
EVALUATION OF AN EFFICIENT STACK-RLE CLUSTERING
CONCEPT FOR DYNAMICALLY ADAPTIVE GRIDS

MARTIN SCHREIBER∗, TOBIAS NECKEL† , AND HANS-JOACHIM BUNGARTZ†

Abstract.

One approach to tackle the challenge of efficient implementations for parallel PDE simulations
on dynamically changing grids is the usage of space-filling curves (SFC). While SFC algorithms
possess advantageous properties such as low memory requirements and close-to-optimal partitioning
approaches with linear complexity, they require efficient communication strategies for keeping and
utilizing the connectivity information, in particular for dynamically changing grids. Our approach
is to use a sparse communication graph to store the connectivity information and to transfer data
block-wise. This permits efficient generation of multiple partitions per memory context (denoted
by clustering) which - in combination with a run-length encoding (RLE) - directly leads to elegant
solutions for shared, distributed and hybrid parallelization and allows cluster-based optimizations.

While previous work focused on specific aspects, we present in this paper an overall compact
summary of the stack-RLE clustering approach completed by aspects on the vertex-based communi-
cation that ease up understanding the approach. The central contribution of this work is the proof
of suitability of the stack-RLE clustering approach for an efficient realization of different, relevant
building blocks of Scientific Computing methodology and real-life CSE applications: We show 95%
strong scalability for small-scale scalability benchmarks on 512 cores and weak scalability of over 90%
on 8192 cores for finite-volume solvers and changing grid structure in every time step; optimizations
of simulation data backends by writer tasks; comparisons of analytical benchmarks to analyze the
adaptivity criteria; and a Tsunami simulation as a representative real-world showcase of a wave prop-
agation for our approach which reduces the overall workload by 95% for parallel fully-adaptive mesh
refinement and, based on a comparison with SFC-ordered regular grid cells, reduces the computation
time by a factor of 7.6 with improved results and a factor of 62.2 with results of similar accuracy of
buoy station data.

Key words. Adaptive mesh refinement, space-filling curves, parallel simulation, MPI+X par-
allelization, shallow water, tsunami

AMS subject classifications. 65Y05, 65M08, 68W10, 68W15, 76N99

1. Introduction and related work. Solving partial differential equations
(PDEs) numerically is a computationally intensive task and frequently involves adap-
tive meshes to invest degrees of freedom (DoF) more in parts of the domain that
strongly contribute to the accuracy of the approximate solution. The simulations we
are interested in the context of this work are based on hyperbolic equations which
stem from wave-propagation phenomena. Here, the wave movements demand for fre-
quent refinement and coarsening operations of the grid at runtime of an application
(see Fig. 1.1 for an example in the context of Tsunami simulation).

For a parallelization of corresponding adaptive solvers, one challenge is an efficient
concept and implementation of dynamic migration of both DoF and meta data at run-
time. To tackle this challenge, graph-based partitioners can be used which typically fo-
cus on optimizing the interfaces shared among partitions, e.g. by reducing the number
of so-called edge-cuts of the dual graph [35]. The load balancing then migrates data to
compute nodes by including assumptions about communication overheads. However,
complex operations [5] and typically NP-hard algorithms [42] have to be executed af-
ter each adaptivity step which are obviously not close to linear complexity. Therefore,
for the partitioning of frequently changing grids, space-filling curves (SFC) [1, 17, 27]
have been widely used in scientific computing (cf. [5, 9, 10, 21, 26, 39]). Using the

1University of Exeter, United Kingdom
2Technische Universität München, Germany

1

2 M. Schreiber, T. Neckel and H.-J. Bungartz

Fig. 1.1. Left-top image: Embedding of a cubed-sphere domain triangulation into a reg-
ularly refined Sierpiński grid to achieve a consistent connectivity information with the standard
data-exchange method. Right-top image: Experimental finite-volume simulation [15] of the Tohoku
Tsunami a triangulated cubed sphere (see results section for information on data sources and used
solvers). Bottom images: Zoomed view on the coastlines of Japan and the propagating wave fronts.
The bathymetry is refined in correspondence with the simulation grid. Our development offers an
interactive OpenGL visualization of the surface, bathymetry and grid structure based on the under-
lying dynamically adaptive triangular grid. The closed surface is generated based on the RLE vertex
connectivity information as discussed in Section 3.2.

topological order of grids generated by SFCs results in a spacetree [14,24,25,39]; the
leaves then represent the grid cells. These cells can then be traversed using recursive
algorithms ([39, 40], e.g.) or in a linearized way (cf. [10]) by traversing only the leaf
nodes (see [19]). In this work, we focus on simulation data stored and processed on
leaf cells only. Here, the hyperfaces at the leaves (cells, edges, faces, etc.) of a simula-
tion domain can then be uniquely enumerated along the SFC. For parallelization, the
unique ordering and the inherent property of a particular SFC can be used to traverse
next cells in their proximity. After enumerating all cells, this range can then be used
to cut the grid into partitions of balanced amount of cells (cf. [5]). This reduces the
NP-hard complexity of graph-based partitioner [42].

Solving PDEs on such SFC-induced grids not only requires efficient storage of
data on hyperfaces but also efficient data transfer between the grid cells for a parallel
execution. Such a data transfer relies on consistent connectivity information for dy-
namically changing grids. In the literature, two categories of methods to realise the
underlying connectivity information can be observed which we denote as explicit and
implicit.

With explicit connectivity, we refer to methods which explicitly communicate the

Evaluation of an efficient stack-RLE clustering concept for dynamically adaptive grids 3

adjacency information, e.g. about the new location of the adjacent cell and the new
compute rank1 of the adjacent cell via the face shared by both cells. In case of a
changing grid structure, connectivity information is updated based on new adjacency
information, which is then explicitly transferred in a per-face manner. The new com-
pute ranks to which the cell is migrated to are then sent, received and stored involving
edge-adjacent cells. After the data migration, the new connectivity information (based
on the explicitly transferred new compute ranks) is then stored per-cell (see [5]) or can
be stored only for inter-partition shared hyperfaces (see scalability plots in [23], based
on the parallelization approach in [38], again based on [5]). This obviously allows
only a single partition per memory context, since only MPI ranks are communicated.
Extending this to additionally communicate local thread IDs to support OpenMP
parallelization, would require additional algorithms for efficiency reasons. To support
the communication via vertices, direct storage of connectivity information leads to
further drawbacks of high memory consumption by storing adjacency information for
all possible vertex-adjacent cells.

With an implicit connectivity approach, the connectivity information is neither
stored nor updated. It is inferred by traversing down the space tree after grid structure
has changed by traversing down the spacetree (cf. [10], e.g.). Such approaches not
only involve computation but also require random-like memory access operations,
hence suboptimal awareness of the memory hierarchy.

Our approach—which will be called stack-RLE clustering in the following—
represents a third variant for keeping a consistent connectivity. Explicit run-length en-
coded (RLE) graph information is combined with implicit stack-based communication
via spacetree properties. This approach relies on grids generated with a particular
set of SFCs supporting the so-called stack-based communication approach [3, 4, 17]
via an annotation of SFC grammar elements. See [40] for an introduction to this.
The run-length encoding used for stack-RLE clustering initially was used to store the
connectivity information for edges shared among partitions [30]. Updating this RLE
connectivity information is based on adaptivity markers which are used for shrinking
and growing the RLE-stored number of edges to account for inserting or removing
edges shared with adjacent partitions. For a repartitioning, a bisection of the spacetree
of partitions or a merging of two partitions was accomplished without communica-
tion of any compute ranks via edges due to bisection properties. Finally, the third
ingredient of the stack-RLE clustering approach is the clustering by which we denote
the ability to efficiently handle multiple partitions in a memory context. Previous
work has shown that the RLE data exchange, in combination with using multiple
partitions per shared-memory context, resulted in an efficient execution of problems
with significant problem sizes on shared-memory systems [32]. Since the RLE enables
a block-wise and efficient communication on shared-memory systems, this allowed for
a direct extension to MPI (see [33]). By extending the RLE clustering concept with
0-length encoding for storing the connectivity of partitions which have shared vertices,
a sparse connectivity graph has been developed involving all possible 2D hyperface el-
ements, also including communication via vertices (see [33] for the basic idea). Given
the sparse connectivity graph, data migration has been implemented efficiently in a
cluster-oriented manner: The raw cluster data (graph nodes) are migrated and only
updating of the inter-cluster connectivity (graph edges) [29] is required.

1We use this term as a generalization for a MPI-rank for distributed memory systems, as well
as thread ids for shared-memory systems or a combination of MPI-rank and thread id for hybrid
parallelization

4 M. Schreiber, T. Neckel and H.-J. Bungartz

2. Contribution. In this work, we summarize and integrate different aspects of
the stack-RLE clustering approach and—for the first time—evaluate its applicability
to various important building blocks of the Scientific Computing methodology and
CSE applications.

In Section 3, we present a summary of the relevant aspects and properties of the
RLE-stack clustering and parallelization approach, relying on previous work described
above, in particular [3,17,29,30,32,33]. A generation of consistent vertex connectivity,
without collective operations for dynamic clustering (Sec. 3.3.5), has been used in [33]
in a black-box manner, but is now described in detail in this paper. The two main
goals of this summary are a) to present all aspects (and in particular implementation
details) of the the stack-RLE clustering approach in a consistent way in one place
and b) to have a self-contained description of the approach at hand to allow for a
discussion of new results.

In Sec. 4, we show the potential of the stack-RLE clustering method and the
underlying dynamically changing grids in a realistic context by providing relevant ap-
plication scenarios. We used small-scale scalability benchmarks of shallow-water sim-
ulations (similar to [29]) to analyze the performance of the algorithmic components
of our RLE-clustering approach in Sec.4.1.1 and conducted simulations on large-scale
systems in Sec. 4.1.2 showing also restrictions of a clustering based on tree splits. In
Sec. 4.2, we describe newly developed simulation-data back-ends for improved per-
formance for writing of simulation-data to persistent memory and for generating a
closed surface to visualize SWE simulations. Section 4.3 presents comparisons with
analytical benchmarks showing the potential of the dynamically adaptive grids per-
se. Finally, in Sec. 4.4 we provide results for a realistic tsunami scenario applica-
tion.We use this tsunami scenario as an application which is representative for wave-
propagation dominated phenomena to evaluate the RLE clustering beyond a purely
artificial benchmark.

3. Summary of stack-RLE clustering. In this section, we give a brief re-
view of the stack-RLE clustering method [29, 30, 33]. We start with our definition
of clustering and then briefly explain why our stack-RLE clustering approach fulfills
the corresponding clustering properties. We list different important properties of the
approach with respect to relevant aspects of Scientific Computing applications.

3.1. Definition of clustering. A cluster (the term clustering is inspired by
the work on cluster-based local time stepping [12] with an efficient implementation
becoming feasible with our approach for dynamically adaptive grids) is a partition of
grid cells with the following four additional properties:
(1) Bulk of connected cell data:

A compact bulk of cells connected via hyperfaces is associated uniquely to a
partition, hence no cell is shared between two partitions. There is a path from
each cell to all other cells inside the partition via shared hyperfaces of cells in the
partition.

(2) Independent memory areas and data access during grid traversals:
The simulation data and the meta data which are associated to each partition are
stored in buffers which are non-overlapping with other buffers. Hence, no data
stored of edges and nodes are shared among partition. They are replicated and
require additional synchronization to join the replicated hyperface data.

(3) Communication information:
Multiple partitions per thread and hence efficient inter-partition communication
schemes for them are supported for shared- and distributed-memory paralleliza-

Evaluation of an efficient stack-RLE clustering concept for dynamically adaptive grids 5

tion (MPI+X) on cluster granularity. For efficiency reasons on shared-memory
systems, the connectivity information has to be stored run-length encoded – either
by updating it or by recreating it.

