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Abstract 

Quantitative traits and disease risk in humans are affected by both genetic and 

environmental factors. Using genome-wide association studies (GWAS) over the 

past decade, researchers have been successful in finding common genetic 

polymorphisms that explain a proportion of the variation in many common 

phenotypes. Despite these significant leaps forward in our understanding, the 

heritable components of many traits remain largely unaccounted for. A number of 

explanations as to the “missing heritability” of complex traits and disease risk have 

been postulated. This thesis addresses some of the unexplained potential sources of 

heritable trait variation and explores two of its potential causes: low frequency and 

structural genetic variation. 

 

Chapter 1 provides a background to GWAS, what we have learned from them, 

discusses the different mechanisms of heritability and reviews the potential 

explanations for “missing heritability” in complex traits. The chapter then describes 

low frequency and structural genetic variation and how they fit into the spectrum of 

genetic variation. 

 

Chapter 2 describes a study that tests the extent to which low frequency association 

signals can be discovered through low pass whole genome sequencing when using 

well-powered gene expression and biomarker phenotypes as model traits. The study 

then compares these association signals to 1000 Genomes based imputation in the 

same individuals.  
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Chapter 3 uses methods to detect the structural forms of the human amylase locus 

with whole-genome sequencing data. The study detects and validates multi-allelic 

copy number within this region and finds a lack of evidence of a previous association 

between structural variation of the amylase locus and obesity and body mass index. 

 

Chapter 4 scans for rare copy-number variation (CNV) using SNP microarray data 

from over 120 thousand individuals at 69 sites that were previously identified as 

being associated with developmental delay. The chapter aims to refine their 

prevalence in the general population and attempts to understand their relationship 

with developmental delay and complex traits. 

 

Chapter 5 aims to detect large deletions and duplications genome-wide using SNP 

microarray data in a sample of over 120 thousand individuals where we have power 

to detect rare copy number events. I used novel approaches to test their association 

with 204 clinically relevant complex traits to determine their role in the heritability of 

complex traits. 

 

Chapter 6 discusses the findings from the previous chapters within this thesis. I then 

continue by describing some limitations of this work and explore the potential further 

directions for future work in this area of study. 
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1.1 Genome-wide association studies have identified thousands of common 

variants associated with polygenic traits  

Genome-wide association studies (GWAS) have identified thousands of genetic 

factors contributing to polygenic diseases and traits over the past decade (Fig. 1). 

These studies have traditionally focussed on the principle that the heritable 

component of common disease is largely explained by common genetic variation 

with a frequency of greater than 5% in the population. There are now 65 loci where a 

common genetic variant is associated with Type 2 Diabetes [1] for example, and 50 

variants associated with measures of quantitative glycaemic traits [2]. These 

associations are providing new insights to the biology of polygenic disease. The 

association of a common variant in the FTO gene that predisposes to childhood and 

adult obesity is an example of a successful genome-wide association based study 

[3]. Here, a genome-wide association study compared 500,000 common single-

nucleotide polymorphisms (SNPs) between 1,924 U.K. Type 2 Diabetes patients and 

2,938 U.K. population controls and identified a strong association at the FTO locus. It 

was shown that the FTO association was specifically driven by an effect on fat mass 

– with the Type 2 Diabetes increasing allele adding an average of ~1.5kg fat weight. 

Before GWAS, FTO was a poorly characterised gene with no indication that it was 

involved in adiposity regulation. Subsequently, a vast amount of effort has gone into 

determining how the FTO gene affects adiposity, with some work suggesting a 

primary effect on basal metabolic rate [4], adipocyte browning [5] and other work 

suggesting an effect on appetite [6]. There is as yet no definitive answer, but it is a 

good example of how GWAS has opened up a whole new area of study into the 

biology of complex disease.   
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Figure 1. Genome-wide ideogram showing all GWAS results to date. Taken from the GWAS catalog at http://www.genome.gov in 

May 2016.
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1.2 Common variants identified from GWAS account for a fraction of the 

heritability of most complex traits 

It has been possible to estimate ‘narrow-sense’ heritability (h2) – the heritability of 

polygenic traits under an additive model using genetic information [7]. Despite the 

major leaps in progress, the associated loci identified from GWAS still account for a 

relatively small fraction of h2 in most polygenic traits studied. The 65 Type 2 

Diabetes loci, for example, account only for ~10% of the genetic component of Type 

2 Diabetes risk [8]. Human height, a model polygenic trait is a classic example of 

how known genetic variation explains heritability. A GWAS meta-analysis of 253,288 

individuals has revealed that 697 genetic variants in 423 loci influence final adult 

height [9]. However, these variants only explain ~25% of the total narrow-sense 

heritability of height. There is currently much interest in explaining the remaining, or 

“missing” heritability of complex diseases and traits. 

 

1.3 Explaining “missing heritability” 

There are several hypotheses as to how so-called missing heritability could be 

accounted for [10-12]. Some initial theories have hypothesised the original heritability 

estimates using twin/family studies are inflated, possibly by factors contributing to 

broad sense heritability (H2), that is, non-additive genetic components [11]. Another 

reason for inflation of h2 estimates is that phenotypes may have varying diagnoses or 

definitions. A group of individuals classified with a given disease for example may 

have different biological mechanisms leading to the same disease, rendering cases 

to have a possible misclassification, although traits that are empirically measured 

such as adult height, BMI or circulating biomarkers are less likely to have this 
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problem. Assuming a given trait is well characterised, the remaining causes of 

missing heritability from a discovery standpoint can be classified into two sets: (a) 

hiding heritability which can be described as non-variant-type causes of missing 

heritability such as, high polygenicity, allelic heterogeneity or departure from the 

additive model, or (b) still-missing heritability, which represents the types of genetic 

variant that have not been captured using conventional GWAS methods [12] (Fig. 2). 

 

1.3.1 ‘Hiding’ heritability 

Hiding heritability is the term given to the common genetic variation used in GWAS 

that is still not accounted for as a heritable component because of the way these 

variants are analysed and interpreted. When discussing h2 only, a further exploration 

of heritability can be in the form of allelic heterogeneity or higher levels of 

polygenicity whereby smaller effect genetic variants that we previously did not have 

power to detect are contributors. Hiding heritability may also be confounded by H2, 

heritability explained by a departure from the additive model which includes non-

additive effects, interactions between genes and other genes (epistasis), and 

interactions between genes and their environment. These concepts are discussed in 

further detail below.  

 

1.3.1.1 Highly polygenic effects 

 
A highly polygenic hypothesis stipulates that thousands of genetic variants contribute 

to quantitative traits and common disease. Each of the thousands of genetic variants 

may exhibit a very small effect on the trait or disease risk (Fig. 3). It is however, very 

difficult to detect these variants without increasing sample size dramatically into 
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hundreds of thousands of samples. The aforementioned height meta-analysis of 

253,288 individuals gives a glimpse into a more comprehensive genetic architecture 

of complex traits whereby several hundred loci have been implicated [9]. Future 

studies in multiple traits with very large sample sizes will help uncover the levels of 

polygenicity of complex traits and common disease risk. 

 

1.3.1.2 Allelic Heterogeneity 

The presence of multiple disease variants at a single locus is known as allelic 

heterogeneity. Few studies have accounted for allelic heterogeneity at known loci 

and the strongest signal is generally labelled as the index SNP for that locus with all 

other variants assumed to be in linkage disequilibrium (LD) or not associated with 

the trait. Conditional analyses have shown that when repeating the analysis whilst 

using the given index SNP as a covariate, other separate signals can sometimes 

arise [13]. Allelic heterogeneity has shown to reveal more complex patterns of 

association and therefore explain additional trait heritability. 
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Figure 2. An explanation of ‘Hiding’ heritability and ‘Still missing’ heritability and their 

contribution to overall narrow-sense heritability (h2). Adapted from Witte et al. 2014
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1.3.1.3 Deviation from the additive model and genetic interaction 

Genome wide association studies are based on an additive effects model such that 

each trait increasing allele exhibits a linear increase or decrease in levels of a 

quantitative trait or risk of disease. Many GWAS to date have not investigated non-

additive effects playing a role in complex traits and common diseases. Dominant and 

recessive models test for interactions between different alleles at the same locus 

whereas gene-gene interaction analyses test the effect of one variant being 

dependent on the genotype of another at a separate locus [14]. Additionally, gene-

environment interaction is where the different alleles of a genotype respond to an 

environment in different ways [15]. These analyses are generally underpowered and 

are often confounded by additional genetic variants that were not accounted for [16]. 
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Figure 3. A visualisation of the allele frequency vs effect size variant definition 

spectrum. Taken from Manolio et al. 2009. 
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1.3.2 ‘Still-missing’ heritability 

The current GWAS approach has focussed on common SNPs (minor allele 

frequency > 5%). This has been because of technological limitations. The most 

feasible way to genotype a large number of individuals in a study has been to use a 

genotyping microarray, but these ‘SNP chips’ can only reliably genotype common 

SNPs. An unknown proportion of the missing heritability of complex traits is therefore 

thought be derived from low-frequency and rare variants (minor allele frequency < 

5%) and structural variation.  

 

1.3.2.1 Low frequency and rare variation 

Detecting low frequency (allele frequency between 1% and 5%) and rare (<1%) 

variation has been very challenging until recently.  Technological advances have led 

to the development of whole genome sequencing (WGS), and it is now possible to 

sequence significant numbers of human genomes with an acceptable cost, accuracy 

and speed [17]. Whole genome sequencing allows many types of variants to be 

comprehensively detected and there is initial evidence to show that all of these types 

of variation are likely to be important in explaining missing heritability. A type 1 

diabetes re-sequencing study of 480 cases and 480 controls for example, discovered 

four rare variants of IFIH1 (interferon induced with helicase C domain 1) that 

substantially lowered risk of type 1 diabetes [18]. This was an important finding 

because it highlighted a potential viral origin of type 1 diabetes.  

 

An alternative and more cost and time effective approach is to utilise the 1000 

Genomes reference panel to statistically impute the majority of low-frequency 
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genetic variants into the population being analysed [19]. The 1000 genomes project 

aimed to capture greater than 99% of genetic variants present in all human 

populations at a frequency of >1%. This approach relies on the rare and low-

frequency variants tagging neighbouring SNPs either on the SNP chip itself or in the 

reference panel. Novel rare or low-frequency, large-effect signals may not be in 

strong linkage disequilibrium with the common variants and would not therefore be 

well imputed whereas WGS could empirically detect a potential untagged signal. 

Until now, it has been difficult to determine how much more powerful whole-genome 

sequencing will be over using imputation reference panels to capture novel 

association signals. 

 

1.3.2.2 Structural variation 

Structural variation (SV) is a term that covers genomic imbalances (DNA deletions, 

insertions and duplications) also known as copy number variation (CNV), or 

insertions/deletions (Indels). These terms are interchangeable but it is generally 

accepted that CNVs affect loci greater than 1Kb in size whereas Indels are smaller 

than 1Kb. SVs are also used to describe DNA inversions, translocations and other 

complex types of polymorphism (Fig. 4). Regardless of their type, it is widely 

believed that SVs become rarer as they become larger (Fig. 5) as larger SVs have 

the potential to be more pathogenic and therefore undergo negative selection [20]. 

Findings so far have indicated that larger SVs exhibit a stronger phenotypic effect 

with many smaller SVs being thought to have a benign effect [21]. There are several 

potential mechanisms in which an SV can alter the function of a gene and therefore 

influence trait effects or disease risk, these include dosage imbalance and 
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compound effects with intersecting variants (Fig. 6) [22]. Larger SVs usually 

intersect with more genes, so it would be rational to hypothesise that they have a 

larger and more frequent effect on complex traits and disease risk, however more 

analyses need to be carried out to characterise the full spectrum of structural 

variation before we can fully understand its effects on complex traits and disease 

risk.
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Figure 4. The various types of structural variation (SV) ranging from simple deletions 

or duplications to more complex inversions and translocations. Some regions of the 

genome will contain a compound of these variants. Taken from the dbVar overview 

of SVs at http://www.ncbi.nlm.nih.gov/dbvar 
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Structural variants can be detected genome-wide in SNP chips in regions that 

harbour a high density of SNP probes, and more comprehensively using WGS [19]. 

Significant computational challenges are still yet to be overcome in calling SVs 

genome-wide, but nevertheless different forms of SV have been associated with 

complex traits and disease risk. For example, a large, rare deletion of chromosome 

16p11.12 has been shown to cause obesity, whereas the duplication of this region 

has been shown to be associated with lower obesity [23,24], and it is hypothesised 

that a dosage imbalance of one or more genes in this region give rise to phenotypic 

variation. A smaller common CNV at the NEGR1 locus has also been found to be 

associated with severe early-onset obesity [25]. In addition to complex trait 

association findings, a number of large (≥50Kb) and rare deletion and duplication 

events have been found to be associated with developmental delay. These rare copy 

number variants have been found to be highly pleiotropic, whereby a single genetic 

signal influences multiple seemingly unrelated traits, and of variable penetrance 

[20,26], giving insight into the pathogenicity of large, rare and negatively selected 

copy number variants.  
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Figure 5. The frequency of structural variation in the human genome when divided 

into 100bp event size bins. Taken from Chaisson et al 2015. 

 

 

In addition to single structural events, many regions of the genome are structurally 

complex and include many types of SV acting together to produce a complex multi-

haplotype variant. The 17q12.31 region for example, contains a megabase-long 

inversion and various combinations of flanking duplications and deletions. The 

inversion itself was shown to be positively selected in Europeans, specifically; its 

presence was advantageous and was therefore swept across the population as 

indicated by an increased number of offspring in inversion carriers [27]. Another 

example of a complex region is the AMY1 locus, a gene that transcribes the Amylase 

enzyme that is secreted in the salivary glands and converts dietary starches into 
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sugar [28]. There are numerous variations of the number of copies of this gene, with 

duplications positively selected for populations that have evolved with diets rich in 

starch [29]. Much work is being carried out to further understand and characterise 

complex regions such as these examples and their impact on complex traits and 

disease risk. Further understanding the role of all forms of structural variation in 

human disease and complex traits remains challenging, but methods are rapidly 

progressing to allow a more complete understanding of these elusive parts of the 

genome. 

 

 

 

Figure 6. Five examples of how a CNV can potentially affect the biological 

mechanisms of complex traits and/or disease through unmasking recessive point 

mutations or by effects on gene dosage. Taken from Feuk et al 2006. 
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1.4 Aim of thesis 

The aim of this thesis is to utilise both next generation sequencing, cohorts with 

larger sample sizes, and post-GWAS-era analytical techniques to test if we can 

explain more of the genetic component of complex traits and disease risk than from 

GWAS alone. 

 

In chapter 2 we process and analyse low pass whole genome sequence data in 

several hundred individuals to see if there are novel statistical associations between 

low frequency SNPs/Indels and well-powered cis-eQTLs and biomarker phenotypes. 

We then look at how these associations compared when repeating the same 

analyses in SNP chip data imputed with 1000 genomes reference genotypes. 

 

In chapter 3 we attempt to more clearly define, validate and replicate multi-allelic 

copy number of the AMY1 gene using whole-genome sequencing data with two 

separate computational detection methods. Copy number at the AMY1 locus has 

been thought to be associated with BMI and obesity in previous studies using 

microarray data and quantitative PCR [30,31]. We want to see if this AMY1 copy 

number association can be replicated using alternative approaches. 

 

In chapter 4 we use custom built SNP array data in ~120,000 individuals to further 

characterise large (≥50Kb) pathogenic copy number variants associated with 

developmental delay [26]. These CNVs have a phenotypic impact when detected as 

both deletions and duplications, with a higher prevalence in cases compared to 

controls. We want to see if (a) these CNVs are still pathogenic when multiplying the 
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size of the control population several times and (b) how these pathogenic CNVs are 

associated with complex surrogate measures of developmental delay and other 

complex traits in a large control population.  

 

Finally, in chapter 5 we investigate the effect of large deletions and duplications 

genome-wide in ~120,000 individuals. Large deletions and duplications have 

previously been too rare to be detected in previous GWAS cohorts, here we treat 

deletions and duplications separately and attempt to account for breakpoint 

heterogeneity between individuals. We test for association between deletions and 

duplications adjusted for a novel quality score metric against ~200 continuous traits 

to see if further large, rare deletions and duplications play a key role in our 

understanding the heritable component of complex traits where we have sample 

sizes large enough to detect them. 
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2.1 Abstract 

Initial results from sequencing studies suggest that there are relatively few low 

frequency (<5%) variants associated with large effects on common phenotypes. We 

performed low pass whole genome sequencing in 680 individuals from the 

InCHIANTI study to test two primary hypotheses: i) that sequencing would detect 

single low frequency - large effect variants that explained similar amounts of 

phenotypic variance as single common variants, and ii) that some common variant 

associations could be explained by low frequency variants. We tested two sets of 

disease-related common phenotypes for which we had statistical power to detect 

large numbers of common variant - common phenotype associations – 11,132 cis-

gene expression traits in 450 individuals and 93 circulating biomarkers in all 680 

individuals. From a total of 11,657,229 high quality variants of which 6,129,221 and 

5,528,008 were common and low frequency (<5%) respectively, low frequency - 

large effect associations comprised 7% of detectable cis-gene expression traits (89 

of 1,314 cis-eQTLs at P<1x10-06 (FDR ~5%)) and 1 of 8 biomarker associations at 

P<8x10-10. Very few (30 of 1,232; 2%) common variant associations were fully 

explained by low frequency variants. Our data show that whole genome sequencing 

can identify low frequency variants undetected by genotyping based approaches 

when sample sizes are sufficiently large to detect substantial numbers of common 

variant associations, and that common variant associations are rarely explained by 

single low frequency variants of large effect. 
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2.2  Introduction 

Initial results from sequencing studies suggest that there are relatively few low 

frequency (minor allele frequency <5%) variants associated with large effects on 

common human phenotypes [1-5]. However, few of these sequencing experiments 

have used sample sizes similar to those required to identify most common variant-

phenotype associations [1,4]. Still fewer sequencing studies have examined the 

whole genome, instead most have focused on exomes [5] or targeted sets of genes 

[1,6] or have focused on population genetics rather than phenotype associations [7]. 

