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We present a model of the electronic properties of monolayer transition-metal dichalcogenides
based on a tight binding approach which includes the e↵ects of strain and curvature of the crystal
lattice. Mechanical deformations of the lattice o↵er a powerful route for tuning the electronic struc-
ture of the transition-metal dichalcogenides, as changes to bond lengths lead directly to corrections
in the electronic Hamiltonian while curvature of the crystal lattice mixes the orbital structure of
the electronic Bloch bands. We first present an e↵ective low energy Hamiltonian describing the
electronic properties near the K point in the Brillouin zone, then present the corrections to this
Hamiltonian due to arbitrary mechanical deformations and curvature in a way which treats both
e↵ects on an equal footing. This analysis finds that local area variations of the lattice allow for
tuning of the band gap and e↵ective masses, while the application of uniaxial strain decreases the
magnitude of the direct band gap at the K point. Additionally, strain induced bond length mod-
ifications create a fictitious gauge field with a coupling strength that is smaller than that seen in
related materials like graphene. We also find that curvature of the lattice leads to the appearance of
both an e↵ective in-plane magnetic field which couples to spin degrees of freedom and a Rashba-like
spin-orbit coupling due to broken mirror inversion symmetry.

PACS numbers: 73.63.-b, 68.65.-k, 71.70.Fk, 71.70.Ej

I. INTRODUCTION

Monolayers of transition-metal dichalcogenides
(TMDCs) are two-dimensional semiconductors and have
gained great interest in recent years due to their remark-
able electronic and optical properties.1 They possess a
direct band gap with a magnitude in the optical range2

and optical selection rules which allow for manipulation
of the valley and spin degrees of freedom3,4 providing
them with great potential for future device applications.

These TMDCs are a class of materials with the chemi-
cal composition MX2 where M represents a transition-
metal (e.g. M = Mo, W) while X corresponds to a
chalcogen atom (e.g X = S, Se, Te). These atoms form
a honeycomb crystal lattice analogous to graphene but
possess a semiconducting electronic structure with the
band gap minima located at the K and K0 points of the
hexagonal Brillouin zone, where the gap is due to a bro-
ken inversion symmetry. Indeed, these materials have al-
ready been shown to produce two-dimensional field e↵ect
transistors with on/o↵ ratios orders of magnitude larger
than in graphene.5 Additionally, the heavy transition-
metal atoms endow the material with strong spin-orbit
coupling most visibly seen in the large splitting observed
in the valence band ranging from 148meV in MoS2 to
462meV in WSe2 crystals.6

While there has been much interest in the optical and
electronic properties of the TMDCs it has also been
shown that MoS2 crystal membranes have mechanical
properties comparable with graphene oxide and can with-
stand mechanical strains up to 10%.7 Mechanical res-
onator devices have been demonstrated8 and suspended
devices have been fabricated for study in optical and elec-
tronic transport experiments.9,10 These properties im-

ply that TMDCs o↵er a route to studying novel nano-
electromechanical systems of semiconducting membranes
and the role of mechanical deformations on their elec-
tronic structure, optical and transport properties.

In this work we theoretically investigate the role of
elastic deformations on the electronic properties of the
TMDCs, by incorporating the e↵ect of strain into a tight
binding model. In general, deformations of the crystal
lattice lead to modifications of the bond lengths which
create corrections to the electronic Hamiltonian.11,12 In
addition curvature of the crystal lattice creates cor-
rections to the hybridization of the localized orbitals
which in general lead to new couplings between Bloch
bands.13–16 We take an approach which allows for a de-
scription of any arbitrary lattice deformations by treat-
ing modifications of bond lengths and curvature on equal
footing and including the e↵ects of spin-orbit interac-
tions. Then we present a low energy e↵ective theory
which describes lattice distortions, spin-orbit coupling
and lattice-spin coupling. We also fit our tight binding
model to first principle calculations of MoS2 and use the
obtained band parameters to predict the energy scales of
these strain/curvature-electronic coupling mechanisms.

Due to the large spin orbit interaction and unusual
spin-valley coupling within TMDCs, these materials hold
particular interest for spintronics applications. Out-of-
plane flexural motion of the lattice creates ripples and
corrugations of the crystalline membrane which have
been observed in MoS2 crystals17 and these provide elec-
tronic scattering mechanisms which are unique to two-
dimensional materials.18 In light of this, lattice-spin cou-
pling is of particular interest in spin transport as a mech-
anism for spin relaxation16 or possible spin manipulation
mechanisms. To date several authors have studied spin
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transport and spin relaxation rates in TMDCs by sym-
metry based techniques,19–21 but a precise knowledge of
the coupling parameters was not clear and is a topic of
this work.

The role of deformations in modifying the electronic
structure has been investigated so far via density func-
tional theory techniques22–27, which predict that strain
can lead to a modification to the band gap magnitude
and band e↵ective masses. These e↵ects have also been
proposed to explain optical measurements on wrinkled
MoS2.28 Most dramatically it has been predicted and
shown by photoluminescence experiments that strain can
induce a transition between a direct and indirect band
gap in monolayer MoS229–31 and multilayer WSe2.32 Ad-
ditionally, as a consequence of the broken inversion sym-
metry of the crystal lattice the TMDCs have been shown
to exhibit piezoelectric properties.33,34

This paper is organized as follows: In Section II we
introduce the details of the tight binding model includ-
ing spin-orbit interactions but without any strain or cur-
vature. Following this, in Section III we expand the
tight binding model around the high symmetry K and
K0 points and obtain a low energy e↵ective theory de-
scribing the conduction and valence bands. In Section
IV we introduce the corrections due to mechanical defor-
mations and curvature of the crystal lattice, then incor-
porate these physical e↵ects into the low energy e↵ective
theory, and discuss the role of these new terms in the
low energy theory. Finally, in Section V we present our
conclusions.

II. MODEL

Our calculations are based on a tight binding approach
describing the multiple electronic orbitals on each lattice
site that makes up the TMDC within the Koster-Slater
approach.35,36 The monolayer form of the TMDCs are
comprised of three layers, two (top and bottom) contain-
ing only chalcogen atoms and one middle layer with only
transition-metal atoms. We identify these layers by the
index l = 1 for the lower chalcogen layer, l = 2 for the
layer of transition-metal atoms, and l = 3 for the upper
chalcogen layer, a sketch of this lattice structure is shown
in Fig (1). These layers are each separated by a distance
c = 1.51Å.

The three layers comprise a planar honeycomb lattice
with the top and bottom layers arranged in a triangu-
lar lattice with the top layer lying directly above the
bottom layer, while the middle layer is also made of a
triangular lattice rotated by ⇡. Together these layers
comprise a honeycomb lattice constructed from two sub-
lattices (labeled X and M), where the X sublattice is
made of chalcogen atoms (labeled X1 and X3 for sites
on the bottom and top layer respectively) and the M
sublattice is conversely made of transition-metal atoms
(labeled M2), as shown in Fig. 1. The vectors connect-

ing the X and M lattice sites are e(±)
1 = (0,�a,±c),

a

c

c
∼

ej(+)

ej(- )

b)

X1

M2

X3

FIG. 1. The crystal structure of the monolayer TMDCs.
Panel a) shows a top down view of the crystal lattice, the
X sites on the top and bottom layers are colored yellow while
the M sites which comprise the middle layer are shown in grey.
Also shown on the lattice are the nearest neighbor vectors ej

and the lattice vectors ai. Panel b) shows a side view of the
lattice within one unit cell, the lattice sites X1, X3 and M2
are labeled where the X and M sites are colored yellow and
grey respectively. The nearest neighbor vectors e(±)

j between
the M and X lattice sites are shown, and additionally the lat-
tice parameters a, c and c̃ are displayed. Panel c) shows a
sketch of the monolayer TMDC lattice over many unit cells.

e(±)
2 = (

p
3a/2, a/2,±c) and e(±)

3 = (�
p
3a/2, a/2,±c),

where a = 1.84 Å and the (±) denotes for +(�) the vec-
tor connecting the M2 lattice site with upper layer X3
(lower layer X1) lattice site. As a consequence, the in-
teratomic distance between each M atomic site and its
nearest X atomic site is c̃ =

p
a2 + c2 = 2.37 Å. A sketch

of the honeycomb lattice showing these vectors is shown
in Fig 1.
It is also worth considering the next nearest neighbor

vectors which connect the atomic sites of the same species
and on the same layer, these are given by the six vectors

�1 = e(±)
1 � e(±)

3 = a(
p
3/2,�3/2, 0), �2 = e(±)

3 � e(±)
1 =

a(�
p
3/2, 3/2, 0), �3 = e(±)

1 �e(±)
2 = a(�

p
3/2,�3/2, 0),

�4 = e(±)
2 � e(±)

1 = a(
p
3/2, 3/2, 0), �5 = e(±)

2 � e(±)
3 =

a(
p
3, 0, 0), and �6 = e(±)

3 � e(±)
2 = a(�

p
3, 0, 0).

The electronic structure of the TMDCs is governed
by the d-orbitals localized on the transition-metal atoms
and the p-orbitals of the chalcogen atoms. Studies of
the electronic structure of the TMDCs by DFT tech-
niques have shown that the conduction band minimum
and the valence band maximum have a strong d-orbital
character, while all bands with strong p-orbital char-
acter lie at higher energies.3,6,37–40 To construct a re-
alistic tight binding model we will include both the d-
orbital states and higher energy p-orbitals states. In-
deed, we will see later within the text that the p-orbitals
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are crucial for replicating the electron-hole asymmetry
predicted by DFT and used to explain magneto-optical
experiments41–43 while also giving a complete and robust
model of the e↵ects of strain. Therefore, to be fully con-
sistent, on each M lattice site we consider 5 localized
d-orbitals dz2 , dx2�y2 , dxy, dxz and dyz (we will denote
x2 � y2 as x2 for notational convenience throughout this
work), while on all X lattice sites we include the px, py
and the pz localized p-orbitals. This creates a large basis
of 11 orbitals per unit cell, but we will see that we are
often able to achieve a very good approximation with a
smaller basis at the high symmetry points of the Brillouin
zone.