(4) Traversal meta information and user-specified data:
Each partition also has to store traversal meta data, e.g. initial vertex coordinates
to start the grid traversal, minimum and maximum adaptive refinement depth
limiters and also possibly required user-specified data. The traversal meta data
is required to know where to start traversing the spacetree. The user-specified
(optional) data can consist of e.g. parameters for kernels or the local-grid identifier
of the underlying global mesh (e.g. cubed sphere, see Fig. 1.1).
We call a parallelization concept that allows for efficient handling of multiple

partitions in each program context a clustering and extend this definition to dynamic
clustering in the case where the above mentioned properties hold for dynamically
changing grids. Several advantages arise with such a concept and some of them are
discussed in this work. Next, we show that our stack-RLE clustering approach fulfills
the four clustering properties.

3.2. Realization of clustering with stack-RLE clustering. With SFCs such
as Hilbert, Peano, Gosper and Sierpiński the grid can be generated from the leaves of
the resulting spacetree. This spacetree can be generated either by refining the cells
during the grid traversals and processing only the leaf cells or by a linearization of the
leaves, resulting in an ordering of the underlying grid cells Ci along the SFC. Then,
each cell Ci+1 shares exactly one hyperface with Ci. Cluster property (1) is fulfilled
for the Sierpiński curve (which we use in this work) since it generates partitions based
on a sub-interval of the underlying mapping of the SFC-enumerated cells. Note that
this concept can be also applied to the the Peano, Hilbert and Gosper curves.

In our implementation, the data for each partition is allocated in a
non-overlapping way, fulfilling cluster property (2). With separate heap memory areas
for each stream, this allows for shrinking and growing of the number of grid cells in
each cluster without forcing reallocations of data areas of other clusters.

Thus the heap allocation results in a gain in flexibility, but this can also involve
additional costs for memory allocation. Alternative approaches store all grid data
on a single stream which requires reallocation of the entire stream in the case of a
grid-local change of the grid structure, see e.g. [32] for Cartesian grids.

Regarding cluster property (4), the meta information to start the traversal is
stored separately for each partition. This allows directly starting the traversal on a
partition.

The partitions which we use in this work are given by splits of the underlying
spacetree. An example of such a partitioning is given in Fig. 3.1 (left). While the intra-
partition connectivity is given by the stack-based communication, special attention
has to be paid to the inter-partition communication when searching for matching
communication data on adjacent clusters in the same memory context. Based on
the ordering of the communicated data, two important properties concerning RLE-
clustering have been initially used in [30]:
(a) All data associated to one set of shared interfaces (edges and nodes) between

adjacent partitions is ordered by cell index i.
(b) For each adjacent partition, there is only a unique single consecutive block of data.
These properties2 hold for edges and nodes for certain 2D SFCs (Hilbert, Peano,

2This was independently discussed and proven in the context of an MPI-only parallelization and

6 M. Schreiber, T. Neckel and H.-J. Bungartz

Partitioning with subtrees Node communication graph

Fig. 3.1. Left: Triangulated grid generated by a recursive bisection of the triangle cells. The
clusters (bold red bordered) are generated by subtree-oriented intervals of the underlying bisective
Sierpiński SFC (blue-dashed line). Right: Sparse communication graph for clusters with connectiv-
ity information for edges and vertices shared by multiple clusters. Each red bordered area represents
a partition and the solid lines the edge RLE communication. The dashed lines represent the addi-
tionally required zero-length encoded RLE tuples for vertices.

A, 3

left

B, 0

right

a

right vertex

comm. stack

b

left vertex

comm. stack

d

e

cf

C, 0

D, 2

E, 0

F, 2 G, 0

H, 0

g

run-length encoded

meta information
Examples for node-base

communicated dataB

a

b

c

C

EFG

D

H d e

f

gA

Fig. 3.2. Example for run-length encoding of the connectivity information. All meta informa-
tion given for the reference cluster is highlighted with the thick red border. Left: Clusters adjacent
to the reference cluster are denoted by A-H, explanatory communication data is denoted by a-g.
Right: The RLE connectivity information for the data stored on the left and right communication
stack. Here, we focus on the communication of vertex data stored on the right communication stack
(for edge-based communication data, see [30]): The first two entries (G, 0) and (H, 0) account for
exchanging the first vertex data a to clusters G and H. The RLE (A, 3) first of all represents 3
edges. Since 4 vertices are associated to 3 edges, we conclude that the four vertices (a, b, c, g) are
exchanged with cluster A. The read-position of the vertex communication data is then increased by
the number of edges. Then, vertex data (g) is exchanged with cluster B and C. Special attention
has to be put on the first and last vertex for generic cases, see [28] Sec. 5.2.4.

Sierpiński and Gosper) and allow us to use a RLE for storing the connectivity infor-
mation, see Fig. 3.2. Here, an arbitrary number of edges takes only one RLE entry
in the connectivity information and only inter-cluster shared vertices can be stored
with a RLE of length 0. However, since most of these vertices are already repre-
sented by their higher-dimensional correspondence (edges), they do not have to be
stored explicitly. This results in a sparse connectivity graph as sketched in Fig. 3.1
(right), where edge-based communication is depicted with solid lines and vertex-based
communication with dashed lines.

We emphasize that the stack-based communication approach does not need any

a stack-based communication in [1, 2].

Evaluation of an efficient stack-RLE clustering concept for dynamically adaptive grids 7

explicitly stored connectivity information for intra-partition communication. Hence,
the intra-partition communication is represented by a node of the connectivity graph.
With the two communication properties above, the inter-partition communication
is then given by an edge of the connectivity graph, representing an RLE entry for
the inter-cluster shared hyperfaces. For the implementation of the communication,
we use a replicated data scheme on shared- and distributed-memory systems [33]
which allows independent writing and accessing data on hyperfaces, hence fulfilling
the MPI+X cluster property (3). Hence, we see all cluster properties (1)-(4) fulfilled
for our stack-RLE clustering concept.

3.3. Properties of stack-RLE clustering. The stack-RLE clustering
approach has different additional properties that are described below and come in
handy for (large-scale) applications in Scientific Computing; specific examples in the
context of hyperbolic PDEs are described in Section 4.

3.3.1. Shared- and distributed-memory support. The MPI+X cluster
property (3) of our approach realized via the sparse-graph connectivity described
above directly yields the applicability to shared- and distributed-memory systems: If
a cluster is stored in the same memory context, a reference to the cluster is stored
in the RLE and the communication data is transferred read-only from the adjacent
cluster. For clusters stored in a different memory context, the MPI rank is stored in
the RLE connectivity information. Data to be transferred is then sent and received
via block-wise operations. Hence, we see the efficiency aspect of cluster property (3)
now fulfilled. In both, the shared- and the distributed-memory parallelization cases,
we can efficiently use the RLE for these operations since the full bandwidth is only
achieved with packages of sufficient size.

3.3.2. Forest of spacetrees. By assembling several spacetrees together, this
generates a forest of spacetrees [10]. For valid connectivity, the simplex of a spacetree
should be embedded into a regularly refined grid of a spacetree (see left image in
Fig. 1.1). For the Sierpiński SFC, this assures that the communicated data is generated
in the correct order. Since we can also invert the processing of the communicated data
depending on cluster-local meta data (property (4)), we support arbitrarily shaped
initial triangulations (see Fig. 3.3 for examples). The real flexibility is demonstrated
in the left-most image with the initial domain triangulation based on an svg file
import with automatic connectivity detection and initialization of the base triangles.
In our implementation, we store all clusters in a (set-like) binary tree structure which
allows fast access and execution of operations on clusters. Note that only branches
to rank-local existing leaves are stored, hence the forest of spacetrees is not replicated
on compute ranks.

3.3.3. Dynamic adaptivity and updating connectivity information for
changing grids. The stack-RLE clustering obviously supports dynamic adaptive
mesh refinement by construction. To realize dynamic adaptivity efficiently, fast algo-
rithms to update the connectivity information of the RLE are required when the grid
changes by insertion or deletion of vertices and edges. Therefore, adaptivity mark-
ers on communication stacks are used in our implementation [30], see Fig. 3.4. Here,
adaptivity markers MR and MC are communicated via the edges. One single refine-
ment marker MR accounts for an edge which is split by refining the cell. Therefore,
the associated RLE has to be increased by one. Coarsening markers are sent along
the cathetus involved for coarsening and two of these markers (for consistency reasons
they always have to appear pairwise) account for decreasing the corresponding RLE

8 M. Schreiber, T. Neckel and H.-J. Bungartz

Fig. 3.3. Initial domain triangulations which would violate the embedding into an existing
regularly refined spacetree (see left image in Fig. 1.1). By inverting the processing order of the inter-
partition exchanged data, this still results in a valid connectivity. Note that by additional tree split
operations, embedding of such domains becomes feasible.

B,4�3

RLE connectivity information

of the considered cluster

right comm.

information

A,1

left comm.

information

C,3�4

Adaptivity markers (MR/MC/0) on

communication stacks

Ref: Re�ne cell

Co: Coarsen cell

Co

right adapt.

comm stack

0

MR

0

0

0

0

0
-1C A

D

D,4

left adapt.

comm stack

0

MC

MC

0

0

Ref
B

+1

MC

MC

MR

0

0

0

0

0

0 0 0 0

Co

Fig. 3.4. Schematic depiction of RLE connectivity update: A-D denote adjacent clusters. At
the last adaptivity traversal, refinement markers MR are transferred via edges which are split for
refining the edge and coarsening markers MC are communicated along the cathetii of cells which
should be coarsened (left image). The stack is analysed after this traversal (middle image) and based
on this stored information, refinement markers MR increase the RLE and coarsening markers MC

decrease the RLE-stored connectivity information.

element by one. This accounts for removing one vertex by merging two cells. This
avoids computation and communication of destination compute ranks, as typically
used in approaches with explicitly updated connectivity information, resulting in an
implicit update mechanism with location-independent adaptivity markers. Instead
of adaptivity markers, one can also communicate unique identifiers for each cluster
(e.g. cluster-id and rank-related information) via the edges to reconstruct the RLE
connectivity information3.

Changing the number of edges in the RLE entries also automatically updates the
number of vertices. A zero-encoded RLE does not require any special handling since
it is associated to an element on the communication stack which is positioned relative
to the updated edge-communication RLE information.

3.3.4. Cluster migration. Another property of stack-RLE clustering is the
possibility to easily migrate clusters to allow for load balancing. To realize the cluster-
based data migration, we use the property of location-independent intra-cluster com-

3Our RLE concept was inspired by [38] (ver. 2011, based on SFC-cuts in [5]) which explicitly
communicated MPI ranks via edges, supporting only MPI and edge communication).

Evaluation of an efficient stack-RLE clustering concept for dynamically adaptive grids 9

munication and the inter-cluster communication represented by the edges of the con-
nectivity graph, see Fig. 3.2. First, we compute the global enumeration of all cells
based on the number of cells in each cluster with a parallel prefix sum see e.g. [18].
Then, the cluster is annotated with the MPI rank to which the cell index of the
cluster’s SFC-enumerated middle cell has to be migrated for an optimized load bal-
ancing. So far, this follows well-known load balancing approaches and data migration
strategies.

The data migration itself is then accomplished in a cluster-oriented manner by
migrating the raw cluster data. This is highly efficient since most of the data is stored
in streams and grid meta information is inferred during grid traversal without explic-
itly storing it. Only the inter-cluster connectivity via edges requires further updates,
which is now based on explicitly transferred MPI ranks. We emphasize that updating
the connectivity information has been changed from a per-hyperface way to the clus-
ter approach for a distributed memory parallelization. This is the main difference to
all previously used approaches for stack-based communication and in particular the
only algorithmic part of communicating MPI ranks for keeping consistent connectivity
information.