The frequency of heterozygote alleles in a population is 2pq, where ‘p’ is equal to 

dominant allele frequency and ‘q’ recessive allele frequency, the proportion of 

phenotype variance explained is a function of allele frequency and effect size 

(approximated as beta2 x (2pq)). Limitations in sample size means that many current 

sequencing studies are powered to detect only those single low frequency variants 

that explain substantially more phenotypic variance than single common SNPs. In 

this study we define “low frequency - large effect” as a variant that has a minor allele 

frequency less than 5% but that has a sufficiently large per-allele effect on a 

phenotype that it explains a similar proportion of phenotypic variance as common 

variants detectable in the same sample size. 

 

Current whole genome and exome sequencing based studies are aiming to answer 

several questions of relevance to common disease and quantitative phenotypes. 

First, how many low frequency and rare variant associations can we reasonably 

expect to identify and in what sample sizes? Second, are common variant – common 

phenotype associations driven by low frequency associations? Third, could we do 
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just as well by imputing genotypes from the 1000 Genomes Project and other 

reference panels? These questions are important for a number of reasons. First, it is 

known that most human genetic variation is low frequency and rare but there is 

considerable debate as to how best to identify which of these variants are associated 

with common phenotypes. Studies include whole exome and gene targeted 

approaches [5,6] low pass sequencing in unrelated individuals [4] and high pass 

sequencing in families. Second, if low frequency and rare variants are responsible 

for many common variant - common phenotype associations it will likely implicate a 

different set of causal genes and regulatory elements for follow up. Finally, few 

studies have tested the power of imputation from reference panels to identify low 

frequency association signals and this approach could be the most efficient way of 

studying lower frequency effects in large sample sizes, as recently shown by a 

deCODE study [8]. 

 

To help answer these questions we performed low pass (median 7X) whole genome 

sequencing in 680 individuals from the population based InCHIANTI study (Table 1, 

Fig. S1 and Table S1, Materials and Methods). We selected two sets of common 

phenotypes for which the InCHIANTI study provided sufficient statistical power to 

detect large numbers of common variant - common phenotype associations – 11,132 

whole blood based cis-gene expression traits in 450 individuals, and 93 circulating 

biomarkers in 673 individuals. Previous micro-array based GWAS of 1,200 

InCHIANTI individuals detected 1,298 cis-eQTLs and 30 circulating biomarker 

associations [9,10]. In addition to providing good power to detect common variant 

associations, these phenotypes are highly relevant to human disease. Multiple 

studies have shown that common variant disease associations are enriched for 
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variants affecting gene expression in cis and trans [11-16] and our biomarkers 

included many of public health importance: vitamins A and D; cholesterol; 

magnesium, calcium and potassium ions; inflammatory markers and circulating 

proteins associated with metabolic disease (including leptin and adiponectin).   

 

 

Table 1. Basic characteristics of the 680 InCHIANTI individuals selected for 

sequencing at baseline. 

Characteristic Mean (range) or 

% 

Age (years) 64.2 (23-90) 

Sex (% male) 44.9% 

BMI 27.2 (18.1-46.6) 

Current Smokers (% case) 21.3% 

History of hypertension (% case) 33.8% 

History of diabetes (% case) 8.7% 

History of myocardial infarction (% case) 2.6% 
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We tested two main hypotheses. First, that whole genome sequencing would detect 

single low frequency genetic variants that individually explain a similar proportion of 

phenotypic variance as single common genetic variants. Our second main 

hypothesis was that some individual common variant – common phenotype 

associations would be explained by low frequency variants. As a secondary 

hypothesis that has recently been tested in other studies [7], we also tested whether 

or not low frequency variant - common phenotype associations would be better 

captured by low pass sequencing than imputation from the 1000 Genomes Project.  
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2.3 Materials and Methods 

2.3.1 Samples 

We selected 680 individuals from the InCHIANTI study [9,17]; a study of aging from 

the Chianti region in Tuscany, Italy, for low pass whole genome sequencing (Table 

1). Selection criteria included the availability of microarray genotype data and non-

missingness of phenotypic data that included gene expression data and circulating 

biomarker. 

 

2.3.2 Whole-genome sequencing 

Whole-genome sequencing was performed at the Beijing Genomics Institute (BGI), 

Shenzhen, China using Illumina HiSeq 2000 to obtain a minimum read depth of 6X 

and median of 7X. An average of 240 million paired-end 90bp reads per sample 

were aligned to the 1000 Genomes implementation of the build 37 genome reference 

consortium (GRC) human reference genome [18], using the burrows-wheeler aligner 

(BWA) version 1.5.9 [19] (Fig. S1 and Table S1).  

 

2.3.3 Sequence read processing 

Using the sequence reads aligned at BGI through BWA, each genome was scanned 

for small insertions and deletions (indels) using the Genome Analysis Toolkit (GATK) 

version 1.6 indel re-aligner [20]. This process detected both de-novo and known 

indels from dbSNP version 135 [21]. Regions containing indels were then realigned 

to the reference genome. Duplicated reads across the genome were detected using 

Picard version 1.59 (available from http://picard.sourceforge.net) and subsequently 
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removed to avoid potential bias when genotyping. In addition, base quality scores in 

each aligned read were recalibrated using the GATK version 1.6 table recalibrator. 

Recalibration used read group, reported quality score, sequencing machine cycle 

and sequence context as covariates. 

 

2.3.4 Sequence variant identification 

SNP and indel calling was performed across all 680 genomes using the GATK 

version 2.2 unified genotyper. False-positive variant calls were filtered using variant 

quality score recalibration (VQSR). VQSR developed a covarying estimate of the 

relationship between eight variant call annotations (read depth, mapping quality, 

quality of read depth, haplotype score, inbreeding coefficient, mapping quality bias, 

strand bias, and read position bias) and the probability that the call is a true genetic 

variant. The truth model was determined adaptively based on HapMap 3.3 sites and 

polymorphic sites from the 1000 genomes Omni 2.5M SNP chip array [22,23].  

 

2.3.5 Quality control of variant capture and sequence-based genotype calls 

As a quality control check we first used GATK’s variant annotator (version 2.2) to 

determine the overlap of discovered variants catalogued in HapMap 3.3 [23], 1000 

Genomes Omni 2.5, and the 1000 Genomes phase 1 indel dataset [22] (Fig. S2).  

 

2.3.6 Imputation of sequence data to recover and refine genotype sites 

Haplotype phasing was performed using Beagle version 3.3 [24], and missing data 

was imputed internally using the filtered and present genotypes only. For SNPs we 
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observed an overall Ti/Tv of 2.19. A summary of the variants captured can be found 

in Tables S2 and S3. 

 

2.3.7 Variant and genotype comparison with 2Mb of high depth sequence 

(median >30X) 

We compared variants captured though our low-pass sequencing experiment with 

regions known to associated with Parkinson’s disease sequenced at high depth 

(median >30X) in 96 InCHIANTI subjects (total of ~2Mb). SNP and indel calling was 

performed across the 96 samples using the GATK’s unified genotyper (version 2.2). 

SNPs were filtered using VQSR and indels were hard filtered using GATK version 

2.2 variant filtration. Of the 96 subjects, 83 subjects overlapped formed a subset of 

the 680 whole-genome sequenced subjects. 

 

To assess the quality of the variants captured and the genotypes called in low pass 

sequencing we created a high quality set of variants and genotypes called in the high 

depth 2Mb of sequence data. We filtered by 1) masking out polymorphic regions in 

chromosome 6 and 17 in the 2Mb regions in both datasets; 2) removing sites 

containing a genotype called at less than 20X coverage in the high-depth sequence 

dataset from both datasets; 3) removed all non-biallelic sites from the respective 

dataset. 

 

The degree of overlap was then calculated each way for both of the filtered 2Mb 

datasets using the GATK version 2.2 variant annotator and the genotype 
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concordance matrices were calculated in overlapping sites using VCFtools version 

0.1.9 [25]  (Fig. S3 and Tables S4 – S7). 

 

2.3.8 Quality control of genotypes derived from sequence-based imputation 

As an additional quality control check of internally imputed genotypes we performed 

genotype concordance checks with the Illumina HumanHap550 GWAS chip. Of the 

680 subjects, 7 were selected for exclusion as the fraction of concordant genotypes 

for each subject was consistent with a sample swap (52% concordance in each 

instance). For the remaining 673 subjects we observed good concordance with the 

genotyping array (>98% concordance). For all 673 samples genotyping calls 

increased after internal imputation performed by Beagle (Figs. S4 and S5).  

 

2.3.9 1000 Genomes imputation 

To compare whole genome sequencing to imputation from the 1000 genomes 

reference panel we used haplotypes from the 1000 Genomes Phase I integrated 

(version 3) release with singletons removed (30,061,896 variants; 28,681,763 SNPs 

and 1,380,133 indels). Genotype data captured on the Illumina HumanHap550 chip 

were phased using MACH 1.0.16 [26,27]. Subsequent imputation was performed 

using Minimac (version 2012.10.9) [28]. We used a multi-ethnic haplotype reference 

panel that included 1,092 individuals including 379 Europeans (including 98 

Tuscans), 181 Americans, 246 Africans, and 289 Asians, in an attempt to capture 

variants that may be rare in Europeans but more common on haplotypes from 

different ethnic backgrounds. 
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2.3.10 Variants included in association analyses 

For all association analyses we filtered on biallelic variants with a minor allele count 

≥4 and an r2 imputation quality >0.7. To ensure comparable imputation metrics 

between the Beagle- and MaCH/Minimac derived dosages we recalibrated the 

Beagle imputation metric to MaCH’s r2 [27]. As described above, Beagle was used to 

refine and recover genotypes for the variant sites identified by the low-pass 

sequencing data.  

 

2.3.11 cis-eQTL association analysis 

Whole-genome expression profiles of the InCHIANTI subjects were derived from 

whole blood and captured using the Illumina HT12-v3 BeadChip as previously 

described [29]. We excluded probes that harboured non-singleton variants within the 

50bp probe region captured by our sequencing efforts or the Exome Sequencing 

Project (ESP) [30]. This resulted in 11,132 probes for association testing. We 

performed kinship analysis using KING [31] and removed first-degree relatives from 

the analysis that resulted in 450 remaining individuals. We inverse-normalised the 

intensity values for the filtered probes and individuals prior to generating residuals 

that adjusted for age, sex, amplification batch, and hybridization batch to increase 

the likelihood of the error around the model being normally distributed. Finally, we 

inverse-normalised the residual values prior to performing the association analyses. 

We performed association testing in cis having defined a cis region as ±1Mb the 

probe transcription start site. Dosages output by BEAGLE were formatted for 

MACH2QTL [26,27] and variants in cis tested against the normalised intensity values 

of the respective probe. 
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2.3.12 Circulating biomarker association analyses 

A full list of the 93 circulating biomarkers is provided in the Table S8. For the 93 

circulating biomarkers we similarly performed a double inverse-normalisation for 

each trait but inversed normalised the raw data values, and adjusted for age and sex 

only when generating the residuals. We tested the entire genome for associations 

against each of the circulating biomarkers using all 673 chip-concordant subjects. 

We used a mixed linear model as implemented in EMMAX [32] to account for 

relatedness instead of removing subjects from the analysis.  

 

2.3.13 Estimating numbers of independent variants using 2Mb windows  

We used LDSelect version 1.0 [33] across 22 2Mb windows (1 per autosomal 

chromosome) to estimate the average number of independent variants (MAC ≥ 4) we 

would expect to observe, defining variants as independent if their pair-wise r2 cut-off 

< 0.8. We estimated an average total of 2,848 independent variants within a 2Mb 

window (Table S9). In addition, we observed an average of 2,085 and 778 low 

frequency and common independent variants, respectively, within a 2Mb window. 

Only those variants with imputation quality > 0.7 were included in this analysis. Using 

this information, we estimated the number of independent variants tested in the 

association analyses. As 2Mb represents ~1/1500 of the genome we extrapolated 

estimates for the number of independent variants for the circulating biomarkers (all 

and split by minor allele frequency bin) by multiplying by 1500.  
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2.3.14 Calculating statistical thresholds for association analyses  

For cis-eQTLs analyses there were a total of 9,187,579 analyzable variants (MAC ≥ 

4 and imputation r2 > 0.7) that fell within 11,132 2Mb windows around each of the 

gene expression probes. Given the estimated number of independent variants within 

a 2Mb region was 2,848 we calculated 2,848 x 11,122 gene expression phenotypes 

= 31,675,456 independent tests. A P-value of 1.6x10-9 provides a Bonferroni 

corrected P-value of 0.05 and a P-value of ~1x10-06 provides a false-discovery rate 

of ~5% given the number of cis-eQTLs we identified at that threshold (1,314).  

 

For the 93 circulating biomarkers we first estimated the number of independent 

variants across the whole genome by multiplying the number of independent (r2<0.8) 

variants in a 2Mb window, 2848, by the approximate number of 2 Mb windows, 1500 

= 4,272,000. We multiplied this number by number of circulating biomarkers we were 

testing to give a total of 397,296,000 independent tests. A P-value of 8x10-10 

provides a Bonferroni corrected P-value of 0.05. 

 

2.3.15 Conditional analysis using variants in opposing minor allele frequency 

bins 

For associations that reached our statistical thresholds, we conditioned on the 

dosage of the most significant variant from the opposing minor allele frequency bin 

(MAF <5% vs. MAF ≥5%). These variants were limited to those either within the 2Mb 

cis-region of the specific expression trait or within 1Mb of the index variant 

representing a circulating biomarker association. To ensure that a lack of change in 

significance of the index variant was not driven by the best variant from the opposite 
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minor allele frequency bin belonging to a secondary signal (creating the potential to 

miss a partially tagging variant that may not have been the most significant in the 

opposing bin), we performed full conditional analysis on all traits and conditioned the 

original index variant identified on the best variant from the opposing allele frequency 

bin from all additional signals that were observed. 

 

To test further whether or not low frequency variants could explain common signals, 

we conditioned common signals on all independent low frequency variants (r2<0.2) 

with P<1x10-4 within the region. Association-based variant clumping was performed 

using PLINK [34] to identify the variants required for this conditional analysis. Of the 

1,232 common signals, 661 had ≥1 low frequency variant in the region meeting 

these criteria. Three hundred and thirty common signals had two or more low 

frequency variants that we conditioned on.
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2.3.16 Replication of cis-eQTLs in the San Antonio Family Heart Study 

Whole-genome expression profiling was performed using Illumina Sentrix Human 

Whole Genome (WG-6) Series I as previously described [35] and called genotypes 

were provided by the T2D-GENES Consortium. Genotypes were derived either 

directly from high-pass (60X) whole-genome sequencing or through family-based 

genotype imputation in the remaining individuals not sequenced. In an attempt to 

harmonize the WG-6 chip and the HT12-v3 chip we limited our replication efforts to a 

397 probe subset of the 1,325 whereby the probe sequences matched across the 

two platforms. Levels of expression were detected for 233/397 probes in 643 SAFHS 

individuals. Association analyses were performed using mixed-linear models as 

implemented in RareFAM that adjusts for a kinship matrix when performing 

association testing (available online from 

http://genome.sph.umich.edu/wiki/FamRvTest). One variant from the SAFHS 

replication results was classified as spurious and removed prior to testing for 

correlation with the initial cis-eQTL results as it had an effect size of >9 standard 

deviations of an inverse normalised distribution of gene expression levels. 

 

2.3.17 Validation of low frequency variants with bespoke genotyping 

We selected 10 low frequency SNPs associated with cis-eQTLs and 1 low frequency 

lactic dehydrogenase variant for genotyping at LGC Genomics, United Kingdom. For 

9/11 SNPs we obtained >99% concordance overall. There were two that were 

returned as monomorphic (both cis-eQTL variants) (Table S17). 
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2.4 Results 

Analysis of our median 7 fold whole genome sequencing data detected 11,657,229 

high quality variants (10,144,717 SNPs and 1,512,512 indels) (see Materials and 

Methods for definition of high quality) and had a minor allele count (MAC) ≥ 4. Of 

these variants 6,129,221, 5,528,008 and 2,917,071 had a MAF ≥5% (common), MAF 

<5% (low frequency), and MAF <1% but minor allele count (MAC) ≥4, respectively. 