The tight binding Hamiltonian in real space is given
by three terms

H = Hatom +Hhop +Hso , (1)

where Hatom describes the on-site energies of each local-
ized orbital, Hhop describes the hopping between neigh-
bor localized orbitals, and Hso describes the on-site spin-
orbit interactions. We express the Hamiltonian in sec-
ond quantization where the electron annihilation oper-
ator p↵µ,i,s removes an electron in a p-orbital on lattice
site ↵ = X1, X3 in the µ = x, y, z localized orbital in the
i-th unit cell with spin s =", #, while d⌫,i,s removes an
electron in the ⌫ = z2, xy, x2, xz, yz localized d-orbital in
the i-th unit cell with spin s =", # where all d-orbitals
are localized on the M2 lattice sites.

At this point it is convenient to change the basis to
consider symmetric and antisymmetric combinations in
the layer index l = 1, 3 of the localized chalcogen orbitals.
This is done by introducing the the new operators pSµ,i,s =

(pX1
µ,i,s + pX3

µ,i,s)/
p
2 and pAµ,i,s = (pX1

µ,i,s � pX3
µ,i,s)/

p
2.

We will also utilize one final change of basis to the
rotating orbital basis, allowing us to write the electron
operators of the localized states in a form that makes
their angular momentum more transparent. Therefore
we introduce d±2,i,s = (dx2,i,s±idxy,i,s)/

p
2 and d±1,i,s =

(dxz,i,s ± idyz,i,s)/
p
2 for the d-orbitals, while for the p-

orbitals p�±1,i,s = (p�x,i,s ± ip�y,i,s)/
p
2 where the index

±2(±1) refers to the angular momentum of the rotating
d(p)-orbital and for the p-orbitals states � = S,A indi-
cate the symmetric and antisymmetric combinations in
the layer index introduced above.

The transition-metal dichalcogenide crystal lattice is
symmetric under a mirror inversion around the central
layer (z ! �z). Due to this we categorize the eleven elec-
tronic states as even or odd under this mirror inversion.
Of the states we consider the dz2,i,s, d2,i,s and d�2,i,s

d-orbitals and the pS1,i,s, p
S
�1,i,s and pAz,i,s p-orbitals are

even while the d-orbitals d+1,i,s and d�1,i,s along with
the p-orbitals pA1,i,s, p

A
�1,i,s and pSz,i,s are odd under this

transformation. As a consequence of this symmetry the
hopping processes between the even and odd states will
be zero, unless the mirror symmetry is broken somehow,
say, by a perpendicular electric field or by mechanical
bending of the crystal lattice. In the following we de-

scribe each term in Eq. (1) and its derivation in detail.

A. Atomic Hamiltonian

The term Hatom describes the on-site energies of all
the localized orbitals considered within this model. The
Hamiltonian is given by

Hatom =
X

i,s

h
✏0dd

†
z2,i,sdz2,i,s +

X

⇢=±

�
✏1dd

†
⇢1,i,sd⇢1,i,s

+ ✏2dd
†
⇢2,i,sd⇢2,i,s

�
+ ✏0p

�
pS†
z,i,sp

S
z,i,s + pA†

z,i,sp
A
z,i,s

�

+
X

⇢=±
✏1p
�
pS†
⇢1,i,sp

S
⇢1,i,s + pA†

⇢1,i,sp
A
⇢1,i,s

�i
, (2)

where ✏|l|� refers to the onsite energy of the state of type
� = p, d with angular momentum |l|. The numerical val-
ues of these on-site energies will be found by comparing
our tight-binding model with first principle calculations,
as discussed in Appendix A.2.

B. Hopping Hamiltonian

The term Hhop describes the hopping of electron be-
tween localized orbitals on di↵erent lattice sites. Within
the hopping Hamiltonian we consider three di↵erent dis-
tinct hopping processes, given by

Hhop = Hpd +Hdd +Hpp (3)

where Hpd describes the hopping between the nearest
neighbor d-orbitals on the middle layer and p-orbitals
on the top and bottom layers which are connected by

the vectors e(±)
j , Hdd describes the hopping between d-

orbitals located on the middle layer connected by the
vectors �j while Hpp describes both the vertical hopping
between the p-orbitals on the top and bottom layers sepa-
rated by the vector 2cẑ and the in-plane hopping between
p-orbitals on the same layer connected by the vectors �j .

The hopping matrix element of an electron from the
localized orbital ⌫0 in the j-th unit cell to the ⌫ local-
ized orbital on the i-th unit cell is denoted by tij⌫⌫0 . In
principle due to the large number of orbitals included
in this model, we have a large number of tight binding
parameters. Therefore we will employ the Koster-Slater
two center approximation to express the hopping terms
tij⌫,⌫0 within the tight binding model in terms of a small

number of parameters.35,36 Within this scheme we are
able to express all the hopping energy scales in terms
of a linear combination of the parameters V �

pp, V
⇡
pp, V

�
pd,

V ⇡
pd, V

�
dd, V

⇡
dd and V �

dd where the subscript refers to the
type of orbitals the hopping process is between and the
superscripts �, ⇡ and � refer to the bond ligands.

Firstly, we can turn our attention to the hopping be-
tween the p and d localized orbitals within the unit cell.
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In general the Hamiltonian considering all nearest neigh-
bor hopping is given by

Hpd =
X

hiji,s,µ,⌫,↵

tij⌫µ,↵d
†
⌫,i,sp

↵
µ,j,s +H.c. (4)

where tij⌫µ,↵ is the hopping matrix element between the
i-th and j-th unit cells and between localized orbitals
of type ⌫ = z2, xy, x2, xz, yz and µ = x, y, z, and h...i
implies summation over all nearest neighbors. The i-
th unit cell which is the d-orbital will be localized on a
M2 lattice site, while j-th unit cell corresponding to a
p-orbital on the ↵ = X1, X3 lattice site on layer 1 or 3
respectively.

We now perform the summation over µ, ⌫ and ↵ and
use both changes of basis discussed earlier in the text.
This procedure yields

Hpd =
1p
2

X

hiji,s

h
2ti,jz,z2d

†
z2,i,sp

A
z,j,s

+
X

⇢=±

�p
2ti,j⇢1,z2d

†
z2,i,sp

S
⇢1,j,s +

p
2ti,jz,⇢1d

†
⇢1,i,sp

S
z,j,s

+
p
2ti,jz,⇢2d

†
⇢2,i,sp

A
z,j,s

�
+
X

⇢,⇢0=±

�
ti,j⇢1,⇢02d

†
⇢02,i,sp

S
⇢1,j,s

+ ti,j⇢1,⇢01d
†
⇢1,i,sp

A
⇢0,j,s

�i
+H.c. (5)

where the new hopping matrix element can be expressed
in terms of the hopping matrix elements between the non-
rotating orbitals within the Koster-Slater two center ap-
proximation.

Next we consider the hopping between the d-orbitals
within the middle layer. This Hamiltonian is given by

Hdd =
X

hhijii,⌫,⌫0,s

ti,j⌫,⌫0d
†
⌫,i,sd⌫0,j,s , (6)

where hh...ii refers to summation over the next nearest
neighbor vectors �j which connect lattice sites on the
same layer. We again perform the summation over the
orbital index ⌫ and use the aforementioned changes of
basis to find

Hdd =
1

2

X

hhijii,s

h
2ti,jz2,z2d

†
z2,i,sdz2,j,s +

X

⇢=±

�
ti,j⇢1,⇢1d

†
⇢1,i,sd⇢1,j,s

+ ti,j⇢2,⇢2d
†
⇢2,i,sd⇢2,j,s

�
+
hX

⇢=±

p
2ti,jz2,⇢2d

†
z2,i,sd⇢2,j,s

+ ti,j+1,�1d
†
+1,i,sd�1,j,s + ti,j+2,�2d

†
+2,i,sd�2,j,s +H.c.

ii
,

(7)

where the hopping matrix elements are expressed in the
rotating orbital basis.

Finally we discuss the hopping between the p-orbitals,
where we will consider both the in-plane hopping within
the bottom and top layers of the crystal lattice and the
vertical hopping between the top and bottom layer over

the distance 2c. In general the Hamiltonian which de-
scribes these processes is given by

Hpp = H in
pp +Hout

pp , (8)

H in
pp =

X

hhijii,s,µ,µ0

tijµµ0

⇥
pX1†
µ,i,sp

X1
µ0,j,s + pX3†

µ,i,sp
X3
µ0,j,s

⇤
, (9)

Hout
pp =

X

i,s,µ,µ0

tiiµµ0p
X1†
µ,i,sp

X3
µ0,i,s +H.c. . (10)

Under the change of basis to the symmetric and antisym-
metric combinations of the rotating orbitals we find that
the contribution to the in-plane hopping takes the form

H in
pp =

X

hhijii,s,�

h
ti,jz,zp

�†
z,i,sp

�
z,j,s+

1

2

X

⇢,⇢0=±
ti,j⇢,⇢0p

�†
⇢1,j,sp

�
⇢01,j,s

i

(11)
where � = S,A refers to the symmetric and anti-
symmetric combinations of the localized orbitals on the
top and bottoms layer. Whereas the hopping Hamilto-
nian from the vertical hopping takes the form

Hout
pp =

X

i,s

hX

⇢=±
V ⇡
pp

�
pS†
⇢1,i,sp

S
⇢1,i,s � pA†

⇢1,i,sp
A
⇢1,i,s

�

+ V �
pp

�
pS†
z,i,sp

S
z,i,s � pA†

z,i,sp
A
z,i,s

�i
. (12)

The vertical hopping therefore leads to a shift in the on-
site energies of the p orbitals states.

