional locations, especially at Site 1), 

then the additional 2.5 to 10 mg CO2-C g-1SOC would represent an increase in 

decomposition of 25 to 100%. This suggests strongly that in these buried depositional 

soils, microbial activity is strongly limited by the availability of readily decomposable 

organic matter (Fontaine et al., 2007). From this result it can be proposed that the 

deposition profiles facilitate a C-sink when there is rapid and continuous burial by 

burying organic matter below the depths that receive large amounts of contemporary 

C inputs. It is important to emphasize that unlike many previous experiments (e.g. 

Hartley et al., 2010) priming effects were studied over a 1-year incubation in this study 

and positive effects of mixing were observed throughout in the soils from Site 1 

suggesting that these effects are meaningful for long-term controls on agricultural SOC 

dynamics (Figure 7.6a). Therefore, it should also be mentioned that if deep ploughing 

or any other practices mixes horizons together  buried SOC could be lost and C sink 
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strength will reduced (Fontaine et al., 2007;Van Oost et al., 2012; Vandenbygaart et 

al., 2012, 2015 ; Wang et al., 2013 Wang et al., 2014, Wang et al., 2015).  

7.4. Conclusion 

The results of this study suggest that erosion-induced redistribution can promote a C 

sink through dynamic replacement of SOC at eroding positions, and burial of SOC at 

deposition positions. The former is illustrated by the high topsoil C contents in eroded 

locations, will positive priming effects following the mixing of depositional top and 

subsoils suggests that microbial activity is strongly limited by the availability of readily-

decomposable organic matter in organic matter rich buried horizons. 

7.5. Key findings 

 137Cs activity inventory clearly showed areas of erosion and deposition within 

the study area.  

 SOC, TN and CN ratio pattern also changed according to soil redistribution 

within the study fields. There is an eroding profile deficit apparent for SOC and 

TN, and an accumulation apparent in the deposition areas. The similarity of 

organic matter contents in eroded topsoils compared with the other locations 

indicates a dynamic replacement has occurred. 

 Sub-soil eroding profiles showed a higher rate of respiration than deposition 

samples, suggesting that either there is a small amount of labile C in the eroded 

deep layers responsible for the higher rate of respiration per unit SOC, or that 

burial is effective in reducing rates of decomposition in the depositional areas 

 Mixed soils respiration eroding profiles showed no detectable positive or 

negative priming effect, however, the deposition samples showed a positive 

priming effect, with up to a doubling of the rate of decomposition of sub soil 

organic matter.  

 The incubation study (one year in duration) confirmed erosion induced 

redistribution/mixing process favours a C sink, with no evidence that burial in 

depositional areas reduces microbial activity by isolating organic matter from 

contemporary C inputs. 
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8. Conclusion  

8.1 Introduction 

Recent studies have shown the importance of the effect of soil redistribution on the 

spatial variation of: nutrients, C fluxes between soil and atmosphere; and soil 

respiration; and these emphasise the importance of these for better understanding of 

SOC dynamics (Quine and Van Oost., 2007; Van Oost et al., 2007; Doetterl et al., 

2012; Li et al., 2015; Doetterl et al., 2016). These studies also demonstrate the need 

to extend understanding of these processes to low productivity agricultural systems. 

Therefore, this study has focussed on developing an understanding of the soil 

redistribution/erosion induced spatial variation of nutrients (C, N and P), net C flux 

between soil and atmosphere and soil respiration rates across a topographic gradient 

within low input and productivity agricultural fields in the foot hills of the Indian 

Himalaya.  

 

Based upon a review of current understanding, presented in Chapter 2, there 

remained a need to gain further understanding supported by experimental data in 

several critical areas. Chapter 3 identified the key aims of this project.  Based upon 

identified areas for further research, Chapter 4 outlined the methodological approach 

to address identified objectives, whilst Chapters 5-7 presented results and analysis. 

Key findings of each objective are summarised individually, within the context of the 

main aim of this study. 
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8.2. Summary of key results for each objective 

Objective 1: To quantify the impacts of erosion-induced soil redistribution on SOC 

and nutrients distributions (lateral and vertical) within agricultural fields. 

 

Chapter 5 addressed objective 1 by characterising lateral (along slope transect) and 

vertical (depth increment) distributions of 137Cs, SOC, TN, and P concentration (activity 

or mass per unit mass) and inventory (activity or mass per unit land surface area) and 

C:N and C:OP ratio for each field from all study sites. The 137Cs tracer technique was 

adopted to characterise soil redistribution, the basic principle is that where soil loss 

occurs 137Cs inventories are low (lower than fallout input) and where soil accumulation 

occurs inventories are high (higher than fallout input). The complete results presented 

in Chapter 5 (Section 5.3.1) reveal a consistent pattern in which profiles from the 

upslope positions in most of fields are characterised by 137Cs inventories significantly 

(p<0.05) lower than profiles located in the mid and downslope positions of the fields. 

This provides strongly evidence of within field soil redistribution. This pattern of 

inventories is also reflected in differences in the activity depth distributions with lower 

maximum depth of elevated 137Cs activity in the eroding upslope pits and elevated 

137Cs activity at greater depths in the downslope pits. The pattern of 137Cs variation 

within field and pit is consistent with the influence of both water and tillage erosion 

within the fields. The 137Cs tracer results also provide strong support for the suitability 

of the approach for tracing and studying soil redistribution in this environment.  

The SOC and TN distributions with depth and along the slopes (Section 5.3.2-5.3.8) 

followed a similar pattern to 137Cs. Upslope positions, which on the basis of 137Cs 

inventories are considered eroded, exhibited significantly lower (p<0.05) inventories 

than were observed in 137Cs-enriched downslope areas, considered to be depositional. 

Like SOC and TN, P (OP and TP) also followed similar pattern except at Site 3 

(calcareous soil fields). The fields, therefore, display a pattern of nutrient loss over the 

eroding upslope sections and nutrient and SOC burial in aggradation areas. In the 

eroded sections, loss of top soil and the consequent mixture of remaining plough soil, 

nutrients and SOC-poor sub-soil creates the potential for SOC sequestration and other 

nutrient stabilization (Harden et al., 1999). There is evidence that this is occurring in 

the fields studied here in the relatively small depletion of SOC, N and P at eroding 

locations compared to the high levels of depletion of 137Cs. Although burial of nutrient 
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and SOC rich topsoil at depositional areas may suggest that these play an important 

role in C and nutrient sequestration, the soil erosion budgets presented in Chapter 6 

indicate that within field storage of redistributed soil accounts for a smaller proportion 

of eroded soil than in mechanised farm lands (Quine and Van Oost, 2007; Van Oost 

et al., 2007). At the study sites, most of eroded sediment, SOC and sediment-

associated N and P is exported beyond the field boundaries and this creates a deficit 

of nutrient in these low input farm lands. The implications of subsoil C excavation and 

mixing at eroding positions and top soil burial and mixing at deposition positions are 

addressed in chapter 6 and 7.   Over all spatial variation within field pattern of 137Cs, 

SOC and nutrients strongly evidenced influence of soil redistribution process on within-

field soil variability.  

 

Objective 2: To quantify the effect of erosion-induced soil carbon redistribution on the 

net carbon exchange between soil and atmosphere in low input/productivity and highly 

eroding agricultural fields from the foothills of the Indian Himalaya by using 137Cs fallout 

and SOC inventories 

Soil redistribution rates and net C flux between soil and atmosphere derived using the 137Cs 

and SOC inventory and depth distribution data (from Chapter 5) for study area are 

presented in Chapter 6. The C flux quantification model (Section 4.3), based on the 

method developed by Quine and Van Oost (2007), was used to estimate lateral and 

vertical soil and SOC redistribution under an assumption of equilibrium conditions and 

the net exchange of C between soil and atmosphere was derived from the difference 

between measured and ‘equilibrium’ SOC inventories. Net C fluxes were derived for 

each landscape position within the agricultural fields studies and calculated at field 

and site scale (Section 6.2). The result indicate that erosion rates (1.31 to 3.2 kg m-2 

y-1) are in the mid-range for the region and that the great majority of eroded soil (88%) 

is exported from the fields and only 12% of sediment redeposited within fields. Eroded 

SOC is exported and redeposited in the same proportions. The effect of high rate of 

soil and SOC redistribution was to create disequilibrium in SOC dynamics at eroding 

and deposition positions and this supported the formation of a field scale C sink. The 

sink strength is highest in the most eroded parts of the fields due to dynamic 

replacement of eroded C (Harden et al., 1999). This is assumed to be due to the high 

rate of incorporation of SOC-poor subsoil, with a large C-unsaturated surface area, 
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into the cultivation layer. The C sink is smaller to those reported from high nutrient-

input mechanised farm lands (Quine and Van Oost, 2007; Van Oost et al., 2007). 

Irrespective of the fate of exported SOC, the SOC stocks in the fields appear to be in 

dynamic equilibrium condition and, therefore, there is no evidence of a direct C source 

to atmosphere due to erosion. This is very similar to the recent finding of equilibrium 

soil C stocks in highly eroding fields in the Loess Plateau (Li et al., 2015). Also the rate 

of SOC export from the fields is very high, especially when compared with mechanised 

field, and if it is assumed that some portion of exported C is stored in some part of low 

lying area then the C sink strength would be comparable to mechanised farm lands.  

Nevertheless, despite the field SOC stocks appearing to be in dynamic equilibrium, 

the SOC stocks and the surface concentrations over the most eroded parts of the fields 

are significantly depleted compared to the stable and depositional areas within the 

fields (section 5.3). This has potentially important implications because of the 

important role that SOC plays in regulating soil quality and soil productivity. First, it is 

likely that the depletion of SOC over the eroded field area affects soil function and 

limits crop production. Second, because my results suggest that the soils of the most 

eroded part of field have low SOC saturation, there is potential to store more C in these 

soils if they can be improved. Therefore, notwithstanding the observed net C sink in 

the eroded landscape elements, it is suggested that adoption of best management 

practice (nutrient management, crop residue, erosion-control, etc) should be adopted 

to increase the SOC saturation level and target co-benefits for crop productivity and 

other ecosystem services. This is particularly important as there is some circumstantial 

evidence that the current ‘equilibrium’ state in SOC stocks within the field is in part 

maintained by import of biomass from neighbouring forest ecosystems. This is an 

aspect of the C-dynamics of these field systems that warrants further investigation. 

 

Objective 3: To study the effect of erosion- and deposition-induced vertical soil/SOC 

mixing on soil respiration rates at various landscapes positions. 

As discussed in Chapter 5 and 6, the soil redistribution and C flux study confirmed the 

existence of spatial variation in C flux at various landscapes position and was 

consistent with an important role for vertical mixing of soil and SOC in determining net 

C exchange with the atmosphere. This informed the design of the final element of the 

research that examined soil respiration differences in soil from shallow and deep 
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layers in eroding and aggrading landscapes position (Objective 3 addressed in 

Chapter 7). Respiration was measured over a one year period in samples derived from 

separate depth layers and in mixtures of soil from different depths from each 

landscape position. No significant difference was found in C release rate (per unit 

mass of C) from topsoil of eroding and deposition position but the subsoil of eroding 

pits exhibited significantly (p<0.05) higher C release than the subsoil from deposition 

positions. This is similar to the observations made by Doetterl et al. (2012) working in 

mechanised agricultural landscapes in Western Europe. The results found in this study 

are considered to demonstrate that topsoil in both locations has almost equal and 

similar C origin. The relatively high rate of respiration in sub soils from eroding pits 

may be due to the presence of a larger proportion of SOC formed from recently 

incorporated plant material (crop roots) at these locations. In buried and deposition 

locations the reduced mineralisation is consistent with the proposition that burial of top 

soil can contribute to formation of a C sink. In the samples containing mixed topsoil 

and subsoil, evidence for priming was seen where the respiration rate in the mixed 

sample was significantly higher than the expected rate based on the respiration rate 

seen in the separate depth samples. No priming was evident in mixed soils from 

eroding locations, suggesting that mixing of subsoil and surface soil does not 

accelerate loss of old SOC from the subsoil.  In contrast, significant (p<0.05) priming 

action was evident in mixed soils from aggrading locations suggesting that buried SOC 

at depositional locations may be subject to accelerated respiration as long as it is 

exposed to fresh plant input (as found in surface soils).  

8.3. Areas for further research 

 There is good evidence in this study for the viability of using 137Cs to trace erosion 

in the study region. However, if this is to be undertaken on a routine basis it will be 

essential to obtain reliable data for 137Cs fallout reference inventories. An initial 

investment in systematic activity to define patterns of fallout input to the region would 

be a strong basis for future work across multiple field sites.  

 There is clear potential to use or adapt existing coupled erosion-C dynamics models 

(Van Oost et al., 2005a) to gain further insights into the relationship between erosion, 

C-dynamics and soil quality and to explore the relative importance of tillage and 

water erosion. Such work could incorporate the data obtained in this study.  
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 Due to presence of inorganic carbon in one site it was difficult to interpret soil 

respiration results. Future studies could use the isotopic signature of respired C to 

discriminate between inorganic and organic sources. The equipment needed to do 

this is now much more readily available than when this study began.  

 Phosphorus redistribution studied in carbonate soil did not show any systematic 

relationship with soil redistribution. This implies that interaction between the P-cycle 

and carbonate weathering may be important at these sites and this requires further 

investigation.  