We limited tests to those with a MAC ≥4 because we had limited power to detect 

associations with 3 or less alleles. A full break down of the numbers of variants 

tested for each of the analyses is shown in Table 2, Figure 2, and Tables S2-S3. 

 

A number of analyses provided strong evidence that our data were of high quality 

(Materials and Methods, Figs. S2-S5 and Tables S4-S7). We compared 

genotypes generated by low pass sequencing with those identified from a separate 

targeted deep-sequencing (128X) experiment of 2Mb of (non-contiguous) sequence 

from 83 overlapping individuals. This comparison provided an estimate that 99.4% of 

the variants identified by low pass sequencing were true positives and a false 

negative (variants missed by low pass sequencing but detected in deep sequence 

data) rate of 11.9%. Equivalent figures for indels were in keeping with the increased 

difficulty of scoring these variants from low pass sequencing data at 84% and 20.7% 

respectively (Materials and Methods, Fig. S3 and Tables S4-S7). Finally, a 

comparison between non-reference SNP genotypes generated by low pass 

sequencing and GWAS chip data provided strong evidence that genotypes of 

common variants were accurately (mean genotype concordance of 99.7%) 

genotyped (Materials and Methods, Figs. S4 and S5).  



59 
 

Table 2. A breakdown of the number of variants with minor allele count ≥4 tested in the cis-eQTL and circulating biomarker 

analyses. Details of how we estimated the number of independent variants can be found in Materials and Methods. 

  All Variants  MAF < 0.05  MAF ≥ 0.05 

Analysis  

N variants 

tested 

N estimated 

independent  

N 

variants 

tested 

N estimated 

independent  

N 

variants 

tested 

N estimated 

independent 

cis-eQTLs  9,187,579 3,480,256  3,760,279 2,547,870  5,427,300 950,716 

Biomarkers  11,657,229 4,272,000  5,528,008 3,127,500  6,129,221 1,167,000 
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All gene expression and biomarker phenotypes were inverse-normalised. A list of the 

93 circulating biomarkers can be found in Table S8. To assess the number of 

independent variants and tests we were performing, we randomly selected a 2Mb 

region from each of the 22 chromosomes and used LDselect [33] and an r2 cut off of 

0.8 to define independent signals, a likely conservative cut-off (Materials and 

Methods, Table S9). We conditioned all single common variant - phenotype 

associations on the most strongly associated single low frequency variants within the 

locus (1Mb either side), and vice versa conditioned all low frequency – phenotype 

associations on more strongly associated common variants in the same region 

(Materials and Methods). We used several approaches to test the robustness of our 

associations including testing cis-eQTL associations in a replication study - gene 

expression and high pass (60x) whole genome sequence data from 643 individuals 

from the San Antonio Family Heart Study (SAFHS) (Materials and Methods) - and 

validation of a subset of 11 low frequency variants with bespoke genotyping 

(Materials and Methods). 

 

We identified 1,314 cis-eQTLs at P<1x10-06 and 8 biomarker associations at P<8x10-

10, and for cis-eQTLs observed a continuous distribution between lower frequency 

variants of larger effect and higher frequency variants of smaller effect (Fig. 1, 

Tables S10 and S11). Of the 6,129,221 common (>5%) and 5,528,008 low 

frequency variants tested we identified 0.02% and 0.002% respectively as cis-eQTLs 

at P<1x10-06. Low frequency - large effect associations comprised 7% of detectable 

cis-gene expression traits (89 of 1,314) and 1 of 8 biomarker associations. The 

average effect size of low frequency index variants was 1.36 (range 0.80-2.39) 
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standard deviations and the average effect size of common index variants was 0.61 

(range 0.32-1.73) standard deviations (Tables S10 and S11). These differences in 

per-allele effect size were expected given that lower frequency variants need to have 

larger per-allele effects to be detected (see Table 3 for power calculations).  
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Figure 1. The distributions of effect sizes of index cis-eQTL variants by minor allele 

frequency. 
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Table 3. Statistical power to detect variants associated with gene expression in 450 

individuals at P=1x10-6 as a function of phenotypic variance explained and standard 

deviation (SD) effect size. 

MAF Variance Power 

Effect 

(SD) Variance Power 

Effect 

(SD) Variance Power 

Effect 

(SD) 

0.01 0.05 0.47 1.59 0.06 0.65 1.74 0.07 0.79 1.88 

0.02 0.05 0.47 1.13 0.06 0.65 1.24 0.07 0.79 1.34 

0.03 0.05 0.47 0.93 0.06 0.65 1.02 0.07 0.79 1.10 

0.04 0.05 0.47 0.81 0.06 0.65 0.88 0.07 0.79 0.95 

0.05 0.05 0.47 0.73 0.06 0.65 0.79 0.07 0.79 0.86 

0.1 0.05 0.47 0.53 0.06 0.65 0.58 0.07 0.79 0.62 

0.2 0.05 0.47 0.40 0.06 0.65 0.43 0.07 0.79 0.47 

          

MAF Variance Power 

Effect 

(SD) Variance Power 

Effect 

(SD) Variance Power 

Effect 

(SD) 

0.01 0.08 0.89 2.01 0.09 0.95 2.13 0.10 0.98 2.25 

0.02 0.08 0.89 1.43 0.09 0.95 1.52 0.10 0.98 1.60 

0.03 0.08 0.89 1.17 0.09 0.95 1.24 0.10 0.98 1.31 

0.04 0.08 0.89 1.02 0.09 0.95 1.08 0.10 0.98 1.14 

0.05 0.08 0.89 0.92 0.09 0.95 0.97 0.10 0.98 1.03 

0.1 0.08 0.89 0.67 0.09 0.95 0.71 0.10 0.98 0.75 

0.2 0.08 0.89 0.50 0.09 0.95 0.53 0.10 0.98 0.56 

 

 

 

 



64 
 

Our low pass sequencing approach meant that we were able to accurately capture 

and analyse a similar number of low frequency variants (5,528,008, including 

2,917,071 at allele frequency <1%) as common variants (6,129,221). However, 

proportional to the number of variants analysed, we detected far fewer low frequency 

variant associations than common variant associations despite the same statistical 

power to detect individual variants explaining the same proportion of phenotypic 

variance. In Table 3 we show how statistical power remains fixed for variants 

explaining similar proportions of phenotypic variance, but how standard deviation 

effect sizes need to be higher for lower frequency variants. In total, we identified 89 

low-frequency cis-eQTLs and 1 low frequency – circulating biomarker association 

compared to 1,225 common cis-eQTLs and 7 common biomarker associations 

(Tables S10 and S11). Accounting for linkage disequilibrium between variants 

accentuated this difference – for cis-eQTLs the low frequency variant associations 

represented 0.003% of an estimated 2,547,870 independent low frequency variants 

(where independence was defined as r2<0.8), while the common variant associations 

represented 0.12% of an estimated 950,716 independent common variants (r2<0.8) 

(Table 2 and Fig. 2). These comparisons were not influenced by differences in 

quality of genotypes between low frequency and common variants because we only 

compared variants of high quality. Under an alternative genetic architecture, we 

could have expected to identify 1105 low frequency variants associated with cis gene 

expression (0.02% of 5,528,008 low frequency variants tested – the same proportion 

of common variants associated with gene expression), given we had the same 

statistical power to detect single low frequency - large effect variants that explain a 

similar proportion of phenotypic variance as single common smaller effect variants. 

Instead our data are consistent with the argument that only a small proportion of 
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single low frequency variants will have large enough per-allele effects to explain a 

similar proportion of phenotype variance as single common variants. Our data do not 

rule out the possibility that many 1000s of low frequency variants of moderate and 

small effect could collectively account for more phenotype variance than common 

variants collectively. 
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Figure 2. The total number of variants (low frequency and common) tested in the cis-eQTL and circulating biomarker analyses. 
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Analyses of gene expression phenotypes in a second dataset suggested that the 

associations observed were robust – of 233 cis-eQTLs associations where the same 

gene was probed with the same expression probe sequence in a second study of 

similar size (N=643 related individuals, Materials and Methods), we detected 166 

associated at a Bonferroni corrected P-value of <0.0002 and 222 of 236 were 

directionally consistent. Of these 12 of 17 testable low frequency associations 

reached P<0.0002 and all 17 were directionally consistent. For example, low 

frequency variants in or near the genes ACAD9, HDHD3, SOS1, UTS2, RTN1 and 

RBPMS2 influenced the expression of those genes with per-allele effects of >1 

standard deviation in the replication data, where winner’s curse would not have 

appreciably influenced the effect size. No data were available to replicate the single 

low frequency variant associated with a biomarker. This biomarker was Lactate 

dehydrogenase and we could not identify any studies with relevant measures (Table 

S12). 

 

We next assessed the extent to which common variant associations were driven by 

low frequency associations, and vice versa, by conditioning on the most strongly 

associated variants in the alternative allele frequency bin. All evidence of association 

was lost (P>0.05) for 13 of 1,232 common variant associations when conditioning on 

the strongest low frequency variant and 969 of 1,232 remained associated at our 

statistical thresholds. We next repeated the analyses but conditioned all common 

variant associations on all independent (r2<0.2) low frequency variants reaching 

P<1x10-04 in the cis region of the expression probe or within 1Mb of the common 

index variants for biomarker associations. All evidence of association was lost 

(P>0.05) for 30 of the 661 (5%) common signals that had at least one low frequency 
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association at the same locus. These results strongly suggested that few of the 

common associations were driven by single or multiple low frequency variants. For 

low frequency variants, all evidence of association was lost (P>0.05) for 11 of 90 

associations and 47 of the 90 remained associated at our thresholds when adjusting 

for the strongest common variant in the region (46 of the 89 low frequency cis-eQTL 

signals and 1 of 1 low frequency biomarker associations) (Tables S13 and S14).  

 

The availability of 1000 Genomes reference sequence has improved the ability to 

accurately capture low frequency variants and may mean that low pass sequencing 

individual studies is an inefficient use of research funds. We therefore next assessed 

how well low frequency variant associations would have been detected without any 

sequence data from the InCHIANTI study but by using data from the 1000 Genomes 

Project as a reference panel for imputation and the GWAS array (Illumina 

HumanHap550K) genotypes as a scaffold. We used an imputation reference panel 

comprised of 2,184 haplotypes from 1,092 individuals sequenced and phased by the 

1000 Genomes Project. Of these, 379 individuals were of European descent and 

included 98 individuals from Tuscany (the same part of Italy as the InCHIANTI 

study). Of the 90 low frequency signals (89 cis-eQTLs, 1 biomarker), detected by 

sequencing, we did not detect 63% (57) based on the same statistical thresholds 

using 1000 Genomes imputation alone (all cis-eQTLs) (Tables S15 and S16). 

Ignoring statistical thresholds, 85% of all cis-eQTL and biomarker associations 

identified through sequence-based analysis were less strongly associated in the 

1000 Genomes imputed dataset or had no proxy within 250Kb of the index variant 

(Tables S15 and S16). However, 62 (69%) of the 90 low frequency variant 

associations were detected at P<0.0001. Twenty of the 28 associations not detected 



69 
 

in 1000 Genomes were not well imputed (mean r2 = 0.31) with the remaining 8 being 

due to the genotypes not being present 1000 Genomes. These results illustrate that 

imputation from the 1000 Genomes reference panel captures most of the low 

frequency variants, just not as accurately. 
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2.5 Discussion 

Our study provides an early example of a whole genome sequencing experiment 

designed to identify low frequency variants associated with common human 

phenotypes. We could accept our first main hypothesis. We show that, when using 

the same sample size for detecting both common and low frequency variants, whole 

genome sequencing has the ability to identify low frequency variants with larger 

effect sizes (and similar phenotypic variance explained) than those observed for 

common variants. However, our data suggest that these single-variant low frequency 

large effect signals may represent a relatively small proportion (here 7%) of 

detectable associations. Our data are consistent with the majority of single low 

frequency genetic variants explaining smaller proportions of phenotypic variance 

than single common genetic variants. This result was perhaps expected, but given 

our sequencing based approach allowed us to test a similar number of high quality 

low frequency variants (5,528,008) as common variants (6,129,221) we could 

reasonably have expected to identify approximately 1105 low frequency cis-eQTLs 

under a different genetic architecture.  If extrapolated to other common human 

phenotypes, our results would indicate that, for example, whole genome sequenced 

(or perhaps extremely well imputed) sample sizes of 35,000 cases and equivalent 

controls will be needed to detect approximately 5 single low frequency variants 

associated with type 2 diabetes (7% of 65 [36]). These are obviously very cautious 

extrapolations because the genetic architecture of cis gene expression and 

circulating biomarkers may be very different compared to other phenotypes. 

Nevertheless, there is strong evidence that changes to cis gene expression is a 

common mechanism leading to common disease and quantitative phenotypes [11-
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16] and a recent whole genome sequence and imputation based study provides 

evidence that these estimates may be of the correct order of magnitude – an 

effective sample size of 13,500 type 2 diabetes cases detected 5 low frequency 

(MAF <5%) large effect type 2 diabetes associations [8]. 

 

Our data enabled us to largely reject our second main hypothesis – that common 

variant - common phenotype associations are explained by individual or multiple low 

frequency variants. Only 30 (2%) common variant associations were driven by low 

frequency (and by necessity larger effect) variants. In contrast, a larger fraction 

(12%) of low frequency variants was entirely driven by common variant associations 

at the same locus. We also note that, as with most sequencing studies, low 

frequency insertion/deletion variants were harder to call and we may have missed 

true associations caused by these types of variant. Of note, 13% (12) of the 90 low 

frequency - large effect and 11% (137) of the 1,232 common variant association 

signals included an indel as the most strongly associated variant. 

 

In keeping with other recent studies we were able to accept our secondary 

hypothesis. Our data clearly show that whole genome sequencing is more effective 

than imputation from the current 1000 Genomes Project reference panel. Imputation 

of missing genotypes missed 63% of low frequency - large effect associations 

detected by whole genome sequencing at P<1x10-6, and 31% at P<1x10-4. 

Nevertheless larger reference panels will improve the ability of imputation to capture 

low frequency variants and it is notable that 1000 Genomes imputation captured at 

least half the genotype information (r2 > 0.52) for 75% of the low frequency signals. 

As noted by other studies [7], these findings emphasize the need for larger reference 
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panels from which to impute missing genotypes into extremely large GWAS 

datasets. 

 

There were a number of limitations to our study. First, our conclusions are based 

largely on testing 1000s of cis gene expression phenotypes rather than the whole 

genome for a small number of phenotypes. However, the costs of whole genome 

sequencing have so far limited single study sample sizes to less than 3000 samples, 

and our approach had the advantage that we were well powered to detect many 

common variant – common phenotype associations.  This advantage meant we were 

able to make a fair comparison between common and low frequency variants. Our 

data may also be relevant to disease phenotypes because numerous studies have 

shown that many disease associations are enriched for cis gene expression effects 

[11-16]. A second limitation is that we did not assess more detailed phenotypes or 

genotype combinations. For example, a recent study has shown that low frequency 

variants may be a frequent cause of allele and exon specific changes to gene 

expression [37]. Furthermore we could not test the role of most rare variants (<0.5%) 

in our study because our sample size limited analyses to those occurring at 0.3% 

frequency or more (minor allele count ≥ 4). However, our approach meant we were 

able to analyse 2.9 million accurately called variants with allele frequencies of less 

than 1%. 