C. Spin-orbit Interaction

An understanding of the role of the spin-orbit interac-
tion is crucial for a realistic description of the electronic
structure of the TMDCs. The Hamiltonian for the spin-
orbit interaction in the atomic approximation is given by

Hso =
h̄

4m2
ec

2

1

r

dV (r)

dr
L · S (13)

where V (r) is the spherically symmetric atomic potential,
L is the angular momentum operator and S = (sx, sy, sz)
is a vector of the spin Pauli matrices (with eigenvalues
±1). We use L · S = (L+s

� + L�s
+)/2 + Lzsz where

L± = Lx ± iLy and s± = sx ± isy. We now introduce
the coupling constants for the atomic spin-orbit inter-
actions arising from both the chalcogen and transition-
metal atoms, which we define to be

�X =
h̄

4m2
ec

2

Z
drR⇤

1,l(r)
1

r

dV (r)

dr
R1,l(r)

�M =
h̄

4m2
ec

2

Z
drR⇤

2,l(r)
1

r

dV (r)

dr
R2,l(r) , (14)

where R1,l(r) and R2,l(r) denote the radial atomic wave
functions of the chalcogen and transition-metal atoms re-
spectively. The precise numerical values of �X and �M
are not fully known in the literature, but we shall take
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values for MoS2 with �X ' 25meV and �M ' 37meV.6,44

Using these definitions we express the spin-orbit Hamil-
tonian in terms of the same electron operators defined in
the above text as

Hso = Hso,1 +Hso,2 (15)

where the two terms are given by

Hso,1 =
X

i,s,s0

X

⇢=±

⇥
�M⇢

�
2d†⇢2,i,ssz,s,s0d⇢2,i,s0

+ d†⇢1,i,ssz,s,s0d⇢1,i,s0
�
+ �X⇢

�
pS†
⇢1,i,ssz,s,s0p

S
⇢1,i,s0

+ pA†
⇢1,i,ssz,s,s0p

A
⇢1,i,s0

�⇤
, (16)

Hso,2 =
X

i,s,s0

�M
�
r

3

2
d†z2,i,ss

+
s,s0d+1,i,s0 +

r
3

2
d†z2,i,ss

�
s,s0d�1,i,s0

+ d†+2,i,ss
�
s,s0d+1,i,s0 + d†�2,i,ss

+
s,s0d�1,i,s0

�

+
�Xp
2

�
pA†
z,i,ss

+
s,s0p

A
+1,i,s0 + pA†

z,i,ss
�
s,s0p

A
�1,i,s0

+ pS†
+1,i,ss

�
s,s0p

S
z,i,s0 + pS†

�1,i,ss
+
s,s0p

S
z,i,s0

�
+H.c. .

(17)

Here the spin operator matrix elements are given by
sz,s,s0 = (sz)s,s0 and s±s,s0 = (sx ± isy)s,s0 . This pro-
cess yields two terms, a term Hso,1 describing the band
splitting in the d-bands with finite angular momentum
and in the p-bands with angular momentum l = ±1, and
a term Hso,2 describing the spin flip processes which cou-
ple the orbital states with even and odd symmetry. In
the following sections when discussing the tight binding
model without lattice deformations we will focus only on
Hso,1, as these are the dominant terms and well describe
the role of spin-orbit needed to explain the experimen-
tally observed band splittings. A discussion of the role
of the spin flip terms appearing in Hso,2 will be left un-
til Section IV.C which analyses these and other terms
coupling the odd and even sectors of the Hamiltonian.

III. TIGHT BINDING MODEL NEAR THE K
POINT

In this section we focus our attention to the band
structure around the K points in Brillouin zone, which
correspond to the locations of the band gap minima.
There are two inequivalent K points within the Brillouin
zone, labeled K and K0. The K points are located at
kD = ⌧(4⇡/3

p
3a, 0), where we have introduced the val-

ley index ⌧ = ±1 with ⌧ = 1 (⌧ = �1) referring to the
K(K0) point.

To study the tight binding model in the vicinity of
the K points we transform the electron operators to the
k-space representation using

p�µ,i,s =
1p
N

X

k

eik·Rip�µ,k,s (18)

and

d⌫,i,s =
1p
N

X

k

eik·Rid⌫,k,s (19)

where � = S,A, µ = ±1, z and ⌫ = ±1,±2, z2 and Ri

is the i-th unit cell in real space. This process yields the
electronic Hamiltonian

H =
X

k

 †
kHk k . (20)

HereH denotes the Hamiltonian describing the electronic
Bloch bands in the space of

 k =
�
 E
k , 

O
k

�
, (21)

where the basis is split into its even and odd subsectors,
which are individually given by

 E
k =

�
dz2,k,s, d⌧2,k,s, d�⌧2,k,s, p

S
⌧1,k,s, p

S
�⌧1,k,s, p

A
z,k,s

�T

 O
k =

�
d⌧1,k,s, d�⌧1,k,s, p

A
⌧1,k,s, p

A
�⌧1,k,s, p

S
z,k,s

�T
. (22)

We note that this basis will be used near the K points
and at these high symmetry points the basis is most suc-
cinctly defined with the valley index ⌧ in mind, therefore
we see that the interchange of valleys also interchanges
the order of some of the orbital states within the basis.
We now consider the full Hamiltonian discussed so far,
with the exception of Hso,2 which we will introduce in
Section IV.C. This Hamiltonian is block diagonal in the
subsectors with even and odd symmetries with respect
to mirror inversion around the central layer, allowing the
Hamiltonian to be expressed as

Hk =

0

BBB@

HE
k,dd HE

k,pd 0 0

HE†
k,pd HE

k,pp 0 0
0 0 HO

k,dd HO
k,pd

0 0 HO†
k,pd HO

k,pp

1

CCCA
, (23)

where the odd subblock lives within the space of the  O
k

while the even subblock lives within the space of  E
k , as

given in Eq. (22). Around the K point DFT calculations
have shown that the lowest conduction and highest va-
lence bands all prossess an even symmetry, therefore here
we will present the even subblock of the Hamiltonian and
the odd subblock is presented in full in Appendix A.3.
The odd states will play an important role upon con-
sidering the e↵ects of curvature and spin flip processes
arising from the spin-orbit interaction which we will ad-
dress in due course in Sections IV.B and IV.C.
We now find the electronic dispersion around the K

points by expanding within the small momentum q,
where |q|a ⌧ 1 using k = kD + q with the two Dirac
points kD = ⌧(4⇡/3

p
3a, 0). Performing this expansion
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we find the Hamiltonian to be given by the subblocks

HE,⌧
q,dd =

0

B@
VD0(P) v

(0)
dd Q v

(0)
dd Q

†

v
(0)
dd Q

† V
(+)
D2 (P) v

(2)
dd Q

†

v
(0)
dd Q v

(2)
dd Q V

(�)
D2 (P)

1

CA , (24)

HE,⌧
q,pp =

0

@
V

(+)
P1 (P) �vppQ 0

�vppQ† V
(�)
P1 (P) 0

0 0 VP0(P)

1

A , (25)

HE,⌧
q,pd =

0

B@
i⌧v

(1)
pd Q �i⌧K

(1)
pd P v

(0)
pd Q

†

i⌧K
(2s)
pd P �i⌧v

(2a)
pd Q† �v

(2)
pd Q

i⌧v
(2a)
pd Q† �i⌧v

(2s)
pd Q �K

(2)
pd P

1

CA , (26)

whereQ = q+(a/4)q†2 andP = 1�(3a2/4)|q|2 with q =
⌧qx + iqy. Here we have expanded around the K points
to second order in q, as was found to be a requirement to
obtain a good fitting with the DFT model. The fitting
procedure is discussed in more detail in Appendix A.2.

Precisely at the two K points (where q = 0) each
d-orbital couples only with one of the p-orbitals, these
pairings described by our tight-binding agree with high
precision with other combined DFT and tight-binding
models40,45,46 and symmetry based approaches.39 The

full expressions for the energies K
(i)
pd (with i = 1, 2, 2s)

and Vj (with j = P0, P1, D0, D2) and the group veloc-

ities v
(k)
pd (with k = 0, 1, 2, 2a, 2s), v(n)dd (with n = 0, 2)

and vpp are presented in Appendix A.1. We then fit this
tight-binding model to first principle calculations for the
electronic structure of MoS2 to determine the Koster-
Slater parameters, we describe this process in detail and
present the values in Appendix A.2.