3.3.5. Dynamic cluster generation. Several cluster generation strategies can
be implemented with our parallelization approach. The threshold-based and scan-
based approaches were evaluated in detail on shared-memory systems, see [32]. In this
paper we evaluate both methods for distributed-memory systems. For a threshold-
based method, splitting a cluster is requested as soon as the number of cells exceed
the threshold Ts. When the number of cells of two clusters sharing the same parent in
the spacetree lies below the threshold Tj , we join these clusters4. These thresholds are
sensitive on simulation characteristics such as the number of cores and the problem
size, see [30]. For a scan-based method, we split the clusters which would overlap with
an optimal SFC-partitioning approach (see [32]). After splitting or joining clusters, the
RLE connectivity information has to be reconstructed; here we present two approaches
which only rely on communication on the adjacent clusters, hence without collective
global operations.

Edge-connectivity information. This type of connectivity is important for com-
munication data which is exchanged among the edges. Such communication data is
relevant for e.g. edge DoF of discontinuous Galerkin solvers and its limiters, DoF for
finite-volume solvers, for adaptivity markers to generate a consistent grid and markers
to update the RLE connectivity information. To split a cluster, we need information
about (a) the number of shared hyperfaces along the separating hyperfaces (connec-
tivity data) and (b) the association of persistent data to both child clusters.

With the ordering of the elements on the communication stacks, the new con-
nectivity data (requirement (a)) during the split operation can be inferred [30], see
Fig. 3.5. Here, we stop our grid traversal at certain positions in the grid and then
implicitly derive the required quantities on the number of hyperfaces and cells for the
split. We refer to all this information as split information.

The derivation of the split information is joined in our implementation with the
last backward adaptivity traversal. This avoids an additional grid traversal by joining
two traversals (see also [39] for merging traversals). A sketch of this is given in Fig. 3.5.
We annotate the spacetree nodes on the 2nd level relative to the cluster to be split

4For terminology reasons, we like to mention that splitting and joining refers to re-partitioning
of dynamically adaptive grids and not to refine and coarsening operations on cells.

10 M. Schreiber, T. Neckel and H.-J. Bungartz

(2
)

le
ft

 s
ta

c
k

(1
,2

) s
har

ed
 s

ta
ck

s

(2
) r

ig
ht s

ta
ck

(2) right stack

create

splitting

information

(1) right stack

(1) left stack

(1
) r

ig
ht s

ta
ck

A

B CC
B

A S
ep

ar
at

o
r
o
n

tr
ee

 s
p
lit

right stack

left stack

First child in

space tree

Second child

in space tree

Fig. 3.5. Reconstruction of RLE connectivity information during grid traversal for tree-split-

based cluster generation. s
{1,2}
{l,r,shared}

represents the number of edges on the left (l) and right (r)

communication stack or the shared edges for the 1st and 2nd split cluster. The traversal stops at
particular steps during the grid traversal to compute the values for s based on the number of elements
stored on the communication stacks. The shared number of elements can be inferred by considering
the changes on communication stacks before and after traversing partition B. This yields a valid
RLE connectivity information without communicating any adjacency related information via edges.

and by following the SFC in reversed direction with (a, b, c, d). Now, we consider
partitions (A,B,C) generated by cells of the leaf nodes of subtrees (a, b, c ∪ d). We
denote the stacks for the left and right adaptivity communication stack by Sleft and
Sright. C stands for the cell stack. We determine the number of cells of the parent

element from the elements stored on the cell stack: c(parent) := |C|. s(1){left,right} stores

the information on the split operation for the first child and s
(2)
{left,right} for the second

child on the 1st level. The number of new edges shared among both children of the
cluster are computed in s(shared). Furthermore, the number of persistent data (cells)
associated to both child clusters are stored in c(1) and c(2).

The following steps allow us to compute the new clusters (note that this informa-
tion is inferred via a backward traversal):

1. Partition A: After the traversal of cells in partition A, the communication
edges on the left stack for the second partition B are stored as

s
(2)
right := |Sleft| .

2. Partition B: After the traversal of cells in partition B, one computes the
shared edges by

s(shared) := |Sleft| − s
(2)
right,

and the number of parent’s inter-cluster edges for the 2nd partition on the
right stack are saved in

s
(2)
left := |Sright|.

The processed number of cells which is then associated to the second subpar-
tition created by the split operation is inferred by

c(2) := c(parent) − |C|

Evaluation of an efficient stack-RLE clustering concept for dynamically adaptive grids 11

where |C| is the remaining number of cells to be processed. This also repre-
sents the number of cells assigned to the first subpartition C:

c(1) := |C|.

3. Adaptivity: Due to the adaptivity traversal (cf. Sec. 3.3.3), the information
on the shared edges s(shared) only represents the quantity of shared hyperfaces
before refining and coarsening cells in the grid. Based on the corresponding
refinement and coarsening markers MR and MC , the amount of hyperfaces
s(shared) has to be updated (see Sec. 3.3.3).

4. Partition C: After the traversal of cells in C, the information to reconstruct
the communication information is then given by

s
(1)
right := |Sleft| − s

(2)
right

and

s
(1)
left := |Sright| − s

(2)
left.

If partitions A and B do not exist, clusters with leaf elements stored on level 1 or
2 need to be handled appropriately. In the example case of a cluster consisting only

of two cells, we can directly set s
(1/2)
right := 1, s

(1/2)
left := 1, s(shared) := 1.

With the derived information, we perform the split operation a posteriori: The
persistent cell data (cf. requirement (b)) on the stack can be split directly using the
split information c({1,2}). To account for the new traversal start, the traversal meta
information (providing e.g. the starting point of the grid traversal) has to be updated.
The RLE communication information of both children can also be determined based

on the number of shared edges of both children given in s
({1,2})
{left,right} and s(shared).

Note that no global communication or global operation such as a global grid traversal
is required to perform these operations for the split.

Joining clusters is rather straightforward and can be implemented with the fol-
lowing steps:

1. Concatenate the cell data storage,
2. Join both traversal meta information and
3. Join both communication meta information and remove the RLE information

about the edges shared by both child clusters.
So far, this results in valid connectivity information for the clusters involved in the

local split/join process. For adjacent clusters in the same memory context, the infor-
mation on split connectivity information is inferred by directly accessing the adjacent
cluster’s connectivity information. We can distinguish between different constella-
tions which are depicted in Fig. 3.6. The clusters generated by split/join operations
are accessible by pointers to/from their parents and children. Hence, to access the
split/joined clusters does not require storing the entire spacetree. All possible cases
which can occur due to split/join constellations of two adjacent cluster are then pro-
cessed (see Fig. 3.6). After the split/join operations, an iteration is performed over all
RLE communication elements which tests the local cluster and the adjacent cluster
states.

In the following, we give one example for a split/split case (Fig. 3.7, left) to
explain how to reconstruct the connectivity information. It is important whether the
first or second adjacent split child node along the SFC is traversed first or second
to append additionally required RLE connectivity information in the correct order.

12 M. Schreiber, T. Neckel and H.-J. Bungartz

Split /

Split:

Split /

Join:
Join /

Join:

Join /

NOP:

Split /

NOP:

Join /

NOP:

Split

Join

Legend

Fig. 3.6. Possible constellations edges shared among clusters due to split and join states.

b

a

c

d

e

f
ba c

d
e f

Clusters

Cluster storage
(binary tree in our
implementation)

X

Y

Cluster boundary traversal directions:

ClockwiseCounter clockwise

Fig. 3.7. Example of split/split state: Cluster X was split into a and b. Cluster Y was split
into e and f . The connectivity data has to account for the split states of the adjacent cluster. The
traversal directions (blue arrows) are either in clockwise or counter clockwise direction.

Let the direction flag D = 0 denote a traversal order to reconstruct the connectivity
information “first, then second child” and D = 1 denote the case “second, then first
child”. Two rules are needed that potentially change the direction flag D:

• Rule 1) Traversal order of adjacently split children:
If the cluster boundary traversal directions of the local and the adjacent
parent’s cluster are identical, the cluster traversal order (for updating the
RLE) of the adjacent children has to be in the same direction (D := 0),
otherwise reversed (D := 1).

• Rule 2) Traversal order of locally split children:
If the RLE of the second local child is updated the traversal order is reversed
(D := 1−D).

We now apply the two rules to child cluster a in the considered example visualized in
Fig. 3.7. Rule 1): The traversal on the cluster boundary of the shared edges between
clusters a, e and f are all counter-clockwise, we set D := 1 to account for opposite

Evaluation of an efficient stack-RLE clustering concept for dynamically adaptive grids 13

C
R2

R3R1

R2

R3
R1

R1

R3

R4

R1
R2

R3

R2

Fig. 3.8. Reconstruction of the vertex-connectivity information based on the edge RLE connec-
tivity information Ri for cluster C. A trace of the clusters sharing the considered vertex is generated
by following the RLE connectivity information Ri associated to the same vertex (see arrows in pic-
ture). This allows a reconstruction of a consistent inter-cluster vertex-connectivity information: For
both RLE connectivity edges (R1, R3) which share the vertex, the adjacent clusters are traversed.
First, we following R1 in cluster C, leading to cluster B. The next RLE element in cluster C which
also shares the same vertex is given by R2, which is a boundary edge. Hence, the trace generation
for this direction is finished. Second, we follow R3 in cluster C leading to cluster A. Here, R2

shared the same vertex, leading to cluster C and finalizing the search since RLE R3 in cluster D is
a boundary edge. Finally, the clusters which were accessed during the trace generation are stored as
0-RLE tuples in the connectivity information

directions. Rule 2): Since cluster a is the first child’s triangle, the adjacent traversal
order is not changed. In total, D = 1 leads to a reversed, second-first traversal of the
adjacent child clusters (i.e. cluster f is searched first for adjacent edge parts, followed
by cluster e). Each traversal results in inserting corresponding new RLE entries to the
RLE meta information, replacing the RLE entry associated to the split parent cluster.
For these operations, neither a spacetree traversal is required nor the structure of the
forest of spacetrees has to be stored (see [28, 30] for a detailed description of this
algorithm).

For clusters stored in another memory context, the connectivity information is
updated based on information about the split or joined connectivity transferred via
MPI send/recv. Hence, this involves non-global communication operations and a
single pass only.

Vertex connectivity information. This type of connectivity information can be
used e.g. to implement flux limiters for discontinuous Galerkin simulation. For our
case, we use it to construct a continuous surface of the underlying discontinuous ap-
proximated solution. The vertex-connectivity information approach was first used
in [33]; here we summarize the approach and provide details on the implementation.
We can reconstruct the 0-length encoded vertex-connectivity information based on
the consistent edge RLE connectivity information, see Fig. 3.8 for an example. With-
out loss of generality, we only consider periodic boundary conditions. If the cluster
also shares the vertex, two edge RLE connectivity elements are associated to a single
vertex in each cluster . For shared-memory systems, this allows traversing over all
clusters sharing the vertex by following the vertex-associated edge RLE connectivity
information. We can generate a trace of the clusters sharing the vertex. The limitation
of up to 8 adjacent cells per vertex (here we assume that angles less than 45 degree
should be avoided since this would result in stronger time step restrictions) results
in a constant runtime for each shared vertex. Under the assumption that avgRLE
edge connectivity information entries are stored in average per cluster, this results in
a runtime complexity of O(#Cluster · avgRLE) for the reconstruction, with avgRLE
being a relatively low average number of RLE elements for edges per cluster (cf. [33]).
Since we are interested in the vertex-based communication for visualization purposes,

14 M. Schreiber, T. Neckel and H.-J. Bungartz

we focus on shared-memory systems only. Note that the limitation of up to 8 vertex-
adjacent cells allows for a direct reconstruction of vertex-connectivity information
also on distributed memory systems with only up to 6 iterative communications via
the RLE edge connectivity information. In this way, in a constant number of passes
one could also compute a consistent connectivity information for vertices without any
global communication. Our approach has its origins in a shared-memory implemen-
tation; this was also independently developed in the context of petascale simulations
for Reactor Hydrodynamics to avoid global collectives with MPI-based distributed
memory parallelization, see [13].

