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Abstract

The human exploitation of marine resources is characterised by the preferential removal of the largest species. Although
this is expected to modify the structure of food webs, we have a relatively poor understanding of the potential
consequences of such alteration. Here, we take advantage of a collection of ancient consumer tissues, using stable isotope
analysis and SIBER to assess changes in the structure of coastal marine food webs in the South-western Atlantic through the
second half of the Holocene as a result of the sequential exploitation of marine resources by hunter-gatherers, western
sealers and modern fishermen. Samples were collected from shell middens and museums. Shells of both modern and
archaeological intertidal herbivorous molluscs were used to reconstruct changes in the stable isotopic baseline, while
modern and archaeological bones of the South American sea lion Otaria flavescens, South American fur seal Arctocephalus
australis and Magellanic penguin Spheniscus magellanicus were used to analyse changes in the structure of the community
of top predators. We found that ancient food webs were shorter, more redundant and more overlapping than current ones,
both in northern-central Patagonia and southern Patagonia. These surprising results may be best explained by the huge
impact of western sealing on pinnipeds during the fur trade period, rather than the impact of fishing on fish populations. As
a consequence, the populations of pinnipeds at the end of the sealing period were likely well below the ecosystem’s
carrying capacity, which resulted in a release of intraspecific competition and a shift towards larger and higher trophic level
prey. This in turn led to longer and less overlapping food webs.
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Introduction

Human activities have altered most of the coastal marine

ecosystems of the world over many centuries, causing reductions in

population sizes, shifts in geographic ranges, and losses of diversity,

biomass, and ecosystem functioning [1,2,3,4,5,6]. Both aboriginal

and industrial exploitation of marine resources are characterised

by the preferential removal of the largest species [3,7,8,9,10], a

process thought to shorten size-structured marine food webs

[4,11,12]. However, so far, megafaunal exploitation has generally

resulted in population collapse and top predator rarity, rather than

in true extinctions [13,14,15]. The difference between rarity and

extinction is relevant, because the extinct species no longer belong

to the local food web, whereas the scarce ones remain, although it

has been argued that these can be considered functionally extinct

[10,16].

To understand the actual relevance of both extinction and

scarcity of formerly abundant megafauna species, we need to

assess their role in the pristine ecosystems in which they have

evolved. This can be achieved by studying marine protected areas

(e.g. [17]) but the influence of the human disturbed matrix in

which they are embedded is difficult to control. Furthermore,

marine reserves are often too small to support viable populations

of large top predators or encompass entire foraging ranges [18]

and have not been protected for long enough to guarantee full

recovery [19]. A second approach is through ecosystem modelling

(e.g. [20,21]), but this can be hampered by the limited perspective

of contemporary data [3], the difficulties of model parameterisa-

tion [22] and unknown changes in the diet and foraging behaviour
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of predators through time (e.g. [23,24]). A third approach consists

of using ancient biological material, such as bones and shells, to

reconstruct trophic relationships in a time span prior to the

anthropogenic alteration of marine ecosystems [3].

The mechanisms and underlying causes of a number of cases of

population collapses or extinctions have been clarified by

analysing the fossil and zooarchaeological records (e.g. [25]).

However, this method brings little information about past diets,

trophic levels and food-web structure. The development of stable

isotope analyses and quantitative methods for analysing the food-

web topology [26,27,28] allows the reconstruction of past trophic

relationships based on ancient biological material [29], since the

stable isotope ratios in consumer tissues represent those of their

diet in a predictable manner [30,31]. The marine ecosystems off

Argentina have suffered major anthropogenic changes during the

past two centuries. Firstly, European sealers locally extirpated the

South American fur seal (Arctocephalus australis) during the 19th

century and were at least in part responsible for a decline in South

American sea lion populations (Otaria flavescens) during the first

half of the 20th century [32,33,34,35,36]. When exploitation

ceased most populations of this species had been reduced to ,10%

of the pre-exploitation numbers and their recovery did not begin

until the early 1990s in Argentina, after several decades of

stagnation [34,37,38]. As a result, the current populations of both

species are still well below pre-exploitation numbers

[34,39,40,41,42]. Furthermore, fisheries targeting large demersal

fishes were established in Rı́o de la Plata and northern Patagonia

in the 1970s, causing a population decline in several large benthic

predatory fish species [43,44,45,46]. Finally, the Argentine

population of the Magellanic penguin (Spheniscus magellanicus)
increased during the 20th century, both in number of individuals

and geographic range [47], perhaps due to the decline of

competitors and predators because of the exploitation of pinnipeds

[48].

However, the European sealers and fishermen were not the first

humans to exploit the marine resources off Argentina. Aboriginal

hunter-gatherers began to exploit the local populations of fur seals,

sea lions and other marine species during the middle Holocene

[49,50,51,52,53,54]. Even though the general opinion is that the

impact on the populations of pinnipeds was minimal [49,55].

More recently, Zangrando and colleagues [56] argued that human

pressures on fur seals in the Beagle Channel during the late

Holocene might have resulted in demographic and ecological

changes, based on evidence from stable isotope analyses and the

decreasing age and size of hunted individuals. However, these

results remain inconclusive because potential variations of the

stable isotope baseline through time were not accounted for [57].