 

In conclusion, our approach provided an unbiased assessment of the relative 

contribution of low frequency and common genetic variation to common quantitative 

phenotypes of relevance to human disease. Our study shows that low pass whole 

genome sequencing can identify low frequency - large effect variants in common 
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human phenotypes using sample sizes sufficiently large to provide statistical power 

to detect large numbers of common variant associations.  
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2.7 Supplementary Information 

 

Tables S1-S17. Accessible from: https://goo.gl/LA7XbC 

 
Figure S1.  The average percentage of the genome covered at different read depths 
across the 680 InCHIANTI subjects 
 

 
 
 
 
 
 
 
 
 

https://goo.gl/LA7XbC
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Figure S2. The fraction of SNPs found in HapMap, 1000 Genomes Omni 2.5 

genotyping array and indels present in the 1000 Genomes project phase 1 indel 

datasets, binned by catalogued minor allele frequency. a) 1,294,681 (97.4%) SNPs 

present in HapMap Phase 3 release 3: 1,329,031 SNPs from CEU, GBR, TSI and 

Intersecting populations; b) 1,677,600 (76.9%) SNPs with 1,038,907 novel to dbSNP 

135  present in 2,181,344 SNPs with 1,504,747 novel to dbSNP 135) on the 1000 

Genomes Omni2.5 high-density genotyping array; c) 831,414 (57.6%) indels with 

273,595 novel to dbSNP 135  present in 1,443,514 indels with 700,122 novel to 

dbSNP 135  from the 1000 Genomes phase 1  dataset. 

 
a)  
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b) 

 
 
c)  
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Figure S3. a) The fraction of 10,389 variants discovered through low-pass 
sequencing (9,402 SNPs and 987 indels) that overlap with 10,167 variants identified 
through high-pass sequencing (9,342 SNPs: 99.4% and 825 indels: 84%); b) the 
fraction of 11,649 variants discovered through high-pass sequencing (10,609 SNPs 
and 1,040 indels) that overlap with 10,167 variants identified through low-pass 
sequencing (9,342 SNPs: 88.1% and 825 indels: 79.3%) 
 
a) 
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b) 
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Figure S4. Plot of overall sequence-to-chip genotype concordance post Beagle 
refinement of the 673 “concordant” subjects. Subjects are ranked (indexed) in order 
of least to most concordance with the microarray post Beagle Imputation. 
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Figure S5. Sequence to Illumina HumanHap550 genotyping concordance for 673 individuals stratified by genotype as defined on 
chip. Red = common homozygous genotypes on chip; Blue = heterozygous genotypes on chip; Black = rare homozygous 
genotypes on chip. a) before beagle phasing and imputation; b) after beagle phasing and imputation. Subjects are ranked (index) in 
order of least to most concordant prior to beagle imputation overall. 
a) 
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CHAPTER 3 

 

AMY1 gene copy number detected in 657 whole genome sequenced 

individuals is not associated with body mass index 

 

Adapted from: Usher, C.L., Handsaker, R.E., Esko, T., Tuke, M.A., Weedon, M.N., 

Hastie, A.R., Cao, H., Moon, J.E., Kashin, S., Fuchsberger, C. et al. (2015) 

Structural forms of the human amylase locus and their relationships to SNPs, 

haplotypes and obesity. Nature genetics, 47, 921-925. 
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3.1 Abstract 

A recent publication by Falchi et al [1] identified an association between a multi-

allelic CNV encompassing the salivary amylase gene (AMY1) and obesity. AMY1 

copy number was reported to have a larger effect on obesity than SNPs at FTO, the 

largest effect detected in GWAS. We aimed to replicate these findings with whole-

genome sequence data in 657 individuals from the InCHIANTI cohort, a longitudinal 

study of ageing in Tuscany, Italy. We called AMY1 copy number using two different 

computational methods: MrsFAST/mrCaNaVaR, a read-depth based aligner and 

CNV calling suite, and GenomeSTRiP, a read-depth based CNV caller that classifies 

copy number based on population-level information. We then tested for association 

between the resulting CNV calls and BMI. We observed a distribution of AMY1 CNVs 

consistent with most individuals carrying an odd number of AMY1 copies, which sum 

to an even number in the diploid human genome. We did not observe any 

association between AMY1 copy number and BMI with either mrCaNaVaR (P = 0.64) 

or GenomeSTRiP called genotypes (P = 0.53). The FTO (P = 0.074) SNP and a 

polygenic score (P = 0.001) of 11 BMI SNPs were associated with BMI in the same 

dataset. AMY1 copy number did not associate with BMI in the InCHIANTI cohort 

despite good statistical power to replicate the reported effect sizes. These results 

were also replicated in three additional European cohorts. These results contrast 

with previous results that AMY1 copy number exerts a far-stronger effect on BMI and 

obesity than SNPs at FTO and other loci.  
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3.2 Introduction 

The three amylase genes reside in a structurally complex part of the genome with 

multiple complex configurations of deletions, and duplications [2,3]. Each of the three 

amylase genes vary widely in copy number, with AMY1 varying from 2-17 copies [4] 

and AMY2A from 0-8 [5]. Amylase has a role in starch metabolism whereby AMY1 is 

secreted by the salivary gland and AMY2 is secreted by the pancreas. A recent 

publication [1] identified significant association of the multi-allelic CNV encompassing 

the salivary amylase gene (AMY1) with body mass index (BMI) and obesity. The 

study found associations between AMY locus copy number and obesity/BMI using 

an array-based family study in 342 Swedish individuals. AMY1 associations were 

replicated using qPCR copy number measures in ~6,200 individuals from cohorts of 

northern European and Asian descent. A reduced copy number of the AMY1 gene 

was associated with an odds ratio of 1.19 per copy for obesity compared to normal 

weight individuals. The effect of AMY1 copy number reported to explain 11% of the 

genetic contribution to obesity, far greater than the effect of SNPs at FTO, the largest 

effect previously detected in GWAS [6].  A previous GWAS of 339,224 individuals [7] 

was unable to detect this association. These findings have raised questions about 

the completeness of GWAS [1]. 

 

Complex CNVs such as that of AMY1 are extremely difficult to characterise [8], and 

CNV association studies often involve rough copy number estimates that can be 

confounded by influences such as methods of detection or DNA quality [9-11]. Here, 

we aimed to replicate published findings and identify and validate copy number of 

the AMY1 locus using detection methods applied to 657 whole human genomes from 
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the InCHIANTI cohort [12]. We then aimed to test the significance of the relationship 

between BMI and AMY1 copy number. 
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3.3 Materials and Methods 

3.3.1 Samples 

We selected 680 individuals from the InCHIANTI study [12], a study of aging from 

the Chianti region in Tuscany, Italy, for low pass whole genome sequencing [13]. 

Individuals were selected for sequencing based on the availability of gene 

expression and circulating biomarker data.  

 

3.3.2 Whole genome sequencing 

Whole-genome sequencing was performed at the Beijing Genomics Institute (BGI), 

Shenzhen, China using the Illumina HiSeq 2000 to obtain a minimum mean read 

depth of 6X (median 7X). An average of 240 million paired-end 90bp reads per 

sample were aligned to the 1000 Genomes implementation of the Genome 

Reference Consortium’s build 37 of the human reference genome [14], using two 

different alignment and copy number calling methods. 

 

3.3.3 Sequence read mapping 

Burrows-Wheeler Aligner (BWA) version 1.5.910 [15] and MrsFAST-Ultra version 

3.3.1 [16] were used to align the sequencing reads. BWA and MrsFAST are 

optimised for different purposes, but can be applied to different copy number calling 

methods: 
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3.3.3.1 BWA read mapping  

BWA is a general purpose aligner that maps each read to its most likely single 

position in the reference genome. We mapped reads to the reference genome as 

paired-end. Each read had a mapping quality assigned to it giving the likelihood of 

the read mapping to its position over other positions in the genome. A mapping 

quality of zero was assigned to reads that had an equal likelihood of being mapped 

to many regions in the genome. If the mapping quality of a read was zero, its actual 

position was randomly assigned amongst all of its possible mappings. 

 

3.3.3.2 MrsFAST read mapping 

MrsFAST aligns each read to the reference genome one or more times wherever 

there is a match that fits within predefined thresholds. This method has been shown 

in some studies to be a requirement of absolute copy number detection [17]. The 

reads were treated as single-end to allow reads to map to multiple positions.  A 

hamming distance threshold of 4 was set to determine how close a match should be 

to the reference genome. The hamming threshold is defined in this case as the 

number of base changes, and/or gaps that need to be added for there to be a perfect 

alignment. Repeat masking was applied to the reference for MrsFAST alignment. We 

masked repeat sequences in the reference genome using both RepeatMasker Open-

3.0 and Tandem Repeats Finder 4.07b [18]. RepeatMasker masks nucleotides that 

are in regions of reduced DNA complexity and interspersed regions of DNA such as 

retrotransposons. Tandem Repeats Finder searches for contiguous copies of 

patterns of 12 or less nucleotides. These two methods were combined to mask a 

total of 46.2% (1,457,927,398 bases) of the GRC build 37 reference genome.  In 
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addition to the 7.5% (237,019,517 bases) of un-mappable regions in the reference 

genome, gave a total of 53.7% of the GRC build 37 reference genome as masked 

and not callable for absolute copy number in MrsFAST aligned short read sequence 

data.  

 

3.3.4 Defining the AMY1 region 

We extracted ‘triplicated’ regions to maximise likelihood that each read mapping to 

the AMY1 locus is at its genuine position. Although we masked out short repeats and 

low-complexity DNA, we also needed to account for the three AMY1 paralogs 

occurring in the reference genome. The reference paralogs are known as AMY1A, 

AMY1B and AMY1C. Reads mapping to the genome greater than three times were 

discarded. To detect these regions we first split the reference genome into 90bp k-

mers corresponding to the length of our sequencing reads. Each unique 90bp k-mer 

was then mapped back to the reference genome allowing each read to be mapped 

multiple times using MrsFAST with a hamming distance threshold of 4% of each 

read (4bp). We then removed reads that mapped to the genome greater than or 

equal to three times. We calculated read depth using the regions that are covered by 

the remaining reads.  

 

3.3.5 Calling absolute copy number 

We used two separate methods for detecting absolute copy number in the AMY1 

regions (Fig. S1). To detect copy number from BWA aligned reads we used Genome 

STRiP multi-allelic CNV (mCNV) caller [19,20]. To detect copy number from 

MrsFAST alignments, we used mrCaNaVar version 0.51 [17].  Both of these 
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approaches estimate absolute copy number using next generation sequence data 

based solely on GC-bias corrected read depth.  Both approaches take GC-bias as 

the ratio between the number of G and C bases in a given region and the number of 

reads mapped to it. A positive or negative deviation from the GC curve indicates a 

mapping confounder that can distort read depth and subsequently copy number.  

 

3.3.5.1 Genome STRiP copy number calling 

Genome STRiP calculates absolute copy number for each individual based on 

‘triplicated’ loci defining AMY1 as previously described. GC-bias is calculated by 

masking regions unlikely to be copy number polymorphic and then creating GC 

profiles of multiplicative correction [21]. Total average read depth across all diploid 

masked regions of the genome were regressed against the average read depth 

across regions of a specific GC content using LOESS linear regression to give a GC-

bias correction factor [21]. Copy number was then calculated by taking a mean GC 

corrected depth of all reads with a mapping quality threshold of 30 and calculating 

the number of reads per copy. The reads were then classified into copy number 

categories on a population level for all 657 samples using constrained Gaussian 

mixture models [19]. The mixture model is based on copy number classes of integers 

ranging from zero to the maximum detected copy number in that population for the 

specified region. 

 

3.3.5.2 mrCaNaVaR copy number calling 

mrCaNaVaR calculated absolute copy number values for the whole genome in 1kb 

non-overlapping depth windows. GC base percentage was calculated for each of 
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these windows. Depth was GC-bias normalised using LOESS regression based on 

GC percentage for all windows in the genome [21]. Copy number for each window 

was then calculated from its deviation from overall GC corrected bin depth 

distribution for each sample. We then intersected the 1kb copy number bins against 

our defined triplicated amylase region using Bedtools version 2.20.1 [22]. We were 

then able to produce a copy number estimate for each sample based on the mean of 

all intersected regions. 

 

3.3.6 Quality control 

Of the full 680 subjects, 7 were selected for exclusion based on SNP chip 

discordance in previously called SNP data [13].  A further 16 genotypes were 

removed for having missing phenotype data in either BMI, age or sex resulting in 657 

genomes being used for analysis. We checked the distribution of called copy number 

in the 657 subjects against that of published data and peaks around each copy 

number integer. 

 

3.3.7 Association analysis 

We used linear regression in STATA version 13 to analyse evidence of association 

between copy number and BMI in the resulting 657 subjects. We analysed the 

mrCaNaVaR and Genome STRiP based copy number datasets separately. In both 

datasets, we used age and sex as covariates in the linear regression model. 
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We used Quanto version 1.2.4 to estimate power to detect association between 

AMY1 copy number and BMI based on a published 0.66 to 4.40% genetic variance 

in European subjects. 

 

We also analysed known associations with BMI and obesity from previous GWAS 

[7]. Falchi et al. reported that AMY1 copy number had a larger effect on obesity than 

SNPs at FTO, the largest effect detected in GWAS. We used linear regression with 

STATA version 13 to detect an association between FTO SNP rs1558902 and BMI 

with age and sex as covariates. We also used the same linear regression to detect 

evidence of an association between a polygenic score composed of 11 SNPs known 

to associate with BMI (Table 1).  
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Table 1. Published GWAS SNPs used to calculate polygenic score for BMI 

Spelotes 
et al 

SNP Effect 
Allele 

Beta (SE) EAF VarExp NPC 

FTO rs1558902 A 0.39 
(0.02)  

0.42 0.34% 14.03 

MC4R rs6567160 C 0.23 
(0.03)  

0.24 0.10% 4.149 

SEC16B rs543874 G 0.22 
(0.03)  

0.19 0.07% 2.905 

FLJ35779  rs2112347 T 0.10 
(0.02)  

0.63 0.02%  0.821 

BDNF rs11030104  A 0.19 
(0.03)  

0.78 0.07% 2.855 

MTCH2 rs3817334 T 0.06 
(0.02)  

0.41 0.01% 0.412 

FAIM2 rs7138803 A 0.12 
(0.02)  

0.38 0.04% 1.65 

MAP2K5 rs16951275 T 0.13 
(0.02)  

0.78 0.03% 1.228 

GPRC5B rs12446632  G 0.17 
(0.03)  

0.87 0.04% 1.628 

SH2B1 rs3888190 A 0.15 
(0.02)  

0.4 0.05% 2.062 

NEGR1 rs3101336 C 0.13 
(0.02)  

0.61 0.04% 1.643 

  ∑ 0.81% 34.02 
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3.3.8 Copy number validation 

We validated our copy number calling in 54 samples using droplet digital PCR 

(ddPCR). The ddPCR protocol provided by BioRad was followed, with the addition of 

samples being thermocycled for 10 more cycles (50 cycles total). Probe assays were 

selected for having a broad working range of annealing temperatures, producing 

good clustering of fluorescence types, covering regions not known to contain SNPs, 

and targeting areas not homologous to the other amylase genes. Copy number calls 

for all 54 InCHIANTI samples were obtained from a single ddPCR run. Given that 

AMY1 and AMY2A share parity, we checked each individual’s two replicate AMY1 

calls for concordance with their AMY2A call. If both AMY1 calls were concordant, 

they were averaged. If only one was concordant, only the concordant AMY1 

genotype was used. If both calls were not concordant, they were averaged. This 

resulted in better clustering at integers (average deviation from integer 0.152, 

compared to straight averaging 0.179).  
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3.4 Results 

3.4.1 AMY1 copy number distribution in the InCHIANTI population 

We noted that the Genome STRiP method produced a visually less noisy output than 

the MrsFAST/mrCaNaVaR method (Fig. 1). Observing the Genome STRiP data, we 

observed a distribution of AMY1 CNVs consistent with most individuals carrying an 

odd number of AMY1 copies that these sum to an even copy number in diploid 

genomes.  

 

 

 

Figure 1. Comparison of AMY1 copy number distributions using 657 InCHIANTI 

subjects. Both programs were run on the same, low pass whole genome sequencing 

dataset (InCHIANTI). Genome STRiP was run with BWA aligned data, and 

mrCaNaVaR was run with mrsFAST aligned data 
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3.4.2 Quality control of InCHIANTI copy number calls 

Our AMY1 CNVs called by the Genome STRiP method showed strong concordance 

with ddPCR based results in 54 InCHIANTI individuals (Fig. 2).
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Figure 2. The association analysis of Genome STRiP derived AMY1 copy number 

with BMI in the InCHIANTI cohort. 
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3.4.3 Calculating statistical power to detect association between AMY1 copy 

number and BMI 

At a significance level of P = 0.05, we estimated our statistical power thresholds for 

AMY1 copy number to be associated with BMI to be: 77%, (95% CIs = 42% and 

92%). Our power calculation is based on a point estimate on total BMI variance of 

1.111% (95% CIs = 0.471% and 1.76%).  

 

3.4.4 Association of AMY1 copy number with BMI 

We did not observe any association between AMY1 copy number and BMI with 

either mrCaNaVaR (P = 0.64) or GenomeSTRiP called genotypes (P = 0.53) (Fig. 3, 

Table 2). Both the FTO (P = 0.074) variant and a polygenic score (P = 0.001) of 11 

BMI SNPs were more strongly associated with BMI than AMY1 copy number (Table 

2). 
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Figure 3. Concordance in copy number calling between Genome STRiP and 

ddPCR. The line plotted indicates full concordance. 

 

 

Table 2. Association with BMI for FTO SNP, previously BMI-associated SNPs in 

multiple BMI loci and AMY1 copy number 

Gene Variant Power Beta P value 

FTO rs1558902 0.32 0.41 (-0.04-0.86) 0.074 
Polygenic score 11 SNPs 0.64 0.50 (0.20-0.81) 0.001 
AMY1 Copy Number: 

GenomeSTRiP 
Copy Number: 
mrCaNaVaR 

0.77 0.04 (-0.08-0.15) 
0.04 (-0.11-0.18) 

0.526 
0.635 
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3.5 Discussion 

These results contrast with the recent findings that AMY1 copy number exerts a far-

stronger effect on BMI and obesity than SNPs at FTO and other loci [1]. In our study, 

AMY1 copy number did not associate with BMI or obesity (Fig. 2, Table 2). Our 

findings have been replicated in 2 additional cohorts (1,000 Estonians and  2,863 

individuals from the GoT2D cohort) and published in Nature Genetics [23]. We 

believe that the difference from the reported observation likely comes from our use of 

higher-resolution approaches for both molecular analysis and analysis of sequence 

data (Fig. 3).  