A. Low Energy E↵ective Theory

Now we aim to construct the e↵ective theory of the low-
est energy d-bands around the K point from the Hamil-
tonian presented in Eq. (23). Firstly we identify the
high energy components of the model as the on-site en-

ergies of the p-orbital state VP1, and the energy K
(2)
pd

which splits o↵ the bands with pAz and d�⌧2 orbital char-
acters to energies with large magnitudes. This allows us
to project the 6 band even sector Hamiltonian onto the 2
d-bands in the space of (d⌧z2,q,s, d

⌧
⌧2,q,s) via a Schrie↵er-

Wolf transformation.47,48 Therefore we consider only the
even subsector of the Hamiltonian in Eq. (23) which we
write in a block form identifying the high and low energy
sector, this allows us to write the even sector in the form

HE,⌧
q,s =

✓
HLow V
V † HHigh

◆
. (27)

The high energy sector of the Hamiltonian
HHigh is given by the 4 ⇥ 4 block in the space

(d⌧q,�⌧2,s, p
S,⌧
q,⌧,s, p

S,⌧
q,�⌧,s, p

A
k,z,s). To contrast, V consists

of the 2⇥ 4 block which couples the low and high energy

sub blocks, with matrix elements which are small with
respect to the di↵erence in energy eigenvalues of the high
and low energy sectors of the Hamiltonian, satisfying
|✏Low � ✏High| � |V |. Then following the Schrie↵er-Wolf
transformation procedure we decouple the high and low
energy sub blocks up to second order in matrix elements
of V. This process yields

HE,⌧
q,e↵ =H0 +Htrig +Hcub +Hso , (28)

H0 =

✓
�c vq
vq† �v

◆
+

✓
�|q|2 0
0 ↵|q|2

◆
, (29)

Htrig =

✓
0 q†2

q2 0

◆
, (30)

Hcub =|q|2
✓
⌧!c|q| cos(3'q) !q

!q† ⌧!v|q| cos(3'q)

◆
,

(31)

Hso =

✓
0 0
0 2⌧�Msz

◆
. (32)

where the parameters �c, �v, v, ↵, �, !, !c, !v and 
are expressed in terms of the parameters of the six band
tight-binding model and 'q = arctan(qy/qx).
This is the final result for the low energy e↵ective the-

ory, firstly it gives the same terms as the Hamiltonian
proposed by Xiao et al3 while also including terms which
are higher order in q, like electron-hole asymmetry, trig-
onal warping and cubic terms which have been proposed
by other authors.6,39,45,49,50 Here we systematically in-
clude all terms up to second order in momentum, but for
completeness also include cubic corrections which at the
large momenta q � 0.2/a become important for the cor-
rect description of the electronic bands. This low energy
e↵ective theory based on tight-binding approach agrees
well with Hamiltonians derived from k · p methods.6,39

Comparing the expressions found for the six band
model and those found for the parameters of the two
band low energy e↵ective theory we determine the nu-
merical values for the case of MoS2. We find for the
band edges �c = 1.78eV and �v = �0.19eV, the group
velocities of the Dirac like term v = 2.44eVÅ, the e↵ec-
tive masses � = 0.21eVÅ2, ↵ = 0.71eVÅ2, the higher or-
der in momentum trigonal corrections  = 0.32eVÅ2 and
cubic corrections ! = �0.56eVÅ3, !c = �0.67eVÅ3 and
!v = 1.68eVÅ3. These values show reasonable agreement
with those found in the recent review by Kormányos et
al6, and the small discrepancies between the numerical
values of our parameters and those reported from fitting
to k · p model arise due to our fitting to the six band
model in contrast to the two band model.
There have been several theoretical predictions of a

small spin splitting in the conduction band of the order of
' 3meV in MoS2 and ' �30meV in WS2.6,44,51 The ap-
pearance of this spin splitting in the dz2 band, with l = 0,
can be understood due to its mixing with pS�⌧1 chalco-
gen orbitals leading to finite orbital angular momentum.
Within our low energy e↵ective theory we find sub lead-
ing corrections with the form ⌧ �̃Xszd

†
q,z2,sdq,z2,s which
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account for a spin splitting in the conduction band. Eval-
uating �̃X for the parameters of MoS2 we find ' 10meV,
but crucially this calculation was restricted to the space
of the even orbital states and therefore ignores the con-
tribution from second order processes which will be of
the same order as this small energy scale �̃X . In Section
IV.C we will address the contributions due to second or-
der processes to the term Hso.

IV. ANALYSIS OF STRAIN

In this section we will introduce the e↵ect of lattice
deformations of the electronic structure of the TMDCs.
The e↵ects of strain are included within the tight-binding
model by allowing for the modifications of the bond
length between atomic sites of the crystal lattice and the
relative orientation of the localized electronic orbitals.

Bending of the TMDC breaks the mirror symmetry un-
der inversion around the central layer and will therefore
create terms in the electronic Hamiltonian which couple
the even and odd sectors. To fully account for this cou-
pling of odd symmetry electronic states with even states
we introduce mechanical deformation into the electronic
Hamiltonian in two steps. In Section IV.A we first inves-
tigate the role of mechanical deformation which leads to
modifications of the bond lengths of the TMDC crystal
lattice within the even sector of the Hamiltonian pre-
sented above. Secondly, in Section IV.B we consider cur-
vature of the two-dimensional TMDC and present the
corrections to the even electronic states due to coupling
to the odd sector of the Hamiltonian. Finally in Section
IV.C we will incorporate both of these corrections into
the low energy e↵ective theory already presented in the
previous section.

A. Mechanical Deformations

In this section we study the e↵ects of mechanical de-
formations on the even sector of the TMDC electronic
Hamiltonian. We work within the framework of con-
tinuum elasticity theory and describe any in-plane de-
formation by a two dimensional vector field u(r), while
out-of-plane deformations are described by a scalar field
h(r). A generic atom at position r is thus shifted to
r0 = r + u(r) + ẑh(r). In this work we assume that
the three layers which make up the TMDC lattice move
uniformly and neglect the e↵ects due to shear interlayer
motion.

The lattice deformations lead to displacements of the
positions of the atomic sites which change the bond
lengths between atoms. This can be viewed as a modifi-
cation of the hopping matrix elements, where the matrix
elements tijµµ0 between a localized orbital µ in unit cell i
and a localized orbital µ0 in the unit cell j is transformed

as

tijµµ0 ! tijµµ0 + �tijµµ0 ' tijµµ0 +
@tijµµ0

@l0
�lijµµ0 (33)

where �tijµµ0 is the correction due to the change of the
bond length, l0 is the undeformed bond length and
�lijµµ0 is the modification of the bond length given by

�lijµµ0 = lijµµ0 � l0. The derivative can be estimated as

@tijµµ0/@l0 = ��µµ0(tijµµ0/l0) where �µµ0 = @ ln tijµµ0/@ ln l0
is the electron Grüneisen parameter. To the best of
our knowledge the electron Grüneisen parameters for the
TMDC family of materials are currently not known in the
literature, but can be obtained from a careful comparison
of first principle calculations of the electronic structure
of strained TMDCs and the model presented in this work
or by estimation of the electron-phonon couplings mea-
sured in experiments. Typically the electron Grüneisen
parameter is of the order of one, therefore in the follow-
ing for numerical evaluation we will take all �µµ0 to be
unity.
We now extend the model presented in Section III to

include lattice deformations utilizing the transformation
described in Eq. (33). In the even sector of the Hamil-
tonian we obtain the correction

�H⌧ =

 
�HE,⌧

dd �HE,⌧
pd

�HE,⌧†
pd HE,⌧

pp

!
, (34)

where the sub blocks are given by

�HE,⌧
dd =

0

B@
D1 F

(⌧)
4 F

(⌧)†
4

F
(⌧)†
4 D2 F

(⌧)†
3

F
(⌧)
4 F

(⌧)
3 D2

1

CA , (35)

�HE,⌧
pd =

0

B@
i⌧F

(⌧)
5 �2i⌧D5 F

(⌧)†
6

2i⌧D7 �i⌧F
(⌧)†
9 �F

(⌧)
8

i⌧F
(⌧)†
9 �i⌧F

(⌧)
7 �2D8

1

CA , (36)

�HE,⌧
pp =

0

@
D10 �F

(⌧)
12 0

�F
(⌧)†
12 D10 0
0 0 D11

1

A , (37)

and

Dk = �kTr["ij ] , (38)

F
(⌧)
k = �k

�
"yy � "xx + i⌧2"xy

⌘
. (39)

Here we used the strain tensor for a two-dimensional
membrane given by52

"ij =
1

2

�
@iuj + @jui + (@ih)(@jh)

�
. (40)

The couplings �k are composed of the electron Grüneisen
parameters, Koster-Slater parameters, and the crystal
lattice parameters and are given explicitly in Appendix
B.I.



8

We find that the corrections to the electronic momenta
have the same form as those which appear in mono-
layer graphene.12 They are linear in the in-plane deforma-
tions which cause variations of bond length and quadratic
in out-of-plane deformations which lead to variations in
bond length. This quadratic coupling arises due the sym-
metry of the lattice with respect to the x � y plane. As

a consequence the corrections to intralayer (F (⌧)
k with

k = 3, 4, 12) and interlayer (F (⌧)
k with k = 5, .., 9) hop-

ping terms possess the same form regardless of the dif-
ferent orientations. From a more microscopic under-
standing we find that due to our choice of basis all lin-
ear out-of-plane terms which arise in the corrections to
the interlayer hopping terms cancel. This is in contrast
to corrections to interlayer hopping terms which arise
in some other two-dimensional materials such as bilayer
graphene.53 We also observe corrections to the energies
which appear in the unstrained Hamiltonian which are
only sensitive to local dilations in the size of the lattice
Dk and are una↵ected by shear deformations. Due to
the broken inversion symmetry of the crystal structure
the Dk terms take di↵erent coe�cients allowing for mod-
ulation of the magnitude of band gaps, in contrast to
inversion-symmetric two dimensional materials such as
graphene.