The zooarchaeological record preserved in the hunter-gatherers

middens offers an excellent opportunity to reconstruct the

structure of ancient marine food webs (while accounting for

potential changes in stable isotopic baselines) in the South-western

Atlantic and compare it with that of modern food webs.

In this paper, we use the stable isotopes of carbon and nitrogen

from the shells of mollusc shells to set the stable isotopic baseline

and from bones of marine mammals and penguins to reconstruct

the changes in the topology of coastal food webs from central-

northern Patagonia and southern Patagonia through the second

half of the Holocene. Through this, we aim to assess whether the

structure of the food web has changed as a consequence of human

exploitation during the studied period.

Material and Methods

Ethics Statement
Permits to collect modern samples (Table 1 and S1) were issued

by the ‘‘Dirección de Fauna y Flora Silvestre’’, and the ‘‘Dirección

de Areas Protegidas’’, both from the Province of Chubut. The

zooarchaeological samples come from previous fieldwork carried

out by Julieta Gómez Otero, Florencia Borrella, Martı́n Serrán

and Lorena Peralta in Golfo San Matı́as and Penı́nsula Valdés

(central-northern Patagonia), Eduardo Moreno in Santa Cruz

(southern Patagonia) and Ernesto Piana, Luis Orquera, Angie

Tivoli and Francisco Zangrando in the Beagle Channel (Tierra del

Fuego). All the samples used for this study come from stranded

animals, died naturally (except for mussels and limpets), or from

archaeological remains (shell middens). All specimen numbers and

repository information are shown in Tables 2 and 3, and in Tables

S2 and S3. Due to the low proportion of organic matter present in

the archaeological shells, the entire valve was used to undertake

isotopic analyses. However, samples of the same ages are available

to allow the work to be reproducible.

Study site and sample collection
Bones and shells are commonly used in paleontological and

archaeological isotopic studies because they contain organic

remains and they are often abundant in archaeological deposits

as well as in historic museum collections [24,58,59,60]. Further-

more, the proteins they contain integrate the diet over several

years [61,62,63]. Accordingly, we determined the ratios of stable

isotopes of carbon and nitrogen in the organic matrix from the

shell of modern and archaeological intertidal mussels (Aulacomya
atra atra and Mytilus edulis) and limpets (Nacella magellanica),

and in modern and archaeological bone tissue from South

American sea lions, South American fur seals and Magellanic

penguins. Mussels and limpets were used to characterise the

trophic level 1 (herbivores), which allows us to interpret whether

shifts in the predators are more likely linked to prey switching or a

change in the isotopic baseline. Both modern and archaeological

samples were collected in two areas of the South-east coast of

South America (Figure 1): central-northern Patagonia (Rı́o Negro

and Chubut provinces) and southern Patagonia (Santa Cruz and

Tierra del Fuego provinces). These two areas differ in oceano-

graphic, biogeographic and anthropogenic features, with central-

northern Patagonia being less productive and more affected by

anthropogenic impacts (industrial fishing) than southern Patagonia

[64,65].

Nasal turbinates from modern marine mammal were sampled

from specimens at the scientific collections of the Centro Nacional
Patagonico (Puerto Madryn, Argentina) and Museo Acatushún
(Ushuaia, Argentina) and analysed. Modern penguin bones from

adult penguins found dead at breeding colonies distributed along

central-northern Patagonia and southern Patagonia were also

analysed. Modern mollusc samples were collected from December

2009 to February 2010 at three sites along the coastline of

Argentina: two in the Rı́o Negro province (central-northern

Patagonia) and one in the Tierra del Fuego province (southern

Patagonia) (Figure 1, Table 1).

Sex is often difficult to assess when only fragmented individuals

are recovered from the zooarchaelogical record, despite being a

major determiner in the foraging habits of fur seals, sea lions and

penguins [47,66,67,68,69]. Accordingly, a sensitivity analysis was

run using modern samples from the Rı́o de la Plata region

(between southern Brazil and Buenos Aires province) to assess the

sensitivity of food web reconstruction using SIBER (see Data

analysis). Blue mussels (Mytilus edulis) were collected in the Rı́o de
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la Plata region to represent ribbed mussel (Aulacomya atra atra),

and the limpet Siphonaria lessoni to represent Nacella magellanica
(Table 1).

Zooarchaeological bones (generally humeri, mandibles, coxal

bones, ribs and femurs) and shell samples recovered from shell

middens come from previous fieldwork carried out by Julieta

Gómez Otero, Florencia Borrella, Martı́n Serrán and Lorena

Peralta in Golfo de San Matı́as and Penı́nsula Valdés (central-

northern Patagonia), Eduardo Moreno in Santa Cruz (southern

Patagonia) and Ernesto Piana, Luis Orquera, Angie Tivoli and

Francisco Zangrando in the Beagle Channel (Tierra del Fuego)

(Figure 1, Tables 2 and 3). The samples were dated in different

laboratories and using different methods; in particular, in central-

northern Patagonia, almost all dated samples were marine shells

instead of charcoal. As CO2 diffuses slowly from the atmosphere to

the ocean, changes in the abundance of 14C in sea water are

delayed in comparison to changes in the atmosphere [70]. Such a

lag is known as the reservoir effect and is the responsible for the

difference between the radiocarbonic age of coal and shells from

the same archaeological level. Reservoir effect data for the central-

northern Patagonia region are emerging only recently [71], and

they suggest a relatively small difference between marine and

terrestrial ages on the basis of a few samples. Although the use of a

correction for reservoir effect would be preferable [52], we refer to

the conventional, uncalibrated radiocarbon dates for all the sites.