 

We considered the possibility that our study could have failed to see a real effect. 

Our study is based in individuals from the Chianti region of Tuscany, a population 

that commonly consumes starches such as breads and pasta [24]. Our study was 

replicated in an Estonian study cohort, in addition to two European cohorts with 

elevated body weight. The Estonian diet is slightly different than that of other 

European countries [25], though it appears to be similarly rich in starch [26]. Fully 

understanding human genetic variation and its relationship to phenotypes will require 

characterising hundreds of complex loci like the amylase locus that mutate at high 

frequencies in ways that cause large-scale changes in the dosage and expression of 

genes. Some of these loci could be capable of rapid evolution [27-29]. The amylase 

locus offers insights to guide future studies of structurally complex loci. The high 

apparent complexity observed in measurements from diploid genomes may arise 

from a modest number of common structural forms that appear in different 

combinations in different diploid genomes. Structurally complex loci appear to share 
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features with both common and rare variation reflecting both ancient and recent 

mutations. These loci may be best understood through combinations of tagging, 

imputation, and direct molecular measurement. Whole genome sequencing of large 

cohorts will ultimately reveal the extent to which this and many other structurally 

complex loci contribute to human phenotypic variation. 

 

A recent publication found that a high number of copies of AMY1 were associated 

with lower obesity in Mexican children [30]. They evaluated the number of AMY1 

copies in 597 Mexican children (293 obese children and 304 normal weight controls) 

using microfluidic digital PCR. The effect of AMY1 copy number on obesity status 

was assessed using a logistic regression model adjusted for age and sex. They 

found that a high copy number of AMY1 was associated with a reduced risk of 

obesity (OR per estimated copy 0.84, number of copies ranging from one to 16 in the 

population, P = 4.25 × 10-6). Although higher resolution methods than qPCR were 

used in this study, they did not correct for population stratification. Association 

studies in admixed populations such as Latinos are known to be confounded by 

population stratification [31]. Genetic stratification among indigenous populations 

within Mexico has been characterised and has been found to be highly complex [32]. 

It is critical to correct for population stratification before reporting an association in a 

sample from this population. 
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3.7 Supplementary Information  

 

 
 

Figure S1. (A) Processing and analysis steps for low pass whole genome 
sequencing and copy number variant calling, (B) Triplicate read-mapped regions 
were taken from these three loci, and used to detect read counts and call copy 
number using both Genome STRiP and mrCaNaVaR 
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CHAPTER 4 

 
 

Refining the CNV comorbidity map using 120,286 UK Biobank individuals 
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4.1 Abstract 

Copy Number Variants (CNVs) in the form of large deletions and duplications have 

been associated with many neurodevelopmental disorders. These large copy 

number events are extremely rare and little is known about their prevalence in the 

general population. Furthermore, studies that have detected these associations have 

generally been subject to ascertainment bias. We scanned for 69 CNV sites that 

were previously implicated as being associated with developmental delay in SNP 

microarray data from 120,286 UK Biobank individuals. We aimed to further refine 

their prevalence in the general population and assess their relationship with 

developmental delay and common traits such as obesity. We found that the UK 

Biobank further strengthens the associations of these CNVs with developmental 

delay with the exception of four instances: one deletion and three duplications. Copy 

Number Variants found to be associated with developmental delay also have an 

impact on surrogate measures of developmental delay: Height, BMI, Fluid 

Intelligence, Income, and other complex traits. These findings underscore the fact 

that large, rare, pathogenic deletions and duplications are prevalent in control 

populations, but further work is needed to understand their full extent and effect on 

individuals that do not present with clinically detectable symptoms. 
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4.2 Introduction 

The clinical interpretation of large deletions and duplications is difficult because they 

are very rare in the general population. A previous study by Coe et al of 30k children 

and 19k adult controls (a follow up to a study of 15k cases and 8k controls) identified 

and assessed the clinical significance and frequency of 69 regions of the genome 

harbouring deletions, duplications or both [1,2]. Cases were comprised of primarily 

paediatric cases with intellectual disability, developmental delay and/or Autism and 

controls were composed of 12 adult population cohorts of European origin. The 

study found 44 deletions and 28 duplications to be associated with developmental 

delay when comparing cases to controls. These data have been used as the basis 

for a “CNV morbidity map”. These large CNVs are greatly enriched in children with 

neurodevelopmental delay but these individuals usually present with a wide range of 

problems, some of which may be secondary to the disease process [3]. Many cases 

for example, present with obesity or growth defects, and a large proportion of CNVs 

are associated with obesity in the OMIM Morbid Map and DECIPHER clinical 

databases [4,5], but this may be a consequence of neurodevelopmental problems 

rather than a phenotype specific to the CNV and genes it has deleted or duplicated. 

 

Here we aimed to refine the published CNV morbidity map by calling copy number 

variation in the previously described 69 regions associated with autosomal genomic 

disorders in 120,286 adult individuals from the UK Biobank – 6 times the size of the 

previously used largest control or population based study [6]. These individuals 

represent a control population, similar to that used by the previous study in that they 

are greatly depleted of individuals with neurodevelopmental delay because they had 
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to actively sign up to the study. We hypothesised that the larger control sample size 

would reveal an additional prevalence of CNVs in healthy individuals, reducing or 

eliminating developmental delay significance in a proportion of CNVs. We also 

predicted that this reduction in significance would be more apparent in duplications 

as they exhibit a less obvious deleterious genetic impact compared to deletions. We 

detected deletions or duplications in 34 of the 69 published CNV regions, refined 

their frequency in the UK Biobank and used four common phenotypes available to 

assess their impact in the general population – height, BMI, a fluid intelligence test 

and income as surrogate measures of cognitive ability along with 22 additional 

phenotypic measures.  



115 
 

4.3 Materials and Methods 

 

4.3.1 Selection of CNVs 

We selected 69 regions of the genome that were previously identified as harbouring 

large rare pathogenic CNVs [1,2]. These CNVs were either deleted or duplicated loci 

at higher frequencies in cases of children with developmental delay. 

 

4.3.2 CNV Detection 

We initially identified CNVs present in 150,729 UK Biobank subjects from the first UK 

Biobank release (see http://biobank.ctsu.ox.ac.uk). We then refined this to 120,286 

individuals of British descent. British-descent was defined as individuals who both 

self-identified as white British and were confirmed as ancestrally Caucasian using 

principal components analyses (http://biobank.ctsu.ox.ac.uk). Of these individuals, 

120,286 were classified as unrelated, with a further 7,980 first- to third-degree 

relatives. We did not correct for relationships between individuals and therefore did 

not include related individuals in this study. 

 

CNVs were called in the UK Biobank using PennCNV-Affy [7]. The PennCNV-Affy 

‘validate’ function was used to detect subjects with a CNV present in the region. The 

CNV was then validated by confirming the presence of an intersecting CNV call 

using the PennCNV-Affy ‘test’ HMM-based algorithm. PennCNV-Affy was used to 

allow for a large number of samples to be processed in manageable amount of time 

and because of its low false discovery rate. A previous study in 12 monozygotic 

twins found that PennCNV had a lower mean CNV call discordance within twin pairs 
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than Genotyping Console (GTC) used in the published study [8]. We developed a 

pipeline that was first used to transpose and quantile normalise probe intensity data 

suitable for the CNV detection pipeline, and then execute PennCNV processing. 

Details of the pipeline are given in section 4.3.3 below. 

 

4.3.3 Probe intensity normalisation  

Raw UK Biobank probeset intensities were quantile normalised to allow intensity 

data in each subject to be compared to one another [9]. During this process the data 

were also converted to the Birdseed format [10] required for further PennCNV-Affy 

processing. 

 

A C++ program was developed to transpose and quantile normalise each sample 

according to chromosome and genotyping batch (Appendix I). Intensities were 

sorted numerically across each chromosome with missing values being allocated an 

overall median value to facilitate normalisation. Tied data items - including missing 

values - were broken to necessitate ranking by incrementing each respective tied 

data value by 1 x 10-5 (each raw data point had a precision of 6 with a maximum 

range of 5). Probe intensities across each chromosome within each sample were 

then added to an order statistic tree data structure to allow probe intensity rankings 

to be retrieved with O(log n) computational complexity. The mean intensity across 

each genotyping batch was then calculated for each sorted position. Each value in 

the original dataset was then queried against the order statistic tree and its resulting 

ranking was used as an index to extract from the list of sorted mean intensities. 

Mean intensities were then substituted in place of the equivalently ranked raw 
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intensities whilst ignoring missing values. Each transformed intensity value was then 

log2 transformed for processing in PennCNV-Affy. Mean values of all intensities 

across each chromosome were checked to ensure that they were the same within 

each genotyping batch. 

 

4.3.4 CNV Calling 

PennCNV-Affy was used to infer genotype clusters and then generate combined 

probeset intensity values normalised to a reference dataset log2(Robs/Rexp) where R 

is the combined probeset intensity known as Log R Ratio (LRR). PennCNV-Affy also 

generated B Allele Frequencies (BAF) representing the proportion of the combined 

probeset intensity accounted for by the B allele probe. 

 

Two separate methods in PennCNV were then used to detect CNVs: ‘test’ and 

‘validate’. PennCNV ‘test’ detects deviations from a normal LRR/BAF state across all 

probes in the genome using a Hidden Markov Model (HMM). The transition matrix 

and LRR/BAF distribution parameters for the HMM were based on previous studies 

using Affymetrix SNP6 array data. PennCNV ‘validate’ uses the 69 published CNV 

breakpoints and deletion/duplication frequencies as priors to assess the probability 

of a given copy number for that region in each subject without using the HMM.  

 

4.3.5 CNV Scoring 

LRR and BAF plots were generated for each CNV detected in each individual 

(Appendix II). Visual inspection was carried out by three independent reviewers. A 

CNV was not included if at least one reviewer concluded that the LRR and BAF 
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distributions did now show sufficient evidence for have its called number of copies 

(Table S7). A CNV passed scoring overall if at least 80% of the called subjects 

passed visual inspection, and was also validated using PennCNV-Affy ‘test’.  

 

4.3.6 Case – control significance testing 

Fishers exact tests were used to calculate the statistical significance of the 

prevalence of each CNV in controls compared to cases with developmental delay. 

The R version 3.0.2 ‘fisher.test’ package was used to apply the Fisher’s exact test to 

2 x 2 contingency matrices. We first used this method to replicate the published P 

values as a sanity check. Tests were then applied using UK Biobank CNV counts as 

control data. 

 

4.3.7 Phenotype selection 

Twenty six continuous phenotypes were selected as reciprocal indicators of 

morbidity and used in a phenotype wide scan “PheWAS” (Table S4). We identified 2 

of the 26 common phenotypes as surrogate indicators of developmental delay to 

assess the impact in the general population –a fluid intelligence test and income. We 

also focused on the CNV associations with height and BMI, given that children with 

developmental delay often have stunted growth or obesity but it is not certain to what 

extent these features are secondary or primary to the genetic defect. 
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4.3.7.1 Height  

 

Many disorders of developmental delay are associated with abnormal growth but this 

means that cohorts of cases with developmental delay could be biased towards 

individuals of abnormal growth because clinical geneticists may be more likely to 

refer an Individual for testing if accompanied by growth defects. Furthermore, recent 

studies have shown that common genetic variation from across a large fraction of the 

genome is involved in variation in height [11], suggesting that CNVs involving many 

genes could alter skeletal growth and final adult height. 

 

4.3.7.2 BMI 

Large rare CNVs have been associated with obesity, for example 16p11.2 [12,13]. 

BMI is also highly polygenic so many genes are likely to be involved [14]. BMI also 

has many of the same ascertainment bias issues as height. 

 

4.3.7.3 Fluid Intelligence 

Fluid Intelligence is a measure of an individual's ability to be adaptable and solve 

problems in a variety of situations. The fluid intelligence score is based on the 

number of correct logic and reasoning ability related questions answered in 2 

minutes. A lower fluid intelligence score may then be an indicator of an individual 

with developmental delay. 
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4.3.7.4 Income 

 

Income is a likely indicator of socioeconomic status and educational attainment 

throughout life. It can therefore be a secondary indicator of developmental delay.  

 

4.3.8 Phenotype normalisation 

We residualised and inverse normalised the 26 phenotypes to enable linear 

regression with minimal outliers and confounding. We then used Age, Sex, 

recruitment centre and principal components 1-5 to correct for population 

confounding during residualisation.  

 

4.3.9 Phenotype association testing 

Linear regression was carried out using STATA 13. We tested each of the 26 inverse 

normalised phenotypes against both deletions and duplications that were present in 

10 or more UK Biobank individuals. We corrected for chip type (UKB Axiom or UK 

BiLEVE) at runtime. 
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4.4 Results 

 

4.4.1 Frequency of deletions previously associated with known autosomal 

genomic disorders 

We detected 937 deletion events (Appendix II) present in 25 of the 69 published loci 

(Table S1). We found that the published associations with developmental delay were 

generally strengthened (Fig. 1A), with exceptions detailed below. 

 

4.4.1.1 Deletions present in cases, but not controls (Category A)  

Of 34 deletions present in previous studies of cases that were not present in 

controls, we also found them to be absent from our 120,286 UK Biobank individuals. 

The number of probes present in each of these regions was comparable to that in 

the controls of Coe et al (Table S2) and zero of these regions intersected with 

previously reported problematic signature array regions prone to artefacts due to 

genomic waviness (as defined by Coe et al. 2014). The statistical confidence of 

these deletions being more frequent in cases than controls is now strengthened due 

to the larger sample size of the UK Biobank.  

 

4.4.1.2 Deletions detected in published cases and not controls but 

present in UK Biobank (Category B) 

Twelve deletions present in at least one case from the previous study but absent 

from their controls were detected in at least one individual in the UK Biobank (Table 

1). Nevertheless, for 11 of these deletions, the statistical confidence of these being 
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more frequent in cases than controls strengthened when using the UK Biobank as a 

control population because of its larger size. These 12 deletions included several 

known syndromes including 5 individuals with 22q DiGeorge deletion and one 

individual with Williams syndrome. The twelfth CNV that in the 3p11.2 deletion was 

present in 17 of 120,286 individuals, a frequency of 0.00014% which is not 

statistically different from the frequency of 0.00031% in the series of cases from Coe 

et al. 

 

 4.4.1.3 A deletion not present in published cases or controls but present 

in UK Biobank (Category C) 

We found one deletion of 3Mb at 10q11 in 20 UK Biobank individuals that was not 

seen in Coe et al cases or controls (Table 3). This region was targeted because it 

was published as being duplicated in 10 cases, but no controls. 

 

4.4.1.4 Deletions present in published cases and controls, and also UK 

Biobank (Category D) 

For 12 additional regions, deletions were detected in the previous study in cases and 

controls, but at a higher frequency in cases, with Pvalues ranging from 3.19 x 10-21 to 

0.515. For 6 of these 12 deletions, using the UK Biobank as controls strengthened 

the statistical confidence that they were pathogenic. The exceptions were the 

chr17:14.07Mb-15.41Mb deletion including HNPP that was not previously different in 

frequency in published cases and controls, and remained so using UK Biobank; 

deletion chr13:20.81Mb-21.01Mb that we observed 106 times and a 290kb deletion 

of chr15:22.80Mb-23.09Mb, that was present in the UK Biobank at higher frequency 
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(0.38%) than in the previously reported control (0.14%) set but remained more 

frequent in cases (0.69%) with strong statistical confidence but weaker effect size 

(OR = 1.8).  

 

4.4.1.5 Regions where there were either no deletions detected, or 

deletions did not pass quality control (Category E) 

Two further regions failed our QC steps, and 8 regions were not detected as deleted 

in either cases or controls from the previous study or in UK Biobank. These regions 

were annotated because at least one published individual had a duplication. 
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Table 1. Ten deletions with 10 or more individuals present in UK Biobank, their significance and effect size on 4 surrogate 

developmental delay phenotypes, and their prevalence in 26 Phenotypes *: P=0.05 to 0.01, **: P=0.01-0.001 ***: P<0.001 

Deletion Cat Size Coe 
case 
freq 
(n) 

Coe 
control 
freq (n) 

UKBB 
freq (n) 

P Coe 
vs Coe 

P coe 
vs 
UKBB 

Intelligence, 
beta (95%CIs) 

Income beta 
(95%CIs) 

BMI beta 
(95%CIs) 
(kgm2) 

Height beta 
(95%CIs) (cm) 

PheWAS  
N<0.05  

chr15:31132708-
32482708 
 

B 1.35 
Mb 

65 0 10 2.85e-
15 

6.06e-
36 

-2.34**  
(-4.17, -0.51) 

-0.82* 
(-1.63, 0.00) 

2.91* 
(-0.06, 5.88) 

-4.44* 
(-8.35, -0.52) 

11/26 

chr3:87237310-
87557310  

B 320kb 9 0 17 0.0097
2 

0.0511 - - - -5.19***  
(-8.19, -2.19) 

1/26 

chr10:49389994-
52389994 

C 3 Mb 0 0 20 1 1 - - - - 1/26 

chr2:111383531-
113093529 

D 1.7mb 20 3 14 0.0048
3 

4.88e-
07 

-1.63* 
(-3.18, -0.08) 

-0.95** 
(-1.57, -0.33) 

- - 4/26  

chr16:29652499-
30202499 

D 550kb 101 6 27 2.07e-
16 

1.74e-
47 

- (n=6) -1.32*** 
(-1.80, -0.84) 

7.39***  
(5.58, 9.20) 

-7.71***  
(-10.09, -5.33) 

15/26  

chr16:15502499-
16292499 

D 790kb 36 7 41 0.0006
66 

5.73e-
08 

- (n=11) 0.72*** 
(-1.10, -0.34) 

- - 4/26 

chr17:14069275-
15499275 

D 1.43m
b 

13 8 65 0.515 0.775 - - - - 1/26 

chr16:21942499-
22462499 

D 520kb 50 11 74 0.0001
77 

7.3e-08 -1.13* 
(-2.12, -0.13) 

-0.50** 
(-0.79, -0.22) 

- -1.88* 
(-3.32, -0.44) 

11/26  

chr13:20812000-
21012000 

D 200kb 34 17 106 0.195 0.0937 - - - - 1/26 

chr15:22798636-
23088559 

D 290kb 200 27 462 3.19e-
21 

2.48e-
11 

1.10*** 
(-1.45,  -0.75) 

0.26***  
(-0.37, -0.15) 

- -1.58*** 
(-2.16, -1.01) 

12/26  
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4.4.2 Frequency of duplications previously associated with known autosomal 

genomic disorders 

We detected a total of 1,231 duplication events (Appendix II) present in 24 of the 69 

published loci (Table S2). We found that the published associations with 

developmental delay were generally strengthened (Fig. 1B), with exceptions detailed 

below. 