 The observed results of priming action at deposition sites in this study are potentially 

important for the survival of SOC in depositional locations and, by implication, the 

C-dynamics of erosion-deposition systems. Further investigation is needed to more 

clearly isolate the controls on this important process and temporal evolution of the 

priming effect over long time-scales.  

 While this study demonstrated dynamic replacement of C occurred in eroding 

agricultural fields, further investigation of the mechanisms is required. Greater 

understanding could be achieved if the origin of replaced C was known and there is 

potential to use the contrasting isotopic C signatures of C3 and C4 plant material to 

advance this field.  

 Most of the eroded sediment and SOC was exported from the fields of this region 

and there is a need for further study of the fate of exported SOC beyond field 

boundaries. 

 The possibility that these field systems are in receipt of additional C inputs from 

other ecosystems warrants further investigation because this has significant 

implications for assessment of landscape-scale C fluxes.    

8.4. Broader Context and Conclusions 

In conclusion, despite the low input and low productivity of the farmlands in the Indian 

Himalaya region studied here, there is consistent evidence that high rates of soil 

erosion and soil redistribution have induced spatial variation of nutrients and SOC, net 

C flux and soil respiration rates that combine to create a pattern of soil SOC stocks 

that are close to equilibrium and, if some of the exported C is sequestered, to create 

a net C sink. This result again confirms that erosion induced redistribution of C does 

not directly cause a net release of C to the atmosphere.  Similar results have also been 

found in the highly eroding environment of the Loess Plateau in China (Li et al., 2015). 
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However, this remains a controversial topic and many soil scientists express concern 

at the suggestion that erosion creates a sink, as can be seen in the Lal and Pimentel 

(2008) response to the paper by Van Oost et al. (2007) that provided evidence for a 

global C sink associated with erosion on agricultural land. The conclusions of this 

study should not be read as justifying land degradation; however, it does mean that 

care is needed in establishing the C sequestration benefits of land use change, 

especially if such estimates are used to justify or offset C-releasing activity such as 

fossil fuel combustion. 

 

The results and conclusions raise three broader questions that I will attempt to address 

here.  

1. What are the impacts of the high rates of erosion observed at these sites 

and what would be the potential benefits of reducing erosion?  

The evidence in Chapters 5 and 6 makes clear the effect of soil redistribution and the 

significantly reduced nutrients and SOC over the most eroded parts of the fields and 

the high rates of nutrient export from the fields. These results are consistent with earlier 

studies that reported high net loss of soil for this region, based on run off plot and 

survey techniques (Singh and Gupta, 1982; Singh et al., 1992; Singh et al., 2016). To 

sustain crop production in this highly eroding region it is recommended that N P K 

doses of 120:60:40 kg ha−1 are applied for Maize–wheat cropping systems (Ghosh et 

al., 2015b). Nevertheless, in this low income region inorganic fertilisers are rarely used 

and famers rely on farmyard manure as the principal amendment. While the organic 

amendments contribute to maintenance of SOC stocks in an equilibrium state, they 

are less effective in making up for the loss of nutrients. Furthermore, as mentioned 

above, there is some observational and oral reporting evidence that local forest 

ecosystems are currently used to supplement organic amendments to the fields and 

there is a risk that, if this were to increase, it could lead to degradation of these 

ecosystems. Therefore, despite the appearance of an equilibrium state, the fields are 

neither in a sustainable nor optimal state for crop production.  

In summary, my study results identify the need for erosion control measures and 

sustainable nutrient management program for this region to support continued crop 

production. Otherwise due to continued loss of nutrients, it is expected that crop 

productivity will be reduced and this will affect total food production in this region. 
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Furthermore, the nutrient loss has implications for water quality and for regional 

economics if the government subsidises fertilizers input to address the problems. 

 

2. What are the implications for current land use in the region?  

My study found that despite erosion, SOC stocks appear to be in dynamic equilibrium 

(Chapter 6). Nevertheless, as discussed above this equilibrium state is associated with 

depleted SOC and nutrient stocks across the eroded part of the landscape (78% area) 

and with significant loss of SOC and nutrients from the fields. If these fields are to be 

retained in continuous sustainable crop production there is a need for improved 

management including integrated nutrient management techniques (Ghosh et al., 

2014 and 2015a). These crop management practices would be based on supply of 

combined nutrient from inorganic and organic and use a wide variety of the latter 

including:  farm yard manure, vermicompost, poultry manure and other indigenously 

available manures.  

This study also reported key result on spatial variation of nutrients and SOC within 

fields which has not been previously reported for this high eroding region. These 

results demonstrate the potential for farmers to ‘precision’ manage land by specific 

interventions at the sub-field scale to improve the nutrient-poor locations without 

unnecessary amendments to the nutrient- rich land to reduce cost and support 

environmental friendly farming. The high rates of soil and nutrient export can be 

addressed by adopting erosion management measures such as crop selection 

(erosion resistant), crop space management (intercrops) management, crop residue 

management, proper tillage practice, sub-field level crop management (upslope field -

grown less water demanding crop and downslope field- more water demanding crops) 

and adopting conservation engineering measures (field bund across slope to reduce 

erosion). These erosion control measures help to reduce soil loss but complete 

eradication of soil erosion in this region is impossible because of nature of the fields’ 

topography (slope/hill farming), soil type (more susceptible to soil loss), and the high 

intensity rain fall (nearly 1400mm rain fall within July to September). My study result 

suggests that strong site specific management of field for sustainable crop 

management are required.  

An alternative strategy would be to convert from continuous cultivation on the slopes 

to adoption of Horticulture (fruit trees), Agri-horticulture, Agro-forestry, Animal farming 
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(managed grass lands). This would follow the “Grain to Green” model adopted in China 

where cultivation was stopped in the most eroded part of the land and the area was 

given over to growing other permanent trees etc to stop degradation of land and 

enhance ecosystem service delivery. Nevertheless, this would be very challenging in 

this region because of the large population reliant on farming for subsistence 

purposes. 

 

3. How should these results influence ICAR advice and Indian government 

policy regarding erosion prevention, carbon sequestration, etc.?  

At present, although there are many programmes run by state and central government 

to control erosion, promote better crop production on site, and reduce off site erosion 

effects, there has been little less focus on C sequestration on eroded landscapes. 

However, ICAR and the Indian Soil and Water Conservation Institute have a 

developing programme with a main focus on C sequestration on eroded landscapes 

through the adoption of better land management/conservation measures 

(Bhattacharya et al., 2009; Ghosh et al., 2014 and 2015a). This study will complement 

and inform this developing research programme by providing the first study from this 

region to address the influence of erosion on C sequestration. The consistency of my 

results with previous studies suggests that there is both scope and need for soil 

erosion induced carbon fluxes to be incorporated into carbon budgets, research 

frameworks, land management and climate change mitigation strategies at policy-

relevant scales. It is clearly essential that the C sequestration potential of soil 

redistribution is recognised and accounted for when quantifying the very real benefits 

to be gained from interventions that increase local SOC inventories and benefit the 

delivery of ecosystem services through management practices that control erosion. 

As strategies are developed to address the 95 m ha undergoing erosion in India, it is 

imperative that win-win (erosion-reduction and productivity increase) potential is 

recognised but not overstated as win-win-win with assumed C sequestration benefits 

embedded without accounting for the offset created by loss of erosion-induced C 

sequestration. If this is not undertaken then, errors made in estimation of C-

sequestration benefit of land use change over an area of this magnitude could have 

far-reaching consequences. 
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Appendix   from chapter 4 to 7 

 

Appendix for Chapter 4 include from Appendix Table 4.1 to 4.5, Appendix Figure 

4.1 to 4.5 and Appendix text 4.1 

 

 

 

             

Appendix Figure 4.1 Field shape images for Site 1 (All slope fields and non slope 

fields) 
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Appendix Figure 4.2 Field shape images for Site 2 (All slope fields and non slope 

fields) 
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Appendix Figure 4.3 Field shape images for Site 3 (All slope fields and non slope 

fields) 
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Soil pH and EC 

Appendix Table 4.1 Soil pH and EC (dsm-1) for composite soils of various depths 

(vertical) and along slope (lateral) for fields from Site 1(Dhulkhot). 

 

 

 

 

 

 

 

 

Site 1 Depth P1 P2 P3 P4 P5 P6

Fields pH  EC pH  EC pH  EC pH  EC pH  EC pH  EC

DKF1 0-10 5.25 0.27 4.9 0.15 5.13 0.12 5.21 0.12 5.04 0.21 5.2 0.24

10-20 5.05 0.1 5 0.06 5.23 0.06 5.13 0.06 5.08 0.07 5.2 0.14

20-30 5.05 0.16 4.91 0.08 5.23 0.07 5.02 0.06 4.97 0.08 5.04 0.12

30-50 4.98 0.07 5.09 0.03 5.21 0.04 5.05 0.03 4.92 0.06 5.05 0.05

50-70 5.13 0.06 5.05 0.03 5.14 0.04 5.07 0.03 4.95 0.04 5.02 0.04

70-100 4.99 0.04 5.15 0.02 4.72 0.08 5 0.03

DKF2 0-10 5.49 0.17 5.28 0.39 5.35 0.22 5.22 0.12 5.21 0.24

10-20 5.95 0.07 5.59 0.13 5.5 0.08 5.46 0.06 5.59 0.07

20-30 5.77 0.09 5.45 0.14 5.38 0.15 5.28 0.09 5.39 0.08

30-50 5.72 0.07 5.44 0.07 5.47 0.08 5.38 0.03 5.16 0.07

50-70 5.56 0.06 5.35 0.05 5.33 0.02 5.15 0.05

70-100 4.9 0.2 5.28 0.07 4.86 0.18

0-10 5.07 0.11 5.08 0.13 5.13 0.16 5.38 0.08 5.28 0.12 5.31 0.09

DKF3 10-20 5.36 0.05 5.32 0.04 5.45 0.05 5.63 0.03 5.57 0.04 5.62 0.04

20-30 5.27 0.05 5.28 0.05 5.38 0.06 5.47 0.04 5.45 0.04 5.57 0.04

30-50 5.24 0.04 5.26 0.04 5.42 0.03 5.31 0.02 5.35 0.02 5.51 0.02

50-70 5.04 0.06 4.8 0.16 5.39 0.02 5.3 0.01 5.33 0.01 5.61 0.01

70-100 4.97 0.09 4.4 2.46 5.02 0.04 4.87 0.08 4.92 0.66

0-10 5 0.14 5.12 0.15 5.16 0.13

DKRef 10-20 5.32 0.04 5.43 0.06 5.47 0.05

20-30 5.31 0.05 5.4 0.06 5.43 0.06

30-50 5.37 0.03 5.38 0.04 5.32 0.04

50-70 5.3 0.03 5.3 0.04 5.28 0.04

70-100 5.31 0.02 5.11 0.16
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Appendix Table 4.2 Soil pH and EC (dsm-1) for composite soils of various depth 

(vertical) and along slope (lateral) for fields from Site 2 (Pasauli) 

 

 

 

 

 

 

 

 

Site 2 Depth P1 P2 P3 P4 P5 P6 P7

Fields pH  EC pH  EC pH  EC pH  EC pH  EC pH  EC pH  EC

PSF1 0-10 5.78 0.09 5.46 0.13 5.75 0.1 5.59 0.07 5.61 0.07 5.39 0.09

10-20 5.72 0.05 5.5 0.07 5.72 0.09 5.43 0.05 5.46 0.06 5.41 0.06

20-30 5.65 0.04 5.51 0.06 5.71 0.08 5.36 0.05 5.41 0.05 5.35 0.05

30-50 5.55 0.02 5.32 0.06 5.38 0.06 5.15 0.05 5.18 0.05 5.24 0.05

50-70 5.6 0.02 5.27 0.05 5.33 0.04 5.1 0.03 5.22 0.03 5.3 0.04

70-100 5.51 0.03 5.19 0.07 5.3 0.04 5.23 0.03 5.3 0.03

PSF2 0-10 5.97 0.21 5.15 0.14 5.12 0.05 5.14 0.12 5.34 0.1 5.12 0.13 5.16 0.1

10-20 6.14 0.1 5.12 0.08 5.21 0.04 5.26 0.07 5.43 0.05 5.41 0.04 5.28 0.07

20-30 6.12 0.09 5.13 0.08 5.15 0.05 5.14 0.11 5.41 0.05 5.39 0.04 4.93 0.31

30-50 6.08 0.05 5.21 0.06 5.23 0.04 5.21 0.04 4.8 0.36 5.36 0.04 5.37 0.05

50-70 5.95 0.04 5.37 0.03 5.36 0.03 5.34 0.04 4.68 1.43 5.38 0.03 5.34 0.05

70-100 6.02 0.02 5.49 0.03 5.38 0.02 5.35 0.04 4.78 0.36 5.35 0.04 5.33 0.04

0-10 5.01 0.19 4.89 0.12 4.76 0.09 4.66 0.17 4.87 0.14 4.78 0.17

PSF3 10-20 5.15 0.13 5.09 0.06 4.84 0.06 4.75 0.09 5.07 0.09 4.97 0.08

20-30 5.15 0.12 5.18 0.05 4.84 0.06 4.78 0.09 5.13 0.1 4.86 0.12

30-50 5.34 0.05 5.36 0.04 5.17 0.04 5.14 0.06 5.44 0.05 5.1 0.05

50-70 5.22 0.09 5.5 0.03 5.38 0.02 5.34 0.03 5.4 0.03 5.22 0.03

70-100 5.31 0.03 5.43 0.03 5.28 0.02 5.36 0.03 5.08 0.05

0-10 5.58 0.33 7.45 0.17 6.16 0.22

PSRef 10-20 5.54 0.25 7.46 0.16 6.18 0.18

20-30 5.62 0.31 7.41 0.17 6.2 0.19

30-50 5.78 0.06 7.14 0.07 6.35 0.08

50-70 5.83 0.04 6.72 0.05 6.43 0.04

70-100 5.82 0.04 6.47 0.06 6.45 0.03
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Appendix Table 4.3 Soil pH and EC (dsm-1) for composite soils of various depth 