This shortcoming should not be of great importance in these types

of studies for which precise dates are not required, but large time

intervals should suffice.

All samples were stored in a freezer at 220uC until analysis.

Stable isotope analysis
Once in the laboratory, bone and shell samples were thawed

and dried in an oven at 50uC, and ground to a fine powder with a

mortar and pestle. Shell samples were pre-polished with sandpaper

and with a diamond wheel drill to remove impurities. They were

subsequently rinsed with distilled water and lipids were extracted

in all samples with a chloroform/methanol (2:1) solution [72].

Since both bone and shell contain high concentrations of

inorganic carbon, which may bias d13C values [73], they were

divided into two aliquots. The first was decarbonised by soaking in

0.5 N (bone) or 1 N (shell) hydrochloric acid (HCl) until no more

CO2 was released [74]. Since the HCl treatment adversely affects

d15N values [75], the second aliquot was not treated with HCl and

used for d15N determination.

Dried powdered samples and secondary reference standards

were combusted at 900uC, and analysed in a continuous flow

isotope ratio mass spectrometer (Flash 1112 IRMS Delta C Series

EA Thermo Finnigan). For the shell samples, a CO2 absorbent for

elemental analyses (CaO/NaOH) was employed to avoid the

saturation of the spectrometer during the analysis of the non-acid

washed samples, constituted by 90% CaCO3. Stable isotope

abundance is expressed in standard d notation relative to

carbonate Pee Dee Belemnite and atmospheric nitrogen. Analyses

were performed at the Science and Technology Centre (CCiT) of

the University of Barcelona.

Data analysis
Limpets and mussels were analysed together under the

‘‘herbivore’’ category, representing, in the same functional group,

both benthic (limpets) and pelagic (mussels) compartments [76].

Each top predator species was analysed separately. Archaeological

data were grouped into broad time intervals to enable quantitative

reconstruction of food webs. Consequently in central-northern

Patagonia all the archaeological samples were pooled together

under a single time interval, from 5200670 yr 14C BP until

380660 yr 14C BP. This period is entitled the ‘‘Pre-contact

period’’ since it predates the arrival of European settlers, opposed

to the term post-contact used in archaeology [51,53,77]. Ancient

samples from southern Patagonia were split in two different

periods. The early aboriginal period (EAP) ranging from 6000 to

1100 years ago was characterised by very high oceanic primary

Table 1. Samples used to reconstruct the modern food webs.

Species Area N

Herbivores

Mytilus edulis Rı́o de la Plata 5

Aulacomya atra atra Northern Patagonia 7

Aulacomya atra atra Southern Patagonia 5

Siphonaria lessoni Rı́o de la Plata 5

Nacella magellanica Northern Patagonia 5

Nacella magellanica Southern Patagonia 5

Top Predators

Arctocephalus australis Rı́o de la Plata 60

Arctocephalus australis Northern Patagonia 29

Arctocephalus australis Southern Patagonia 7

Otaria flavescens Rı́o de la Plata 19

Otaria flavescens Northern Patagonia 36

Otaria flavescens Southern Patagonia 41

Spheniscus magellanicus Rı́o de la Plata 20

Spheniscus magellanicus Northern Patagonia 20

Spheniscus magellanicus Southern Patagonia 40

doi:10.1371/journal.pone.0103132.t001
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productivity [78] and the prevalence of pinnipeds in the economy

of hunter-gatherers [50]. Conversely, the late aboriginal period

(LAP), ranging from 1000 to 100 years ago, was characterised by a

much lower oceanic primary productivity [78] and a lower

reliance of the hunter-gatherers economy on pinnipeds. Modern

data were analysed separately, so five different food webs were

analysed: two in central-northern Patagonia (one archaeological

and one modern) and three in southern Patagonia (two

archaeological and one modern).

SIBER (Stable Isotope Bayesian Ellipses in R) [79] was used to

compute Bayesian Layman’s metrics that summarised food web

structures in each region and epoch. Only five of the six measures

proposed by Layman et al. (2007) [27] were calculated. The d15N,

d13C ranges (NR and CR, respectively) and the mean distance to

centroid (CD) are measures of the total extent of spacing within the

d13C–d15N bi-plot space and gives a measure of community niche

width that is not particularly sensitive to sample size. Nitrogen

range (NR) is the representation of the vertical structure of the

web; carbon range (CR) gives us an idea of the trophic diversity at

the base of the web, while the mean distance to centroid provides a

measure of the average degree of trophic diversity within a food

web [27]. Mean nearest neighbour distance (MNND) and the

Table 2. Archaeological samples from northern-central Patagonia.