The terms F
(⌧)
k behave as fictitious gauge fields act-

ing as corrections to the electronic momenta in the un-
perturbed six band Hamiltonian presented in Section II.
These fictitious gauge fields are time reversal invariant,
where time reversal symmetry exchanges the two val-
leys within the Brillouin zone, with HE,⌧=+

q + �H⌧=+ =�
HE,⌧=�

�q

�⇤
+
�
�H⌧=��⇤. There have been proposals to

use fictitious gauge fields to create pseudo-magnetic fields
in MoS2 devices54 and the analogous phenomenon has
been observed in strained graphene nanobubbles.55 As a
consequence of the time reversal invariant nature of the
fictitious gauge fields the pseudo-magnetic fields will oc-
cur with opposite signs in each valley, as we expect as
elastic deformations cannot break time reversal symme-
try.

This description of strain we present here only treats
electronic states near the K points of the Brillouin zone.
It has been shown theoretically and experimentally that
strain of the crystal lattice shifts the position of the band
edge of the � point, such that it becomes important for
providing a description of the electronic dispersion near
the band edges at �L/L ⇡ 5%,25–27 where L is the un-
strained sample size and �L the modification of the sam-
ple size under strain. Therefore our low energy theory
is only valid to strains of order "ij  0.05, and at larger
strains the model would require an extension to describe
the � and Q points in addition to the K point.

B. Curvature

Due to curvature of the two-dimensional crystal lat-
tice of the TMDC, hopping between localized electronic
states which are forbidden by symmetry in the flat con-
figuration become allowed, and this creates a coupling
of the odd and even sectors of the electronic Hamilto-
nian presented in Section III. An arbitrarily curved two-
dimensional surface can be described by its two principal
curvatures 1(r) and 2(r) which we define locally. These
local curvatures are expressed along principal directions
at angles ✓1(r) and ✓2(r) defined from the global x-axis
respectively. A sketch showing these definitions can be
seen in Fig. 2.
To allow us to describe the role of curvature on the

same footing as the mechanical deformations discussed
in the last section we consider the principal curvatures
in the Monge parameterization and we express the cur-
vature in terms of the scalar height field h(r) that we
have already introduced. The two principal curvatures
are the eigenvalues of the shape operator S = F�1

1 F2

where F1 is the first fundamental form and F2 is the sec-
ond fundamental form.56 Additionally the corresponding
eigenvectors of S give the principal directions and allow
for the determination of ✓n(r). We assume that we can
only consider smooth curvatures, such that @ih@jh ⌧ 1
with i, j 2 {x, y} and write the first and second funda-
mental forms of a two dimensional surface as

F1 =

✓
1 + (@xh)2 @xh@yh
@yh@xh 1 + (@yh)2

◆
, (41)

F2 =

✓
@2xh @x@yh
@y@xh @2yh

◆
. (42)

Here the first fundamental form F1 represents the metric
of the surface and the second fundamental form F2 cor-
responds to the curvature tensor of the two-dimensional
membrane. This process yields the eigenvalues n(r) =
(@2xh+@

2
yh+(�1)n[(@2xh�@2yh)2+4(@x@yh)2]

1
2 )/2 where

n = 1, 2.
To introduce these e↵ects into the tight binding model

we assume that the curvature along each principal direc-
tion can be modeled as a cylinder, where the principal
curvature is given by n(r) = R�1

n (r) with Rn(r) being
the local radius of the cylinder. We assume only smooth
curvatures and corrugations such that a/Rn(r) ⌧ 1 and
that it will be su�cient to consider terms to first order
in aR�1

n (r) ⌧ 1 to capture all the essential physics. This
means that the mutual curvature e↵ects between the two
principal curvatures are negligible giving only contribu-
tions at higher orders in a/Rn(r) and we may model
the two principal curvatures independently. The two
principal directions are related by ✓̂2(r) = ẑ0(r) ⇥ ✓̂1(r)
where ẑ0(r) is the vector normal to the curved surface
at position r, however for smooth curvatures and corru-
gations ẑ0(r) maybe replaced by ẑ(r). The two angles
which define the two principal directions are related by
✓2(r) = ✓1(r)± ⇡/2 as they are orthogonal.
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FIG. 2. Panel a) shows a sketch of the curved surface of a
TMDC, shown in the diagram is the both the global Cartesian
coordinate system and the local Cartesian coordinate system
on the curved surface. Also shown are the vectors ✓̂1(r) and
✓̂2(r) pointing along the principal curvatures formed by cur-
vature of the TMDC sheet. Panel b) shows a cross section of
the curved TMDC sheet labelling the angle �j,n, the nearest

neighbor bond length e(±)
j and the radius of the cylinder Rn.

Since we assume that along each principal direction
the curvature is modeled as a cylinder, we proceed in
the spirit of calculations studying curvature e↵ects in
carbon nanotubes.13,14 To account for curvature within
the Koster-Slater approximation we must consider the
shift in the bond directions, under a cylindrical curva-
ture along the principal direction ✓n(r). The corrections
to the bond directions can be obtained in terms of the an-
gle �j,n (a sketch showing a definition of the angle can be
seen in Fig. 2.b). The angle �j,n can then be expanded
in the small parameter a/Rn yielding

�j,n ' 1

Rn
|e(±)

x,j cos ✓n(r) + e
(±)
y,j sin ✓n(r)| . (43)

Where e
(±)
↵,j is the ↵ 2 {x, y} component of the nearest

neighbor vector for the j-th bond length. An analogous
expression can also be found for the next nearest neighbor
hopping between lattice sites on the layer.

As we are interested in the physics near the K and
K0 points we consider only the terms arising due to the
momenta precisely at the K points, with q = 0. This
approximation of neglecting the small momentum devi-
ations around the K points disregards terms which act
to renormalize the group velocities, an e↵ect that turns
out to be small. Introducing these corrections into the
Koster-Slater approximation it is straight forward to cal-
culate the Hamiltonian which couples the even and odd
states under curvature.

�H⌧
curv =

✓
�Hdd,curv �Hdp,curv

�Hpd,curv �Hpp,curv

◆
, (44)

where the subblocks are given by

�Hdd,curv =
a

R̃

0

@
�i⌧V1e

i⌧2✓ �i⌧V1e
�i⌧2✓

�i⌧V2e
�i⌧2✓ i⌧V3

i⌧V3 �i⌧V2e
i⌧2✓

1

A , (45)

�Hdp,curv =
a

R̃

0

@
�i⌧V4e

�i⌧2✓ i⌧2V4 �⌧V5e
i⌧2✓

i⌧2V6 i⌧V7e
i⌧2✓ V8e

�i⌧2✓

�i⌧V7e
i⌧2✓ i⌧V6e

�i⌧2✓ 2V8

1

A ,

(46)

�Hpd,curv =
a

R̃

0

@
�V9e

i⌧2✓ �2
p
2V8p

2V8e
�i⌧2✓ �V9e

i⌧2✓

�⌧2V10 �⌧V10e
�i⌧2✓

1

A , (47)

where R̃�1 = R�1
1 + R�1

2 . The prefactors Vj (with j =
1, .., 10) are all energy scales made up from Koster-Slater
parameters and lattice parameters and are given in full
detail in Appendix B.2.
We note that the odd and even symmetry p-orbitals

only produce curvature induced matrix elements which
couple the even and odd sectors of the Hamiltonian at
second order in a/R̃.

C. Low Energy E↵ective Theory

With the inclusion of all e↵ects that we have thus
far covered within this work, the tight binding model
for unstrained TMDCs and the e↵ects of spin-orbit cou-
pling, mechanical deformations and curvature, we obtain
a model containing a large quantity of information. In
this section we aim to produce a simplified low-energy
e↵ective theory describing the conduction and valence
bands near the K and K0 points as we showed in Section
III.A but which includes corrections due to these addi-
tional e↵ects.
The full Hamiltonian describing all the e↵ects dis-

cussed so far in the space of the eleven localized orbitals
is given by

H⌧
q =

✓
HE HEO

HEO† HO

◆
, (48)

where the even sector includes mechanical deformations
HE = HE,⌧

q + �H⌧ (given in Eq. (23) and Eq. (34)
respectively) acting in the space given by the first line of
Eq. (22), the odd sector HO (given in Eq. (23)) acts in
the odd space shown in the second line of Eq. (22) while
HEO couples the even and odd sectors of the Hamiltonian
and is given by HEO = Hso,2+ �H⌧

curv (given in Eq. (17)
and Eq. (44) respectively).
The procedure used to construct a low energy e↵ective

model contains two steps of successive Schrie↵er-Wol↵
transformations.47,48 First we fold down the full Hamil-
tonian in Eq. (48) onto the even sub block to account for
the e↵ect of the even odd sector coupling mechanisms
within the even sector of the Hamiltonian. Then we
use another Schrie↵er-Wol↵ transformation as outlined in
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Section II.A to produce the final low energy e↵ective two-
band Hamiltonian. We neglect the contributions which
are second order in �H⌧

curv, as these terms will only lead
to corrections of order (r2h(r))2 which for smooth rip-
ples (where h(r) changes slowly in the scale of the crystal
lattice) will be small as compared to corrections arising
due to bond length changes.

We calculate the e↵ective six band Hamiltonian which
describes the even sector with a Schrie↵er-Wol↵ transfor-
mation as

HE,⌧
nm ' HE,⌧

q,nm + �H⌧
nm

+
1

2

X

l

HEO
nl HEO†

lm

h 1

✏En � ✏Ol
+

1

✏Em � ✏Ol

i
, (49)

where ✏En(m) and ✏Ol refer to the eigenvalues of the even
and odd sub blocks of the Hamiltonian respectively. Here
we restrict the Hamiltonian in the odd sector HO

q to the
K and K0 points only, as corrections due to finite mo-
menta near the K points in the higher energy odd sector
lead only to small negligible corrects in the final e↵ective
Hamiltonian.