(vertical) and along slope (lateral) for fields from Site 3 (Bhatta Gaon)  

 

 

 

 

 

 

 

 

 

Site 3 Depth P1 P2 P3 P4 P5 P6 P7

Fields pH  EC pH  EC pH  EC pH  EC pH  EC pH  EC pH  EC

BGF1 0-10 6.91 0.48 6.90 0.22 6.90 0.20 6.84 0.32 7.03 0.30 7.10 0.39 6.98 0.58

10-20 6.87 0.29 6.88 0.15 6.89 0.19 6.93 0.27 7.25 0.27 7.27 0.30 7.21 0.25

20-30 7.04 0.14 6.85 0.12 6.96 0.15 6.93 0.20 7.43 0.27 7.44 0.25 7.23 0.21

30-50 7.17 0.07 6.90 0.10 7.18 0.07 7.11 0.11 7.68 0.26 7.39 0.18

50-70 7.21 0.09 6.80 0.13 7.27 0.10 7.45 0.19 7.66 0.17

70-100 7.54 0.10 6.84 0.11 7.29 0.12 7.69 0.22 7.69 0.17

BGF2 0-10 7.01 0.36 7.10 0.42 7.35 0.30 7.31 0.27 7.42 0.26 7.40 0.35

10-20 7.19 0.22 7.28 0.18 7.38 0.26 7.26 0.22 7.63 0.20 7.48 0.34

20-30 7.24 0.13 7.29 0.15 7.23 0.18 7.19 0.15 7.73 0.20 7.59 0.23

30-50 7.20 0.12 7.40 0.11 7.17 0.11 7.09 0.12 7.79 0.11

50-70 7.25 0.09 7.46 0.08 7.25 0.10 7.15 0.11

70-100 7.31 0.07 7.43 0.11 7.28 0.08 7.11 0.12

0-10 7.07 0.36 7.22 0.28 7.14 0.37 7.16 0.33 7.24 0.34

BGF3 10-20 7.35 0.3 7.27 0.24 7.43 0.31 7.34 0.21 7.34 0.18

20-30 7.66 0.28 7.24 0.21 7.55 0.26 7.43 0.14 7.27 0.16

30-50 7.27 0.1 7.36 0.12 7.61 0.14 7.34 0.15

50-70 7.28 0.08 7.49 0.11 7.78 0.11 7.41 0.12

70-100 6.97 0.28 7.79 0.17 7.37 0.42 6.88 0.31

0-10 7.24 0.37 7.37 0.29 7.25 0.34

BGRef 10-20 7.3 0.35 7.4 0.24 7.31 0.26

20-30 7.38 0.31 7.31 0.2 7.15 0.24

30-50 7.52 0.22 7.26 0.14 7.11 0.2

50-70 7.3 0.12 7.08 0.17

70-100 7.23 0.13 7.29 0.1
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Appendix Table 4.4 Inorganic carbon (IOC) content in soils from calcareous soils of 

Site 3. Mean values ± SE (n = 3) are presented 

 

 

 

 

 

 

Fields ID P1 P2 P3 P4 P5 P6 P7

Depth (cm) IOC % SE IOC % SE IOC % SE IOC % SE IOC % SE IOC % SE IOC % SE

0-10 0.07 0.29 0.06 0.04 -0.04 0.10 -0.02 0.02 0.08 0.12 -0.17 0.16 0.40 0.04

BGF1 10-20 0.06 0.06 0.00 0.11 0.03 0.03 0.08 0.08 0.25 0.17 0.33 0.10 -0.03 0.09

20-30 0.05 0.02 0.07 0.04 0.08 0.01 -0.26 0.30 0.18 0.07 0.22 0.06 0.12 0.02

30-50 0.03 0.03 -0.02 0.04 -0.01 0.01 -0.04 0.10 -0.05 0.37 0.00 0.01

50-70 0.00 0.01 0.00 0.00 -0.02 0.01 0.32 0.21 0.08 0.07

70-100 0.54 0.53 0.07 0.03 -0.01 0.01 0.71 0.62 0.31 0.19

P1 P2 P3 P4 P5 P6

IOC % SE IOC % SE IOC % SE IOC % SE IOC % SE IOC % SE

0-10 0.37 0.12 -0.30 0.21 0.39 0.15 0.16 0.16 0.03 0.13 0.76 0.32

BGF2 10-20 0.21 0.07 -0.21 0.20 0.39 0.20 0.19 0.10 0.53 0.32 1.07 0.10

20-30 -0.04 0.02 -0.09 0.07 0.08 0.09 0.06 0.07 1.12 1.04 0.45 0.08

30-50 -0.02 0.02 -0.01 0.00 0.01 0.02 0.01 0.02 0.30 0.24

50-70 -0.02 0.01 0.05 0.05 0.02 0.02 -0.02 0.02

70-100 -0.04 0.02 0.00 0.00 0.02 0.01 0.01 0.01

P1 P2 P3 P4 P5

IOC % SE IOC % SE IOC % SE IOC % SE IOC % SE

0-10 0.32 0.12 0.07 0.13 -0.11 0.26 -0.11 0.05 0.35 0.10

BGF3 10-20 0.47 0.34 0.27 0.05 0.45 0.35 0.08 0.02 0.09 0.08

20-30 1.42 0.07 0.08 0.01 0.21 0.20 0.00 0.03 -0.06 0.09

30-50 0.07 0.03 0.02 0.01 0.01 0.00 0.01 0.04

50-70 0.00 0.01 0.04 0.04 -0.02 0.00 -0.01 0.03

70-100 0.01 0.01 0.10 0.08 -0.01 0.00 0.00 0.01

Ref1 Ref2 Ref3

IOC % SE IOC % SE IOC % SE

0-10 1.12 0.29 1.02 0.52 0.68 0.08

BGRef 10-20 1.24 0.06 0.82 0.39 0.59 0.23

20-30 1.26 0.35 0.50 0.11 0.28 0.13

30-50 1.18 0.44 0.09 0.05 0.00 0.01

50-70 0.02 0.01 0.01 0.01

70-100 0.04 0.01 0.00 0.00
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Appendix Figure 4.4 Trial for IOC removal conducted with more carbonate soil 

(above) and less carbonate soil (bottom). Mean values ± SE (n = 3) are presented  
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Appendix Table 4.5 Soil particle size fractionation along slope transect up to 50 cm 

depth for BGF1. Mean values ± SE (n = 3) are presented 
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Appendix Figure 4.5 Soil particle size fractionation along slope transect total of up to 

50 cm depth for BGF1. Mean values ± SE (n = 3) are presented 

 

 

 

 

 

 

 

 

0

10

20

30

40

50

60

70

80

P1 P2 P3 P4 P5 P6 P7

P
a

rt
ic

le
 s

iz
e

 f
ra

c
ti

o
n

  
(%

)

Pits along slope transect

2000-250 µm

250-63 µm

63-20 µm

<20 µm



  203 
  
 

Appendix Table 4.6 Soil particle size distributions at various slope positions and 

depths and Enrichment Ratios (ER), representing the downslope % divided by the 

upslope %. At sites 1 and 2 there appears to be modest silt enrichment in the surface 

soil layer at the downslope sites. In contrast, at Site 3 there is no clear evidence of 

enrichment of any fraction at the downslope pit with the possible exception of some 

clay depletion in the sub-surface downslope.  

 

 

 

 

 

 

 

 

 

 

Sites Slope Pits Depth in cm Clay % D/ U Silt % D/ U F.Sand C.Sand Sand % D/ U Soil texture type

< 0.002 mm ER 0.002-0.02 mm ER 0.02-0.2 mm 0.2-2 mm ER Based on ISSS

Upslope (U) DKF1 P1 0-10 16.8 25.6 57.1 0.5 57.6 Loam

30-50 18.4 29.6 39.38 12.62 52 Loam

Site 1

Downslope (D) DKF1 P6 0-10 15.2 0.90 33.6 1.31 45.56 5.64 51.2 0.89 Loam

30-50 18.4 1.00 34.4 1.16 45.96 1.24 47.2 0.91 Loam

Upslope (U) PSF3 P1 0-10 15.2 20.8 33 31 64 Sandy loam

Site 2 30-50 11.2 25.6 33.6 29.6 63.2 Sandy loam

Downslope (D) PSF3 P6 0-10 13.6 0.89 36 1.73 40.32 10.08 50.4 0.79 Loam

30-50 15.2 1.36 32.8 1.28 40.6 11.4 52 0.82 Loam

Upslope (U) BGF2 P1 0-10 19.2 34.4 30 16.4 46.4 Loam

30-50 24 30.4 22.4 23.2 45.6 Loam

Site 3

Downslope (D) BGF2 P6 0-10 16.8 0.88 32.8 0.95 36.3 14.1 50.4 1.09 Loam

20-30 16.8 0.70 31.2 1.03 31.4 20.6 52 1.14 Loam
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Appendix Text 4.1 Soil particle size distribution by dry Sieving: 

 Soil air dried and crushed with pestle and mortar and sieved with <2 mm sieve. 

 50 g air dried soils < 2mm size put on nest of sieve 2000 μm (coarse sand), 

250 μm (fine sand), 63 μm (silt and clay) and 20 μm and shaken for 5-10 

minutes by using shaker. Particles retained and passed through the sieves will 

be weighed and put into original bags separately (this soil can be reused but it 

may be very slightly contaminated due to particle struck in sieves). After each 

sample sieving, sieves will be cleaned properly. 

  This particle size decided based on International society of soil science. 
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Appendix text 4.2 

Inorganic carbon (IOC) removal procedures 

There are four common methods adopted by many researchers to remove Inorganic 

carbon from soil: 

Acid rinse/ washing method: here the soils are entirely mixed with diluted acid and 

washed with de-ionised water and followed drying and measuring the organic carbon 

and δ 13C content (Midwood and Boutton, 1998; Collin et al., 1999; Fernandes and 

Krull, 2008). 

Limitation: a. loss of OC and change in δ 13C signature and loss fine soil materials 

b. time and labour consuming  

Capsule method/ aqueous acid addition: Addition of stepwise diluted acid and water 

directly into soil which is in Silver capsule and transferred to metal tray and kept on 

hot plate. The sample monitored for effervescence and indicating IOC reaction. After 

end of reaction capsule folded and packed in Tin capsule and measured OC and δ 13C 

content (Verardo et al., 1990). 

Limitation: soil contamination by violent effervescence and soil loss affect OC 

Acid fumigation by HCL:  soil samples weighed in Silver capsule and placed in 

microtiter tray. Add water to moisten in soils and keep tray in Desiccator.  100 ml of 

Conc HCL acid in beaker placed inside desiccator. Keep both in desiccator leave it for 

6-8 hrs and remove tray and dry in oven and   cool then pack fold the capsule and 

measure OC and δ 13C (Harris et al., 2001). 

Limitation: it will alter N content and δ 15N. Brittle capsule and loss of soil 

Benefit:  many samples can processed, no effect on OC and δ 13C 

Loss on Ignition (LOI): LOI calculates %OM by comparing the weight of a sample 

before and after the soil has been ignited. Before ignition the sample contains OM, but 

after ignition all that remains is the mineral portion of the soil. The difference in weight 

before and after ignition represents the amount of the OM that was present in the 

sample (Ball, 1964; Schulte and Hopkins, 1996) 
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Problems with LOI:   

a. Abella and Zimmer, 2007 suggest LOI is not accurate than Elemental     analysis 

SOC estimation for arid forest soil of USA. 

b.  combust IC, clay structure water, not all SOM ignites (Ball,1964; Schulte and 

Hopkins, 1996) 

c. Optimal temperature and duration for heating determine is difficult. 

d. LOI varies with soil type and depth of same soil (Konen et al., 2002) 

e. If soil has low SOC (1.5%) LOI is unreliable (Soon and Abboud, 1991) 

f. Conversion of LOI- OM to OC is difficult because of conversion factors may 

differs vegetation to vegetation (Batti and Bauer, 2002) 

 

Recent suggestion is that to remove IOC without affect OC and δ 13C is acid fumigation 

(Harris et al., 2001) is best method. But this method reviewed and tested by several 

authors (Bisutti et al., 2004; Komada et al., 2008; Walthert et al., 2010 ; Brodie et al., 

2011) and given modification and further upgraded the methods. 