Species N Laboratory ID Archaeological site Age (14C yr BP) Reference
Repository
information

Herbivores

Aulacomya atra atra 3 A7-cC1, C4, C5 Los Abanicos 1 380660 [105] CENPAT, Puerto
Madryn (Argentina)

Aulacomya atra atra 2 A8-cC2, C4 Las Ollas conchero 1 610660, 640660 [52] CENPAT, Puerto
Madryn (Argentina)

Aulacomya atra atra 5 A5-cC1, C2, C3, C4, C5. Playas Las Lisas 2-perfil 1 2140650 [52] CENPAT, Puerto
Madryn (Argentina)

Aulacomya atra atra 2 A11-cC3, C4 Cracker 8-Nivel 3 5200670 [52] CENPAT, Puerto
Madryn (Argentina)

Nacella magellanica 5 A7-cL1, L2, L3 L4, L5. Los Abanicos 1 380660 [105] CENPAT, Puerto
Madryn (Argentina)

Nacella magellanica 5 A10-cL1, L2, L3, L4, L5. Ecocentro Fogón 3 8506150 [52] CENPAT, Puerto
Madryn (Argentina)

Nacella magellanica 4 A4- cL1, L3, L4 Playa Las Lisas 2-conchero 2 2600660 [52] CENPAT, Puerto
Madryn (Argentina)

Nacella magellanica 2 A11-cL1, L2 Cracker 8-Nivel 3 5200670 [52] CENPAT, Puerto
Madryn (Argentina)

Predators

Arctocephalus australis 3 F1 18, F1 19, FM1 11 Playa Unión-Barranca Norte 1040670 Peralta, 2001
quoted in [52]

CENPAT, Puerto
Madryn (Argentina)

Arctocephalus australis 2 90, 91 Bajada de los pescadores 2197638 [51] INCUAPA-UNCPBA,
Buenos Aires F.D.
(Argentina)

Otaria flavescens 2 36, 82 Los Abanicos 1 380660 [105] CENPAT, Puerto
Madryn (Argentina)

Otaria flavescens 9 F1 17, FM1 13–17,
FM1 19–21

Playa Unión-Barranca Norte 1040670 Peralta, 2001
quoted in [52]

CENPAT, Puerto
Madryn (Argentina)

Otaria flavescens 10 i1(61), i3(43), i4(44), i5(54),
i15(C1), i18(89), i23, i24,
M11, M13

Lobos* 12906100 [106] CENPAT, Puerto
Madryn (Argentina)

Otaria flavescens 2 FSM - SRH Mont II OF
costilla, OBS 13

Faro San Matı́as- Sondeo 6 1380680 [51] INCUAPA-UNCPBA,
Buenos Aires F.D.
(Argentina)

Otaria flavescens 1 OBS 137 Bajada de los pescadores 2197638 [51] INCUAPA-UNCPBA,
Buenos Aires F.D.
(Argentina)

Otaria flavescens 2 FSM - SRH Mont I OF
cost px med, OBS 4

Faro San Matı́as, Sondeo 2 2910690 [51] INCUAPA-UNCPBA,
Buenos Aires F.D.
(Argentina)

Spheniscus magellanicus 4 7,72, 80, 82 Bajada de los pescadores 2197638 [51] INCUAPA-UNCPBA,
Buenos Aires F.D.
(Argentina)

Spheniscus magellanicus 3 OBS 26, FSM-S2N2 Obs 21,
FSM-S2N3 Obs26-tibia
derecha.

Faro San Matı́as, Sondeo 2 2910690 [51] INCUAPA-UNCPBA,
Buenos Aires F.D.
(Argentina)

*Lobos is a paleontological site, since here sea lions died naturally and massively due to a land slide.
doi:10.1371/journal.pone.0103132.t002
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Table 3. Archaeological samples from southern Patagonia.

Species N Laboratory ID Archaeological site Age (14C yr BP) Reference Repository information

Herbivores

Mytilus edulis 5 A17-cM1, M2, M3, M4, M5 Tunel VII 100645 Piana et al., 1992
quoted in [107]

CENPAT, Puerto Madryn
(Argentina)

Mytilus edulis 3 A15-cM1, M2, M3 Shamakush X, Capa E 5006100 Orquera and
Piana, 1999
quoted in [50]

CENPAT, Puerto Madryn
(Argentina)

Mytilus edulis 5 A19-cM1, M2, M3, M4, M5 Imiwaia I (M/K) 5940650, 57506170,
5840645, 5710650

Piana et al.,
1992 quoted in
[107]

CENPAT, Puerto Madryn
(Argentina)

Nacella magellanica 5 A17-cL1, L2, L3, L4, L5 Tunel VII 100645 Piana et al.,
1992 quoted in
[107]

CENPAT, Puerto Madryn
(Argentina)

Nacella magellanica 2 A15-cL2, L4 Shamakush X, Capa E 5006100 Orquera and
Piana, 1999
quoted in [50]

CENPAT, Puerto Madryn
(Argentina)

Nacella magellanica 5 A19-cL1, L2, L3, L4, L5 Imiwaia I (M/K) 5940650, 57506170,
5840645, 5710650

Piana et al., 1992
quoted in [107]

CENPAT, Puerto Madryn
(Argentina)

Top predators

Arctocephalus australis 13 44331, 155288, 150329,
152253, 152439, 151607,
154656, 151575, 151912,
154284, 153887, 55456,
155447

Tunel VII, layer B 100645 Piana et al., 1992
quoted in [107]

CADIC, Ushuaia
(Argentina)

Arctocephalus australis 1 CV6 4/-45–50 cm CV6 4/-45-50 cm 1190660 [108] INCUAPA-UNCPBA/
IMHICIHU, Buenos Aires F.
D. (Argentina)

Arctocephalus australis 1 CdN2-0072 Cueva del
Negro-cuadrı́cula 1 Nivel 2

1730680 [109] CENPAT, Puerto Madryn
(Argentina)