We then proceed to find the e↵ective Hamiltonian in
the space of (d⌧z2,q,s, d

⌧
⌧2,q,s) following the same procedure

as outlined in Section II.A. This rather lengthy process
finally yields

HE,⌧
q,e↵ = H0 +Htrig +Hso

+ �H + �Hso + �Hcurv . (50)

Here the first two terms H0 and Htrig are the same as
in the low energy Hamiltonian unperturbed by the ef-
fects of strain and curvature presented in Eqs. (29)-(30),
whereas Hso is modified by spin flip processes. Addition-
ally we find �H describing the coupling of mechanical de-
formations to orbital degrees of freedom, �Hso contains
terms describing the coupling of strain to spin degrees of
freedom and �Hcurv describes the role of the coupling of
curvature e↵ects and spin degrees of freedom in the low
energy theory. The expression presented in Eq. (50) is
the central result of this paper and we will now present
each term in detail and discuss their role is the low energy
physics of TMDCs.

Due to the inclusion of the spin flip terms which cou-
ple the even and odd sectors of the Hamiltonian the spin
orbit Hamiltonian Hso now contains new terms due to
second order virtual transitions between the even and
odd sector, additionally we will also present relevant sub
leading term proportional to �̃X which creates a spin
splitting in the conduction band. The spin orbit interac-
tion Hamiltonian is then given by

Hso =

✓
⌧(�̃X � �2)sz 0

0 2⌧�Msz

◆
, (51)

where �2 contains the corrections due to the second order
spin flip transitions.

The conduction band has predominately dz2,s or-
bital character. Spin up electrons can transition to an

odd band with d⌧1,# orbital character mediated by �M ,
whereas the spin down electrons may transition to an odd
band consisting of a d�⌧1," orbital state with the transi-
tion only being mediated by �M . Taking these processes
into account and disregarding a negligible shift in the
band splitting we find that �2 ' 2meV in MoS2.
To give a complete description of the spin splitting in

the conduction band we must consider the direct splitting
�̃X arising from the p-orbitals contribution to the band
and the corrections due to second order processes, these
e↵ects combined give a total spin splitting of ' 8meV
in MoS2. We must note that DFT calculations show
that the conduction band does contain a minority con-
tribution from the pS�⌧1,s orbital6,44,51 and therefore for
a more accurate prediction of the conduction band spin
splitting a more detailed model is needed which correctly
predicts the orbital weights of the bands. This feature of
the band structure was not the focus of our study and has
been studied in more detail by other authors.44 Numeri-
cal studies of the conduction band spin splitting has pre-
dicted opposite splitting in the Tungsten based TMDCs,
which will be achieved when the relation �̃X < �2 is
satisfied.6,51

There also exists a correction to the spin splitting in
the valence band. This occurs due to spin flip transitions
between the valence band with an orbital structure of
predominantly the d⌧2,# type orbital states and the odd
symmetry band with an orbital makeup of d�⌧1," states.
The transitions are mediated by �M , but are second or-
der corrections and as a consequence the strength of this
process is several orders of magnitude smaller than the di-
rect spin splitting, with the correction being ' 0.2meV,
therefore we neglect these corrections in our treatment.
The terms describing the coupling of electronic and

mechanical degrees of freedom can be expressed in two
parts, and are most informatively expressed within H0

as

H0 + �H = H0 + �H1 + �H2 , (52)

where the first part contains the gauge fields which mod-
ifies the low energy Dirac-like terms in H0. Here we
present both as

H0 + �H1 =

✓
�c vq + ⌘1F

(⌧)

vq† + ⌘1F
(⌧)† �v

◆

+

 
�
��q + ⌘2F

(⌧)
��2 (q† + ⌘4F

(⌧)†)2

(q + ⌘4F
(⌧))2 ↵

��q + ⌘3F
(⌧)
��2

!

(53)

with F (⌧) = "yy � "xx + 2i⌧"xy. The coupling constant
is found to be ⌘1 = 150meV, this weak coupling suggests
that the role of the gauge fields is much weaker than in
other similar systems such as graphene. In a very recent
work this coupling constant was also obtained but was
found to be two order of magnitude smaller than the ⌘1
presented here,57 but nonetheless this shows agreement
that this coupling is weak.
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The second line in Eq. (53) describes the gauge field
corrections to the terms second order in momentum
and will account for a tuning of the e↵ective masses
of the conduction and valence bands under deforma-
tions of the crystal lattice. The parameters are given by
⌘2 = 3.42 eVÅ2, ⌘3 = 0.48 eVÅ2 and ⌘4 = 0.34 eVÅ2.
As a consequence strain o↵ers a route to control the
e↵ective masses which play an important role defining
the system in many situations such as electrical con-
ductance, the cyclotron frequency of electron within a
magnetic field and valley dependent g-factors which have
been observed.41–43

The second section of Eq. (52) gives the direct band
edge shifts, given by

�H2 =

✓
�1D 0
0 �2D

◆
+

✓
�3D

2 0
0 �4D

2

◆
. (54)

The term �H2 includes the coupling of local lattice
dilations to the diagonal electronic terms, where D =
Tr["ij ] is the local area variation. The terms in Eq. (54)
describe a tuning of the band edges under mechanical
deformations, where the two linear term parameters are
given by �1 = �0.53 eV and �2 = �0.62 eV, and the
terms which couple quadratically to the change in local
area variation are �3 = 0.56 eV and �4 = 0.02 eV. As a
consequence of the broken inversion symmetry �1 and �2
are not required to be equal and therefore strain causes
a decrease in the size of the band gap. Under an applied
uniaxial strain of a form u(r) = rr̂�L/L, with �L/L de-
scribing the relative extension of the lattice, we find a
decrease of the direct band gap at the K and K0 points
' 5meV/%. This value is approximately one order of
magnitude smaller than values extracted from photolu-
minescence experiments,30 but it must be noted that the
numerical values found in our calculations assume elec-
tron Grüneisen parameters of unity. This direct band
gap decrease has a strong dependence on variations in
d-d bond lengths in �1 and �2 and also a weaker depen-
dance on p-d bond lengths given in �5 and �7 suggesting
electron Grüneisen parameters larger than unity are nec-
essary to explain current experiments.

It is also interesting to note that there is an additional
sub-leading term describing the coupling of spin to me-
chanical deformations of the lattice, which we give here
for completeness. It is given by

�Hso = szD

✓
��1 0
0 ��2

◆
, (54)

where the local variations of area lead to an e↵ective band
dependent Zeeman field, and the couplings are given by
��1 = 0.1meV and ��2 = �0.02meV. We see that dila-
tions of the crystal lattice do indeed give rise to a shift in
the size of the spin splitting in each band, but that the
strength of the coupling is negligible.

Now we turn our attention to the expression �Hcurv

describing the curvature. The first consequence of curva-
ture of the crystal lattice is that the induced curvature

will locally produce a tilt as compared to the global co-
ordinate system. In the local frame the electronic spin
can be defined with respect to the local normal vector
ẑ0(r) as sz = S · ẑ0(r). Therefore now considering the
global frame we find that this gives rise to a deflection
coupling58,59

sz ! sz � sx@xh� sy@yh . (54)

This deflection coupling of the spin orbit interaction is
an entirely geometrical e↵ect and is due to a local tilt
of the lattice that mixes out-of-plane deformations and
in-plane electronic spins and will appear in Eq. (51).
The second consequence of curvature of the crystal lat-

tice is curvature changing the orbital compositions of the
Bloch bands. Theses e↵ects give rise to new terms in the
e↵ective low energy theory, given by

�Hcurv =

✓
⌧ S ·Be↵,c �r2h(isx + ⌧sy)

�r2h(�isx + ⌧sy) ⌧ S ·Be↵,v

◆
.

(54)
The diagonal terms describe the coupling of spin degrees
of freedom to the local curvature of the crystal lattice.
Where the e↵ect of the curvature is to create an e↵ective
in-plane magnetic field which couples with the spin de-
gree of freedom of the electrons given by S = (sx, sy, sz)
a vector of the spin Pauli matrices. The e↵ective mag-
netic fields which appear in the Hamiltonian are given
by

Be↵,c =
�
⇠12@x@yh, ⇠2(@

2
xh� @2yh), 0

�
,

Be↵,v =
�
⇠32@x@yh, ⇠4(@

2
xh� @2yh), 0

�
.

Here we see that the role of the scalar height field h(r)
appears in the e↵ective magnetic fields as components of
the curvature tensor. This means that these expressions
depend on second derivatives of the height field h(r) and
therefore are only sensitive to curvatures of the crystal
lattice, in contrast to the coupling which appears in Eq.
(IVC).
The parameters that govern the e↵ective in-plane mag-

netic field in the conduction band Be↵,c are given by
⇠1 = 115meVÅ and ⇠2 = 67meVÅ, whereas within the
valence band e↵ective in-plane magnetic field Be↵,v we
find ⇠3 = 19meVÅ and ⇠4 = 12meVÅ. We predict here
that the e↵ective in-plane magnetic field which couples to
electronic spins in the conduction band is two orders of
magnitude larger than the analogous e↵ect in the valence
band.
The magnitude of the e↵ective magnetic field is equal

and opposite in each of the valleys, therefore time re-
versal symmetry is broken locally within each valley and
not globally over the entire Brillouin zone. This is ex-
pected as elastic deformations of the lattice are time re-
versal invariant. As a consequence of this we would ex-
pect spin transport scattering due to ripples to depend
strongly on whether there is strong intra-valley scattering
present which breaks time reversal symmetry or strong
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inter-valley scattering processes which are time reversal
invariant.