4. Extensive case studies with stack-RLE clustering. After the theoretical
discussion and summary of the stack-RLE clustering approach in the previous section,
we now apply it to different relevant tasks in the context of Scientific Computing and
perform a detailed evaluation. The following results are based on shallow-water fi-
nite volume simulations executed on dynamically changing grids. We extend the first
small-scale scalability test from [29] to a large-scale distributed-memory system to
show the large-scale applicability of our approach. This is followed by two advantages
of our approach regarding the visualization of simulation data: For online visualiza-
tion (via OpenGL), consistent vertex data for discontinuous discretizations at cluster
interfaces is provided. A backend for offline visualization allows to efficiently write
simulation data to persistent memory with the focus on a shared-memory node. An
analytical benchmark is then used to validate the implementation of the finite-volume
solvers and to show the runtime improvements of the dynamical adaptive grids. Fi-
nally, we show the applicability to a realistic scenario: a Tohoku Tsunami simulation.

4.1. Scalability studies. For our scalability studies, we use a discontinuous
radial dam break. The size of the simulation domain is set to 5000m × 5000m, and
the radial dam break center is placed at (2500m, 2000m) with a radius of 500m. We
use a finite-volume with local Lax-Friedrichs flux solver and explicit Euler adaptive
time stepping method. These studies were conducted with single precision. Load
balancing algorithms are executed after each time step. The adaptivity traversals to
refine/coarsen grid cells also involve computing the cell’s vertex coordinates.

4.1.1. Small-scale scalability. We conducted several benchmark studies on up
to 512 cores which show the influence of several parameters which the clustering offers.
These benchmarks were conducted on the CoolMUC2 cluster system (Dual Socket,
14-core Haswell, FDR14 Infiniband interconnect, 64 GB memory per node)5. The
simulation grid is initialized with a regular refinement depth of 22 and 8 additional
refinement levels. For the cluster generation, we evaluated two different strategies:
The first one is referred as the threshold method with two threshold values: A thresh-
old of Ts := 4096 for splitting a cluster if the number of cells exceeds this size and
Tj = Ts/2 for joining clusters if the number of cells of both clusters undershoots this
value. The second cluster generation method is referred to as the scan method which
splits the clusters (we’d like to remind here that in this work we only focused on
clusters generated by sub-trees of the spacetree) to optimize the overall workload bal-
ance and we assume a heterogeneous workload6. The simulation for the initial radial
dam break is executed for 100 iterations: In each iteration, we successively execute
a time step of the simulation-adaptivity traversals and the (threshold-based) cluster

5https://www.lrz.de/services/compute/linux-cluster/overview/
6This is not given e.g. for the augmented Riemann solvers which are used for the experimental

tsunami simulations

https://www.lrz.de/services/compute/linux-cluster/overview/

Evaluation of an efficient stack-RLE clustering concept for dynamically adaptive grids 15

Fig. 4.1. Scalability on the CoolMUC2 system. We evaluated several variants of cluster-
generation and cluster-based optimizations. The threshold-based cluster generation together with the
cluster-based optimization of skipping adaptivity traversals of already conforming clusters results in
a robust performance boost also in the context of distributed memory systems.

generation, followed by our cluster-based data migration. We conducted a variety of
studies – each time with different constellations and measurements – to gain insight
into the simulations. All of these studies include the overheads of the function calls
to measure the detailed runtime.

The first study is given in Fig. 4.1 which shows the scalability per-se and contains
different variants of cluster-generation strategies (threshold-based and scan-based, see
above). The baseline for the linear scalability of this plot is given by the performance
of all 28 compute cores on one MPI shared-memory domain.

For Split T=4096, we can observe an efficiency of 95% for the standard threshold-
based cluster generation method on 512 cores.

Next, we discuss the skip-based optimizations of the threshold- and scan-based
approach, see Split T=4096, Skip and Scan, Skip. Since our development strongly
relies on a conforming grid, each time the grid structure changes this may require
additional conformity traversals. There is one significant side-constraint of a grid
communication scheme which is based on a stack-based communication approach:
With the previously developed approaches, there are two constraints limiting possible
optimizations: The first constraint is given by the entire partition to be traversed
(see approaches used in [5, 23, 38]) since only one partition is allowed per memory
context, and the communication scheme allows MPI-only. The second constraint
consists of a coloring of the shared-interfaces, generating certain dependencies or
requirement of mutual exclusion on hyperfaces shared among the partitions requiring
e.g. an execution of the traversal (see [33]). We circumvent both constraints with our
RLE clustering approach by (a) multiple partitions allowing for skipping traversals,
(b) a replicated data layout also on shared-memory systems and (c) using a run-length
encoding for efficient communication. With such a cluster-based optimization we can
efficiently skip conformity traversals of clusters which results in a robust performance
improvement of 25% (Split T=4096 vs.Split T=4096, Skip in Fig. 4.1).

Concerning the scan-based cluster generation which splits clusters in a way to
improve the load balance, we observe that the performance is below the threshold-
split-based one. A detailed comparison of threshold vs. scan-based cluster generations

16 M. Schreiber, T. Neckel and H.-J. Bungartz

Fig. 4.2. Performance comparison between threshold- and scan-based cluster generation meth-
ods. We observe a higher performance for scan-based clustering with low-core numbers whereas the
performance is higher for threshold-based clustering for higher core numbers.

Fig. 4.3. Detailed performance breakdown of the total time (sum over time on all cores)

shows a dependency on the number of cores and is given in Fig. 4.2. With the scan-
based cluster generation (red) being less performant compared to the threshold-based
method (blue) on 512 cores, we can observe a different behaviour on less cores: Here,
the scan-based strategy is up to over 20% more performant. We account for that by
several reasons: First, our cluster-generation method is based on tree splits. With the
clusters generated by tree splits, a close-to-optimal load balancing requires multiple
tree splits. This also generates clusters far below the split-size Ts of the threshold-
based method. Here we can observe this migration of many small clusters in overheads
of the migration time: Runtimes for the cluster-based data migration are about 2 times
larger for the scan-based method compared to the threshold-based one.

Next, we gain insight into the different phases (adaptivity, simulation time step,
load balancing, etc.) and how this relates to the overall performance. Detailed timings
are given in Fig. 4.3. The left side shows the timings for the threshold-based clustering
and the right side additionally with cluster-based optimizations (cluster skipping).
We observe a similar runtime for the simulation time-step computations and for the

Evaluation of an efficient stack-RLE clustering concept for dynamically adaptive grids 17

Fig. 4.4. Performance results on 512 cores for different variants of threading libraries
(OpenMP / Threading-Building-Blocks) and cluster generation. We observe that TBB always results
in improved performance as soon as more than one thread is used.

adaptivity traversals, the skipping of traversals on already conforming clusters results
in performance benefits also on distributed-memory systems.

We next evaluate possible performance differences when using OpenMP (OMP) or
Threading-Building-Blocks (TBB) in the context of a hybrid parallelization (MPI+X).
Since our inter-rank data exchange via RLE connectivity information is only based
on MPI ranks, the inter-rank shared interfaces have to be send/recv and processed
(in case of flux computations) by a single thread7. The operations (execute traversal,
send/recv data, execute conformity traversals, etc.) on clusters are executed by a
recursive OMP/TBB task generation (see [32] for ”parfor” execution results). Fig. 4.4
shows several performance results with a purely non-threaded split-based method
and linear scaling on 512 cores given at the bottom of the plot. We see that the
peak-performance for threaded versions is the best for OpenMP only in case of a
single-threaded version. In fact, there are no significant overheads if executing the
OpenMP-parallelized variant with only a single thread (see single-threaded bar next
to OMP). In contrast, the TBB version always has overheads by the task generation
(this always involves hand-coded packing of data into task classes to execute the
operations via the worker threads). As soon as more than one thread is used in the
simulation, the overheads of TBB are smaller compared to OMP. Again, we observe
significant performance boosts for cluster-based optimizations by skipping traversals
on already conforming cluster.

Finally, we provide an in-depth analysis of the cluster-based data migration ap-
proach before discussing Fig. 4.5. We briefly repeat a major aspect of our approach:
Our novel cluster-based data migration avoids storing and migrating the connectivity
information per-cell as is the case in all previously developed stack-based data ex-
change approaches ([23] based on [38]). Here, we shall also mention the p4est [11]
development which does not rely on a stack-based communication, but computes the
connectivity information implicitly, and avoids storing it in per-grid primitive before
data migration. Our RLE-clustering approach allows storing all the connectivity data
only on a cluster-granularity level with an efficient run-length encoding. Hence, ad-
ditional data overheads from (a) explicitly storing the edge/node-based connectivity

7One obvious possible optimization of our RLE clustering is to extend this information e.g. by
global cluster ids, rank-local cluster ids, processing thread ids or other unique identifiers.

18 M. Schreiber, T. Neckel and H.-J. Bungartz

Fig. 4.5. Max-normalized timings of migration overheads

information and (b) by migrating this additional data are avoided. In particular for
vertex/node-based communication, this can lead to significant bandwidth-reduction
benefits in case of low payload per cell (see [33] for a payload model) and to improve-
ments on future HPC architectures with network bandwidth becoming a significant
performance bottleneck. In Fig. 4.5, we plotted several categories for migration per-
formance data over 100 simulation time steps (setup routines are not included) with
the default threshold-split-based (TS = 4096) cluster generation: The total number
of migrated cells, the total number of migrated clusters, the migration time itself and
the migrated cells per core. For a better comparison, all values were normalized with
the maximum of each category (see max=... information in the legend). We observe a
direct relation between the number of migrated clusters and the number of migrated
cells. This is due to the threshold-based cluster generation which generates a number
of clusters depending on the number of cells per clusters, hence also relating both
values for data migration. Regarding the migration time, we observe a maximum of
migration time at 2 cores which is successively decreasing with an increasing num-
ber of cores for a split-based approach. The reason for this is the larger number of
clusters per compute rank when involving only two ranks. Here, traversing over the
larger amount of clusters account for these overheads which successively decrease with
a larger number of cores, hence less clusters. Using a scan-based cluster generation
leads to steadily increasing data migration overheads (see scan-based migration time).

For these benchmarks, the data migration overheads and split/join operations are
negligible (yellow in Fig. 4.3). This is due to three reasons: First, the repartitioning
is done with the RLE cluster algorithms. Second, as an implication of the RLE, the
required bandwidth for data migration of a single cluster with a certain number of
cells is quasi-optimal since no connectivity information is stored in the cells. Third,
the workload per core compensates overheads. This combination leads to a highly
efficient data migration approach.

4.1.2. Large-scale scalability. The large-scale test is based on three strong
scaling benchmarks and was executed on the Sandy-Bridge based SuperMUC8 and is

8http://www.lrz.de/services/compute/supermuc/

http://www.lrz.de/services/compute/supermuc/

Evaluation of an efficient stack-RLE clustering concept for dynamically adaptive grids 19

0

0.2

0.4

0.6

0.8

1

256 512 1024 2048 4096 8192

E
ff

ic
ie

n
c

y

Number of threads

168 Mio. Cells (strong scaling)

673 Mio. Cells (strong scaling)

2690 Mio. Cells (strong scaling)

(~weak scaling)

d=24,

d=26,

d=28,

Fig. 4.6. Scalability on up to one SuperMUC island with 8192 cores. We tested different
initial refinement depths (d) with each benchmarks marked with the average number of simulation
cells of the dynamically adaptive grid over the runtime.

intended to show limitations of a clustering approach based on tree-splits. The simu-
lation domain is a quadrilateral assembled by two triangles. A cluster split threshold
size of Ts := 32768 was chosen and we tested the scalability with different initial
refinement depths d := {24, 26, 28} and up to 8 additional refinement levels for the
dynamically changing grid. We executed the simulation for 100 time steps and the
benchmark measurement is started after no further cluster migration during the setup
phase is done. It is important to mention that each time step of the simulation in-
volves evaluation of the adaptivity criteria, refining or coarsening the mesh according
to the adaptivity criteria creating a consistent mesh, cluster generation and applying
data migration algorithms. A detailed analysis of the different phases can be found in
the previous section. In this section we focus on limitations of the clustering approach.