Stepwise acidification as modification for acid fumigation Walthert et al., 2010 

modified Harris et a., 2001 acid fumigation procedure (Used in my soil samples);  

1. Weigh 25 mg of the ground sample into small silver capsules (9 mm by 5mm) 

and place the capsules in the wells of a titter plate (Capsule thickness if I increased I 

can avoid corroding) 

2. Add 50µL of 1% HCL to each capsule, 

3. In a desiccator, expose the titter plate with the open capsules for 8 h to the 

vapour produced by 100 mL of 37% HCL in a beaker, 

4. If sample give excess foam during step 3: then repeat 1 and 2; then expose the 

samples in the desiccator for 24 h to the vapour produced by 32% HCL, add 50µL of 

deionised water, and finally expose the samples for 8 h to the vapour produced by 

37% HCL. 
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5. Place the titter plate with the open capsules for 24 h in a continuously vacuumed 

desiccator containing drying granules, 

6. Place the titter plate with the open capsules inside the desiccator with drying 

granules under the fume hood for 3 d (low temperature drying minimize the volatilize 

OC) (the steps 5 and 6 drying process help to reduce acid effect on CN instrument life 

and also drying at vacuum/fume hood is necessary to avoid forming crust on surface 

of samples during drying otherwise it affect desiccation of sample) 

7. Immediately after removal from the desiccator, quickly pack the capsules 

containing the dried samples into larger new tin capsules (10 mm by 10 mm) forming 

compact balls, (small capsule with acid treated soil will packed in large size capsule 

to avoid brittle and loss of soil from corroded capsule) 

8. Store the balls until measurement in a desiccator containing drying granules, 

9. Measure the samples with a CN analyser involving high temperature 

combustion. 

Modification to method from Harris et al., 2001 by Walthert et al., 2010 : 

The modification is to moisten the soil samples with 1% HCL to accelerate wetting 

instead of Deionized water; strongly foaming samples will be treated separately by 

adopting gentle fumigation step to avoid sample loss due to excess foaming; include 

drying in vacuum oven to ensure complete drying; after drying pack the small silver 

capsules used in fumigation into larger silver capsules to avoid sample loss from 

corroded and perforated capsules. 

Other comments:    

• Acid fumigation affects OC loss due to acid volatilization, oxidation and spills 

suggested by Bisutti et al., 2004 

• Komada et al., (2008) recommend acid fumigation better when comparing with 

Capsule acid method for measuring OC and δ 13C is successful but maximum time is 

6-24 hrs only  
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Stepwise acidification limitation: 

Placing treated samples and capsules into a second capsule prior to folding is more 

difficult, time consuming and increase cost. Double encapsulating the sample is also 

problematic for the mass spectrometer because more oxygen is required for 

combustion and results in frequent replacement of copper wires used to trap excess 

oxygen (Ramarine et al., 2011). But I can outer wrap by tin capsules may reduce the 

cost (Brodie et al., 2011) and increase burning. 

Soil pH (decide IOC removal required/not): 

Schumacher, 2002 reported soil pH >7.4 need to remove inorganic carbon, and 

Walthert et al., 2010 observed IC at further low pH so >6.00 soil samples need to 

remove IOC. 

Acid Selection: 

HCL is better than other acids (H3PO4 – C contamination, Viscous and Hydroscopic 

and H3SO4 -  is too weak to remove Dolomite type IOC). But in HCL –cl may affect 

instrument it will reduced by proper drying in vacuum oven. Also Cl will change the 

mass of soil if I not measure pre acid treatment so need correction factors. 
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Appendix Text 4.3 

P estimation methods and review 

Introduction 

The Total P test estimates the amount of inorganic and organic P in a soil. It is 

therefore a useful diagnostic test in that it gives a better appreciation of the reason 

plants may not be performing optimally in a certain soil i.e. it helps to determine 

whether this is because P levels in the soil are simply too low (and thus more fertiliser 

should be added) or whether the problem is simply one of P availability (there is an 

adequate total amount present in the soil). In the latter case, availability may be 

improved by methods other than applying fertiliser i.e. stimulating soil microbes to 

breakdown organic matter and speed up nutrient cycling or altering pH to levels that 

are more optimal for P availability. 

Phosphorus in agricultural soils occurs in many forms, both organic and inorganic. 

Inorganic forms of phosphorus include fertiliser residues, various calcium, iron and 

aluminium phosphates, and phosphorus adsorbed on mineral surfaces, especially 

hydrous oxides of iron and aluminium. Organic forms of phosphorus often account for 

a large fraction of the phosphorus in soil, especially in soils under permanent pasture 

where the percentage of organic phosphorus may exceed 70% of the total. Much of 

this organic phosphorus occurs as poorly characterised, high molecular weight 

material which originates from microbial activity in the soil and from the decomposition 

of plant and animal residues. Organic forms of phosphorus are generally not directly 

available for plant uptake, but can provide a source of plant-available phosphorus 

upon mineralisation. This is usually a slow process and organic phosphorus is usually 

considered to be mostly unavailable to annual crops. The ratio of organic carbon: 

organic phosphorus may provide an index to its availability (Black and Goring, 1953). 

Net immobilisation of inorganic phosphorus into organic forms usually occurs if this 

ratio exceeds 300. 

Estimation: Organic P estimation by many methods (Appendix Table 4.6), has 

complex and time consuming 

 Most common to measure O.P is dry combustion methods of Saunders and 

Williams (1955) as modified by Walker and Adams (1958). But this method 



  210 
  
 

recovery of P is erratic and varies from Ca –domination to Fe/Al dominated soils 

weathering intensity. 

 Ignition method highly inaccurate for weathered soils rich in Fe/Al oxides 

particularly tropical soils because ignition changes Fe/Al oxides/Hydroxide and 

water molecules. (Olsen and Sommers ,1982) for comments about ignition  

 Ignition may underestimate Organic P due to Incomplete extraction of P during 

ignition and volatilization of P (Williams et al., 1970; Anderson, 1975) but these 

losses are minimum at 800oC (Saunders and Williams, 1955; Anderson, 1975). 

After ignition solubility of P compounds may be increased result increase P 

values  

Soils of study area fall under Alluvial soil / Entisol and Inceptisol. This soil not fall under 

the category of high Fe /Al oxides.  Ignition methods is not suitable for tropical soils. 

In India tropical soils fall under Tamil Nadu, Andhra Pradesh, Kerala and Karnataka 

(Red and lateritic highly weathered soils which has more Iron and Aluminium). But my 

study area fall under subtropical and sub humid region. Soils mostly brown and alluvial 

soils in that region study. In Acidic soil P availability restricted due to Fe and Al fixation 

of P. In alkaline soil P fixed by Calcium. P availability more at neutral soils. 

Appendix Table 0.7 Agronomical P / Available P estimation methods to recommend 
fertilizer for crop Production 

Method name Extracting solution Suitable for  Remarks 

Bray and Kurtz 

P-1 

0.025M HCL in 0.03 

M NH4F 

Acid to Neutral 

soil 

Not suitable for Alkaline 

soil. 25-30 mg P /kg soil 

Optimum for crop 

production 

Mehlich – 1 0.0125M H2SO4 + 

0.05 M HCL 

Acidic soil  25-30 mg P /kg soil 

Optimum for crop 

production 

Mehlich – 3  EDTA, NH4F, 

CH3COOH, NH4NO3 

and HNO3 

All soils 45-50 mg P /kg soil 

Optimum for crop 

production 

Olsen P 0.5M NaHCO3 Alkaline Soil  
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Determination of inorganic and organic phosphate in soil (Saunders and 

Williams, 1955) 

Principle 

From dried soils samples:  two samples (ca. 0.5g each) from each soil batch are 

needed, one for the determination of inorganic phosphate, the other one for the 

determination of organic phosphate. 

Inorganic Phosphate 

A known sample of soil is transferred into a centrifuge tube and soaked overnight in 

(a known quantity) of 0.5M H2SO4.  Due to this the inorganic (ortho) phosphate in the 

soil will go into the solution.  

Total phosphate (organic phosphate = total – inorganic) 

This soil sample is weighted into a crucible and then burnt. Heating the sample at 550C 

transfers the organic phosphate into inorganic phosphate, so the total amount of P in 

the soil is analysed. The organic phosphate can be calculated as the difference 

between a heated (total P) and an unheated (inorg P) sample.  

The burnt sample is transferred into a centrifuge tube and soaked overnight in (a 

known quantity) of 0.5M H2SO4 so that the (inorganic) phosphate in the sample will go 

into the solution 

2nd day: The phosphate concentration in a known quantity of the solution is 

determined; from this the inorganic and organic phosphate content in the soil can be 

calculated.  

In order to determine the phosphate concentration reagents are added to the acid 

solution with the dissolved orthophosphate so that a highly coloured molybdenum blue 

complex is formed. The same reagents are added to different phosphate standards 

(solutions with a known concentration of P). The intensity of the colour is proportional 

to the P content but unfortunately not very stable. The different standards are 

measured photometrical at 880nm so that a calibration curve is obtained. The reading 

from the spectrophotometer of the soil sample solutions can now be converted into the 

phosphate concentration of each sample.  
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Steps involved in P analysis 

Analysis of total phosphate (T)                               Analysis of inorganic phosphate (I) 

 

0.5g of sample in crucible 0.5g   of sample in centrifuge tube  

Burn at 550C for an hour                                                             

Remove, cool in desiccators 

Transfer sample in centrifuge tube 

Fill up tubes with 0.5M H2SO4 to 45ml mark (the acid is dissolving the inorganic 

phosphate) 

      Vortex each tube 

 

Shake overnight  

 Label 25ml volumetric flasks for samples,  for standards and for blank 

 Centrifuge samples for 10min at 3000rpm 

 Prepare colour reagent 

 Pipette a known volume of supernatant into a labelled volumetric flask (can be 

between 0.1 ml and 10 ml), for every sample  

 add 0.5M sulphuric acid to blank flask, use same amount (ml) as you use for 

soil samples 

 Add 5 drops of 0.25% p-nitrophenol indicator to each flask (Total and inorg. P 

and repeats and Blank) 

 Neutralise  by adding drops of 5M NaOH until colour change from clear to bright 

yellow 

 Add 4ml of colour reagent   

 Fill up to the mark with distilled water 

 Let colour develop for  1h 

 Measure absorbance in photometer  at 880 nm 
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Appendix for Chapter 5  

 Appendix Table 5.1 Soil profile 137Cs, SOC, and total N to 100 cm or maximum soil depth along the gradient transect within field 

Site 1 (DKF1 and DKF2 fields). Mean values ± SE (n = 3) are presented 

 

 

DKF1
137

Cs Inventory (Bq m
-2

) SOC inventory (kg m
-2

) TN inventory (kg m
-2

)

Depth P1 P2 P3 P4 P5 P6 P1 P2 P3 P4 P5 P6 P1 P2 P3 P4 P5 P6

0-10 290±15 479±3.2 525±56 349±27 420±7.0 545±48 1.01±0.05 0.89±0.02 0.82±0.04 1.01±0.06 1.16±0.05 1.40±0.08 0.07±0.004 0.08±0.004 0.08±0.003 0.09±0.004 0.10±0.005 0.12±0.008

10-20 138±8.0 204±35 414±57 103±59 88  ±25 654±30 0.82±0.03 0.82±0.07 0.72±0.06 0.87±0.03 0.93±0.06 1.13±0.08 0.06±0.001 0.07±0.005 0.07±0.006 0.07±0.003 0.08±0.005 0.10±0.009

20-30 134±31 237±20 337±33 62  ±29 54  ±31 618±18 0.57±0.09 0.81±0.04 0.74±0.05 0.71±0.03 0.97±0.12 1.05±0.08 0.04±0.008 0.08±0.003 0.07±0.003 0.06±0.003 0.08±0.009 0.09±0.010

30-50 0 3.2 ±3.2 77  ±77 0 0 248±100 0.60±0.02 1.23±0.05 1.23±0.05 1.07±0.08 1.50±0.06 1.80±0.03 0.04±0.002 0.12±0.004 0.11±0.002 0.10±0.005 0.12±0.004 0.14±0.009

50-70 0 0 0 0 0 0 0.28±0.03 0.79±0.22 1.12±0.07 0.86±0.09 1.36±0.05 1.65±0.11 0.02±0.003 0.08±0.018 0.10±0.007 0.08±0.005 0.11±0.005 0.13±0.009

70-100 0 0 0 0 0.65±0.13 1.00±0.08 1.86±0.05 2.22±0.19 0.06±0.02 0.11±0.007 0.16±0.003 0.19±0.007

DKF2
137

Cs Inventory (Bq m
-2

) SOC inventory (kg m
-2

) TN inventory (kg m
-2

)

Depth P1 P2 P3 P4 P5 P1 P2 P3 P4 P5 P1 P2 P3 P4 P5

0-10 221±24 232±13 332±87 318±63 476±46 0.87±0.05 1.06±0.07 1.05±0.20 0.91±0.03 1.47±0.10 0.10±0.005 0.10±0.004 0.11±0.019 0.09±0.012 0.12±0.015

10-20 14  ±15 146±49 226±94 141± 8.0 631±58 0.80±0.04 0.96±0.02 0.61±0.11 0.90±0.09 0.70±0.06 0.09±0.006 0.09±0.004 0.07±0.010 0.09±0.013 0.06±0.010

20-30 31  ±15 152±19 55  ±8.8 161±34 587±88 0.61±0.03 0.90±0.03 0.34±0.04 0.78±0.06 0.74±0.05 0.07±0.007 0.09±0.004 0.04±0.005 0.09±0.014 0.07±0.005

30-50 0 0 0 21  ±21 99  ±42 0.58±0.15 1.25±0.02 0.19±0.04 1.11±0.09 1.60±0.08 0.08±0.020 0.13±0.007 0.025±0.004 0.13±0.030 0.14±0.005

50-70 0 0 0 0 0.18±0.05 0.99±0.06 0.95±0.08 1.19±0.06 0.02±0.006 0.10±0.012 0.14±0.034 0.12±0.002

70-100 0 0 0 1.27±0.02 1.03±0.02 0.90±0.04 0.17±0.024 0.20±0.039 0.10±0.005
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Appendix Table 5.2 Soil profile 137Cs, SOC, and total N to 100 cm or maximum soil depth along the gradient transect within field 

Site 1 (DKF3  and DK Ref fields). Mean values ± SE (n = 3) are presented. 