Arctocephalus australis 3 37295, 37456, 37340 Tunel I, Capa X/a 26606100, [110] CADIC, Ushuaia
(Argentina)

2690680, 3030690

Arctocephalus australis 10 194047, 43247, 174498,
193261, 67319, 66397,
202083, 186854, 65989,
202401

Tunel I, Capa D 5000–4300 [110] CADIC, Ushuaia
(Argentina)

Arctocephalus australis 20 217933, 215241, 223614,
215940/215933, 53580,
68445, 64460, 213370,
215074, 58630, 190846,
63330, 213732, 52463,
226119, 69639, 189603,
216713, 212616/212653,
224151

Tunel I, Capa D/E 6400–5900 [110] CADIC, Ushuaia
(Argentina)

Otaria flavescens 2 43418, 154286 Tunel VII 100645 Piana et al., 1992
quoted in [107]

CADIC, Ushuaia
(Argentina)

Otaria flavescens 10 OF 2a, OF 2b, OF 3, OF 9,
OF 12, OF 14, OF 15, OF 5,
OF 7, OF 10

Kaiyawoteha III, Capa K 580645 [111] CADIC, Ushuaia
(Argentina)

Otaria flavescens 1 CV6 4/-60–65 cm CV6 4/-60-65 cm 1190660 [108] INCUAPA-UNCPBA/
IMHICIHU, Buenos Aires F.
D. (Argentina)

Otaria flavescens 5 CV20 OF1, CV20 OF3,
CV20 OF4, CV20 OF6,
CV20 OF7

CV20 1256650 [112] CONICET, Rı́o Gallegos/
CONICET-IMHICIHU,
Buenos Aires (Argentina)

Otaria flavescens 9 30459, 33459, 33551,
33571, 33717, 34177,
34544, 34751, 33458

Tunel I, Capa D 5000–4300 [110] CADIC, Ushuaia
(Argentina)

Spheniscus magellanus 2 10030, 10100 Shamakush X, Capa E 5006100 Orquera and
Piana, 1999
quoted in [50]

CADIC, Ushuaia
(Argentina)

Spheniscus magellanus 3 pingüino 4a, pingüino 4b,
pingüino 6,

Kaiyawoteha III, Capa K 580645 [111] CADIC, Ushuaia
(Argentina)
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standard deviation of nearest neighbour distance (SDNND) reflect

the relative position of species to each other within the niche space

and can be used to estimate the extent of trophic redundancy.

Furthermore, the overlap (%) among top predators’ standard

ellipses corrected for small sample size (SEAC) was calculated in

order to analyse resource partitioning among them over time.

Comparison of metrics was based on 95% credibility intervals. All

codes for SIBER analyses are contained in the package SIAR

[80,81]. Finally, SIBER Bayesian ellipse areas (SEAB) were

calculated for the three top predators to measure their isotopic

niche width. This approach is similar to a bootstrap, assigning

measures of uncertainty, based on Markov-Chain Monte Carlo

(MCMC) simulation to construct parameters of ellipses.

In addition, a simulation was performed to test the sensitivity of

SIBER metrics to biases in the sex ratio of the top predators. A

similar data set from Rı́o de la Plata was used for this analysis (see

Table S1). Three different scenarios were simulated: one where

only females were included, one where only males were included

and a third situation with a balanced sex ratio. These three

simulated food webs should represent the three hypothetical and

extreme situations emerging from the analysis of the zooarchaeo-

logical record, where the sex of the top predators was usually

unknown.

Results

The structures of the five food webs analysed are shown in

Figure 2. The d15N values of herbivores decreased from past to

present (Table 4) both in central-northern Patagonia (Wilcoxon-

Mann-Whitney test: W = 3, p,0.001) and in southern Patagonia

(ANOVA: F2,32 = 24.7, p,0.01). Likewise the d13C values of

ancient herbivores from southern Patagonia differed from the

modern ones (ANOVA: F2,32 = 5.42, p,0.01) but changes were

not statistically significant in central-northern Patagonia (t-test:

t = 20.09, df = 16.777, p = 0.93). These results demonstrate that

the isotopic baseline may change dramatically throughout time

and allow us to properly interpret the structure of the ancient food

webs.

The three food webs simulated for the sensitivity analysis did not

differ in any of the Layman’s metrics (Table 5). The areas of the

Bayesian ellipses (SEAB) estimated for the top predators did not

either differ among scenarios either, except for fur seals, whose

area was maximised when sex ratio was balanced. However, large

differences were observed in the overlap between the standard

ellipses corrected for small sample size (SEAC) of fur seals and

penguins: it ranged from zero when only male fur seals were

considered, to 43.73% (fur seals) and 21.34% (penguins) when only

females were included. This indicates that the lack of information

on the actual sex ratio of ancient data sets is unlikely to bias the

overall structure of the food web. Nonetheless caution is needed

when interpreting patterns of niche overlap, as they may be

sensitive to the sex ratio of the sample.

The horizontal structure of the food web (CR) did not vary

throughout time in central-northern Patagonia but in southern

Patagonia the carbon range is currently smaller than in the two

past periods considered (Figure 3 and 4). The nitrogen range (NR),

indicative of food chain length, increased from past to present in

both regions, and did not differ between ancient food webs from

southern Patagonia (Figure 3 and 4). Finally, the food webs from

southern Patagonia were shorter than those from central-northern

Patagonia during the late Holocene as well as in the present.