Figure 4.6 shows the results for this scalability test with the initial refinement
depth d := 26 used as the baseline for the 100% efficiency on 256 cores. The scalability
of the d := 24 with about 168 mio. cells in average per time step shows a non-optimal
performance for a larger number of cores. This is mainly due to the cluster threshold
size assigning an insufficient number of clusters to each computing core to allow load
balancing on a single node with our threshold-based cluster generation. For d := 26
we observe an efficiency of 60% for a strong scaling with fully dynamic adaptive grid
algorithms with mesh refinement and coarsening in each time step. On 8192 cores
the average number of cells shows a load imbalance of over 20% due to the threshold-
based tree splits and is the main limiting factor. Smaller threshold sizes or alternative
cluster shapes and cluster generation methods, e.g. based on range information [32]
or SFC-cuts [5], can lead to improved performance. Using the benchmark d := 28 to
get a pseudo weak scaling, we reach over 90% efficiency on 8192 cores compared to
d := 24 with 168 mio. cells (see red line in Fig. 4.6).

4.2. Stack-RLE for visualization. In this section, we describe advantages of
our stack-based RLE clustering approach concerning the visualization of simulation
data. First, we discuss performance improvements for a VTK binary file output for
offline visualization by using writer tasks. Then, we present an on-line visualization
via OpenGL which requires efficient on-line processing for a discontinuous solution

20 M. Schreiber, T. Neckel and H.-J. Bungartz

stemming from finite-volume simulations.

4.2.1. VTK file backends. Using the VTK file backend, data is written to
persistent memory. However, lower bandwidth is available to access such a persistent
memory compared to the main memory. We evaluated five different implementations
to analyze alternatives to overcome the idling of cores that are waiting until the data
has been written to persistent memory:

• No output: This benchmark does not write out any simulation data and is
used to determine the maximum achievable performance.

• Default (blocking):
The default output method blocks the writing to persistent memory until
the function which is called to write all simulation data to persistent storage
finished its execution.

• pthread: A separate thread is started which writes the simulation data in
the background to hard disk. Here, the simulation continues on all available
cores. This can lead to a single core shared among the writer and a simulation
thread, hence conflicting computational resources.

• pthread, lastcore: This execution is similar to the aforementioned pthread
execution, but does not use the last core for the simulation. This aims to
avoid resource conflicts, see above.

• Writer task: Using TBB for thread initialization, we can use TBB fire-and-
forget tasks [22]. These tasks are enqueued to a working queue without any
thread waiting for the finishing of the task.

The domain for the simulation is a quadrilateral split in two triangles, and the
simulation grid is initialized with a regular refinement depth of 10 and with up to 16
additional refinement levels. The simulation computes a radial dam break with the
Rusanov flux solvers for 201 time steps. Such a simulation results in 4.55 mio. cells
processed in average per simulation time step and with binary VTK file sizes above
300MB. The output data itself is preprocessed and written to consecutive output
arrays in parallel using all available cores. We used an Intel platform (four socket
system with each socket equipped with an Intel Xeon CPU E7-4850@2.00GHz with 10
cores per CPU) and wrote the simulation output data to persistent memory (Western
Digital Hard Drive of the type Red 2TB with a 64MB cache and a theoretical transfer
rate of up to 6Gb/s). Results for different frequencies of writing output files to
persistent memory are given in Fig. 4.7 and are discussed in the following.

The blocking version shows a clear disadvantage compared to the other methods
since cores idle until the function which writes the output data finished writing the
data. Such idling cores are partially compensated for by the two pthread versions
showing similar improvement results. However, the dedicated writer core which we
implemented to avoid over-subscription of cores (pthread, lastcore) leads to decreased
performance of 0.85%, 3.68% and 0.42% percent respectively for writing output files
each B = (25, 50, 100) time steps. Hence, avoiding resource conflicts does not result in
a robust performance improvement for the tested simulation parameters. The results
indicate, that the over-subscription of cores should be used for this scenario. With
TBB fire-and-forget tasks, we get a robust performance improvement compared to
all other writer methods. This can be explained by avoiding overheads of pthread
creation and hiding the bandwidth bottleneck by conflict-free concurrent execution of
the writer task and the simulation. Once the writer task finished its execution, the
clustering allows work stealing of tasks enqueued to other worker queues by the core
that was writing the data. Furthermore, for B = 100, the performance loss for writing

Evaluation of an efficient stack-RLE clustering concept for dynamically adaptive grids 21

B=25 B=50 B=100

0

20

40

60

80

100

Write grid data after B time steps

M
il
li

o
n

 c
e
ll
s

 p
e

r
s
e

c
o

n
d

no output default (blocking) pthread, lastcore pthread TBB writer task

Fig. 4.7. Benchmark statistics with million cells per second processed and for different output
backends. The parameter B specifies the number of time steps when data was written to persistent
memory.

Fig. 4.8. Visualization methods of the elevated surface of a shallow-water simulation. Left
image: the direct visualization of the finite-volume simulation leads to white gaps in the surface.
Right image: the closed surface leads to less distraction and improved possibility to analyze the data.

data to persistent memory is only 4% compared to writing no simulation data. It is
obvious that it will decrease even more for B > 100 time steps.

4.2.2. OpenGL. With an online visualization using OpenGL, we can directly
render the simulation results and interactively steer the simulation, see Fig. 1.1, by
changing the grid structure and updating the DoF such as the water-surface height
during the simulation. In this section, we focus on the algorithmic aspects of a
reconstruction of a closed elevated surface for an online visualization with our stack-
RLE clustering. Using a finite volume or discontinuous Galerkin method, a direct
visualization of the water surface would lead to gaps and also a distraction from the
data, see an explanatory visualization for a selected time step of a radial dam in
Fig. 4.8.

Our visualization is generated on dynamically changing simulation data stemming
from FV/DG simulations. To obtain a continuous (gap-free) surface out of a discon-
tinuous solution, we have to compute both vertex and normal data on-the-fly. The
vertex data is based on averaging a particular data stored in cells and the normals are
computed with additional traversals, based on the vertex data for shading purpose
(see [20] for further information). Fig. 4.8 and Fig. 1.1 (bottom left) show examples
of the realized gap-free visualization.

Alternative algorithms which use the cell data and geometry as input and rely
on sort operations are typically of O(n log n) complexity for n cells. With respect

22 M. Schreiber, T. Neckel and H.-J. Bungartz

to computational complexity, all our algorithms concerning the pure grid traversal
inside each cluster are of O(n) (see Sec. 3.3.5). For the additional inter-cluster data
communication, we obtain anO(

√
n) complexity for the execution of reduce operations

on inter-cluster shared hyperfaces and the involved data exchange, since the number
of edges on the boundary of a cluster consisting of n cells can be estimated by

√
n.

Furthermore, the reconstruction of consistent connectivity information is of constant
complexity per cluster and we further assume that the number of clusters is kept
constant, e.g. by adopting the splitting threshold. Therefore it is feasible to compute
a closed surface with our vertex-based RLE connectivity information in parallel with
an O(n +

√
n) complexity. For large problem sizes (n ≥ 18 cells), the runtime for

the reduce operation which is required for the replicated vertex data is compensated
which represents a clear improvement to the previous approaches for visualization
methods.

We briefly discuss a method used in the AMR GeoClaw software [6] to visualize
e.g. Tsunami data. Here, the cell-centered degrees of freedom are interpolated to
regular grid. Each element in the regular grid then stores the value of the leaf cells
in a regularly refined space tree. This would be applicable also for the Tsunami
simulations in this work since they would only require a moderate size of the regularly
refined grid. However, as soon as the finest refinement level would lead to a resolution
which would generate a regular grid which exceeds the available memory, algorithms
such as the one presented in this section allow an efficient construction of a closed
surface. Also, the generation of an elevated surface as it is visualized in Fig. 4.8 would
not be possible with the data provided in the regular grid.

4.3. Analytic benchmark. We selected the Solitary Wave On Composite
Beach (SWOCB) benchmark of the NOAA benchmarks [36] to quantify the ben-
efits of the dynamic adaptive grids and the adaptivity criteria with shallow water
equations. 9 to show the applicability of the run-time adaptivity of the developed
framework in the context of an analytic benchmark. Despite its high complexity with
non-constant bathymetry, an analytical solution is available [37]. We use this bench-
mark to show the feasibility of the adaptivity criteria and the potential of the dynamic
adaptive mesh with refining and coarsening in every time step in a wave propagation
benchmark scenario with a varying bathymetry.

4.3.1. Error indicator. With our main focus on computing the solution within
given error bounds as fast as possible, only grid cells with a particular contribution
(feature rich areas) to the final result should be refined. In this work, we developed
a straightforward adaptivity criterion which is based on the steadiness of the height-
quantity in each cell.

We denote the per-edge transferred net-update components ∆hi (the first height-
related component of the augmented Riemann solver) with

Inet-update :=
∑

i=1,2,3

∆hi|ei| ,

where |ei| is the length of the triangle edge i. Then, each cell requests a refinement
operation in each time step in case of I > r and the cell commits to the coarsening

9 Synolakis, C.E., E.N. Bernard, V.V. Titov, U. Knolu, and F.I. Gonzlez (2007): Standards, crite-
ria, and procedures for NOAA evaluation of tsunami numerical models. NOAA Tech. Memo. OAR
PMEL-135, NOAA/Pacific Marine Environmental Laboratory, Seattle, WA, 55 pp., PDF version,
http://nctr.pmel.noaa.gov/benchmark/Solitary_wave/

http://nctr.pmel.noaa.gov/benchmark/Solitary_wave/

Evaluation of an efficient stack-RLE clustering concept for dynamically adaptive grids 23

G9G7G5G4 G6 G8

2.93m4.36m2.40m

G10

0.90m

Wave entering the domain

Fig. 4.9. Scenario sketch for the “Solitary Wave on Composite Beach” benchmark. The
placements of the gauge stations with selected ones plotted in Fig. 4.11 are marked with G*

T��� �a���ng

D����h	�

b��
da��

��
d�
��
i

Wa		�

b��
��cba�k

b��
da��

��
dition

P����d�� b��nda�� ��
ditioniP����d�� b��nda�� ��
ditioni

Fig. 4.10. Base triangulation and boundary conditions for the “Solitary Wave on Composite
Beach” benchmark.

process, in case of I < c . The effects of different parameters of r and c are going to
be discussed below.

4.3.2. Scenario description. We use scenario A of the benchmark [37], see
Fig. 4.9. The bathymetry is given - from left to right - by an area of a constant depth
of 0.218 with three following, non-constant bathymetry segments, with a slope of 1

53 ,
1

150 , and
1
13 respectively.

Using the one-dimensional benchmark in a two-dimensional setting with a trian-
gulated grid, we set the boundaries on the scenario’s sides (top and bottom side in
Fig. 4.10) to periodic conditions. Hence, this results in an infinite wide scenario. We
use reflective boundary conditions on the right side of Fig. 4.9. For the input boundary
condition on the left side with the wave moving in, we use the boundary conditions of
the analytical solution precomputed by the GeoClaw group10. For the simulations, we
used the finite-volume augmented Riemann solvers [15] from the GeoClaw package.