 

 

 

DKF3
137

Cs Inventory (Bq m
-2

) SOC inventory (kg m
-2

) TN inventory (kg m
-2

)

Depth P1 P2 P3 P4 P5 P6 P1 P2 P3 P4 P5 P6 P1 P2 P3 P4 P5 P6

0-10 506±58 509±47 455±23 111±44 175±25 293±54 0.89±0.01 1.00±0.02 0.97±0.07 0.91±0.02 0.93±0.04 0.94±0.09 0.08±0.002 0.08±0.001 0.10±0.014 0.01±0.002 0.10±0.004 0.10±0.005

10-20 385±96 333±31 284±27 62   ±3.5 99   ±70 202±37 0.78±0.04 0.83±0.05 0.77±0.03 0.72±0.05 0.80±0.05 0.76±0.02 0.07±0.004 0.07±0.003 0.09±0.003 0.08±0.005 0.09±0.006 0.09±0.004

20-30 252±96 123±97 166±84 0 24   ±17 81  ±49 0.75±0.05 0.87±0.05 1.07±0.19 0.67±0.03 0.69±0.01 0.55±0.03 0.07±0.004 0.07±0.003 0.12±0.032 0.07±0.001 0.07±0.001 0.07±0.002

30-50 131±131 0 0 0 13   ±13 3    ±3 1.32±0.05 1.39±0.07 1.31±0.10 1.26±0.09 1.20±0.04 0.68±0.05 0.12±0.003 0.11±0.005 0.13±0.040 0.13±0.002 0.11±0.017 0.10±0.004

50-70 0 0 0 0 0 0 1.13±0.04 1.20±0.05 0.92±0.07 0.84±0.02 1.01±0.05 0.43±0.05 0.11±0.003 0.11±0.006 0.10±0.007 0.10±0.004 0.08±0.012 0.09±0.012

70-100 0 0 0 0 0 1.42±0.04 0.96±0.06 1.20±0.13 1.21±0.13 0.50±0.05 0.14±0.010 0.20±0.020 0.17±0.008 0.12±0.026 0.17±0.040

DKRef
137

Cs Inventory (Bq m
-2

) SOC inventory (kg m
-2

) TN inventory (kg m
-2

)

Depth Ref 1 Ref 2 Ref 3 Ref 1 Ref 2 Ref 3 Ref 1 Ref 2 Ref 3

0-10 235±71 382±34 476±62 0.84±0.04 1.00±0.11 0.97±0.07 0.08±0.004 0.10±0.012 0.09±0.012

10-20 128±74 333±31 210±28 0.70±0.06 0.87±0.05 0.84±0.04 0.07±0.006 0.09±0.010 0.09±0.012

20-30 65±31 123±97 8    ±8 0.68±0.01 0.79±0.05 0.84±0.03 0.07±0.003 0.08±0.012 0.09±0.008

30-50 0 0 0 1.16±0.03 1.05±0.06 1.05±0.14 0.11±0.002 0.11±0.011 0.12±0.029

50-70 0 0 0 1.18±0.03 0.71±0.03 1.04±0.12 0.11±0.002 0.09±0.009 0.12±0.019

70-100 0 0 1.35±0.10 0.90±0.06 0.15±0.004 0.17±0.031
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Appendix Table 5.3 Soil profile 137Cs, SOC, and total N to 100 cm or maximum soil depth along the gradient transect within field 

Site 1 (PSF1 and PSF2 fields). Mean values ± SE (n = 3) are presented. 

 

 

PSF1
137

Cs Inventory (Bq m
-2

) SOC inventory (kg m
-2

) TN inventory (kg m
-2

)

Depth P1 P2 P3 P4 P5 P6 P1 P2 P3 P4 P5 P6 P1 P2 P3 P4 P5 P6

0-10 165±74 526±111 559±20 1004±72 1034±57 874±57 1.25±0.04 1.03±0.02 1.28±0.10 1.71±0.08 2.21±0.15 1.80±0.09 0.08±0.004 0.07±0.008 0.11±0.009 0.14±0.008 0.18±0.019 0.15±0.010

10-20 91  ±31 699±170 833±46 760  ±59 469  ±20 675±72 0.86±0.13 0.92±0.03 1.19±0.06 1.61±0.10 1.57±0.09 1.91±0.18 0.05±0.008 0.06±0.012 0.10±0.005 0.12±0.004 0.11±0.012 0.15±0.009

20-30 3.4 ±3.4 724±67 783±90 286  ±57 393  ±72 526±117 0.64±0.09 1.07±0.07 1.38±0.10 1.48±0.15 1.49±0.06 1.79±0.09 0.03±0.006 0.06±0.013 0.11±0.012 0.10±0.011 0.10±0.003 0.13±0.006

30-50 0 88  ±22 272±17 97    ±74 104  ±47 153±52 0.80±0.07 2.10±0.12 1.60±0.02 2.59±0.09 2.36±0.11 2.49±0.17 0.03±0.009 0.10±0.026 0.12±0.000 0.18±0.007 0.16±0.003 0.19±0.011

50-70 0 0 6.3 ±6.3 5.2   ±5.2 0 18  ±18 0.70±0.08 1.74±0.04 1.12±0.09 1.54±0.08 1.81±0.14 1.27±0.06 0.02±0.003 0.10±0.013 0.09±0.007 0.11±0.006 0.13±0.017 0.12±0.008

70-100 0 0 0 0 9.1 ± 9.1 1.16±0.04 1.48±0.10 1.91±0.08 2.68±0.22 0.72±0.19 0.04±0.001 0.10±0.023 0.14±0.001 0.20±0.024 0.07±0.013

PSF2
137

Cs Inventory (Bq m
-2

) SOC inventory (kg m
-2

) TN inventory (kg m
-2

)

Depth P1 P2 P3 P4 P5 P6 P7 P1 P2 P3 P4 P5 P6 P7 P1 P2 P3 P4 P5 P6 P7

0-10 338±30 617±44 666±69 851±39 761±40 1075±184 671±126 0.95±0.10 1.00±0.04 0.97±0.03 1.20±0.07 1.45±0.04 1.89±0.14 1.36±0.20 0.08±0.007 0.08±0.008 0.08±0.001 0.10±0.006 0.12±0.004 0.16±0.014 0.11±0.015

10-20 209±30 309±32 344±89 575±44 440±124 452  ±111 744±144 0.42±0.03 0.60±0.04 0.84±0.02 1.10±0.06 1.59±0.07 1.22±0.09 1.19±0.07 0.04±0.004 0.05±0.004 0.07±0.002 0.08±0.002 0.12±0.006 0.10±0.005 0.09±0.009

20-30 127±30 120±35 290±86 430±60 145±28 250  ±107 493±178 0.33±0.04 0.43±0.08 0.80±0.02 1.28±0.04 1.50±0.04 1.28±0.11 1.42±0.29 0.03±0.004 0.04±0.005 0.06±0.001 0.09±0.001 0.11±0.004 0.10±0.011 0.11±0.029

30-50 0 15  ±15 16  ±16 65  ±44 137±69 26    ±18 158±87 0.19±0.02 0.53±0.07 0.92±0.02 1.48±0.12 2.64±0.10 1.52±0.25 1.79±0.12 0.02±0.003 0.05±0.006 0.08±0.009 0.10±0.007 0.20±0.015 0.12±0.017 0.14±0.003

50-70 0 0 0 0 0 0 0 0.12±0.02 0.24±0.06 0.82±0.04 1.23±0.11 1.97±0.26 1.52±0.30 1.00±0.09 0.02±0.003 0.02±0.003 0.07±0.005 0.09±0.008 0.15±0.013 0.12±0.020 0.09±0.013

70-100 0 0 0 0 0 0 0 0.16±0.01 0.29±0.06 1.08±0.05 1.48±0.07 2.96±0.22 1.69±0.08 1.33±0.12 0.03±0.006 0.02±0.006 0.08±0.004 0.10±0.005 0.23±0.008 0.15±0.005 0.11±0.007
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Appendix Table 5.4 Soil profile 137Cs, SOC, and total N to 100 cm or maximum soil depth along the gradient transect within field 

Site 1 (PSF3 and PS Ref fields). Mean values ± SE (n = 3) are presented. 

 

 

 

PSF3
137

Cs Inventory (Bq m
-2

) SOC inventory (kg m
-2

) TN inventory (kg m
-2

)

Depth P1 P2 P3 P4 P5 P6 P1 P2 P3 P4 P5 P6 P1 P2 P3 P4 P5 P6

0-10 137±18 289±57 378±39 357±16 436±50 635±82 0.84±0.02 0.74±0.06 0.88±0.04 1.24±0.18 1.13±0.09 1.29±0.06 0.07±0.003 0.06±0.003 0.07±0.005 0.09±0.014 0.08±0.007 0.10±0.007

10-20 148±16 406±83 470±51 277±42 553±87 995±102 0.71±0.04 0.80±0.05 0.81±0.04 0.86±0.18 1.20±0.10 1.57±0.26 0.06±0.006 0.07±0.003 0.06±0.003 0.05±0.011 0.08±0.006 0.11±0.020

20-30 128±31 294±70 520±129 426±48 471±97 936±128 0.73±0.07 0.88±0.05 0.80±0.06 0.94±0.05 1.24±0.08 1.25±0.10 0.07±0.006 0.07±0.004 0.07±0.005 0.06±0.004 0.08±0.007 0.09±0.005

30-50 3   ±3 0 383±50 349±102 155±24 140±33 0.56±0.16 1.66±0.21 2.04±0.25 1.69±0.07 1.98±0.27 1.74±0.13 0.06±0.016 0.12±0.011 0.12±0.005 0.10±0.003 0.11±0.014 0.11±0.017

50-70 0 0 0 0 0 0 0.45±0.02 0.80±0.05 2.19±0.26 1.46±0.07 1.19±0.01 1.56±0.21 0.05±0.002 0.07±0.005 0.12±0.002 0.08±0.003 0.07±0.005 0.09±0.010

70-100 0 0 0 0 0 1.53±0.07 1.76±0.05 1.71±0.07 1.51±0.15 1.74±0.20 0.13±0.008 0.11±0.000 0.10±0.001 0.09±0.012 0.11±0.010

PS Ref
137

Cs Inventory (Bq m
-2

) SOC inventory (kg m
-2

) TN inventory (kg m
-2

)

Depth Ref 1 Ref 2 Ref 3 Ref 1 Ref 2 Ref 3 Ref 1 Ref 2 Ref 3

0-10 526±72 151± 8 411±61 1.45±0.16 1.53±0.19 1.07±0.10 0.10±0.016 0.13±0.016 0.08±0.013

10-20 389±57 154±70 404±28 1.04±0.23 1.17±0.17 1.05±0.10 0.08±0.016 0.09±0.016 0.08±0.006

20-30 386±64 142±73 316±76 0.83±0.05 1.18±0.07 0.89±0.14 0.07±0.012 0.08±0.007 0.07±0.007

30-50 35  ±15 178±92 63  ±4 0.57±0.08 1.59±0.38 0.47±0.11 0.04±0.008 0.11±0.026 0.04±0.006

50-70 0 0 0 0.42±0.06 0.65±0.03 0.31±0.03 0.03±0.004 0.05±0.003 0.03±0.002

70-100 0 0 0 0.47±0.04 0.41±0.18 0.29±0.03 0.03±0.001 0.03±0.014 0.03±0.004
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Appendix Table 5.5 Soil profile 137Cs, SOC, and total N to 100 cm or maximum soil depth along the gradient transect within field 

Site 1 (BGF1 and BGF2 fields). Mean values ± SE (n = 3) are presented. 