CD and MNND also changed throughout time in both regions,

being smaller in the past. This indicates an increase in the trophic

Table 3. Cont.

Species N Laboratory ID Archaeological site Age (14C yr BP) Reference Repository information

Spheniscus magellanus 4 12433, 12268, 10116,
10115

Mischiuen I, Capa C sup 890690 Piana et al., 2004
quoted in [113]

CADIC, Ushuaia
(Argentina)

Spheniscus magellanus 1 9255 Mischiuen I, Capa C inf 1060685 Piana et al., 2004
quoted in [113]

CADIC, Ushuaia
(Argentina)

Spheniscus magellanus 2 19098, 19264 Shamakush I, Capa D 12206110, 9406110 [114] CADIC, Ushuaia
(Argentina)

Spheniscus magellanus 1 10122 Shamakush I, Capa C 1000 (ca.) [114] CADIC, Ushuaia
(Argentina)

Spheniscus magellanus 4 3761, 4179, 3522, 3641 Mischiuen I, Capa F 48906210,
44306180

Piana et al., 2004
quoted in [113]

CADIC, Ushuaia
(Argentina)

Spheniscus magellanus 3 1925, 26006, 27597 Imiwaia I (M/K) 5940650, 57506170,
5840645, 5710650

Piana et al., 1992
quoted in [107]

CADIC, Ushuaia
(Argentina)

doi:10.1371/journal.pone.0103132.t003

Figure 1. Study areas (central-northern Patagonia and south-
ern Patagonia) and sampling approximate zones. Empty dots
represent archaeological sites.
doi:10.1371/journal.pone.0103132.g001
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diversity and a decrease in the trophic redundancy in modern food

webs. Regarding the three species of air predators the areas of the

standard ellipses did not overlap in the modern d13C–d15N bi-plot

space of central-northern Patagonia (Table 6 and Figure 2).

Conversely, the topology of the three species within the Pre-

contact d13C–d15N bi-plot space of the same region departed

dramatically from expectations, as the standard ellipses of all the

species overlapped one another, especially those of Magellanic

penguins and fur seals, in sharp contrast with the low overlap

currently observed (Table 6). The topology of the three species in

the d13C–d15N bi-plot space of southern Patagonia also changed

over time, as the overlap among the ellipses of the three species

was almost zero in the EAP period (except between sea lions and

fur seals where it was 15.38%), increased between penguins and

sea lions in the LAP period and is currently about 34% between

fur seals and sea lions. Interestingly, the SIBER ellipse areas

(SEAB) calculated for each species (Table 7) exhibited a decreasing

trend throughout time in central-northern Patagonia, although it

was statistically significant only for sea lions. Conversely in

southern Patagonia, the sea lions’ ellipse area has been constant

over time, whereas that of fur seals showed a trend to increase

through time and that of penguins slightly increased from the EAP

period to the LAP period to then slightly decreased in the present

food web (Table 7).

All the results of the stable isotopes analyses described in the

above are publicly available in Table S1–S3.

Discussion

The study of the zooarchaeological record using stable isotope

analysis certainly offers a window to explore the structure of

ancient food webs, but it is not free from problems. Historical

changes in the isotopic baseline are a major shortcoming in

retrospective studies using stable isotope analysis to assess changes

in trophic level and food web structure [57]. Although widely

recognised as a confusing factor, previous studies often assumed

the temporal stability of the isotopic baseline [82,83,84,85,86,87,

88,89], but the results reported here demostrate that changes can

be dramatic. Post [76] suggested the use of filter feeding mussels

and surface-grazing snails as proxies for the baselines of pelagic

and littoral aquatic food webs respectively and Bailey and

colleagues [88] and Casey and Post [57] recognised the potential

of mollusc shells to reconstruct the isotopic baseline in retrospec-

tive studies, since their organic matrix is encased within mineral

crystals and hence, preserved [90]. The present study demon-

strates the potential of the method and offers new perspectives

using material that is widely available in paleontological and

archaeological collections.

Another drawback from retrospective studies is the uneven

distribution of specimens across space and time, which forced us to

pool samples of disparate radiocarbon age to reconstruct ancient

communities. Uncertainty about the gender of most specimens is

another setback of the zooarchaeological record, as sexual

secondary characters can seldom be observed. The sensitivity

analysis conducted here confirmed the robustness of Layman’s

Figure 2. Isotopic niches/resource use areas of the species/functional groups described in the text and calculated with the standard
ellipse areas corrected for small sample size (SEAC) over time in the two geographical areas. a) Central-northern Patagonia and b)
Southern Patagonia. Herbivores = mussels and limpets; Aa = South American fur seals; Of = South American sea lions; Sm = Magellanic penguins.
doi:10.1371/journal.pone.0103132.g002
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metrics to changes in sex ratios of penguins, sea lions and fur seals.

Conversely, the overlap between the Bayesian ellipses was highly

sensitive to the sex ratio of those species and hence caution is

needed when interpreting those results.