Using user-specified data for each cluster (property (4)), we can set the differ-
ent boundary conditions without testing for vertex coordinates. This relies on the
property that each cluster is associated with at most one type of boundary condition
which is fulfilled in the base triangulation as shown in Fig. 4.10.

To support RLE-cluster-based data exchange for base triangulations such as given
in left handed image in Fig. 3.3, we have to use four triangles to assemble a quadrilat-
eral. We initialize the domain with a strip of 128 quadrilaterals, resulting in 29 initial
triangles for refinement depth 0. With an initial refinement depth d, the domain is
initialized with 2(9+d) triangle cells.

4.3.3. Benchmark runs with regular grids resolution. We first analyze the
approximation behavior with different regular refinement depths without the dynamic
adaptivity enabled. The plots for water surface height at selected water gauge stations
are given in Fig. 4.11 showing the convergence to the analytical solution. The averaged
convergence rates are given by {G5: 1.6332, G6: 1.6376, G7: 1.7079, G8: 1.6294, G9:
1.6155, G10: 1.5012}.

10https://github.com/rjleveque/nthmp-benchmark-problems/

https://github.com/rjleveque/nthmp-benchmark-problems/

24 M. Schreiber, T. Neckel and H.-J. Bungartz

270 280 290 300

0
.0

0
0

0
.0

1
0

Gauge G5

h
e
ig

h
t

270 280 290 300

0
.0

0
0

0
.0

1
0

Gauge G7

h
e
ig

h
t

270 280 290 300

0
.0

0
0

0
.0

1
0 Gauge G9

h
e
ig

h
t

270 280 290 300

0
.0

0
0

0
.0

1
0

Gauge G10

time (seconds)

h
e
ig

h
t

time (seconds)

Analytic data
d=0
d=2
d=4
d=6
d=8

Fig. 4.11. Analytic and computed solution for the surface elevation at water gauge stations
G5, G7, G9 and G10. The numerically computed solution converges to the to the analytical solution
with increased resolution (d).

128 512 2048

L
1

 e
rr

o
r

n
o

rm
 (

lo
g

)

Grid resolution at boundaries in x direcction (log)

G5 G6 G7

G8 G9 G10

10-5

10-4

Fig. 4.12. Absolute error (L1 norm) of the computed solution for the surface elevation at
different water gauge stations. The resolution is given for the edges on one of the long quad strip
boundary. Both axes are in log scaling.

Evaluation of an efficient stack-RLE clustering concept for dynamically adaptive grids 25

Fig. 4.13. Cell distributions over time for the “Solitary Wave on Composite Beach” bench-
mark scenario. The elements in the legend are encoded with “d=[initial refinement depth]/[dynamic
adaptive refinement levels], rc=[refine threshold]/[coarsen threshold], error=[L1 error to baseline]”.
For all adaptive scenario, an increase of the number of cells is visible for the wave propagating into
the simulation domain at t ∈ [265; 272]. In the phases before and after hitting the boundary on the
right hand side (t ≈ 280), the different choices of the adaptivity criteria result in very different
reduction behavior in terms of number of cells.

A more detailed analysis of the convergence error based on the L1 norm with the
analytic solution is given in Fig. 4.12 for all water gauge stations, computed over the
time interval [270, 295].

4.3.4. Benchmarks runs with dynamic adaptivity. For testing the possibil-
ities for dynamic adaptivity, we select water gauge G8 which is neither too close, nor
too far from the reflective boundary. We executed several parameter studies with ini-
tial refinement depths d ∈ {0, 2, 4, 6, 8} and additional adaptive levels a ∈ {0, 2, 4, 6, 8}
and with the side constraint d+ a ≤ 8, i.e. we do not allow any spacetree depths ex-
ceeding 8.

A good justification for dynamic adaptivity is to show equivalent accuracy results
with less cells involved in the computation. Following this idea, we executed the
benchmark on a regular grid with d = 6, yielding 29+6 = 32768 grid cells, computed
the L1 error of 3.80e–5 and used this as a baseline for the comparison with simulations
on dynamically adaptive grids.

We execute several parameter studies for t ∈ [250; 305] and compare the results
using the steady-state-based error indicators (see Sec. 4.3.1). The refinement adaptiv-
ity parameter was chosen as r := 10−n with n ∈ N and the coarsening parameter in
a very conservative manner with c := r

10 and we only show improved results with the
L1 error norm. Fig. 4.13 shows significant changes in the number of cells over time,
where

d = [initial refinement depth]/[dynamic adaptive refinement levels]

denotes the initial and adaptive refinement levels. For a decent choice in the adaptivity
criteria, we observe the desired behavior with a reduction of the number of cells for

26 M. Schreiber, T. Neckel and H.-J. Bungartz

Benchmark parameter error avg. cells time steps saved cells
per time step

d=0/8, rc=10−8/10−9 2.38e-5 23556.13 38839 28.1%

d=0/8, rc=10−7/10−8 2.51e-5 11795.13 30009 64.0%

d=2/6, rc=10−8/10−9 2.39e-5 24326.79 40303 25.8%

d=2/6, rc=10−7/10−8 2.51e-5 12924.97 31354 60.6%

d=4/4, rc=10−8/10−9 2.39e-5 28169.67 43500 14.0%

d=4/4, rc=10−7/10−8 2.54e-5 18075.68 36732 44.8%

d=6/0 (baseline) 3.80e-5 32768.00 37553 0.0%
Table 4.1

Parameter studies for analytical solitary wave on composite beach benchmark: Column 3 holds
the average number of cells used in a time step, column 4 shows the necessary number of time steps
(due to the CFL condition) and the right-most column lists the percentage of saved cells per time
step in average compared to the baseline

the shrinking support of the wave in the domain. For selected runs (with the same
or a slightly reduced L1 error), Table 4.1 shows the percentage of saved cells per
time step in the last column. For the “d=0/8, rc=10−7/10−8” setting, this yields

a small reduction of 215−11795.13
215 ≈ 64% of the cells used on average per time step

and a small reduction of the error. Concerning the total amount of cells involved
in the entire computation over time, the required number of cells are reduced by
37553·215−30009·11795.13

37553·215 ≈ 71.2% for the considered parameters.

With a domain regularly resolved to refinement depth d = 8, the computed error
is 2.52e–5 after 75105 time steps. We compare this to the parameter study “d=0/8,
rc=10−7/10−8” which yields the best result for the same order of magnitude . This

leads to 75105·217−30009·11795.13
75105·217 ≈ 96.4% less cells involved in the entire simulation run.

These benefits have been obtained with a conservative choice of adaptivity parameters
and relatively low grid resolutions. The benefits will be even higher for larger grid
resolutions or more sophisticated adaptivity criteria.

4.4. A real-world test scenario: Tohoku Tsunami. With the simulation of
the Tohoku Tsunami of March 11, 2011, a real-world test scenario is given to show the
potential of the developed algorithms for dynamic adaptive mesh refinement. Here,
we aim at showing the potential of parallel dynamically adaptive grids by significantly
reducing the “time-to-solution”, e.g. for buoy station parameter studies of Tsunami
simulations.

4.4.1. Bathymetry and multi-resolution sampling. We start with indicat-
ing relevant details on pre- and online processing of bathymetry data and the ini-
tialization of the scenario. Due to dynamic adaptivity, sampling of bathymetry data
has to be accomplished at run time and transformations are required from Carte-
sian bathymetry grids to our triangular simulation grids. The bathymetry datasets
we used in this work are based on the global GebCo 0811 dataset with its highest
resolution requiring 2GB of memory. With an adaptive grid, different cell sizes and
therefore different resolutions are required. To match the sampling rate of the simula-
tion grid with the one used for bathymetry input, we use multi-resolution bathymetry
datasets. For our simulation running with triangular grids, we use a trilinear inter-
polation between multi-resolution grid levels and in space. Using the GebCo dataset,

11http://www.gebco.net/

http://www.gebco.net/

Evaluation of an efficient stack-RLE clustering concept for dynamically adaptive grids 27

the resulting memory requirement is considerably lower than the total memory avail-
able per shared-memory compute node on nowadays HPC systems. Therefore, we use
a native loader for the input data, loading the entire bathymetry and displacement
datasets into the memory, followed by multi-resolution preprocessing.

For our Tohoku Tsunami simulation, the GebCo dataset is preprocessed with the
Generic Mapping Tools [41]; we map the bathymetry data given in longitude-latitude
format to the area of interest (shown in Fig. 4.14) conserving length with the origin
placed at the displacement center.

4.4.2. Initialization. For the Tohoku Tsunami, an earthquake resulted in dis-
placements of the sea ground leading to a sudden change in the water surface height.
We consider an earthquake-induced displacement model which assumes an instanta-
neous vertical displacement in the water surface. Hence, for the initial time step of
the Tsunami simulation, we require the information on the displacements describing
this surface elevation12. We used the data provided by the UCSB13 as input to the
Okada model [34] to compute the displacements.
Our initialization of the simulation is based on an iterative loop:
(1) In each iteration, the conserved quantities (water surface height and momentum)

are reset to the time t = 0. The bathymetry data is sampled from the multi-
resolution datasets, and both momentum components are set to zero.

(2) Then, a single time step is computed and the grid is refined based on error indi-
cators (see Sec. 4.3.1).

(3) If the grid structure changed, we continue at (1), otherwise we stop the initializa-
tion and start with the simulation.

4.4.3. Adaptivity parameters. Similar to the analytic benchmark in Sec. 4.3,
we conducted several simulation runs with different initial refinement parameters
d = {10, 16, 22} and up to a = {0, 6, 12} additional refinement levels with d+ a ≤ 22.
The refinement thresholds used by the error indicators are r = {50, 500, 5000, 50000}
and c = r

5 for the coarsening thresholds. Note that the absolute values for r and c
differ considerably compared to the analytical benchmark due to the different scaling
of the domain size for the Tohoku Tsunami simulation.

4.4.4. Comparison with buoy station data. We first conducted studies by
comparing the simulation data with the water-surface elevation measured at particular
buoy stations. This elevation data is provided by NOAA14. The tidal waves are not
modelled within our simulation, but included in the buoy station data. To remove
this tidal-wave induced water-surface displacement, we use detide scripts (see [6]).

Fig. 4.14 visualized the simulation domain, the adaptive15 grid and the measured
displacements of the buoy stations. Regarding the wave arrival times at the buoy sta-
tion, the results show a good agreement with the data recorded by the buoy stations.

4.4.5. Dynamically adaptive Tsunami simulations. We executed Tsunami
simulations with the adaptivity parameters described in the previous section. To
reduce the amount of data involved in our data analysis, we select buoy station 21419,
with the peak of the first wave front arriving at the latest point in time compared to

12See the instructions provided within the Clawpack pack-
agehttp://depts.washington.edu/clawpack/users/quick_tsunami.html

13http://www.geol.ucsb.edu/faculty/ji/big_earthquakes/2011/03/0311_v3/Honshu.html
14National Oceanic and Atmospheric Administration, National Data Buoy Center
15Note, that this visualization of the simulation grid and the water and bathymetry data is based

on a simulation with adaptivity parameters chosen for a comprehensible visualization of the grid.

http://depts.washington.edu/clawpack/users/quick_tsunami.html
http://www.geol.ucsb.edu/faculty/ji/big_earthquakes/2011/03/0311_v3/Honshu.html

28
M
.
S
ch

re
ib
er
,
T
.
N
ec
k
el

a
n
d
H
.-
J
.
B
u
n
g
a
rt
z

Fig. 4.14. Tohoku Tsunami simulation with different buoy stations marked with yellow arrows. The measured and simulated water surface displacements
at the four relevant buoy stations are plotted for selected adaptivity parameters.