 

 

 

BG F1
137

Cs Inventory (Bq m
-2

) SOC inventory (kg m
-2

) TN inventory (kg m
-2

)

Depth P1 P2 P3 P4 P5 P6 P7 P1 P2 P3 P4 P5 P6 P7 P1 P2 P3 P4 P5 P6 P7

0-10 247±56 386±23 342±30 565±64 581±64 681±57 568±92 1.91±0.13 1.35±0.09 0.97±0.11 1.59±0.15 1.52±0.06 3.01±0.36 2.27±0.26 0.18±0.031 0.11±0.004 0.08±0.004 0.15±0.013 0.14±0.012 0.24±0.018 0.23±0.027

10-20 181±41 235±17 339±18 459±32 552±49 630±30 254±8 0.95±0.23 1.01±0.04 0.82±0.03 1.18±0.05 1.29±0.10 2.14±0.09 1.13±0.08 0.09±0.019 0.09±0.002 0.07±0.007 0.12±0.010 0.13±0.003 0.21±0.004 0.12±0.013

20-30 95  ±60 59  ±27 46  ±24 69  ±40 154±28 108±42 110±43 0.63±0.26 0.59±0.04 0.42±0.02 1.01±0.23 0.89±0013 1.31±0.10 0.92±0.19 0.05±0.032 0.04±0.002 0.03±0.004 0.08±0.011 0.07±0.009 0.13±0.010 0.10±0.012

30-50 0 48  ±12 0 0 21  ±16 0 0.26±0.03 1.12±0.18 0.30±0.01 0.60±0.17 1.13±0.13 0.82±0.12 0.02±0.002 0.06±0.009 0.02±0.002 0.07±0.016 0.10±0.008 0.08±0.010

50-70 0 0 0 0 0 0.21±0.03 0.90±0.08 0.20±0.07 0.36±0.03 0.68±0.07 0.03±0.005 0.05±0.005 0.06±0.008 0.05±0.006 0.09±0.013

70-100 0 0 0 0 0 0.20±0.08 1.36±0.24 0.19±0.04 0.27±0.04 0.64±0.13 0.03±0.012 0.07±0.019 0.02±0.004 0.05±0.005 0.09±0.013

BG F2
137

Cs Inventory (Bq m
-2

) SOC inventory (kg m
-2

) TN inventory (kg m
-2

)

Depth P1 P2 P3 P4 P5 P6 P1 P2 P3 P4 P5 P6 P1 P2 P3 P4 P5 P6

0-10 472±48 487±28 600±46 512±41 464±19 720±61 1.66±0.14 1.95±0.23 1.97±0.15 1.79±0.19 1.59±0.12 2.43±0.26 0.17±0.022 0.15±0.014 0.18±0.013 0.16±0.013 0.13±0.008 0.23±0.036

10-20 294±51 244±106 639±36 187±42 429±74 959±83 1.12±0.11 1.05±0.46 1.44±0.10 0.94±0.10 1.41±0.12 2.15±0.39 0.12±0.013 0.09±0.030 0.14±0.020 0.09±0.014 0.12±0.008 0.25±0.052

20-30 49  ±26 102±22 165±53 96  ±35 151±55 752±96 0.48±0.09 0.58±0.03 0.85±0.06 0.82±0.12 0.89±0.03 1.65±0.14 0.05±0.011 0.06±0.002 0.08±0.002 0.06±0.016 0.07±0.003 0.16±0.027

30-50 0 0 0 28  ±28 0 0.57±0.19 0.37±0.07 0.54±0.05 0.92±0.09 0.68±0.09 0.05±0.018 0.03±0.011 0.04±0.002 0.05±0.005 0.05±0.009

50-70 0 0 0 0 0.35±0.11 0.28±0.04 0.52±0.08 0.75±0.02 0.05±0.019 0.04±0.003 0.04±0.005 0.03±0.003

70-100 0 0 0 0 0.25±0.06 0.34±0.02 0.53±0.07 1.55±0.19 0.03±0.006 0.05±0.016 0.05±0.017 0.06±0.009
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Appendix Table 5.6 Soil profile 137Cs, SOC, and total N to 100 cm or maximum soil depth along the gradient transect within field 

Site 1 (BGF3 and BG Ref fields). Mean values ± SE (n = 3) are presented. 

 

 

 

BGF3
137

Cs Inventory (Bq m
-2

) SOC inventory (kg m
-2

) TN inventory (kg m
-2

)

Depth P1 P2 P3 P4 P5 P1 P2 P3 P4 P5 P1 P2 P3 P4 P5

0-10 505±75 509±17 506±85 475±20 491±7.3 1.74±0.13 1.87±0.12 1.99±0.14 2.11±0.20 2.03±0.11 0.20±0.022 0.19±0.017 0.18±0.016 0.20±0.020 0.20±0.013

10-20 536±82 606±58 229±12 137±54 459±79 1.49±0.20 1.41±0.07 0.95±0.01 0.74±0.08 1.81±0.11 0.18±0.005 0.18±0.010 0.09±0.006 0.10±0.005 0.17±0.013

20-30 206±71 279±29 35  ±35 30  ±19 73  ±24 0.71±0.16 0.95±0.08 0.41±0.05 0.33±0.02 1.16±0.06 0.10±0.019 0.13±0.002 0.04±0.007 0.06±0.004 0.10±0.009

30-50 77  ±39 0 0 0 1.02±0.10 0.44±0.01 0.36±0.06 2.18±0.15 0.17±0.022 0.04±0.003 0.07±0.004 0.18±0.012

50-70 0 0 0 0 1.01±0.11 0.45±0.02 0.25±0.02 1.44±0.33 0.16±0.013 0.05±0.011 0.08±0.017 0.13±0.031

70-100 0 0 0 0 0.98±0.26 0.57±0.02 0.46±0.05 0.93±0.03 0.20±0.026 0.05±0.008 0.13±0.016 0.11±0.015

BGRef
137

Cs Inventory (Bq m
-2

) SOC inventory (kg m
-2

) TN inventory (kg m
-2

)

Depth Ref 1 Ref 2 Ref 3 Ref 1 Ref 2 Ref 3 Ref 1 Ref 2 Ref 3

0-10 399±18 483±76 402±51 2.12±0.20 1.79±0.18 1.62±0.12 0.16±0.015 0.13±0.023 0.13±0.013

10-20 555±21 408±56 319±53 2.68±0.20 1.57±0.05 0.99±0.15 0.21±0.021 0.12±0.014 0.08±0.023

20-30 325±62 172±31 78  ±39 1.76±0.30 1.03±0.10 0.40±0.07 0.14±0.009 0.09±0.001 0.03±0.010

30-50 2.5±1.3 0 0 1.73±0.21 1.24±0.06 0.35±0.07 0.13±0.014 0.09±0.019 0.02±0.005

50-70 0 0 0.84±0.06 0.23±0.05 0.05±0.012 0.06±0.03

70-100 0 0 1.36±0.08 0.19±0.04 0.09±0.012 0.03±0.003



  219 
  
 

Chapter. 6 Appendix Soil and C redistribution lateral and vertical (Include Appendix 

Table 6.1 to 6.3). 

Appendix Table 6.1 Basic data used in C flux estimation model 

 

 

 

 

 

 

 

 

 

 

 

Site 1 Dhoolkhot Site 2 Pasauli Site 3 Bhatta Gaon

Parameters  DKF1  DKF2  DKF3 PSF1 PSF2  PSF3  BGF1  BGF2  BGF3

Fiield slope % 2.91 2.20 2.84 5.89 6.59 6.15 1.84 4.05 4.21

Field size ( ha) 0.13 0.15 0.16 0.13 0.32 0.10 0.03 0.05 0.04

Eroded area % 91.1 74.5 100.0 16.1 48.6 77.2 100.0 77.8 100.0

Deposition area % 8.92 25.5 0.00 83.9 51.4 22.8 0.00 22.2 0.00

Number of
 137

Cs/SOC Pits with 3 replicate 6.00 5.00 6.00 6.00 7.00 6.00 7.00 6.00 5.00

Number of pits from

Eroded area 5 4 6 1 4 4 7 5 5

Deposition area 1 1 0 5 3 1 0 1 0

Tillage depth (m) 0.14 0.14 0.14 0.19 0.26 0.26 0.24 0.24 0.24

year of sampling 2013 2013 2013 2013 2013 2013 2013 2013 2013

Reference 
137

Cs inventory (Bq m
-2

) 1685 1685 1685 1685 1685 2100 1685 1685 1685

Reference  C inventory (kg m
-2

) upto 0.5 m 4.59 4.59 4.59 5.30 5.30 5.30 5.50 5.50 5.50

Mean annual temperature(
o
C)/precipitation (mm) 20/1600 20/1600 20/1600 20/1600 20/1600 20/1600 20/1600 20/1600 20/1600

k (m
-1

) depth coefficient 3.53 3.53 3.53 6.29 6.29 6.29 10.3 10.3 10.3

Cmin (0.9 of 1m depth C concentration) (kg m
-3

) 3.36 3.36 3.36 1.63 1.63 1.63 3.97 3.97 3.97
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Appendix Table 6.2 Soil lateral and vertical redistribution budget (kg m-2 y-1) for India 

sites based on profiles mean from Segment (E/D) . Mean values ± SE (n = 9) are 

presented 

 

 

 

 

Site 1 Dhoolkhot Site 2 Pasauli Site 3 Bhatta Gaon

Parameters  DKF1  DKF2  DKF3 PSF1 PSF2  PSF3  BGF1  BGF2  BGF3 Mean SE

Eroded area (%) of field and mixing 91.1 81.7 100.0 16.1 48.6 77.2 100.0 88.0 100.0 78.1 9.45

Mean Erosion /subsoil excavation rate 2.67 3.74 3.24 3.76 1.08 1.83 2.02 1.74 1.73 2.42 0.32

Cultivation layer in export 1.71 2.15 1.84 1.71 0.81 1.16 1.40 1.28 1.22 1.47 0.14

Subsoil in export 0.95 1.59 1.42 2.06 0.28 0.67 0.62 0.46 0.51 0.95 0.20

Cultivation soil lost in 50 yrs (kg m
-2

) 85.7 107.7 91.9 85.4 40.3 57.8 69.8 63.8 61.2 73.7 6.88

Subsoil lost in 50 yrs (kg m
-2

) 47.7 79.4 71.0 102.8 13.8 33.6 31.2 23.0 25.6 47.6 10.07

Remaining cultivation soil at eroding positions(kg m
-2

) 76.3 54.4 70.2 15.6 99.9 82.4 83.6 89.6 92.2 73.8 8.52

Subsoil  mixed at eroding plough layer (kg m
-2

) 85.7 107.7 91.9 85.4 40.3 57.8 69.8 63.8 61.2 73.7 6.88

Fraction of cultivation layer in export 0.64 0.58 0.57 0.45 0.74 0.64 0.69 0.74 0.71 0.64 0.03

Fraction of subsoil at eroding cultivation soil 0.53 0.66 0.57 0.85 0.29 0.41 0.45 0.42 0.40 0.51 0.06

Aggraded area (%)of field and mixing 8.92 18.3 0.00 83.9 51.4 22.8 0.00 12.0 0.00 21.9 9.45

Mean Deposition 1.14 0.44 0.00 1.20 0.54 1.28 0.00 1.85 0.00 0.72 0.23

Initial cultivation import /deposit 0.73 0.25 0.00 0.55 0.40 0.77 0.00 1.36 0.00 0.45 0.15

Subsoil deposit/import 0.41 0.19 0.00 0.66 0.14 0.51 0.00 0.49 0.00 0.27 0.08

Burial of Initial cultivation layer 0.84 0.39 0.00 0.75 0.45 0.87 0.00 1.15 0.00 0.50 0.14

Burial of imported Initial cultivation layer 0.19 0.03 0.00 0.20 0.07 0.24 0.00 0.51 0.00 0.14 0.06

Burial of imported subsoil 0.11 0.02 0.00 0.25 0.02 0.16 0.00 0.18 0.00 0.08 0.03

Replacement of imported cultivation soil 0.54 0.22 0.00 0.34 0.34 0.53 0.00 0.85 0.00 0.31 0.10

 to initial cultivation layer

Replacement of imported sub soil in cultivation layer 0.30 0.17 0.00 0.41 0.12 0.35 0.00 0.31 0.00 0.18 0.05

Presence of remaining initial cultivation 0.30 0.05 0.00 0.45 0.09 0.40 0.00 0.69 0.00 0.22 0.08

Whole field

Whole field area ha 0.13 0.15 0.16 0.13 0.32 0.10 0.06 0.05 0.05 0.13 0.03

Eroded area (ha) 0.12 0.12 0.16 0.02 0.16 0.08 0.06 0.04 0.05 0.09 0.02

Aggraded area (ha) 0.01 0.03 0.00 0.11 0.17 0.02 0.00 0.01 0.00 0.04 0.02

Whole field slope (%) 2.91 2.24 2.84 5.89 6.59 6.15 1.84 4.05 4.21 4.08 0.59

Mean erosion rate 2.43 3.06 3.24 0.61 0.53 1.41 2.02 1.53 1.73 1.84 0.32

Mean aggradation rate 0.10 0.08 0.00 1.01 0.28 0.29 0.00 0.22 0.00 0.22 0.11

Net export rate 2.33 2.98 3.24 -0.40 0.25 1.12 2.02 1.31 1.73 1.62 0.40

Net export of plough soil 1.50 1.71 1.84 -0.18 0.18 0.72 1.40 0.96 1.22 1.04 0.23

Net export of subplough 0.83 1.26 1.42 -0.22 0.06 0.40 0.62 0.35 0.51 0.58 0.18
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Appendix Table 6.3 SOC lateral and vertical redistribution budget (g C m-2 y-1) for 

India sites based on profiles mean from segment (E/D). Mean values ± SE (n = 9) are 

presented 

 

 

 

Site 1 Dhoolkhot Site 2 Pasauli Site 3 Bhatta Gaon

Parameters  DKF1  DKF2  DKF3 PSF1 PSF2  PSF3  BGF1  BGF2  BGF3 Mean SE

Eroded area (%) of field and mixing 91.1 81.7 100.0 16.1 48.6 77.2 100.0 88.0 100.0 78.1 9.45

Mean C Erosion /subsoil excavation rate 26.3 35.9 30.8 69.1 27.8 15.1 42.5 37.9 37.0 35.8 4.95