 

4.4.2.1 Duplications present in cases, but not controls (Category A) 

Of 25 duplications present in previous studies of cases that were not present in 

controls, we also found them to be absent from our 120,286 UK Biobank individuals. 

The greater sample size of UK Biobank resulted and the fact that we did not observe 

any of these duplications strengthened the statistical confidence that these 

duplications are pathogenic. Six duplications did not reach nominal significance, with 

only one copy of each occurring in cases. The number of probes present in each of 

these regions was comparable to that in the controls of the previously published 

controls and as with deletions, zero of these regions intersected with previously 

reported problematic regions [1].  

 

4.4.2.2 Duplications detected in published cases and not controls but 

present in UK Biobank (Category B) 

Ten duplications present in at least one case from the previously published study 

were absent from their controls but we detected at least one individual carrying the 

duplication in UK Biobank. Of these 10 duplications, the evidence for pathogenicity 
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was strengthened for 6 whilst 4 remained unassociated or had very borderline 

evidence of pathogenicity. Two of these duplications were present in 10 or more 

individuals (Table S2). Three duplications were not present in previously published 

cases or controls but had one present in UK Biobank (Table 3). These regions were 

targeted because they were deleted in cases, but not controls in previous 

publication.  

 

4.4.2.3 Duplications detected in published cases, only 1 control but not 

present in UK Biobank (Category C) 

There were also 6 duplications present in many previously published cases, one of 

their controls, but none of the UK Biobank. For five of these, the greater sample size 

of UK Biobank and the fact that we did not observe any of these duplications 

strengthened the statistical confidence that these duplications are pathogenic (Table 

S2). The final duplication was only present in one case and one previously published 

control.  

 

4.4.2.4 Duplications detected in published cases and controls and also 

present in UK Biobank (Category D) 

For 10 additional regions, duplications were detected in the previous publication in 

cases and controls, but at a higher frequency in cases, with p-values ranging from 

1.35 x 10-11 to 0.31. For seven of these, we observed stronger statistical confidence 

of pathogenicity. Two duplications at 16p13.11 and chr16:15.5Mb-16.3Mb were no 

longer of nominal significance with UK Biobank controls. One duplication was not 
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different between cases and controls whether using previous controls or UK 

Biobank. 
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Table 2. Ten duplications with 10 or more individuals present in UK Biobank, their significance and effect size on the 4 phenotypes, 

and prevalence in 26 Phenotypes *: P=0.05 to 0.01, **: P=0.01-0.001 ***: P<0.001 

 

 

Duplication Cat Size Coe 
case 
freq 
(n) 

Coe 
control 
freq (n) 

UKBB 
freq (n) 

P Coe vs 
Coe 

P coe 
vs 
UKBB 

Intelligence, 
beta (95%CIs) 

Income beta 
(95%CIs) 

BMI beta 
(95%CIs) 
(kgm2) 

Height beta 
(95%CIs) 
(cm) 

PheWAS  
N<0.05  

chr2:96726273-
97676273 

B 950kb 4 0 12 0.128 0.381 - - -2.44*  
(-5.15, 0.27) 

- 3/26 

chr2:111383531-
113093529 

B 1.71
Mb 

7 0 26 0.0272 0.469 - - -1.91* 
(-3.75, -0.07) 

-2.85* 
(-5.28, -0.42) 

6/26 

chr17:34815887-
36205887 

D 1.39 
Mb 

23 3 32 0.00147 0.0001
2 

-1.87* 
(-3.42, -0.33) 

- - - 3/26 

chr16:21942499-
22462499 

D 520kb 11 4 61 0.212 0.854 - - -1.10* 
(-2.31, 0.12) 

- 3/26 

chr17:14069275-
15499275 

D 1.43
Mb 

17 5 35 0.0691 0.0168 - -0.44* 
(-0.89, 0.00) 

- - 7/26 

chr16:29652499-
30202499 

D 550kb 62 9 37 3.5e-07 7.01e-
21 

-2.09**  
(-3.39, -0.80) 

-0.49* 
(-0.90, -0.09) 

-1.62* 
(-3.16, -0.07) 

2.64** 
(0.61, 4.68) 

13/26 

chr15:31132708-
32482708 

D 1.35
Mb 

28 11 81 0.0834 0.0679 -0.68* 
(-0.95, -0.41) 

-0.94*** 
(-1.74, -0.14) 

- - 9/26 

chr22:19020000-
20290000 

D 1.27
Mb 

97 12 75 1.35e-11 1.05e-
26 

-1.32** 
(-2.29, -.36) 

-0.55*** 
 (-0.82, -0.28) 

1.97** 
(0.88, 3.06) 

-1.47 
(-2.89, -0.04) 

12/26 

chr16:15502499-
16292499 

D 790K
b 

68 27 248 0.0112 0.197 -0.71** 
(-1.17, -0.25) 

-0.22** 
(-0.37, -0.07) 

0.76* 
(0.16,  1.35) 

- 13/26 

chr15:22798636-
23088559 

D 290K
b 

128 60 586 0.0112 0.863 - - - - 3/26 
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4.4.2.5 Duplications not present in published cases or controls but 

present in UK Biobank (Category E) 

Four separate deletions, each present in one individual and each greater than 1Mb 

were not seen in Coe et al cases or controls. These regions were targeted because 

they were published as being deleted in cases and controls, but not duplicated 

(Table 3). 

 

4.4.2.6 Regions where there were either no duplications detected, or 

duplications did not pass quality control (Category F) 

Fourteen regions were not detected as duplicated in either cases or controls from the 

previous study or in UK Biobank. These regions were annotated because at least 

one individual from the previous published study had a deletion. 

 

 

Table 3. Summary of deletions and duplications detected at N ≥ 1 in UK Biobank 

that are not present in previously published cases and controls 

Chromosome  Size 
(Mb) 

Syndrome UKBB 
N 

Type  

chr10:49389994-
52389994 

3 10q11 duplication syndrome 
(Coe et al) 

20 Deletion 

chr1:168733376-
173733377 

5 1q24 deletion syndrome 1 Duplication 

chr10:81690020-
88940020 

7.25 10q23.1 deletion syndrome 1 Duplication 

chr3:115237310-
115647310 

4.1 3q13 deletion syndrome 1 Duplication 

chr2:50146496-
51256496 

1.1 - 1 Duplication 
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4.4.3 Summary of variants tested 

Twenty seven deletion and 24 duplication loci were detected in the 69 published 

morbidity map regions [1]. Ten deletions (Table 1) and 10 duplications (Table 2) that 

were each present in greater than or equal to ten individuals were selected for 

phenotype association testing. 

 

4.4.4 Height, BMI, Fluid Intelligence and Income association  

Seven deletions and 9 duplications present in 10 or more individuals were 

associated at p<0.05 in at least one of 4 of our main phenotypes (fluid intelligence, 

income, height and BMI). Deletions had a generally stronger association, with 4 

deletions at P ≤ 0.0001 in at least one trait compared to 2 duplications.  

 

4.4.5 Association of deletions and duplications with all 26 phenotypes 

After testing each of the ten deletions against the 26 phenotypes, there were 61 

associations at p <0.05 (Fig. 2A, Table 1, Table S1). After testing each of the ten 

duplications against the 26 phenotypes, there were 61 associations at p<0.05 (Fig. 

2B, Table 2, Table S2).  
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Figure 1. Quantile-quantile plots comparing the evidence of pathogenicity for CNVs when using case frequencies from Coe et al, 

but using frequencies from Coe et al controls or UK Biobank controls. (A) and (B) show deletions and duplications respectively.  
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Figure 2. Plots showing 26 phenotypes and the distribution of their phenotype associations with (A) ten deletions and (B) ten 

duplications where there are 10 or more carriers in UK BIobank. Full phenotype names are provided in Table S4
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4.5 Discussion 

 

4.5.1 UK Biobank controls increase the strength of evidence for pathogenicity 

of the developmental delay CNVs with four exceptions 

The UK Biobank data strengthen the evidence that most CNVs previously reported 

by Coe et al. are pathogenic, causing developmental delay. We hypothesised that 

the significance of CNVs could have been overestimated due to the SNP arrays 

used in controls varying in technology and cohort size, thus lowering the prevalence, 

however for most CNVs this is not the case. We also hypothesised that significance 

of duplications would be lower as an increased gene dosage would have less 

deleterious biological mechanisms to cause developmental delay which also appears 

not to be apparent for most duplications. The 4 exceptions to these findings are 

given in the next four subsections. Notably, 3 of the 4 exceptions described below 

are duplications, and the single deletion was novel in the previously published study 

indicating more potentially false associations with developmental delay among 

duplications. 

 

4.5.1.1 The 320Kb deletion at 3p11.2 is not associated with 

developmental delay  

This deletion at chr3:87,237,310-87,557,310 was published as a ‘newly detected 

CNV’ associated with developmental delay in that the CNV was not called in 

previous studies. The deletion was detected in nine individuals with developmental 

delay. The significance of these newly detected CNVs are based on a median of the 

gene-level copy number empirical P values [1] in an attempt to account for a 
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somewhat complex breakpoint structure in these CNVs. Their simulated P value was 

7.5 x 10-5 and a q value of 0.049. We found using the standard fisher’s exact test a P 

value of 0.0097. Using UK Biobank as a control altered this P value to 0.051 

eliminating its nominal association. The CNV was detected in UK Biobank data with 

79 supporting probes, greater than the number of probes present in 5 of the 8 array 

types used in the published data. This variant is associated with decreased height, 

but does not show any evidence of being associated with decreased cognitive 

function however due to the sub-optimal probe count, further studies of this region 

need to be carried out to fully understand the impact of this region. 

 

4.5.1.2 The 1.7Mb duplication at 2q13 is no longer associated with 

developmental delay 

The duplication at chr2:111,383,531-113,093,529 is no longer nominally associated 

with developmental delay. The variant was previously published with a p-value of 

0.027 (q-value 0.0928 whereas the published q-value cut-off is between 0.1 and 

0.25). The variant is well captured with 410 supporting probes present in 26 

individuals. The duplication is associated with both a lower BMI and height and 

present at p<0.05 in 6 of the 26 phenotypes at tested which include decreased lung 

function and basal metabolic rate. The duplication is also associated with an 

increased reaction time, which may also be indicative of cognitive function. These 

association statistics indicate that this duplication has a potential phenotypic impact, 

but it may not necessarily be one of decreased cognitive function and/or 

developmental delay. 
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4.5.1.3 The 290Kb duplication at 15q11.2 is not associated with 

developmental delay 

The duplication at chr15:22,798,636-23,088,559 present in 586 individuals was 

published as having a p-value of 0.0112 (q-value 0.0513). A p-value of 0.863 was 

reported when using UK Biobank as controls. This variant in UK Biobank is 

supported by 137 probes, greater than the number available in six of the eight arrays 

used in the published study. The variant is not significant in any of the surrogate 

measures of developmental delay, but is associated at p<0.05 with three of the 26 

tested phenotypes including increased social deprivation a higher score in the pairs 

matching test and an earlier age of menarche in females. 

 

4.5.1.4 The 790Kb duplication at 16p13.11 is not associated with 

developmental delay 

This variant at chr16:15,502,499-16,292,499 is detected in 248 individuals. The 

published study found this duplication to be associated with developmental delay 

with a P value of 0.0112 and a q value of 0.0513. Using UK Biobank controls the P 

value became 0.197 losing its nominal significance. This variant is supported by 339 

probes which is higher than the number on 7 of the 8 arrays used in the previous 

publication. Paradoxically, this variant is associated with a decreased fluid 

intelligence score, a decreased income and a 0.76kgm2 increase in BMI. The variant 

is associated with 13 of the 26 tested traits overall including decreased lung function, 

earlier menopause and a nominal association with an increased pairs matching 

score. 
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4.5.2 CNVs found to be associated with developmental delay have a stronger 

impact on Height, BMI, Fluid Intelligence, Income and other common traits 

We found that CNVs that associated with developmental delay were more likely to 

be associated with many common traits in our “PheWAS” scan of 26 common 

continuous traits (we did not test disease or other binary traits because there would 

be too few numbers). In the 10 deletions occurring in ≥ 10 individuals, those that 

associated with developmental delay also associate with ≥ 1 surrogate 

developmental delay phenotype and are nominally significant in between 4 and 15 of 

the 26 phenotypes tested. The 4 deletions that are not significantly associated with 

developmental delay were each only nominally significant in exactly 1 of the 26 

phenotypes tested which included increased reaction time, decreased hand grip 

strength, decreased height and increased bone mineral density. Duplications 

occurring in ≥ 10 individuals were all associated with between 3 and 13 of the 26 

phenotypes including ≥ 1 surrogate developmental delay phenotype with the 

exception of one duplication (chr15:22798636-23088559) present in 586 individuals 

that was not associated with developmental delay but was associated with early 

menarche, higher pairs matching test score and high social deprivation. These 

results implicate a higher level of pleiotropy in deletions associated with 

developmental delay whereas duplications have a high level of pleiotropy regardless 

of association with developmental delay. 
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4.5.3 Potential biases and limitations of this study 

There are several limitations in this study, with perhaps the most notable being the 

detection technology used. Even though the UK Biobank array has been custom built 

with these pathogenic CNVs in mind, some of the loci have less than 100 probes. 

When observing probe intensity plots (Appendix II) it is apparent that the variance 

introduced by signal noise means that many probes are needed to rely on a CNV 

call. There is also a level of uncertainty that we are picking up exactly the same CNV 

calls that we would if we used the aCGH signature arrays used in the published 

cases. This is however a problem in the previous study that is compounded by their 

use of multiple technologies and different technologies in the cases compared to 

controls.  

 

The UK Biobank is biased against individuals with developmental delay as the 

participants are aged between 40 and 69 and a recruitment questionnaire was 

required to sign up to the study. Socioeconomic status within the UK Biobank 

provides a minimum bound for developmental delay given that the UK Biobank is 

likely to be biased towards higher functioning and better supported Individuals with 

intellectual disability. The bias against developmental delay in the UK Biobank 

therefore underscores its suitability as a control group in this study. 
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4.7 Supplementary Information 

Table S1. Summary of all 69 CNV regions and their deletions prevalence and significance. HS = Hotspot CNVs flanked by 

segmental duplications, MB = multi-breakpoint CNVs. HSMB = situations where a combination of both hotspot and multi-breakpoint 

CNVs have been detected. 