Evaluation of an efficient stack-RLE clustering concept for dynamically adaptive grids 29

Fig. 4.15. Barplot visualizing the normalized L1 error norm, the normalized number of cells
and the time to compute the simulation for different parameter combinations. The highest resolution
(d=22/0) is used as the reference result to compute the errors and to normalize the number of cells.
The error of the coarsest resolution (d=10/0) is used to normalize the yellow error bars. The
number of cells show a correlation to the computation time. The vertical lines represent the error
baseline (blue) with its number-of-cells baseline (orange) involved in the simulation time (gray) for
the benchmark d=20/0. Competitive results require a decreased error, a decreased number-of-cells
and decreased computation time bars compared to our reference solution (d=20/0); this holds for the
four parameter settings da=16/6 r=5000/1000, da=16/6 r=50000/10000, da=10/12 r=5000/1000,
da=10/12 r=50000/10000.

the other three considered buoys stations. We consider this to be the most meaningful
and challenging buoy station, requiring longer simulation runtime compared to the
other stations.

We compute the L1 error comparing different simulation parameters with a sim-
ulation running on a high-resolution grid on the time interval [0s, 20000s] for several
adaptivity parameters. Figure 4.15 shows corresponding bar plots of the errors and the
normalized average number of cells relative to the maximum value. We use da = 20/0
(initial refinement depth of 20, no additional refinement levels) as the baseline for
comparison with our dynamically adaptive grids. Comparing this baseline with the
reference solution da = 22/0 shows (cf. Table 4.2) that about 8 times more cells are
involved in the computation. This is due to two additional refinement levels resulting
in possibly 4 times more cells and to the reduced time-step size. All adaptive runs
that resulted in a smaller error and less cells are highlighted in bold face in Table
4.2. Regarding the cell workload, we succeed in saving more than 95% cells over a
simulation run.

Next, we continue with a detailed discussion of wall clock time results to determine
the possible savings in time-to-solution. These benchmarks were conducted on an Intel
Westmere-EX Xeon E7-4830 shared-memory system, with 4 sockets and 8 cores per
socket. We used compact affinities and used physical cores only with the icpc compiler
ver. 15.0.4 and OpenMP parallelization. No further cluster-based optimizations such
as cluster-based workstealing to compensate for different varying runtimes of Riemann
solvers are used. We assign each cluster to an OpenMP thread. A cluster split and

30 M. Schreiber, T. Neckel and H.-J. Bungartz

Parameter study L1 error Processed mio. cells Saved cells

da=22/0 0 88936.02 -719.16%

da=20/0 (baseline) 0.0261210 10856.96 0%

da=18/0 r=50/10 0.0306024 1298.14 88.04%

da=16/6 r=50/10 0.0005550 51775.64 -376.89%

da=16/6 r=500/100 0.0013608 36650.05 -237.57%

da=16/6 r=5000/1000 0.0055551 7342.58 32.37%

da=16/6 r=50000/10000 0.0198121 1151.38 89.40%

da=16/0 0.0337187 150.34 98.62%

da=10/12 r=50/10 0.0005356 51275.72 -372.28%

da=10/12 r=5000/1000 0.0055124 6784.04 37.51%

da=10/12 r=50000/10000 0.0213234 452.25 95.83%

da=10/6 r=500/100 0.0333127 95.11 99.12%

da=10/6 r=5000/1000 0.0333143 75.89 99.30%

da=10/6 r=50000/10000 0.0325013 22.86 99.79%

da=10/0 0.0406040 0.26 100.00%
Table 4.2

Different parameter studies and computed error relative to the reference solution da=22/0 and
saved cells relative to the baseline da=20/0. If the error as well as the number of cells is less than
the baseline, the corresponding row is in bold face.

Simulation parameters

da=10/12 r=50000/10000 da=20/0 da=22/0

Simulation traversals 20.88 sec 288.98 sec 2602.69 sec

Adaptivity traversals 7.35 sec – –

Split/join operations 3.10 sec – –

Approx. initialization time 2.68 sec 4.03 sec 5.79 sec

Output management 8.81 sec 32.77 sec 54.89 sec

Simulation wall clock time 42.81 sec 325.78 sec 2663.37 sec
Table 4.3

Timings for tsunami simulations separated into simulation, adaptivity, split/join stages, ini-
tialization and output management phases. The overall wall clock time includes the entire wall
clock time from start to end of the program including the additional output workload writing out
data of buoy station displacements (see Fig. 4.14). The column da = 10/12 describes the timings
for the dynamic adaptive version creating results with are competitive. The columns da = 20/0 and
da = 22/0 show regular resolved domains with refinement depth 20 and 22, respectively. For the
regular resolved domains, the adaptivity traversals were executed without changing the grid structure.

join threshold of Ts := 4096 and Tj := 2048 is used.

We measured the wall clock time without the initialization phase and focus on
the algorithmic parts of the RLE-cluster generation (see Section 3). Table 4.3 gives
an overview of the time required for running the simulation, the adaptivity traversals
and the cluster split/join phases. The last row shows the wall clock time without the
initialization phase, but includes all measurement grid traversals necessary to generate
the buoy station plots (see Fig. 4.14).

These timings show that the adaptivity traversals and the time spent in the
split/join operations for the cluster generation exceed the time invested for the simu-
lation traversals. However, this relative overhead pays off due to the reduced overall
computation time compared to the regular grid resolution.

Evaluation of an efficient stack-RLE clustering concept for dynamically adaptive grids 31

(a) da = 20/0:
We start by comparing the simulation-traversal time for running the wave prop-
agation on the regularly resolved domain with the entire simulation time (time
stepping, adaptivity, split/joins) required by our dynamically adaptive simulation
da = 10/12, r = 50000/10000. This yields an improvement of 325.78

42.81 = 7.6.
We next analyze the theoretical maximum performance improvements based on
the average number of cells per time step: for the simulation on a dynamically
adaptive grid, on average only 69070 cells per time step are used. This is a
significant reduction to the simulation executed on a regular grid which required
2097152 cells, yielding a factor of 30.4. The reasons for the observed lower speedup
are, among others, given by the following three issues:

• The size of the dynamically adaptive grid with only 69070 cells on average
per time step is very small, resulting in a relatively low workload per core,
hence there are more threading overheads.

• Managing the dynamically changing grid, e.g. to bisect triangles, results in
additional overheads.

• The number of required time steps is increased from 5177 for the da =
20/0 simulation to 6543 for the simulation on the dynamically adaptive grid
because of smaller grid cells and the smaller time steps due to the cell-size
related CFL condition.

(b) da = 22/0:
For this comparison, we assume a sufficiently accurate simulation data on the
dynamically adaptive grids. This allows a comparison of with the same maximal
refinement depth for both simulation runs and hence avoids the aforementioned
issue with smaller time steps. Comparing the runtime of 42.81 seconds for the
dynamically adaptive simulation da = 10/12, r = 50000/10000 with the simula-
tion runtime of 2663.37 seconds for a regularly resolved domain da = 22/0, we
see a performance improvement of a factor of 2663.37

42.81 = 62.2.

4.4.6. Discussion and related work. The main motivation of this Tsunami
study was to show the potential of dynamically adaptive grids with refinement and
coarsening in every time step. The solvers used for these studies are the augmented
Riemann solvers from the GeoClaw software [7] and support wetting and drying.
These solvers were tested in various benchmark scenarios by their developers (see [16]
for a variety of different benchmarks).

Regarding the adaptivity criteria, the water surface height close to the shoreline
tends towards zero and our error indicator might not lead to refining the grid in this
area. However, the development of advanced adaptivity criteria (e.g. by dividing with
the average depth of each cell) for flooding and drying goes beyond this work which
is on evaluating the RLE-clustering concept in various contexts.

The GeoClaw software also offers in combination with AMRClaw [8] simulations
of hyperbolic problems with adaptive mesh refinement and we like to close this section
with a brief discussion of this software. One obvious difference is the utilization of
Cartesian grids instead of triangular grids. We see two main advantages in this: The
first one is a slightly larger CFL condition (based on incircle radius) with a similar
resolution compared to triangular grids. The second one is dimensional splitting which
is directly offered by using Cartesian grids. The finest atomic geometry in GeoClaw
is a patch which is stored in each cell. This concept also allows a straightforward
utilization of GPUs due to the regular data structure of the patch. Such a patch
concept can be also applied for the dynamic adaptive mesh refinement with triangular

32 M. Schreiber, T. Neckel and H.-J. Bungartz

grids. The RLE-clustering in this work relies on conforming grids whose generation
obviously involves overheads. Hanging nodes are mandatory in GeoClaw due to the
Cartesian grids; also allowing hanging nodes in the RLE-clustering could reduce these
overheads.

5. Conclusions and outlook. We gave a summary on the different aspects of
the stack-RLE clustering approach and presented, evaluated and discussed, for the
first time, different application scenarios in detail showing the suitability of what had
been only a concept before. The scalability benchmark shows a strong scalability of
95% on 512 cores on a small-scale cluster for a shallow-water simulation on dynami-
cally changing grids. On the large-scale system SuperMUC, a cluster generation based
on subtrees and a threshold-based cluster generation did not lead to high scalability
for strong scalability runs. However, the weak scalability is still over 90% on 8192
cores with the baseline at 256 cores. To gain insight into simulations, efficient visual-
ization backends are required to improve the performance over the entire simulation
runtime. In this work, we presented how TBB’s fire-and-forget tasks can lead to
significantly improved performance for writing simulation data to persistent memory
and how to use the node-based communication for an efficient OpenGL visualization.

We used the Solitary Wave On Composite Beach (SWOCB) analytic benchmark
to first show the benefits of dynamically adaptive grids. For the considered gauges,
this resulted in saving up to 96.4% cells compared to regularly resolved domains with
the error in the L1 norm still of the same order of magnitude. As a real-world test sce-
nario we selected the simulation of the Tohoku Tsunami and used buoy station data to
measure the feasibility to track the 1st wave front propagation. This simulation was
executed on a shared-memory 32-core system in sub-realtime. Here, we presented
the applicability of our RLE clustering for such simulations which led to saving of
95% cells and a reduction in time-to-solution of 7.6 in combination with an accuracy
improvement regarding the buoy station elevations. Regarding the Tsunami simu-
lations, we focused on showing beneficial advantages of dynamical adaptive meshes
with our RLE clustering approach by comparing the quality of buoy station elevations
of a Tsunami wave propagations. In this work we mainly focused on the accuracy
of the simulation with dynamic adaptive meshes at the buoy stations by using exist-
ing solvers. Requirements such as flooding/drying would require further investigation
such as in solver development, adaptivity criteria, etc.

The algorithms from this work can be implemented in several variants. Since the
results are only reproducible with the source code being made publicly available to
accompany publication, this code can be found at [31].

We expect that an extension to SFC cuts by using intervals of the one-dimensional
SFC representation for partitioning results in significant improvements for strong
scalability. We see a new range of cluster-based optimizations with our RLE clus-
tering: workstealing via dynamic cluster reordering, cluster-based local-time step-
ping in combination with dynamic adaptive mesh refinement, compensation of un-
predictable workload per cell, skipping of cluster traversals for cluster-local residual
corrections for iterative solvers and field-of-volume skipping for visualization. We’d
like to point out the possibility to backport and extend the presented RLE-clustering
algorithms to Cartesian grids (e.g. generated by the Morton and Peano curve), in-
cluding a generalization to high-dimensional problems. Furthermore, our stack-RLE
clustering approach is compatible with SIMD optimization possibilities based on multi
layers, higher-order elements, (mini-)patches, ensemble runs, etc. Such SIMD opti-
mizations could also make the utilization of GPUs efficient due to the increased and

Evaluation of an efficient stack-RLE clustering concept for dynamically adaptive grids 33

well-structured workload per grid primitive. Making the entire RLE-clustering algo-
rithm run on GPUs might be feasible by programming a thread group to act as a single
CPU thread in RLE clustering: All stack-operations have to be identical across all
threads in the group and also operate on the same stack to act as a single CPU thread.
However, this then allows data operations (storing/loading of coalesced memory) and
running computations (exploitation of SIMT) being executed parallel by all threads
of the thread group. In order to exploit platforms such as the XeonPhi, simultane-
ous support for MPI and OpenMP is required and is now available for dynamically
adaptive grids via our stack-RLE clustering approach. Such an RLE-cluster-based
parallelization concept could be one of the possible algorithmic patterns which allow
running dynamically adaptive on upcoming Exascale systems.