The o↵ diagonal terms within �Hcurv represent inter-
band spin-lattice coupling mechanisms. The strength of
the coupling is given by � = 105meVÅ. This term shows
the direct coupling of electronic spins to the out-of-plane
deformations given by the mean curvature of the surface
that describes the crystal lattice. This coupling is anal-
ogous to a Rashba type spin orbit interaction, being of
the form / ⌧�xsy � �ysx, where here �j are the Pauli
matrices acting in the band space.

There also exists o↵ diagonal terms which couple an
e↵ective in-plane magnetic field Be↵,vc with the spin de-
grees of freedom. These terms only provide sub-leading
corrections to the Hamiltonian with coupling parameters
of order ' 5meVÅ, much smaller than other previously
mentioned o↵ diagonal terms and therefore we neglect
these terms within our treatment.

An experimental study preformed by Brivio et al17

looked at the structure of the spontaneous ripples formed
in MoS2. With the use of high-resolution transmission
electron microscopy and atomic force microscopy they
observe that typical ripples have lengths of 6�10 nm and
heights of 6�10 Å, and these observations have been sup-
ported by molecular dynamics simulations.60 Therefore,
based on dimensional analysis, we would expect the mag-
nitude of components of the curvature tensor for typical

ripples to be of order ' 10�3 Å
�1

. Comparing this to
the Rashba spin-orbit coupling which arises due to per-
pendicular electric fields, we see that curvature e↵ects
can have a comparable e↵ect for realistic magnitudes of
electric fields.51

V. CONCLUSIONS

In this work we have presented a tight binding study
of the TMDCs and have included the e↵ects of both me-
chanical deformations which cause bond length changes
and curvature which leads to a mixing of the orbital
structure of the Bloch bands. We find that mechani-
cal deformations allow for tuning of the direct band gap
at the K and K0 points and lead to fictitious gauge fields
which couple to the orbital degrees of freedom. In par-
allel curvature breaks the mirror inversion symmetry of
the crystal lattice and introduces spin-lattice coupling
mechanisms that manifest themselves as an e↵ective in-
plane magnetic field which couples to spin and a Rashba
like coupling with a magnitude proportional to the mean
curvature of the TMDC lattice. Due to the microscopic
nature of the model presented we have produced esti-
mates of the strengths of the coupling parameters of all
the relevant processes.

This study provides a basis for further study into a mi-
croscopic understanding of the role of strain on TMDC
monolayers and of future devices which utilize the cou-
pling of mechanical and electronic degrees of freedom al-
lowing for the tailoring of electronic band and spin-orbit

coupling strengths to suit device needs.
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Appendix A: Tight Binding parameters

1. Parameters of the Six Band Tight Binding
Model

In this section we present the form of the terms in the
six band tight binding model presented in Section III,
Eq’s (24)-(26). The energies and group velocities which
appear in the Hamiltonian are given in terms of the on-
site energies and Koster-Slater parameters discussed in
the derivation of the model in Section II. These expres-
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TABLE I. The numerical values of the parameters for MoS2

which appear in the six band Hamiltonian. The parameters
are given for the case at the band edges, in which q = 0. All
energies are given in units of eV and group velocities in units
of eVÅ

VD0 1.28 K(1)
pd 1.79 v(0)pd 1.01

VD2 -0.37 K(2)
pd 3.59 v(1)pd 1.64

VP1 -4.09 K(2s)
pd -0.89 v(2)pd 3.30

VP0 0.42 v(0)dd 1.77 v(2s)pd -0.81

vpp -3.75 v(2)dd 2.28 v(2a)pd 2.85

sions are written as

VD0(P) = ✏0d �
3

4
(3V �

dd + V �
dd)P

V
(±)
D2 (P) = VD2(P)± 2�M⌧sz

VD2(P) = ✏2d �
3

8
(V �

dd + 4V ⇡
dd + 3V �

dd)P

V
(±)
P1 (P) = VP1(P)± �X⌧sz

VP1(P) = ✏1p + V ⇡
pp �

3

2
(V ⇡

pp + V �
pp)P

VP0(P) = ✏0p � V �
pp � 3V ⇡

ppP

K
(1)
pd =

3a

2c̃3
(2c2(

p
3V ⇡

pd � V �
pd) + a2V �

pd)

K
(2)
pd =

3a2c

2c̃3
(2V ⇡

pd �
p
3V �

pd)

K
(2s)
pd =

3

2
p
2c̃3

(a3(
p
3V �

pd � 2V ⇡
pd) + 4ac̃2V ⇡

pd)

v
(0)
dd =

9
p
3a

8
p
2
(V �

dd � V �
dd)

v
(2)
dd =

9a

16
(V �

dd � 4V ⇡
dd + 3V �

dd)

v
(0)
pd =

3ac

2
p
2c̃3

(a2(2
p
3V ⇡

pd � V �
pd) + 2c2V �

pd)

v
(1)
pd =

aK
(1)
pd

2

v
(2)
pd =

aK
(2)
pd

2

v
(2s)
pd =

aK
(2s)
pd

2

v
(2a)
pd =

3

4
p
2c̃3

(a4(2V ⇡
pd �

p
3V �

pd)

vpp =
9a

4
(V ⇡

pp � V �
pp) .

Where P = 1� (3a2/4)|q|2. Comparing these expres-
sions with first principle calculations we present the nu-
merical values of the parameters of the six band model
for the case of q = 0 in Table I.

TABLE II. The numerical values of the onsite energies and
Koster-Slater parameters which appear in the six band Hamil-
tonian for MoS2. All energies are given in units of eV

On-site Energies ✏0p -3.96

✏1p -5.38

✏0d 2.12

✏1d -0.46

✏2d -1.41

S-S hoppings V ⇡
pp -1.32

V �
pp -0.42

S-Mo hoppings V ⇡
pd 0.67

V �
pd -2.83

Mo-Mo hoppings V �
dd 0.45

V ⇡
dd -0.62

V �
dd -0.24

2. Fitting to First Principle Calculations

We find the on-site energies and Koster-Slater param-
eters of the six band Hamiltonian by fitting to DFT cal-
culations of the electronic band structure of MoS2. This
is done by minimizing the function

f(q) =
X

n,q

�
✏TB
n (q)� ✏DFT

n (q)
�2

(A0)

where ✏TB
n (q) corresponds to the eigenvalues of the n-th

band of the tight binding Hamiltonian and ✏DFT
n (q) is

the energy of the n-th band found via DFT techniques.
We minimize Eq (A2) using the Powell method fitting
procedure.61 Firstly a fitting is preformed at the band
edges which are used to fix the onsite energies, then we
fit a range of ⇡ 0.1(2⇡/a) momenta around the K point in
the � to K to M direction to find the Koster-Slater hop-
ping parameters. To achieve a good fitting it is necessary
to extend the expansion of q around the K points to sec-
ond order. We fit to band structures calculated without
the e↵ect of spin-orbit interactions included, and leave a
more exhaustive fitting including spin-orbit interactions
to a later study.
The Koster-Slater parameters resulting from this pro-

cedure can be found in Table II. Where we present the
numerical values for the energies and group velocities of
our six band model found during this fitting procedure.

3. Odd Sector of the Tight Binding Hamiltonian
around the K point

In this section of the appendix we present the full form
of the odd sector of the Hamiltonian near the K point
presented in Eq. (23) in the basis of the odd states shown
in Eq. (22). We expand to linear order in q, where q is
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TABLE III. The numerical values of the parameters for MoS2

which appear in the five band Hamiltonian of the odd sector
of the full tight binding Hamiltonian. All energies are given
in units of eV and group velocities in units of eVÅ

VD1 -0.21 K(1z)
pd -4.33 v(1)dd 4.45

V O
P1 -1.45 v(1s)pd -3.01

V O
P0 -0.41 v(1z)pd -3.99

the momentum close to the K Point given by k = kD+q.
This process yields

HO,⌧
q,dd =

 
V

(+)
D1 �v

(1)
dd q

†

�v
(1)
dd q V

(�)
D1

!
,

HO,⌧
q,pp =

0

B@
V

(+)O
P1 �vppq 0

�vppq
† V

(�)O
P1 0

0 0 V O
P0

1

CA ,

HO,⌧
q,pd =

 
v
(1s)
pd q†

p
2v(2)pd q i⌧K

(1z)
pdp

2K(2)
pd �v

(1s)
pd q† �i⌧v

(1z)
pd q

!
.

Where we have introduced the new on-site energies and
group velocities

V
(±)
D1 = VD1 ± �M⌧sz

VD1 = ✏1d �
3

2
(V �

dd + V ⇡
dd)

V
(±)O
P1 = V O

P1 ± �X⌧sz

V O
P1 = ✏1p � V ⇡

pp �
3

2
(V ⇡

pp + V �
pp)

V O
P0 = ✏0p + V �

pp � 3V ⇡
pp

K
(1z)
pd =

3a

c̃3
(c2(

p
3V �

pd � 2V ⇡
pd) + c̃2V ⇡

pd)

v
(1)
dd =

9a

4
(V �

dd � V ⇡
dd)

v
(1s)
pd =

3c

2
p
2c̃3

(a3(
p
3V �

pd � 2V ⇡
pd) + 2ac̃2V ⇡

pd)

v
(1z)
pd =

K
(1z)
pd a

2

Here we see that at precisely the band edge (q = 0)
each d-orbital couples to one p-orbital while the pAk,�⌧1,s
remains uncoupled, this is in excellent agreement with
other tight binding models.40

The numerical values of the parameters of the odd sec-
tor Hamiltonian are presented in Table III.