Chr Start (HG19) End (HG19) Size (bp) Type Category Deletion Syndrome 
Del Case 
N 

Del Control 
Coe N 

Del 
UKBB N Del Coe P 

Del UKBB 
P 

Control vs 
Control P 

chr1 10,001 10,077,413 10,067,412 MB  A 1p36 deletion syndrome  77 0 0 5.84E-18 1.77E-55 1 

chr1 168,733,376 173,733,377 5,000,001 MB A 
1q24 (FMO deletions 
andDNM3) 12 0 0 0.00207 2.97E-09 1 

chr10 81,690,020 88,940,020 7,250,000 HSMB A 
10q23.1 (SFTPD to 
GLUD1NRG3 inclusive) 11 0 0 0.00347 1.52E-08 1 

chr10 81,960,020 88,800,020 6,840,000 HS  A 10q23 deletion  11 0 0 0.00347 1.52E-08 1 

chr11 43,983,424 46,063,424 2,080,000 MB  A 
Potocki-Shaffer 
syndrome 6 0 0 0.0455 5.45E-05 1 

chr11 67,753,424 71,282,352 3,528,928 HS  A SHANK2 FGFs deletion  1 0 0 0.598 0.195 1 

chr15 24,818,907 28,426,405 3,607,498 HS  A Prader-Willi/Angelman  40 0 0 1.13E-09 3.69E-29 1 

chr15 72,962,947 75,532,947 2,570,000 HS  A 15q24 A to C deletion 7 0 0 0.0272 1.06E-05 1 

chr15 72,962,947 76,012,945 3,049,998 HS  A 15q24 A to D deletion  2 0 0 0.357 3.79E-02 1 

chr15 74,012,947 75,532,947 1,520,000 HS  A 
15q24 Covers B to C 
deletion 13 0 0 0.00124 5.77E-10 1 

chr15 74,012,947 75,532,947 1,520,000 HS  A 
15q24 Covers B to C 
deletion 13 0 0 0.00124 5.77E-10 1 

chr15 74,012,947 76,012,945 1,999,998 HS  A 15q24 B to D deletion  2 0 0 0.357 0.0379 1 

chr15 74,012,947 78,132,945 4,119,998 HS  A 15q24 B to E deletion  2 0 0 0.357 0.0379 1 

chr15 83,182,945 84,738,996 1,556,051 HS  A 15q25.2 deletion  1 0 0 0.598 0.195 1 

chr16 3,779,999 3,859,999 80,000 MB  A 
Rubinstein-Taybi 
syndrome  4 0 0 0.128 1.44E-03 1 

chr16 21,352,499 29,442,499 8,090,000 HS  A Shaffer locus deletion  3 0 0 0.213 0.00738 1 

chr16 21,612,499 29,042,499 7,430,000 HS  A 16p11.2-p12.2 3 0 0 0.213 0.00738 1 
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microdeletion syndrome  

chr17 50,000 2,593,250 2,543,250 MB  A 

17p13.3 deletion (both 
YWHAE and 
PAFAH1B1) 16 0 0 0.000264 4.26E-12 1 

chr17 2,363,250 2,923,250 560,000 MB  A 
17p13.3 deletion 
(including PAFAH1B1) 11 0 0 3.47E-03 1.52E-08 1 

chr17 16,709,275 20,479,408 3,770,133 HSMB  A 
Smith-Magenis 
syndrome deletion  24 0 0 4.29E-06 8.76E-18 1 

chr17 43,704,217 44,184,217 480,000 HS  A 17q21.31 deletion  31 0 0 1.16E-07 9.24E-23 1 

chr17 58,065,218 60,305,218 2,240,000 HS  A 17q23.1q23.2 deletion  1 0 0 5.98E-01 1.95E-01 1 

chr2 200,161,755 200,511,755 350,000 MB A 2q33.1 (SATB2) 13 0 0 0.00124 5.77E-10 1 

chr2 239,705,243 242,471,327 2,766,084 MB  A 2q37 deletion  33 0 0 4.16E-08 3.50E-24 1 

chr22 51,113,134 51,173,134 60,000 MB  A 
Phelan-McDermid 
syndrome deletion 43 0 0 2.40E-10 2.71E-31 1 

chr3 115,237,310 115,647,310 410,000 MB A 3q13 (GAP43) 9 0 0 0.00972 4.02E-07 1 

chr4 1,870,202 2,010,202 140,000 MB  A Wolf-Hirschhorn deletion 24 0 0 4.29E-06 8.76E-18 1 

chr4 80,780,976 83,280,976 2,500,000 MB A 4q21 (BMP3) 11 0 0 0.00347 1.52E-08 1 

chr5 10,000 11,727,000 11,717,000 MB  A Cri du Chat syndrome  4 0 0 0.128 0.00144 1 

chr5 87,964,244 88,224,244 260,000 MB A 5q14 (MEF2C) 10 0 0 0.00581 7.83E-08 1 

chr5 175,717,394 177,057,394 1,340,000 HS  A Sotos syndrome deletion  10 0 0 5.81E-03 7.83E-08 1 

chr6 100,813,279 100,943,279 130,000 MB  A 6q16 deletion  1 0 0 0.598 1.95E-01 1 

chr8 8,092,590 11,892,591 3,800,001 HS  A 8p23.1 deletion 8 0 0 0.0163 2.06E-06 1 

chr9 137,860,179 141,080,179 3,220,000 MB  A 9q34 deletion 5 0 0 7.62E-02 2.80E-04 1 

chr12 65,073,733 68,643,733 3,570,000 MB  B 
12q14 microdeletion 
syndrome  3 0 1 0.213 0.0252 1 

chr15 31,132,708 32,482,708 1,350,000 HS  B 15q13.3 deletion  65 0 10 2.85E-15 6.06E-36 1 

chr15 85,138,996 85,698,996 560,000 HS  B Cooper 15q25.2  7 0 3 0.0272 0.000728 1 

chr17 553,250 1,353,250 800,000 MB  B 
17p13.3 deletion 
(including YWHAE) 17 0 3 1.58E-04 5.14E-10 1 

chr17 29,165,874 30,215,887 1,050,013 HS  B 
NF1 microdeletion 
syndrome 7 0 3 0.0272 7.28E-04 1 

chr2 96,726,273 97,676,273 950,000 HS  B 2q11.2 deletion 6 0 8 0.0455 3.89E-02 1 

chr22 19,020,000 20,290,000 1,270,000 HS  B DiGeorge/VCFS deletion  158 0 5 3.97E-36 1.17E-104 1 
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chr22 21,910,000 23,650,000 1,740,000 HS  B 22q11.2 distal deletion 20 0 2 3.37E-05 9.36E-13 1 

chr3 87,237,310 87,557,310 320,000 MB B 
3p11.2 (CHMP2B to 
POU1F1) 9 0 17 9.72E-03 5.11E-02 1 

chr3 195,715,603 197,355,603 1,640,000 HS  B 3q29 deletion 11 0 3 0.00347 3.08E-06 1 

chr7 72,742,064 74,142,064 1,400,000 HS  B 
Williams syndrome 
deletion  61 0 1 2.24E-14 2.15E-42 1 

chr7 74,962,064 76,662,064 1,700,000 HS  B Wms-distal deletion  5 0 2 0.0762 0.00413 1 

chr10 49,389,994 52,389,994 3,000,000 HS MB C   0 0 20 1.00E+00 1.00E+00 1 

chr1 145,288,643 145,628,643 340,000 HS  D TAR deletion 25 2 28 0.000163 4.82E-06 0.936279175 

chr1 146,573,376 147,393,376 820,000 HS  D 1q21.1 deletion  68 6 38 5.50E-10 1.24E-23 0.593602025 

chr13 20,812,000 21,012,000 200,000 MB  D 13q12 deletion  34 17 106 0.195 0.0937 0.562410047 

chr15 22,798,636 23,088,559 289,923 HS  D 15q11.2 deletion  200 27 462 3.19E-21 2.48E-11 1 

chr16 15,502,499 16,292,499 790,000 HS  D 16p13.11 deletion 36 7 41 0.000666 5.73E-08 0.516340936 

chr16 21,942,499 22,462,499 520,000 HS  D 16p12.1 deletion  50 11 74 0.000177 7.30E-08 0.657882728 

chr16 28,772,499 29,112,499 340,000 HS  D 16p11.2 distal deletion  27 1 2 1.09E-05 1.73E-17 0.36398112 

chr16 29,652,499 30,202,499 550,000 HS  D 16p11.2 deletion  101 6 27 2.07E-16 1.74E-47 0.312278953 

chr17 14,069,275 15,499,275 1,430,000 HS  D HNPP  13 8 65 0.515 0.775 0.819327942 

chr17 34,815,887 36,205,887 1,390,000 HS  D 17q12 deletion (ACACA) 20 2 1 0.00145 1.04E-13 0.053321504 

chr2 111,383,531 113,093,529 1,709,998 HS  D 2q13 deletion 20 3 14 0.00483 4.88E-07 0.432493057 

chr3 191,517,306 193,017,306 1,500,000 MB D 3q28-29 (FGF12) 13 1 1 0.00772 6.62E-09 0.260427914 

chr12 6,469,739 6,809,739 340,000 MB E   0 0 0 1.00E+00 1.00E+00 1 

chr15 99,362,477 102,521,392 3,158,915 MB  E 15q26 deletion 11 1 0 0.0188 1.52E-08 0.140015729 

chr17 57,655,218 58,075,218 420,000 HS  E 17q23 deletion  0 0 0 1 1.00E+00 1 

chr2 50,146,496 51,256,496 1,110,000 MB E 2p16.1 (NRXN1) 30 9 0 0.019 4.75E-22 2.06E-08 

chr2 57,746,496 61,736,496 3,990,000 HS  E 
2p15-16.1 microdeletion 
syndrome  0 0 0 1 1.00E+00 1 

chr2 59,646,496 63,146,496 3,500,000 MB E   0 0 0 1 1 1 

chr2 100,693,568 108,443,568 7,750,000 HS  E 2q11.2q13 deletion  0 0 0 1.00E+00 1.00E+00 1 

chr3 9,525,000 11,025,000 1,500,000 MB E   0 0 0 1 1 1 

chr7 66,482,565 72,272,064 5,789,499 HS  E Wms-prox deletion  0 0 0 1 1 1 

chr9 32,010,000 39,010,000 7,000,000 MB E   0 0 0 1.00E+00 1.00E+00 1 
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Table S2. Summary of all 69 CNV regions and their duplication prevalence and significance. HS = Hotspot CNVs flanked by 

segmental duplications, MB = multi-breakpoint CNVs. HSMB = situations where a combination of both hotspot and multi-breakpoint 

CNVs have been detected. 

Chr Start (HG19) End (HG19) Size (bp) Type Category 
Duplication 
Syndrome 

Dup Case 
N 

Dup Control 
Coe 

Dup 
UKBB N Dup Coe P 

Dup 
UKBB P 

Control vs 
Control P 

chr11 43,983,424 46,063,424 2,080,000 MB  A None  2 0 0 0.357 0.0379 1 

chr15 72,962,947 75,532,947 2,570,000 HS  A None 3 0 0 0.213 0.00738 1 

chr15 72,962,947 76,012,945 3,049,998 HS  A None  3 0 0 0.213 7.38E-03 1 

chr15 74,012,947 75,532,947 1,520,000 HS  A None 7 0 0 2.72E-02 1.00E+00 1 

chr15 74,012,947 75,532,947 1,520,000 HS  A None 7 0 0 0.0272 1.00E+00 1 

chr15 74,012,947 76,012,945 1,999,998 HS  A None  1 0 0 0.598 0.195 1 

chr15 99,362,477 102,521,392 3,158,915 MB  A 

15q26 
overgrowth 
syndrome 4 0 0 1.28E-01 1.44E-03 1 

chr16 21,352,499 29,442,499 8,090,000 HS  A None  2 0 0 0.357 0.0379 1 

chr16 21,612,499 29,042,499 7,430,000 HS  A None  2 0 0 0.357 3.79E-02 1 

chr17 50,000 2,593,250 2,543,250 MB  A 

17p13.3 
duplication 
(both 
YWHAE and 
PAFAH1B1) 6 0 0 0.0455 5.45E-05 1 

chr17 16,709,275 20,479,408 3,770,133 HSMB  A 

Potocki-
Lupski 
syndrome 
duplication  19 0 0 5.63E-05 3.14E-14 1 

chr17 29,165,874 30,215,887 1,050,013 HS  A None 7 0 0 0.0272 1.06E-05 1 

chr17 43,704,217 44,184,217 480,000 HS  A 
17q21.31 
duplication  3 0 0 0.213 0.00738 1 

chr2 59,646,496 63,146,496 3,500,000 MB A 

2p15-16.1 
proximal 
(PEX13 to 
AHSA2) 9 0 0 0.00972 4.02E-07 1 
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chr2 100,693,568 108,443,568 7,750,000 HS  A None  1 0 0 0.598 1.95E-01 1 

chr2 239,705,243 242,471,327 2,766,084 MB  A None  1 0 0 0.598 0.195 1 

chr22 51,113,134 51,173,134 60,000 MB  A None 11 0 0 0.00347 1.52E-08 1 

chr3 9,525,000 11,025,000 1,500,000 MB A 

3p25.3 
(JAGN1 to 
TATDN2) 10 0 0 0.00581 7.83E-08 1 

chr4 1,870,202 2,010,202 140,000 MB  A None  11 0 0 0.00347 1.52E-08 1 

chr5 10,000 11,727,000 11,717,000 MB  A None  1 0 0 0.598 0.195 1 

chr5 175,717,394 177,057,394 1,340,000 HS  A None  3 0 0 2.13E-01 7.38E-03 1 

chr7 66,482,565 72,272,064 5,789,499 HS  A 
Wms-prox 
duplication  1 0 0 0.598 1.95E-01 1 

chr7 74,962,064 76,662,064 1,700,000 HS  A 
Wms-distal 
duplication  1 0 0 5.98E-01 1.95E-01 1 

chr9 32,010,000 39,010,000 7,000,000 MB A 9p13 18 0 0 9.43E-05 1.61E-13 1 

chr9 137,860,179 141,080,179 3,220,000 MB  A 
9q34 
duplication 6 0 0 0.0455 5.45E-05 1 

chr10 49,389,994 52,389,994 3,000,000 HS MB B 10q11 10 0 8 0.00581 0.000729 1 

chr10 81,960,020 88,800,020 6,840,000 HS  B None  4 0 1 0.128 6.07E-03 1 

chr15 24,818,907 28,426,405 3,607,498 HS  B 
PWS 
duplication  48 0 8 1.82E-11 1.98E-26 1 

chr15 83,182,945 84,738,996 1,556,051 HS  B None  1 0 1 0.598 0.352 1 

chr15 85,138,996 85,698,996 560,000 HS  B None  2 0 3 0.357 2.52E-01 1 

chr2 96,726,273 97,676,273 950,000 HS  B 
2q11.2 
duplication 4 0 12 0.128 0.381 1 

chr2 111,383,531 113,093,529 1,709,998 HS  B 
2q13 
duplication 7 0 26 0.0272 4.69E-01 1 

chr22 21,910,000 23,650,000 1,740,000 HS  B 

22q11.2 
distal 
duplication 7 0 5 0.0272 0.00332 1 

chr7 72,742,064 74,142,064 1,400,000 HS  B 
WBS 
duplication  28 0 5 5.46E-07 1.05E-15 1 

chr8 8,092,590 11,892,591 3,800,001 HS  B 
8p23.1 
duplication 6 0 1 0.0455 3.18E-04 1 

chr1 10,001 10,077,413 10,067,412 MB  C None  28 1 0 6.70E-06 1.26E-20 0.14001573 

chr12 6,469,739 6,809,739 340,000 MB C 

12p13 
(SCNN1A to 
PIANP) 23 1 0 7.37E-05 4.50E-17 0.14001573 
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chr13 20,812,000 21,012,000 200,000 MB  C None  5 1 0 0.23 0.00028 0.14001573 

chr16 3,779,999 3,859,999 80,000 MB  C None  8 1 0 0.0686 2.06E-06 0.14001573 

chr17 553,250 1,353,250 800,000 MB  C 

17p13.3 
duplication 
(including 
YWHAE 11 1 0 0.0188 1.52E-08 0.14001573 

chr6 100,813,279 100,943,279 130,000 MB  C None  1 1 0 0.838 0.195 0.14001573 

chr15 22,798,636 23,088,559 289,923 HS  D None  128 60 586 0.0112 0.863 0.99989281 

chr15 31,132,708 32,482,708 1,350,000 HS  D 
15q13.3 
duplication  28 11 81 0.0834 0.0679 0.75731026 

chr16 15,502,499 16,292,499 790,000 HS  D 
16p13.11 
duplication 68 27 248 0.0112 0.197 0.98505229 

chr16 21,942,499 22,462,499 520,000 HS  D None  11 4 61 0.212 0.854 0.98592899 

chr16 29,652,499 30,202,499 550,000 HS  D 
16p11.2 
duplication  62 9 37 3.50E-07 7.01E-21 0.18698307 

chr17 2,363,250 2,923,250 560,000 MB  D 

17p13.3 
duplication 
(including 
PAFAH1B1) 8 1 1 0.0686 1.54E-05 0.26042791 

chr17 14,069,275 15,499,275 1,430,000 HS  D CMT1A  17 5 35 0.0691 0.0168 0.67636756 

chr17 34,815,887 36,205,887 1,390,000 HS  D 

17q12 
duplication 
(ACACA) 23 3 32 0.00147 0.00012 0.8855369 

chr22 19,020,000 20,290,000 1,270,000 HS  D 
22q11.2 
duplication  97 12 75 1.35E-11 1.05E-26 0.56918152 

chr3 195,715,603 197,355,603 1,640,000 HS  D 
3q29 
duplication 6 2 1 3.10E-01 3.18E-04 0.0533215 

chr1 168,733,376 173,733,377 5,000,001 MB E   0 0 1 1 1 1 

chr10 81,690,020 88,940,020 7,250,000 HSMB E   0 0 1 1 1 1 

chr2 50,146,496 51,256,496 1,110,000 MB E   0 0 1 1 1 1 

chr3 115,237,310 115,647,310 410,000 MB E   0 0 1 1 1 1 

chr1 145,288,643 145,628,643 340,000 HS  F None 56 11 0 2.37E-05 1.54E-40 4.04E-10 

chr1 146,573,376 147,393,376 820,000 HS  F 
1q21.1 
duplication  48 5 0 6.50E-07 7.55E-35 5.38E-05 

chr11 67,753,424 71,282,352 3,528,928 HS  F None  0 0 0 1 1 1 

chr12 65,073,733 68,643,733 3,570,000 MB  F None  0 0 0 1 1 1 
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chr15 74,012,947 78,132,945 4,119,998 HS  F None  0 0 0 1 1.00E+00 1 

chr16 28,772,499 29,112,499 340,000 HS  F None  29 8 0 0.0137 2.44E-21 1.48E-07 

chr17 57,655,218 58,075,218 420,000 HS  F None  0 0 0 1 1 1 

chr17 58,065,218 60,305,218 2,240,000 HS  F None  0 0 0 1.00E+00 1.00E+00 1 

chr2 57,746,496 61,736,496 3,990,000 HS  F None  0 0 0 1.00E+00 1.00E+00 1 

chr2 200,161,755 200,511,755 350,000 MB F   0 0 0 1 1 1 

chr3 87,237,310 87,557,310 320,000 MB F   0 0 0 1 1 1 

chr3 191,517,306 193,017,306 1,500,000 MB F   0 0 0 1.00E+00 1.00E+00 1 

chr4 80,780,976 83,280,976 2,500,000 MB F   0 0 0 1.00E+00 1.00E+00 1 

chr5 87,964,244 88,224,244 260,000 MB F   0 0 0 1.00E+00 1.00E+00 1 
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Table S3. The 69 previously published regions and the number of genotyping probes present within each genotyping array. 
Affymetrix Axiom is the array used by UK Biobank with the remaining 8 arrays used in the previous study 
 