6. Acknowledgements. The authors gratefully acknowledge the CooLMUC2
Cluster and the Gauss Centre for Supercomputing e.V. (www.gauss-centre.eu) for
supporting this project by providing computing time respectively on the CoolMUC
Cluster and the GCS Supercomputer SuperMUC at Leibniz Supercomputing Cen-
tre (LRZ, www.lrz.de). This work was partly supported by the German Research
Foundation (DFG) as part of the Transregional Collaborative Research Centre “In-
vasive Computing” (SFB/TR 89). We are very grateful to Alexander Breuer from
our department for his contributions regarding to the implementation of the analyti-
cal benchmark, the tsunami simulations and for his continuous and very constructive
feedback on this work. Furthermore, we like to thank the GeoClaw group for pub-
lishing their tsunami-related scripts and solvers as open source as well as the authors
of the other freely available scripts. We also like thank the anonymous reviewers
for their feedback and in particular for requesting more detailed performance studies
which greatly improved this work.

REFERENCES

[1] Michael Bader, space-filling curves: an introduction with applications in scientific computing,
vol. 9, Springer Science & Business Media, 2012.

[2] Michael Bader, Alexander Breuer, Oliver Meister, Kaveh Rah-

nema, and Martin Schreiber, Parallelization and software concepts for
tsunami simulation on dynamically adaptive triangular grids, Aug. 2012.
http://www-old.newton.ac.uk/programmes/AMM/seminars/2012082414301.pdf, Ac-
cessed: 2015-06-01.

[3] Michael Bader, Kaveh Rahnema, and Csaba Attila Vigh, Memory-efficient sierpinski-
order traversals on dynamically adaptive, recursively structured triangular grids, in Ap-
plied Parallel and Scientific Computing - 10th International Conference, PARA 2010, Krist-
jan Jonasson, ed., vol. 7134 of Lecture Notes in Computer Science, Springer, Mar. 2012,
pp. 302–311.

[4] Michael Bader, Stefanie Schraufstetter, Csaba Attila Vigh, and Jörn Behrens, Mem-
ory efficient adaptive mesh generation and implementation of multigrid algorithms us-
ing sierpinski curves, International Journal of Computational Science and Engineering, 4
(2008), pp. 12–21.

[5] Jörn Behrens and Jens Zimmermann, Parallelizing an unstructured grid generator with a
space-filling curve approach, in Euro-Par 2000 Parallel Processing, Springer, 2000, pp. 815–
823.

[6] Marsha J Berger, David L George, Randall J LeVeque, and Kyle T Mandli, The
geoclaw software for depth-averaged flows with adaptive refinement, Advances in Water
Resources, 34 (2011), pp. 1195–1206.

[7] M. J. Berger, D. L. George, R. J. LeVeque, and K. T. Mandli, The GeoClaw software for
depth-averaged flows with adaptive refinement, Adv. Water Res., 34 (2011), pp. 1195–1206.

[8] M. J. Berger and R. J. LeVeque, Adaptive mesh refinement using wave-propagation algo-
rithms for hyperbolic systems, SIAM J. Numer. Anal., 35 (1998), pp. 2298–2316.

www.gauss-centre.eu
http://www-old.newton.ac.uk/programmes/AMM/seminars/2012082414301.pdf

34 M. Schreiber, T. Neckel and H.-J. Bungartz

[9] Carsten Burstedde, Omar Ghattas, Michael Gurnis, Georg Stadler, Eh Tan, Tiankai

Tu, Lucas C Wilcox, and Shijie Zhong, Scalable adaptive mantle convection simula-
tion on petascale supercomputers, in Proceedings of the 2008 ACM/IEEE conference on
Supercomputing, IEEE Press, 2008, p. 62.

[10] Carsten Burstedde, Lucas C. Wilcox, and Omar Ghattas, p4est: Scalable Algorithms
for Parallel Adaptive Mesh Refinement on Forests of Octrees, SIAM SISC, (2011).

[11] Carsten Burstedde, Lucas C. Wilcox, and Omar Ghattas, p4est: Scalable algorithms
for parallel adaptive mesh refinement on forests of octrees, SIAM Journal on Scientific
Computing, 33 (2011), pp. 1103–1133.

[12] C.E. Castro, M. Käser, and E.F. Toro, Space–time adaptive numerical methods for geo-
physical applications, Philosophical Transactions of the Royal Society A: Mathematical,
Physical and Engineering Sciences, 367 (2009).

[13] Paul Fischer, James Lottes, David Pointer, and Andrew Siegel, Petascale algorithms for
reactor hydrodynamics, in Journal of Physics: Conference Series, vol. 125, IOP Publishing,
2008.

[14] Anton Frank, Organisationsprinzipien zur Integration von geometrischer Modellierung, nu-
merischer Simulation und Visualisierung, dissertation, München, 2000.

[15] David L George, Augmented riemann solvers for the shallow water equations over variable to-
pography with steady states and inundation, Journal of Computational Physics, 227 (2008),
pp. 3089–3113.

[16] Frank I González, Randall J LeVeque, Paul Chamberlain, Bryant Hirai, Jonathan

Varkovitzky, and David L George, Validation of the geoclaw model, GeoClaw Tsunami
Modeling Group, University of Washington, (2011).

[17] Frank Günther, Miriam Mehl, Markus Pögl, and Christoph Zenger, A cache-aware
algorithm for PDEs on hierarchical data structures based on space-filling curves, SIAM
Journal on Scientific Computing, 28 (2006), pp. 1634–1650.

[18] Daniel F Harlacher, Harald Klimach, Sabine Roller, Christian Siebert, and Felix

Wolf, Dynamic load balancing for unstructured meshes on space-filling curves, in Parallel
and Distributed Processing Symposium Workshops & PhD Forum (IPDPSW), 2012 IEEE
26th International, IEEE, 2012, pp. 1661–1669.

[19] Guohua Jin and John Mellor-Crummey, Sfcgen: A framework for efficient generation of
multi-dimensional space-filling curves by recursion, ACM Trans. Math. Softw., 31 (2005),
pp. 120–148.

[20] Shuangshuang Jin, Robert R Lewis, and David West, A comparison of algorithms for
vertex normal computation, The Visual Computer, 21 (2005), pp. 71–82.

[21] W. B. March et al., Optimizing the comp. of n-point correlations on large-scale astronomical
data, in Proc. of the Int. Conf. on High Perf. Comp., Netw., Stor. and Analysis, SC ’12,
IEEE Computer Society Press, 2012.

[22] Andrey Marochko and Alexey Kukanov, Composable parallelism foundations in the intel
threading building blocks task scheduler., in PARCO, 2011, pp. 545–554.

[23] Oliver Meister, Kaveh Rahnema, and Michael Bader, A software concept for cache-
efficient simulation on dynamically adaptive structured triangular grids, in Applications,
Tools and Techniques on the Road to Exascale Computing, vol. 22 of Advances in Parallel
Computing, Gent, May 2012, ParCo 2012, pp. 251–260.

[24] Ralf-Peter Mundani, Hierarchische Geometriemodelle zur Einbettung verteilter Simulation-
saufgaben, dissertation, Aachen, 2006.

[25] Tobias Neckel, The PDE Framework Peano: An Environment for Efficient Flow Simulations,
dissertation, Institut für Informatik, Technische Universität München, June 2009.

[26] A. Rahimian, I. Lashuk, S. Veerapaneni, A. Chandramowlishwaran, D. Malhotra,

L. Moon, R. Sampath, A. Shringarpure, J. Vetter, R. Vuduc, D. Zorin, and

G. Biros, Petascale direct numerical simulation of blood flow on 200k cores and het-
erog. arch., in Proc. of the 2010 ACM/IEEE Int. Conf. for HPC, Networking, Storage and
Analysis, SC ’10, IEEE Computer Society, 2010, pp. 1–11.

[27] Hans Sagan, Space-filling curves, vol. 18, Springer-Verlag New York, 1994.
[28] Martin Schreiber, Cluster-Based Parallelization of Simulations on Dynamically Adaptive

Grids and Dynamic Resource Management, dissertation, Institut für Informatik, Technis-
che Universität München, Jan. 2014.

[29] Martin Schreiber and Hans-Joachim Bungartz, Cluster-based communication and load
balancing for simulations on dynamically adaptive grids, in Proceedings of the Interna-
tional Conference on Computational Science (ICCS’14), vol. 29, International Conference
on Computational Science (ICCS), Elsevier, June 2014. short paper.

[30] Martin Schreiber, Hans-Joachim Bungartz, and Michael Bader, Shared-memory par-

Evaluation of an efficient stack-RLE clustering concept for dynamically adaptive grids 35

allelization of fully-adaptive simulations using a dynamic tree-split and -join approach,
Puna, India, Dec. 2012, IEEE International Conference on High Performance Computing
(HiPC), IEEE Xplore.

[31] Martin Schreiber et al., Website and repository with source code related to this work.
http://www5.in.tum.de/sierpinski/, http://www.martin-schreiber.info/sierpinski/
(mirror), https://bitbucket.org/schreiberx/sierpi/.

[32] Martin Schreiber, Tobias Weinzierl, and Hans-Joachim Bungartz, Cluster optimization
and parallelization of simulations with dynamically adaptive grids, in Euro-Par 2013 Par-
allel Processing, Springer, 2013.

[33] Martin Schreiber, Tobias Weinzierl, and Hans-Joachim Bungartz, SFC-based Commu-
nication Metadata Encoding for Adaptive Mesh, (2013), pp. 233–242.

[34] Guangfu Shao, Xiangyu Li, Chen Ji, and Takahiro Maeda, Focal mechanism and slip
history of the 2011 mw 9.1 off the pacific coast of tohoku earthquake, constrained with
teleseismic body and surface waves, Earth, planets and space, 63 (2011), pp. 559–564.

[35] Horst D Simon, Partitioning of unstructured problems for parallel processing, Computing
Systems in Engineering, 2 (1991), pp. 135–148.

[36] Costas E Synolakis, Eddie N Bernard, Vasily V Titov, Utku Kânoğlu, and Frank I

González, Standards, criteria, and procedures for noaa evaluation of tsunami numerical
models, (2007).

[37] Kanoglu Utku and Costas Emmanuel Synolakis, Long wave runup on piecewise linear
topographies, J. Fluid Mech., 374 (1998), pp. 1–28.

[38] Csaba A. Vigh, Parallel Simulation of the Shallow Water Equations on Structured Dynami-
cally Adaptive Triangular Grids., PhD thesis, Institut für Informatik, Technische Univer-
sität München, 2012.

[39] Tobias Weinzierl, A Framework for Parallel PDE Solvers on Multiscale Adaptive Cart. Grids,
dissertation, Institut für Informatik, Technische Universität München, München, 2009.

[40] Tobias Weinzierl and Miriam Mehl, Peano – A Traversal and Storage Scheme for Octree-
Like Adaptive Cartesian Multiscale Grids, SIAM Journal on Scientific Comp., 33 (2011),
pp. 2732–2760.

[41] Paul Wessel and Walter H. F. Smith, Free software helps map and display data, Eos,
Transactions American Geophysical Union, 72 (1991), pp. 441–446.

[42] Gerhard Zumbusch, On the quality of space-filling curve induced partitions, Sonderforschungs-
bereich 256, 2000.

http://www5.in.tum.de/sierpinski/
http://www.martin-schreiber.info/sierpinski/
https://bitbucket.org/schreiberx/sierpi/