Cultivation layer C in export 18.3 23.0 19.6 53.2 25.2 9.4 35.6 32.6 31.3 27.6 4.20

Subsoil C in export 8.05 12.91 11.18 15.82 2.59 5.75 6.91 5.37 5.76 8.26 1.41

Cultivation soil C lost in 50 yrs (g C m
-2

) 914 1149 981 2662 1260 468 1781 1629 1562 1378 210

Subsoil C lost in 50 yrs (g C m
-2

) 403 646 559 791 129 287 346 268 288 413 70

Remaining cultivation soil C at eroding positions(g C m
-2

) 815 580 748 486 3111 3902 2134 2286 2352 1824 410

Subsoil  C mixed at eroding plough layer (g C m
-2

) 914 1149 981 2662 1260 468 1781 1629 1562 1378 210

Fraction of cultivation layer C in export 0.69 0.64 0.64 0.77 0.91 0.62 0.84 0.86 0.84 0.76 0.04

Aggraded area (%)of field and mixing 8.92 18.32 0.00 83.90 51.41 22.79 0.00 12.00 0.00 21.93 9.45

Mean  C Deposition 10.1 4.55 0.00 22.1 13.8 29.0 0.00 37.3 0.00 13.0 4.59

Initial cultivation C import /deposit 7.80 3.32 0.00 17.0 12.5 25.3 0.00 34.7 0.00 11.2 4.14

Subsoil C deposit/import 2.26 1.23 0.00 5.06 1.34 3.73 0.00 2.68 0.00 1.81 0.60

Burial of Initial cultivation layer C 8.99 4.15 0.00 23.5 14.2 27.4 0.00 29.4 0.00 12.0 4.05

Burial of imported Initial cultivation layer C 2.03 0.33 0.00 6.36 2.04 7.89 0.00 13.01 0.00 3.52 1.53

Burial of imported subsoil C 0.59 0.12 0.00 1.14 0.22 0.72 0.00 1.01 0.00 0.42 0.15

Replacement of imported cultivation soil C 5.77 2.99 0.00 10.7 10.4 17.4 0.00 21.7 0.00 7.65 2.66

 to initial cultivation layer C

Replacement of imported sub soil C in cultivation layer C 1.67 1.11 0.00 1.91 1.12 1.58 0.00 1.68 0.00 1.01 0.27

Whole field

Whole field area (ha) 0.13 0.15 0.16 0.13 0.32 0.10 0.06 0.05 0.05 0.13 0.03

Eroded area (ha) 0.12 0.12 0.16 0.02 0.16 0.08 0.06 0.04 0.05 0.09 0.02

Aggraded area (ha) 0.01 0.03 0.00 0.11 0.17 0.02 0.00 0.01 0.00 0.04 0.02

Whole field slope (%) 2.91 2.24 2.84 5.89 6.59 6.15 1.84 4.05 4.21 4.08 0.59

Mean C erosion rate 24.0 29.3 30.8 11.1 13.5 11.7 42.5 33.4 37.0 25.9 3.86

Mean C aggradation rate 0.90 0.83 0.00 18.53 7.09 6.61 0.00 4.48 0.00 4.27 2.02

Net C export rate 23.1 28.5 30.8 -7.41 6.41 5.06 42.5 28.9 37.0 21.7 5.54

Net export of plough soil C 16.0 18.2 19.6 -5.71 5.84 1.47 35.6 24.5 31.3 16.3 4.55

Net export of subplough C 7.13 10.32 11.18 -1.70 0.57 3.59 6.91 4.40 5.76 5.35 1.40
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Chapter 7 Appendix:  Site 3 Low input Agriculture-Calcareous soil - soil respiration 

rate - Include Appendix Table 7.1 to 7.7, Appendix Figure 7.1 to 7.5 and Appendix 

Text 7.1. 

 

 

Appendix Table 7.1 Total 137Cs inventory, soil pH and other properties along slope 

transect. Mean values ± 1SE (n = 3) are presented. 

 

 

LIC- Low input agriculture-Calcareous 

 

 

 

Sites Positions
137

Cs (Bq m
-2

) SR rate (kg m
-2 

y
-1

) Depth (cm) Soil pH Lattitude Langitude Elevation (m)

Site 3(LIC) Eroding  1246  ± 178
a

 -0.99 ± 0.48 <50   7.36 ± 0.17 30
o
26.327

, 
N 78

o
04.698

, 
E 1548

Mid-slope 1471   ± 142a  -0.44 ± 0.31 >100   7.21 ± 0.05 30
o
26.331

,
 N 78

o
04.702

,
 E 1548

Deposition   1023 ± 98a  -1.55 ± 0.31 >100   7.25 ± 0.08 30
o
26.342

,
 N 78

o
04.713

,
 E 1548
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Appendix Table 7.2 Soil lateral and vertical redistribution (kg m-2 y-1) budget for India 

Site 3 based on profiles mean from segment (E/D) and field area  

 

 

 

 

 

Site 3

Parameters BGF3

Eroded area % of field and mixing 100

Mean Erosion /subsoil excavation rate 1.73

Cultivation layer in export 1.22

Subsoil in export 0.51

Cultivation soil lost in 50 yrs (kg m-2) 61

Subsoil lost in 50 yrs (kg m-2) 26

Remaining cultivation soil at eroding positions(kg m-2) 92

Subsoil  mixed at eroding plough layer (kg m-2) 61

Fraction of cultivation layer in export 0.71

Fraction of subsoil at eroding cultivation soil 0.40

Aggraded area % of field and mixing 0.00

Mean Deposition 0.00

Initial cultivation import /deposit 0.00

Subsoil deposit/import 0.00

Burial of Initial cultivation layer 0.00

Burial of imported Initial cultivation layer 0.00

Burial of imported subsoil 0.00

Replacement of imported cultivation soil 0.00

 to initial cultivation layer

Replacement of imported sub soil in cultivation layer 0.00

Presence of remaining initial cultivation 0.00

Whole field

Whole field area ha 0.05

Eroded Area ha 0.05

Aggraded Area ha 0.00

Whole field slope % 4.21

Mean erosion rate 1.73

Mean aggradation rate 0.00

Net export rate 1.73

Net export of plough soil 1.22

Net export of subplough 0.51
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Appendix Table 7.3 C lateral and vertical redistribution (g C m-2 y-1) budget   for India 

Site 3  based on profiles mean  from segment (E/D) and field area  

 

 

Site 3

Parameters BGF3

Eroded area % of field and mixing 100.0

Mean C Erosion /subsoil excavation rate 37.01

Cultivation layer C in export 31.25

Subsoil C in export 5.76

Cultivation soil C lost in 50 yrs (g C m-2) 1562

Subsoil C lost in 50 yrs (g C m-2) 288

Remaining cultivation soil C at eroding positions(g C m-2) 2352

Subsoil  C mixed at eroding plough layer (g C m-2) 1562

Fraction of cultivation layer C in export 0.84

Aggraded area % of field and mixing 

Mean  C Deposition 0.00

Initial cultivation C import /deposit 0.00

Subsoil C deposit/import 0.00

Burial of Initial cultivation layer C 0.00

Burial of imported Initial cultivation layer C 0.00

Burial of imported subsoil C 0.00

Replacement of imported cultivation soil C 0.00

 to initial cultivation layer C

Replacement of imported sub soil C in cultivation layer C 0.00

Whole field

Whole field area ha 0.05

Eroded Area ha 0.05

Aggraded Area ha 0.00

Whole field slope % 4.21

Mean C erosion rate 37.01

Mean C aggradation rate 0.00

Net C export rate 37.01

Net export of plough soil C 31.25

Net export of subplough C 5.76
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Appendix Table 7.4 Important properties of experimental Site 3 by topo-position and different depths. Differences in letter symbol 

indicate significance at p < 0.05 along slope position of each depth layer. Mean values ± 1SE (n = 5) are presented.   

 

 

 

 

 

Sites SOC (g kg
-1

) TN (g kg
-1

) CN ratio

Depth (cm) 0-15 45-60 0-15 45-60 0-15 45-60 

Eroding * 24.6 ± 0.77
a

5.34 ± 1.04
a

2.46 ± 0.06
b

0.48 ± 0.06
a

10.0 ± 0.51
a

12.8 ± 1.88
a

Site 3 Mid-slope 23.2 ± 0.28
a

5.44 ± 1.42
a

2.22 ± 0.02
a

0.40 ± 0.17
a

10.5 ± 0.19
a

16.1 ± 1.52
a

Deposition 28.8 ± 0.92
b

13.0 ± 1.60
b

2.59 ± 0.07
b

1.07 ± 0.18
b

11.2 ± 0.66
a

13.2 ± 1.71
a



  226   
 

 

Appendix Figure 7.1   Depth distribution of  137Cs and SOC inventory in profiles from different  slope positions at Site 3- Low Input 

calcareous Agriculture fields . Mean values ± 1SE (n =3) are presented. 
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Appendix Figure 7.2  Cumulative CO2-C release from the 0-15 cm (a) and 35-40 cm (b) depths from Site 3. Mean values ±1SE (n 

= 5) are presented. *Figure   eroding profile depth ended after 35-40 cm and exposed  calcareous stones / rocks. 
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Appendix Figure 7.3 Soil respiration rate from the 0-15 cm (a) and 45-60 cm (b) depths from Site 3 . Mean values ±1SE (n = 5) are 

presented 
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Appendix Figure 7.4   Cumulative CO2-C release per gram SOC from the 0-15 cm, 35-40 cm depths, Observed and Expected (mixed 

soil) incubated different Landscape positions from Site 3. Mean values ±1SE (n = 5) are presented. Letters changes in graph indicate 

significance at p < 0.05 and need to compare along slope position (p values reflect One way anova for top and subsoil. For mixed 

Observed and expected comparison tested by Pairwise t.test. “ns” means no significant). 
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Appendix Figure 7.5 Absolute cumulative difference of C release between observed vs expected at different time interval of within 

364 days for various landscape positions from Site 3. Mean values ±1SE (n = 5) are presented. 
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Appendix Table 7.5 Cumulative C release from different soil depths and mixed of non-eroded fields from different sites.  Mean values 

±1SE (n = 5) are presented. 

 

Cumulative C release (mg C release g
-1

 soil OC)

Sites layers Days 7 14 21 28 35 42 49 56 70 84 98 112 140 168 210 252 308 364

0-15 Mean 2.99 5.16 6.88 8.35 9.70 10.97 12.17 13.42 16.03 18.53 20.75 22.70 26.34 29.86 34.84 39.84 46.44 52.32

SE 0.32 0.54 0.70 0.83 0.95 1.07 1.17 1.26 1.49 1.75 2.00 2.23 2.63 3.03 3.59 4.13 4.93 5.67

Site 1 45-60 Mean 0.95 1.50 2.07 2.55 2.96 3.34 3.70 4.02 4.61 5.26 5.78 6.24 7.37 8.42 9.72 11.02 12.92 14.71

SE 0.10 0.19 0.29 0.38 0.45 0.49 0.51 0.54 0.60 0.67 0.75 0.83 0.98 1.13 1.34 1.47 1.59 1.66

Observed Mean 2.26 3.87 5.22 6.37 7.46 8.48 9.39 10.30 12.14 15.88 17.53 20.39 23.10 27.06 30.48 34.76 38.79

SE 0.18 0.30 0.41 0.48 0.56 0.65 0.72 0.79 0.92 1.03 1.14 1.26 1.52 1.81 2.08 2.33 2.67 3.05

Expected Mean 2.21 3.77 5.05 6.14 7.13 8.06 8.94 9.84 11.69 13.49 15.05 16.43 19.12 21.68 25.24 28.82 33.62 37.94

SE 0.19 0.33 0.44 0.52 0.59 0.66 0.71 0.76 0.87 1.01 1.15 1.29 1.53 1.76 2.07 2.37 2.83 3.24

Site 2 0-15 Mean 3.01 5.18 7.09 8.88 10.65 12.35 14.01 15.66 18.97 22.25 25.48 28.69 35.25 41.93 50.99 58.36 66.52 72.94

SE 0.36 0.56 0.72 0.87 1.04 1.18 1.31 1.42 1.70 2.01 2.34 2.73 3.71 4.93 6.33 6.99 7.41 7.71

45-60 Mean 1.25 2.09 2.87 3.53 4.20 4.82 5.38 6.04 7.23 8.27 9.26 10.13 12.04 14.00 16.52 19.03 22.63 25.80

SE 0.31 0.50 0.64 0.73 0.86 0.99 1.12 1.28 1.52 1.73 1.96 2.20 2.75 3.22 3.72 4.21 4.99 5.59

Observed Mean 2.69 4.67 6.43 8.09 9.74 11.28 12.81 14.41 17.68 21.07 24.50 28.05 35.53 42.87 51.28 57.61 65.52 71.73

SE 0.33 0.58 0.80 1.01 1.22 1.40 1.58 1.76 2.14 2.57 3.01 3.52 4.73 6.05 7.51 8.40 9.73 10.86

Expected Mean 2.61 4.50 6.17 7.72 9.27 10.75 12.18 13.62 16.49 19.32 22.10 24.86 30.50 36.28 44.09 50.49 57.69 63.45

SE 0.26 0.42 0.55 0.69 0.84 0.99 1.11 1.24 1.52 1.83 2.15 2.53 3.45 4.52 5.78 6.45 6.97 7.36

Site 3 0-15 Mean 1.99 3.48 4.77 5.90 7.05 8.18 9.23 10.24 12.24 14.25 16.22 18.11 21.81 25.27 30.01 34.37 39.78 44.54

SE 0.06 0.12 0.17 0.21 0.24 0.25 0.25 0.26 0.28 0.30 0.33 0.35 0.42 0.53 0.66 0.75 0.94 1.10

45-60 Mean 4.86 6.65 8.11 9.00 9.87 10.61 11.23 12.11 14.00 16.08 17.95 19.48 23.02 26.80 32.39 39.32 49.23 56.52

SE 0.91 1.14 1.33 1.38 1.48 1.61 1.69 1.89 2.46 3.00 3.43 3.91 5.11 6.14 7.26 8.55 10.90 12.78

Observed Mean 2.19 3.55 4.63 5.63 6.70 7.74 8.77 9.77 11.71 13.65 15.61 17.51 21.26 24.77 29.55 34.09 39.86 44.61

SE 0.18 0.30 0.34 0.42 0.58 0.71 0.82 0.95 1.16 1.39 1.61 1.83 2.27 2.73 3.33 3.81 4.46 4.97

Expected Mean 2.20 3.72 5.03 6.15 7.28 8.38 9.40 10.40 12.40 14.43 16.39 18.27 21.96 25.46 30.27 34.83 40.62 45.58

SE 0.09 0.16 0.22 0.26 0.29 0.31 0.32 0.34 0.41 0.47 0.54 0.61 0.80 0.99 1.20 1.39 1.75 2.05
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Appendix Table 7.6 SOC content in different fractionated soil particles from different 

slope positions. Mean values ±1SE (n = 3) are presented. 