The overall evidence reported here indicates that modern

marine food webs of central-northern and southern Patagonia are

longer (NR) than the ancient ones (Figs 2–4). Such a conclusion is

in sharp contrast with the idea that human exploitation has

shortened food webs because of the preferential removal of top

predators [4]. Certainly, increased scarcity of large, marine species

may have forced fisheries to target smaller species, but there is no

reason why surviving top predators had to experience a similar

shift. Marine predators are limited by the size of the prey they can

consume and draw their energy from a very limited range of

trophic levels, in contrast with fisheries [91]. Furthermore, it

should be noted that the impact of sealing on the populations of

fur seals and sea lions was much larger [39,40] than that of fishing

on the populations of hake, squid and anchovies [20].

Surviving sea lions and fur seals off Argentina have certainly

been under carrying capacity during the second half of the 20th

century, when the population was less than 10% of the original

numbers [39]. This reduced intraspecific competition and led to a

major dietary shift in favour of benthic, larger prey with a higher

trophic level [24]. Only recently, as the population of sea lions is

rebuilding and approaching carrying capacity, sea lions experience

resource limitation again and intraspecific competition forces them

to increase the consumption of smaller and less profitable prey

[92]. Information about the historical dietary changes of South

American fur seals is restricted to the last three decades in Rı́o de

la Plata and reveals no major dietary changes [93]. However, the

population was dramatically reduced during the first half of the

20th century and evidence from other fur seal species in the South-

western Atlantic Ocean [94] suggest that this group of smaller and

more pelagic pinnipeds also forage at a higher trophic level after

severe population declines.

Trophic diversity, measured as the mean distance to the

centroid in the isotopic space (CD) also increases in the present

food webs, while redundancy (MNND) decreases thus revealing a

higher trophic overlap in the past (Figs 2–4). This was confirmed

by the isotopic niche overlap of the three air-breathing top

predators, although they differed dramatically in body size and

mouth diameter (Table 6). A similar scenario has been reported

for waters off Peru, where sea lions, fur seals and penguins

primarily rely on the large population of anchoveta Engraulis
ringens, supported by intense oceanic productivity [95,96,97].

Similarly, a high trophic overlap has often been reported for other

wasp-waisted ecosystems in upwelling regions [98]. Currently, a

wasp-waist ecosystem supported by amphipods exists off southern

Patagonia [99], but amphipods are not consumed directly by fur

seals and sea lions. Perhaps a similar wasp-waisted ecosystem

supported by small schooling fish might have existed off Patagonia

during the Holocene, where primary productivity was usually

higher than now [78] and hence it could have supported a larger

population of small schooling fish and squids.

However, there are at least two reasons to believe that this is not

the explanation for the high levels of overlap and redundancy of

the ancient food webs reported here. Firstly, the large population

of fur seals inhabiting the highly productive Rı́o de la Plata rely

heavily on anchovies and squids [93], but the much smaller sea

Table 5. Probability values of Layman’s metrics in three simulated model food webs for Rı́o de la Plata region, including only
females, males or both sexes in the samples of predators.

NR CR CD MNND SDNND

RR 8.01 (7.00–9.04) 6.03 (4.46–7.64) 3.14 (2.77–3.51) 2.95 (2.50–3.41) 2.43 (1.55–3.35)

== 8.32 (7.82–8.82) 6.16 (4.75–7.55) 3.44 (3.13–3.76) 3.23 (2.90–3.55) 2.50 (1.80–3.22)

R= 8.22 (7.55–8.87) 6.03 (4.57–7.42) 3.25 (2.93–3.57) 3.14 (2.75–3.55) 2.39 (1.69–3.10)

NR = nitrogen range; CR = carbon range; CD = mean distance to centroid; MNND = mean nearest neighbour distance; SDNND = standard deviation of nearest
neighbour distance. For more details see Data analysis in Material and Methods.
doi:10.1371/journal.pone.0103132.t005

Figure 3. Probability values of Layman’s metrics over the time
in the central-northern Patagonia. Metrics that present differences
over the time are indicated by an asterisk and superscripts. Pre = pre-
contact period; Mod = modern period.
doi:10.1371/journal.pone.0103132.g003

Figure 4. Probability values of Layman’s metrics over the time
in the southern Patagonia. Metrics that present differences over the
time are indicated by an asterisk ad superscripts. Groups sharing the
same superscript number (1, 2) are not significantly different.
EAP = early aboriginal period; LAP = late aboriginal period; Mod = mo-
dern period.
doi:10.1371/journal.pone.0103132.g004
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lion population consumes primarily demersal fishes [100].

Secondly, marine productivity during the late aboriginal period

off southern Patagonia was much lower than during the early

aboriginal period and closer to actual productivity levels [78], but

the structure of the trophic web was indistinguishable from that

observed in the same region during the early aboriginal period.

Thus, a direct link between productivity, predator diet and the

structure of trophic overlap is probably unclear.

Empirical evidence has indicated that marine environments

with lower annual temperature variability have smaller predator-

prey mass ratios and, consequently, longer food chains [101]. It

can be argued that changes in sea water temperature throughout

the second half of the Holocene may explain the difference

observed between the ancient and modern marine food webs in

the South-western Atlantic. However, available evidence rules out

major changes in sea surface temperature during the considered

time span [51,55,102]. Furthermore, there is an inverse relation-

ship between the length of the current food webs and the seasonal

variability in the sea surface temperature in the South-western

Atlantic [103], a pattern opposite to that reported by Jennings and

Warr (2003)[101]. Finally, the difference in the length of the food

chain observed between the two areas in both periods is smaller

than the difference between periods in both areas.