TABLE IV. The numerical values of the coupling parameters
which appear in the strain induced corrections to the six band
Hamiltonian for the case of MoS2. The electron Grüneisen
parameters are all taken to be one. All energies are given in
units of eV.

�1 0.42 �4 -0.16 �7 0.13 �10 1.31

�2 -0.52 �5 -0.86 �8 -0.54 �11 -0.99

�3 -0.21 �6 -1.46 �9 0.47 �12 0.34

Appendix B: Parameters Used in the Analysis of
Strain

1. Parameters for Mechanical Deformations

In this section we present the couplings �k which arise
in the strain induced corrections to the six band Hamil-
tonian shown in Eq. (34) which are given by

�1 =
3

8

⇥
3��

ddV
�
dd + ��

ddV
�
dd

⇤

�2 =
3

16

⇥
��
ddV

�
dd + 4�⇡

ddV
⇡
dd + 3��

ddV
�
dd

⇤

�3 = � 3

32

⇥
��
ddV

�
dd � 4�⇡

ddV
⇡
dd + 3��

ddV
�
dd

⇤

�4 = � 3

16

r
3

2

⇥
��
ddV

�
dd � ��

ddV
�
dd

⇤

�5 = � 3a3

4c̃5

h
c2
⇥p

3�⇡
pdV

⇡
pd � ��

pdV
�
pd

⇤
� a2

2
��
pdV

�
pd

i

�6 =
3a4c

4
p
2c̃5

h⇥
2
p
3�⇡

pdV
⇡
pd � ��

pdV
�
pd

⇤
+

p
2c2

ac̃
��
pdV

�
pd

i

�7 =
3a5

4
p
2c̃5

h
�⇡
pdV

⇡
pd �

p
3

2
��
pdV

�
pd �

2c̃2

a2
�⇡
pdV

⇡
pd

i

�8 = � 3a4c

8c̃5

h
2�⇡

pdV
⇡
pd �

p
3��

pdV
�
pd

i

�9 = � a

c
p
2
�8

�10 = � 3

4

⇥
��
ppV

�
pp + �⇡

ppV
⇡
pp

⇤

�11 =
3

4
�⇡
ppV

⇡
pp

�12 =
3

8

⇥
��
ppV

�
pp � �⇡

ppV
⇡
pp

⇤
.

The numerical values of the parameters �k are shown in
Table IV. For the example case of MoS2, the values pre-
sented are calculated under the assumption that the elec-
tron Grüneisen parameters �µ

dd, �
µ
pd and �µ

pp are taken to
be unity.
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2. Parameters for Curvature

In this section we present the relevant parameters Vj

which arise in the description of the curvature which cou-
ples the odd and even sections of the unperturbed Hamil-
tonian. These terms appear in the Hamiltonian shown in
Eq. (44) and are given by

V1 =
9

8

r
3

2

⇥
V �
dd � 2V ⇡

dd + V �
dd

⇤

V2 =
27

16

⇥
V �
dd � V �

dd

⇤

V3 =
9

8

⇥
V �
dd � 4V ⇡

dd + 3V �
dd

⇤

V4 =
3c

4c̃3
⇥
a2(4

p
3V ⇡

pd � 7V �
pd) + 2c2(V �

pd �
p
3V ⇡

pd)
⇤

V5 =
3a

4c̃3
⇥
a2(2

p
3V ⇡

pd � V �
pd)� 4c2(

p
3V ⇡

pd � 2V �
pd)
⇤

V6 =
3c

4
p
2c̃3
⇥
a2(6V ⇡

pd � 3
p
3V �

pd)� 4c̃2V ⇡
pd

⇤

V7 =
9a2c

4
p
2c̃3
⇥
2V ⇡

pd �
p
3V �

pd

⇤

V8 =
3a

4c̃3
(a2 � 2c2)

⇥
2V ⇡

pd �
p
3V �

pd

⇤

V9 =
p
2V8 �

3a

2
p
2c̃

V ⇡
pd

V10 = 2V8 +
3c

2c̃
V ⇡
pd .

Once again we present the numerical values of the pa-
rameters Vj in Table V.

TABLE V. The numerical values of the coupling parameters
which appear in the Hamiltonian describing curvature shown
in Eq. (44) for the material parameters of MoS2. All energies
are given in units of eV.

V1 1.17 V2 0.83 V3 1.36 V4 5.43 V5 -3.35

V6 2.27 V7 3.99 V8 -0.79 V9 -2.17 V10 -0.37
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Zólyomi, N.D. Drummond and V. Fal’ko, 2D Mater. 2,
022001 (2015).

7 A. Castellanos-Gomez, M. Poot, G.A. Steele, H.S.J. van
der Zant, N. Agra it and G. Rubio-Bollinger, Adv. Mater.
24, 772-775 (2012).

8 A. Castellanos-Gomez, R. van Leeuwen, M. Buscema,
H.S.J. van der Zant, G.A. Steele and W.J. Venstra Adv.
Mater. 25, 6719-6723 (2013).

9 T. Jin, J. Kang, E.S. Kim, S. Lee and C. Lee, J. Appl.
Phys. 114, 164509 (2013).

10 H. Shi, R. Yan, S. Bertolazzi, J. Brivio, B. Gao, A. Kis, D.
Jena, H.G. Xing and L. Huang, ACS Nano. 7, 1072-1080
(2013).

11 H. Suzuura and T. Ando, Phys. Rev. B 65, 235412 (2002).
12 M.A.H. Vozmediano, M.I. Katsnelson and F. Guinea,

Physics Reports 496, 109-148 (2010).
13 T. Ando, J. Phys. Soc. Jpn 69, 1757-1763 (2000).
14 D. Huertas-Hernando, F. Guinea and A. Brataas, Rhys.

Rev. B, 74, 155426 (2006).
15 J-S. Jeong, J. Shin and H-W. Lee, Phys. Rev. B, 84,

195457 (2011).
16 H. Ochoa, F. Guinea, and V.I. Fal’ko, Phys. Rev. B 88,

195417 (2013).
17 J. Brivio, D.T.L. Alexander and A. Kis, Nano Lett. 11,

5148-5153 (2011).
18 M.I. Katsnelson and A.K. Geim, Phil. Trans. R. Soc. A

366, 195-204 (2008).
19 H. Ochoa and R. Roldán, Phys. Rev. B 87, 245421 (2013).
20 Y. Song and H. Dery, Phys. Rev. Lett. 111, 026601 (2013).
21 H. Ochoa, F. Finocchiaro, F. Guinea and V.I. Fal’ko, Phys.

Rev. B, 90, 235429 (2014).
22 H. Pan, Y-W. Zhang, The Journal of Physical Chemistry

C, 116, 11752-11757, (2012).
23 P. Lu, X. Wu, W. Guo, X.C. Zeng, Physical chemistry

chemical physics PCCP, 14, 13035-40, (2012).
24 Q. Yue, J. Kang, Z. Shao, X. Zhang, S. Chang, G. Wang,

S. Qin, J. Li, J. Physics Letters A, 376, 1166-1170, (2012).



16

25 P. Johari and V.B. Shenoy, ACS Nano. 6, 5449 (2012).
26 H. Peelaers, C.G. Van de Walle, Phys. Rev. B, 86,

241401(R) (2012).
27 M. Ghorbani-Asl, S. Borini, A. Kuc, T. Heine, Phys. Rev.

B, 87, 235434 (2013).
28 A. Castellanos-Gomez, R. Roldán, E. Cappelluti, M.

Buscema, F. Guinea, H.S.J. van der Zant and G.A. Steele,
Nano. Lett. 13, 5361 (2013).

29 K. He, C. Poole, K.F. Mak, and J. Shan, Nano. Lett. 13,
2931 (2013).

30 H.J. Conley, B. Wang, J.I. Ziegler, R.F. Haglund, Jr., S.T.
Pantelides, and K.I. Bolotin, Nano. Lett. 13, 3626 (2013).

31 C.R. Zhu, G. Wang, B.L. Liu, X. Marie, X.F. Qiao, X.
Zhang, X.X. Wu, H. Fan, P.H. Tan, T. Amand and B.
Urbaszek, Phys. Rev. B 88, 121301(R) (2013).

32 S.B. Desai, G. Seol, J.S. Kang, H. Fang, C. Battaglia, R.
Kapadia, J.W. Ager, J. Guo and A. Javey, Nano. Lett. 14,
4592 (2014).

33 W. Wu, L. Wang, Y. Li, F. Zhang, L. Lin, S. Niu, D.
Chenet, X. Zhang, Y. Hao, T.F. Heinz, J. Hone and Z.L.
Wang, Nature 514, 470-474 (2014).

34 H. Zhu, Y. Wang, J. Xiao, M. Liu, S. Xiong, Z.J. Wong,
Z. Ye, Y. Ye, X. Yin and X. Zhang, Nat. Nanotech. 15,
151-155 (2015).

35 J.C. Slater and G.F. Koster, Phys. Rev. 94, 1498 (1954).
36 W.A. Harrison, Elementary Electronic Structure (World

Scientific Publishing, 1999).
37 S. Lebégue and O. Eriksson, Phys. Rev. B, 79, 115409

(2009).
38 Z.Y. Zhu, Y.C. Cheng and U. Schwingenschlögl, Phys. Rev.
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