 

 

 

 

 

 

 

 

SOC % TN %

Sites Slope Position Depth (cm) 2000-250 µm 250-63 µm 63-20 µm 2000-250 µm 250-63 µm 63-20 µm

Eroding 0-15 0.83 ± 0.01 0.92 ± 0.02 1.04 ± 0.01 0.06 ± 0.00 0.07 ± 0.00 0.09 ± 0.00

45-60 0.37 ± 0.01 0.45 ± 0.02 0.58 ± 0.04 0.02 ± 0.00 0.04 ± 0.01 0.04 ± 0.01

Site 1 Midslope 0-15 0.89 ± 0.11 0.75 ± 0.05 1.00 ± 0.01 0.07 ± 0.01 0.06 ± 0.01 0.09 ± 0.00

45-60 0.62 ± 0.02 0.62 ± 0.02 0.66 ± 0.03 0.05 ± 0.01 0.05 ± 0.00 0.05 ± 0.01

Deposition 0-15 1.30 ± 0.08 1.43 ± 0.23 0.98 ± 0.00 0.09 ± 0.01 0.11 ± 0.02 0.08 ± 0.00

45-60 0.86 ± 0.06 0.73 ± 0.06 0.78 ± 0.05 0.06 ± 0.00 0.05 ± 0.00 0.05 ± 0.00

DKRef1 0-15 0.72 ± 0.05 0.60 ± 0.04 0.79 ± 0.00 0.05 ± 0.00 0.04 ± 0.01 0.06 ± 0.01

45-60 0.52 ± 0.01 0.49 ± 0.02 0.56 ± 0.02 0.03 ± 0.00 0.04 ± 0.00 0.03 ± 0.00

Eroding 0-15 1.14 ± 0.05 1.73 ± 0.16 2.30 ± 0.04 0.08 ± 0.01 0.13 ± 0.01 0.17 ± 0.00

45-60 0.39 ± 0.04 0.83 ± 0.10 1.44 ± 0.23 0.04 ± 0.00 0.06 ± 0.00 0.10 ± 0.01

Site 2 Midslope 0-15 1.09 ± 0.13 1.65 ± 0.13 2.35 ± 0.06 0.07 ± 0.00 0.12 ± 0.01 0.18 ± 0.01

45-60 1.08 ± 0.07 1.36 ± 0.05 1.78 ± 0.15 0.06 ± 0.00 0.09 ± 0.01 0.11 ± 0.01

Deposition 0-15 1.59 ± 0.09 2.12 ± 0.11 2.39 ± 0.03 0.12 ± 0.01 0.16 ± 0.01 0.18 ± 0.01

45-60 1.02 ± 0.04 1.35 ± 0.06 1.68 ± 0.06 0.06 ± 0.00 0.08 ± 0.00 0.11 ± 0.00

PSRef1 0-15 1.42 ± 0.03 2.30 ± 0.06 2.99 ± 0.04 0.10 ± 0.00 0.18 ± 0.00 0.23 ± 0.00

45-60 0.23 ± 0.05 0.60 ± 0.11 1.47 ± 0.07 0.01 ± 0.01 0.04 ± 0.01 0.11 ± 0.01

Eroding 0-15 2.05 ± 0.21 2.67 ± 0.14 2.56 ± 0.11 0.22 ± 0.01 0.31 ± 0.02 0.30 ± 0.04

45-60 0.49 ± 0.15 0.62 ± 0.18 0.66 ± 0.16 0.18 ± 0.06 0.24 ± 0.05 0.22 ± 0.04

Site 3 Midslope 0-15 2.28 ± 0.08 2.75 ± 0.09 2.69 ± 0.04 0.40 ± 0.02 0.42 ± 0.02 0.36 ± 0.05

45-60 0.63 ± 0.25 0.71 ± 0.29 0.79 ± 0.25 0.07 ± 0.02 0.07 ± 0.03 0.07 ± 0.02

Deposition 0-15 2.67 ± 0.06 3.16 ± 0.13 3.29 ± 0.03 0.25 ± 0.01 0.29 ± 0.01 0.32 ± 0.01

45-60 1.21 ± 0.26 1.34 ± 0.25 1.57 ± 0.29 0.08 ± 0.02 0.11 ± 0.02 0.14 ± 0.04

BGRef3 0-15 2.17 ± 0.07 3.24 ± 0.26 3.20 ± 0.06 0.20 ± 0.02 0.29 ± 0.02 0.28 ± 0.03

45-60 0.21 ± 0.04 0.25 ± 0.05 0.41 ± 0.11 0.03 ± 0.01 0.03 ± 0.01 0.04 ± 0.01
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Appendix Text 7.1 Review of methods for SOM fractionation  

Option 1 Dry Sieving: Adapted 

Real procedure: Aggregates dry sieving (Mendes et al., 1999; Schutter and Dick, 

2002; Sainju et al., 2003 and2006). (Aim to estimate C and N from aggregates and 

Microbial C and water soluble C and N).  

 Soil should be field capacity moisture (fresh soil dry at 4oC for 7 days to get 8-

14% of moist- this condition represents real field condition of soil and this 

temperature not affect Microbes). 

 <4.75 mm size soil 500 g placed on nest of sieve <2 mm, 0.25 mm with shaker. 

Sieves were shaken at 200 Oscilation / minute for 3 minute and aggregates 

(4.75-2.00, 2.00-0.25, and <0.25 mm) retained and passed through the sieves 

were weighed. 

 Samples were air dried and stored in plastic bags until measure C and N. 

 Mean weight diameter of aggregate measured. 

I modified Aggregates Dry Sieving Procedure: 

 Step 1 Dry the fresh soil at 60oC at Oven (I was not measuring Microbial 

Carbon/activity) 

 Step 2 dried soil sieve manually sieve through 9.5 mm or 8 mm sieve (remove 

stones and roots) this step facilitate keep aggregates less disturbed 

 Step 3 passes the soil <9.5 mm into nest of Sieve 2000, 250, 53 and 20 µm 

with a shaker. Sieves were shaken at 200 Oscillation / minute for 3 minute and 

aggregates retained and passed through the sieves will be weighed 

 Step 4 these samples will be used for measuring C and N. 

This dry sieved aggregates suggest distribution of Sand (Active), Silt and Clay 

associated (Intermediate / passive pools) SOM pools at eroding / deposition profiles. 

Advantages of dry sieving 

 Reduce disruption of physical habitat of microbial communities (Mendes et 

al.,1999; Schutter and Dick, 2002). 

 I can estimate water soluble C and N while wet sieving creates under-estimation 

of C and N (Seech and Beauchamp, 1988; Beauchamp and Seech, 1990) 
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 Aggregates separated by dry sieving may represent more closely those in field 

during the absence of rain / irrigation 

 There may be chance of soil loss during wet sieving /decantation of water. 

Option 2 : Aggregate Wet sieving:  Performed based on Elliot (1986) and Six et al., 

(1998,2000, 2002 and Doetterl et al., 2012 modified) 

 Dry the fresh soil at 60oC at Oven (I am not measuring Microbial 

Carbon/activity) 

 Dried soil sieve manually sieves through 9.5 mm or 8 mm sieve (remove stones 

and roots) this step facilitate keep aggregates less disturbed 

 Take 50g air-dried soil sample (< 9.5/8 mm) submerged for 5 min at room 

temperature in deionized water – on top of a 2000 µm sieve  

 Aggregate separation achieved by manually moving sieve up and down 3 cm, 

50 repetitions per 2 minutes 

 After 2 min: stable >2000 µm aggregates back washed off sieve onto aluminium 

pan/ or plastic bowl, floating OM >2000 µm decanted and put into a weighed 

and labelled glass beaker and oven dried (Not considered SOM, but might be 

important to know how much macro OM is present, so keep it). Sediment 

sample >2000 µm decanted into a weighed glass glass and oven dried at 60oC 

 Water and soil passing through 2000 µm poured into next sieve 

 Sieving repeated (250 µm), floating material >250 retained with sediment 

sample, aggregate sample decanted into a weighed glass jar and oven dried 

 Repeated through 53 µm, floating material >53 retained with sediment sample, 

material passing through the 53 µm sieve is then filtered and oven dried – weigh 

and label the filter paper before filtering (use a Whatman 100). 

 Aggregates oven dried (60oC), after drying samples are weighed and stored in 

plastic bags then measure C and N for each fraction total 5 fraction per sample 

(2000-250 (light and heavy fraction), 250 – 53 (light and heavy fraction) and < 

53 µm (heavy fraction)). 

  

Six et al 1998 procedure modification: 

 I am not going to do density fraction by Sodium polytungstate because my soils 

from intensively cultivated land so there is less presence of Light fraction (free 

Particulate Organic Matter and Intra aggregate particulate Organic Matter) due 



235 
 

to Loss during continue cultivation (Six .et al, 1998; Doetterl et al., 2012). But I 

will collect floating light fraction on water for macroaggregates / 

microaggregates size if it presence. 

 

Modified Aggregates Dry Sieving Procedure: 

 Step 1 soil sieve manually through 9.5 mm Sieve (remove stones and roots) 

this step facilitate keep aggregates less disturbed 

 Step 2 Dry the fresh soil at 35oC at Oven (one day and remaining air dried)   

 Step 3 passes the soil < 9.5 mm into nest of Sieve 2000, 250, 63 and 20 µm 

with a shaker. Sieves were shaken at for 3 minute and aggregates retained and 

passed through the sieves will be weighed and stored in plastic bags. (This 

provide Macro Aggregates-Coarse Sand, Fine sand - Micro aggregates, more 

silt - Silt/clay –more clay associated SOM) 

 Step 4 these samples used for measuring C and N. 

This dry sieved aggregates suggest distribution of sand (active), silt and clay 

associated (intermediate/passive pools) SOM pools at eroding /deposition profiles. 

This method favours low SOM soil because I may loose further water soluble SOC In 

wet sieving. And also this method favour to link relationship with site characters 

because most of the time these field under dry condition. Only three months only 

rainfall. 
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Appendix Table 7.7 Soil moisture content and Water holding capacity of soils from 

various landscapes positions (soils used for respiration). Mean values ±1SE (n = 5) 

are presented 

 

 

 

 

 

Soil moisture content  (%) Water holding capacity (%)

Sites Positions Pits Depth (cm) Mean SE Mean SE

Upslope P1 0-15 8.47 0.66 32.59 0.27

Site 1 45-60 9.52 0.37 31.07 1.42

Midslope P3 0-15 8.07 0.56 32.02 0.72

45-60 14.38 0.52 36.12 0.94

Downslope P6 0-15 12.99 0.24 34.04 0.91

45-60 14.55 0.34 40.68 0.48

Stable Ref 0-15 6.92 0.34 34.87 0.67

45-60 13.20 0.46 37.87 0.46

Upslope P1 0-15 3.28 0.43 30.70 0.84

Site 2 45-60 6.97 0.95 31.64 1.26

Midslope P3 0-15 4.22 0.44 31.38 0.57

45-60 13.89 0.85 37.37 0.56

Downslope P6 0-15 9.45 0.75 38.90 0.71

45-60 15.35 0.62 41.13 0.98

Stable Ref 0-15 7.95 0.54 31.56 1.78

45-60 7.60 1.24 27.94 1.23

Upslope P1 0-15 17.82 0.33 35.97 0.62

Site  3 45-60 15.36 1.76 33.13 1.04

Midslope P2 0-15 17.56 0.34 35.99 0.93

45-60 20.58 0.82 40.34 0.70

Downslope P5 0-15 17.12 1.29 39.83 0.67

45-60 18.09 1.24 39.78 0.79

Stable Ref 0-15 14.21 0.66 33.77 0.42

45-60 17.15 1.15 34.36 0.66
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