Thus, human disturbance stands as the most likely reason for

the differences in the structure of the food web reported here. Even

so, human disturbance is not the only factor explaining the length

of marine food webs, as those from southern Patagonia were

always shorter and more overlapping than the central-northern

Patagonia ones. This might be a consequence of the latitudinal

decrease in species diversity reported in the South-western Atlantic

[64,104] and was also probably the reason in the late Holocene,

since it is unlikely that the impact of the hunter-gatherers

inhabiting central-northern Patagonia on marine resources was

larger than that of the hunter-gatherers inhabiting southern

Patagonia [51,52,53].

In conclusion, this study strongly support the hypothesis that

selective exploitation of marine ecosystems, targeting primarily top

predators, leads to longer and less overlapping food webs, if top

predators are not extinct but survive well below carrying capacity.

The situation might be different if human exploitation targeted

primarily intermediate trophic levels as a result of the legal

protection of top predators.

Furthermore, this study demonstrates the necessity to recon-

struct the isotopic baseline in retrospective studies and how this

can be achieved by analysing the organic matter encased into the

shell of molluscs.

Table 6. Overlap as a percentage of standard ellipses corrected for small samples (SEAc) of the three top predators described in
the text.

Central-northern Patagonia

PRE-CONTACT Aa Of Sm MODERN Aa Of Sm

Aa 1 11.37 86.30 Aa 1 0.00 0.00

Of 16.42 1 5.05 Of 0.00 1 0.00

Sm 64.56 2.62 1 Sm 0.00 0.00 1

Southern Patagonia

EAP Aa Of Sm LAP Aa Of Sm MODERN Aa Of Sm

Aa 1 15.38 0.00 Aa 1 0.00 0.00 Aa 1 34.19 0.00

Of 5.60 1 0.05 Of 0.00 1 53.24 Of 38.42 1 0.00

Sm 0.00 0.13 1 Sm 0.00 58.28 1 Sm 0.00 0.00 1

The tables should be read horizontally, as each number in the cell refers to the percentage of overlap of the area of the group indicated in each row (e.g. 11.37% is the
percentage of the ellipses of fur seals that are overlapped with the ellipses of the sea lions, while 16.42% is the percentage of the ellipses of the sea lions that are
overlapped with the fur seals). Aa = Arctocephalus australis; Of = Otaria flavescens; Sm = Spheniscus magellanicus.
doi:10.1371/journal.pone.0103132.t006

Table 7. Areas of the estimated Bayesian ellipses of the species/functional groups over the time in central-northern and southern
Patagonia.

Central-northern Patagonia Herbivores Aa Of Sm

Pre-contact 7.4 (4.9–10.3) 6.1 (1.9–11.7) 4.7 (3.0–6.6)1 7.7 (3.1–13.6)

Modern 3.9 (2.0–6.3) 1.9 (1.3–2.6) 1.6 (1.1–2.1)2 5.5 (3.3–8.1)

Southern Patagonia

EAP 8.6 (4.1–14.2) 1.6 (1.1–2.1) 4.0 (2.1–6.1) 2.2 (0.9–3.8)

LAP 9.0 (5.0–13.9) 1.3 (0.7–2.0) 3.9 (2.0–6.2) 3.5 (1.8–5.5)

Modern 4.1 (1.9–6.7) 4.4 (1.8–7.8) 3.8 (2.7–5.0) 1.7 (1.2–2.2)

Values are indicated as the mean and the 95% of credibility interval in parentheses. Metrics that present differences between ages are indicated by superscripts.
Aa = Arctocephalus australis; Of = Otaria flavescens; Sm = Spheniscus magellanicus.
doi:10.1371/journal.pone.0103132.t007
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Table S1 Modern nitrogen and carbon stable-isotope
ratios in Rı́o de la Plata and adjoining areas. These data

have been used to perform the sensitivity test for the method.

(DOCX)

Table S2 Modern and archaeological nitrogen and
carbon stable-isotope ratios in central-northern Patago-
nia. Table shows the list of samples, grouped according to their

historical period (modern and pre-contact), and d13C and d15N

values.
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carbon stable-isotope ratios in southern Patagonia.
Table shows the list of samples, grouped according to their

historical period (modern, LAP and EAP), and d13C and d15N

values.
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de los desembarques en la Zona Común de Pesca Argentino-Uruguaya años

1989-2010. Frente Marı́timo 23: 83–93.

47. Schiavini A, Yorio P, Gandini P, Raya Rey A, Boersma PD (2005) Los
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99. Padovani LN, Viñas MD, Sánchez F, Mianzan H (2012) Amphipod-supported
food web: Themisto gaudichaudii, a key food resource for fishes in the southern

Patagonian Shelf. Journal of Sea Research 67: 85–90.
100. Riet-Sapriza FG, Costa DP, Franco-Trecu V, Marı́n Y, Chocca J, et al. (2013)

Foraging behavior of lactating South American sea lions (Otaria flavescens) and

spatial–temporal resource overlap with the Uruguayan fisheries. Deep Sea
Research Part II: Topical Studies in Oceanography 88–89: 106–119.

101. Jennings S, Warr KJ (2003) Smaller predator–prey body size ratios in longer
food chains. Proceedings of the Royal Society Biological Sciences 1413–1417.
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