CNV (HG19) Affy Axiom UK 

Biobank 

Affy 6 

SNP 

Affy 6 CN Illumina 

hh240k 

Illumina 

hh317k 

Illumina 

hh550k 

Illumina 

hh610k 

Quad 

Illumina 

hh650k 

Human 1.2m 

Duo Custom 

chr1:10001-10077413 3,578 2,734 2,494 849 1,093 1,685 2,224 2,154 4,511 

chr1:145288643-145628643 160 45 79 12 16 23 50 36 161 

chr1:146573376-147393376 263 300 275 116 84 167 212 229 425 

chr1:168733376-173733377 1,279 1,820 1,706 419 535 820 1,049 1,092 2,550 

chr2:50146496-51256496 222 460 419 138 176 287 315 356 469 

chr2:57746496-61736496 840 1,257 1,321 287 462 664 858 889 1,467 

chr2:59646496-63146496 745 956 1,118 196 387 528 663 665 1,303 

chr2:96726273-97676273 280 107 281 17 66 74 96 90 406 

chr2:100693568-108443568 1,800 2,723 2,589 673 860 1,353 1,756 1,808 3,268 

chr2:111383531-113093529 410 390 486 111 151 229 321 291 633 

chr2:200161755-200511755 39 89 102 17 18 24 34 41 94 

chr2:239705243-242471327 1,320 896 783 293 396 585 791 753 1,349 

chr3:9525000-11025000 661 579 444 177 222 367 420 439 835 

chr3:87237310-87557310 79 94 105 26 32 54 62 66 99 

chr3:115237310-115647310 156 148 131 35 63 90 97 116 175 

chr3:191517306-193017306 431 438 641 74 177 222 278 279 606 

chr3:195715603-197355603 591 354 503 58 209 240 299 288 741 

chr4:1870202-2010202 60 10 41 5 5 7 12 10 61 

chr4:80780976-83280976 544 737 777 170 213 321 421 476 740 

chr5:10000-11727000 4,396 5,848 4,050 1,549 1,769 2,905 3,463 3,863 6,086 

chr5:87964244-88224244 44 49 86 18 24 40 45 48 78 

chr5:175717394-177057394 538 255 393 45 124 150 196 197 738 

chr6:100813279-100943279 66 46 47 16 16 29 32 37 54 

chr7:66482565-72272064 1,305 1,829 1,897 434 585 902 1,108 1,190 1,799 

chr7:72742064-74142064 336 143 366 38 76 98 156 125 596 

chr7:74962064-76662064 380 236 486 51 93 115 232 158 563 

chr8:8092590-11892591 1,563 2,118 1,224 592 652 1,098 1,229 1,444 2,062 

chr9:32010000-39010000 2,045 2,262 2,257 539 848 1,202 1,512 1,598 2,942 

chr9:137860179-141080179 1,670 683 751 262 326 497 682 637 1,813 

chr10:49389994-52389994 752 1,043 809 284 317 519 648 703 1,147 



148 
 

chr10:81690020-88940020 1,695 2,785 2,498 741 842 1,396 1,672 1,881 3,109 

chr10:81960020-88800020 1,568 2,675 2,390 716 801 1,339 1,581 1,802 2,849 

chr11:43983424-46063424 712 924 627 272 302 520 589 687 976 

chr11:67753424-71282352 1,136 1,070 993 299 398 589 739 799 1,530 

chr12:6469739-6809739 159 73 89 21 38 51 69 58 218 

chr12:65073733-68643733 848 1,365 1,140 366 406 663 788 939 1,563 

chr13:20812000-21012000 94 117 62 48 42 78 87 98 121 

chr15:22798636-23088559 137 84 144 56 50 94 112 107 155 

chr15:24818907-28426405 1,223 1,410 1,325 497 469 854 999 1,123 1,731 

chr15:31132708-32482708 424 471 538 123 155 240 298 310 490 

chr15:72962947-76012945 870 587 966 161 252 367 510 470 1,289 

chr15:72962947-75532947 729 560 855 153 236 345 430 443 1,090 

chr15:74012947-75532947 510 317 509 104 147 224 277 285 799 

chr15:74012947-76012945 651 344 620 112 163 246 357 312 998 

chr15:74012947-78132945 1,045 778 1,283 218 316 465 665 610 1,632 

chr15:74012947-75532947 510 317 509 104 147 224 277 285 799 

chr15:83182945-84738996 343 332 588 95 160 230 268 280 579 

chr15:85138996-85698996 231 151 183 70 71 129 173 146 368 

chr15:99362477-102521392 1,335 1,304 1,053 496 402 786 1,010 1,013 1,636 

chr16:3779999-3859999 43 29 27 7 9 12 16 22 33 

chr16:15502499-16292499 339 250 275 85 103 163 261 211 698 

chr16:21352499-29442499 2,418 2,277 2,593 609 804 1,247 1,671 1,600 3,231 

chr16:21612499-29042499 2,352 2,216 2,463 589 791 1,228 1,583 1,567 3,141 

chr16:21942499-22462499 168 60 198 17 31 38 51 55 175 

chr16:28772499-29112499 100 22 60 7 14 17 61 21 134 

chr16:29652499-30202499 174 56 136 16 32 39 54 50 303 

chr17:50000-2593250 1,202 543 784 207 340 488 653 571 1,333 

chr17:553250-1353250 461 184 213 85 133 193 265 228 408 

chr17:2363250-2923250 191 137 151 59 76 115 144 144 272 

chr17:14069275-15499275 528 679 501 238 247 424 485 545 767 

chr17:16709275-20479408 978 653 1,190 168 237 331 621 463 1,375 

chr17:29165874-30215887 365 204 317 50 92 124 169 166 449 

chr17:34815887-36205887 548 417 566 135 132 236 269 295 683 

chr17:43704217-44184217 401 181 174 31 43 61 74 81 178 

chr17:57655218-58075218 130 47 128 14 18 26 38 34 186 

chr17:58065218-60305218 446 362 781 109 131 190 323 292 831 
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chr22:19020000-20290000 508 390 453 90 225 271 328 337 847 

chr22:21910000-23650000 488 542 824 408 198 415 536 552 1,058 

chr22:51113134-51173134 51 8 32 3 7 8 11 9 26 

Total 52,664 53,570 54,899 15,080 19,055 29,761 37,775 38,969 75,831 
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Table S4: 26 selected phenotypes. The four italicised phenotypes are the surrogate 
measures of developmental delay 
 

Trait 

Height 

Income 

Body Mass Index 

Fluid Intelligence Test Results 

Age Full-time education completed 

Body fat mass 

Bone Mineral Density 

Basal Metabolic Rate 

Birthweight 

Systolic Blood Pressure 

Diastolic Blood Pressure 

Forced Expiratory Volume 

Forced vital capacity 

Waist-hip-ratio – BMI prediction 

Government health advice not followed 

Max hand grip 

Happiness 

Hearing Left 

Hearing Right 

Menarche Age 

Mental Health 

N Depression Episodes 

Pairs matching test results 

Reaction Time Test Results 

Townsend Deprivation Index 

Waist Circumference 
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Table S5: All nominal association signals between deletions with ≥ 10 subjects and 26 phenotypes. Full phenotype names can be 

found in Table S4 

Deletion Phenotype Normalised Beta P 95% Conf. Interval 95% Conf. Interval 

chr16:29652499-30202499 WC 1.314842 7.60E-12 0.9384411 1.6912 

chr16:29652499-30202499 TDI 1.302269 1.20E-11 0.9259142 1.6786 

chr16:29652499-30202499 BF 1.340512 4.80E-11 0.9410151 1.74 

chr16:29652499-30202499 FVC -1.492716 5.40E-11 -1.938696 -1.0467 

chr16:29652499-30202499 Height -1.202022 4.10E-10 -1.578819 -0.82522 

chr16:29652499-30202499 BMI 1.195622 4.90E-10 0.8189919 1.5722 

chr15:22798636-23088559 Fluid Intelligence -0.5247701 1.10E-09 -0.6936044 -0.35593 

chr16:29652499-30202499 FEV1 -1.332914 3.90E-09 -1.776406 -0.88942 

chr16:29652499-30202499 Hand Grip -1.091212 2.60E-08 -1.47556 -0.70686 

chr16:29652499-30202499 Income -1.241913 2.60E-08 -1.679243 -0.80458 

chr15:22798636-23088559 Height -0.2391234 2.80E-07 -0.330382 -0.14786 

chr15:22798636-23088559 Reaction Time 0.2226718 1.90E-06 0.1310275 0.31431 

chr15:22798636-23088559 Income -0.2117539 2.30E-05 -0.3098496 -0.11365 

chr15:22798636-23088559 BMD 0.1910984 5.00E-05 0.0987592 0.28343 

chr16:21942499-22462499 FVC -0.4870333 6.70E-05 -0.7263944 -0.24767 

chr15:22798636-23088559 Age Edu -0.2032467 9.00E-05 -0.3049999 -0.10149 

chr15:22798636-23088559 Pairs Test 0.1749629 1.70E-04 0.0836138 0.26631 

chr15:22798636-23088559 BMR -0.1764364 1.90E-04 -0.269095 -0.08377 

chr16:21942499-22462499 FEV1 -0.4527552 1.90E-04 -0.6907745 -0.21473 

chr16:29652499-30202499 Gov Health 0.8609771 8.30E-04 0.3563209 1.3656 

chr3:87237310-87557310 Height -0.8079058 8.50E-04 -1.28279 -0.33302 

chr15:31132708-32482708 TDI 1.048135 8.90E-04 0.4296853 1.6665 

chr16:15502499-16292499 Income -0.5819057 9.70E-04 -0.9276954 -0.23611 

chr16:21942499-22462499 Income -0.4219683 1.40E-03 -0.6810861 -0.16285 

chr16:21942499-22462499 SBP 0.3683188 1.50E-03 0.1405262 0.59611 

chr16:29652499-30202499 Menarche -0.9780877 2.00E-03 -1.597822 -0.35835 

chr16:21942499-22462499 Hand Grip -0.3521346 2.60E-03 -0.5815745 -0.12269 

chr15:22798636-23088559 TDI 0.1392559 2.80E-03 0.047898 0.23061 

chr15:22798636-23088559 Mental Health 0.1463013 3.00E-03 0.0497224 0.24288 

chr2:111383531-113093529 Income -0.8223152 4.30E-03 -1.386939 -0.25769 

chr16:21942499-22462499 Reaction Time 0.3410362 4.30E-03 0.1067333 0.57533 

chr16:21942499-22462499 DBP 0.3251406 5.50E-03 0.0957543 0.55452 

chr15:31132708-32482708 FVC -0.9098203 5.90E-03 -1.557865 -0.26177 

chr15:31132708-32482708 Menarche 1.11643 6.20E-03 0.3164063 1.9164 

chr16:21942499-22462499 BF 0.3175139 7.00E-03 0.0867841 0.54824 
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chr15:31132708-32482708 Fluid Intelligence -1.186379 8.00E-03 -2.062518 -0.31023 

chr16:29652499-30202499 Hearing Left 1.07057 8.70E-03 0.2705644 1.8705 

chr10:49389994-52389994 Reaction Time 0.5792585 9.60E-03 0.1410057 1.0175 

chr2:111383531-113093529 BMD -0.6985362 1.20E-02 -1.242029 -0.15504 

chr16:29652499-30202499 Hearing Right 1.018385 1.30E-02 0.2184294 1.818 

chr17:14069275-15499275 Hand Grip -0.2998442 1.60E-02 -0.5448808 -0.0548 

chr16:21942499-22462499 Height -0.2754811 1.80E-02 -0.5031535 -0.0478 

chr16:29652499-30202499 Reaction Time 0.4737537 1.80E-02 0.0817516 0.86575 

chr15:31132708-32482708 Reaction Time 0.747439 1.80E-02 0.1276787 1.3671 

chr2:111383531-113093529 TDI 0.6112118 2.20E-02 0.0885046 1.1339 

chr13:20812000-21012000 BMD 0.2235422 2.30E-02 0.0303839 0.4167 

chr15:22798636-23088559 Gov Health -0.1259984 2.30E-02 -0.2346025 -0.01739 

chr16:21942499-22462499 Fluid Intelligence -0.5316567 2.80E-02 -1.006903 -0.05641 

chr15:22798636-23088559 Hand Grip -0.1027744 2.80E-02 -0.1943266 -0.01122 

chr15:31132708-32482708 FEV1 -0.7200331 2.90E-02 -1.364448 -0.07561 

chr15:31132708-32482708 Hearing Right 0.9676511 3.00E-02 0.0913444 1.8439 

chr15:31132708-32482708 Income -0.8197365 3.00E-02 -1.558992 -0.08048 

chr15:31132708-32482708 Height -0.6817934 3.10E-02 -1.300968 -0.06261 

chr16:21942499-22462499 BMR -0.2490802 3.50E-02 -0.480107 -0.01805 

chr2:111383531-113093529 Fluid Intelligence -0.7961965 3.50E-02 -1.536728 -0.05566 

chr15:31132708-32482708 WC 0.6659698 3.50E-02 0.0474249 1.2845 

chr16:15502499-16292499 SBP -0.3266635 3.60E-02 -0.6326625 -0.02066 

chr15:31132708-32482708 BMI 0.6539486 3.80E-02 0.0350476 1.272 

chr16:15502499-16292499 DBP -0.3225518 3.90E-02 -0.6286011 -0.0165 

chr16:15502499-16292499 Menarche 0.4218677 4.30E-02 0.0131739 0.83056 
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Table S6: All nominal association signals between duplications with ≥ 10 subjects 
and 26 phenotypes. Full phenotype names can be found in Table S4 
 

Duplication Phenotype 
Normalised 
Beta P 

95% Conf. 
Interval 

95% Conf. 
Interval 

chr17:14069275-
15499275 Hand Grip -1.035867 1.50E-09 -1.371969 -0.69976 

chr16:15502499-
16292499 FEV1 -0.3314618 5.30E-07 -0.4610408 -0.20188 

chr22:19020000-
20290000 Reaction Time 0.581565 6.80E-07 0.3521403 0.81098 

chr15:31132708-
32482708 TDI 0.5338413 1.50E-06 0.316488 0.75119 

chr15:31132708-
32482708 Income -0.5977845 1.70E-06 -0.8423144 -0.35325 

chr22:19020000-
20290000 Income -0.5090041 5.90E-05 -0.7574527 -0.26055 

chr16:15502499-
16292499 Menarche -0.3552882 5.90E-05 -0.5286583 -0.18191 

chr16:29652499-
30202499 BMD -0.6533272 7.10E-05 -0.9755044 -0.331 

chr16:29652499-
30202499 Reaction Time 0.6157008 1.80E-04 0.2934739 0.93792 

chr15:31132708-
32482708 BMD -0.4022634 3.20E-04 -0.6214065 -0.18312 

chr2:111383531-
113093529 Reaction Time 0.6998756 3.60E-04 0.3155041 1.0842 

chr15:22798636-
23088559 Menarche -0.2089679 3.80E-04 -0.3243045 -0.09363 

chr2:111383531-
113093529 BMR -0.7045439 4.30E-04 -1.096518 -0.31257 

chr22:19020000-
20290000 Pairs Test 0.4030418 4.80E-04 0.176685 0.62939 

chr22:19020000-
20290000 TDI 0.3986387 5.40E-04 0.1727537 0.62452 

chr2:111383531-
113093529 FVC -0.7148715 5.50E-04 -1.120269 -0.30947 

chr16:15502499-
16292499 FVC -0.2207261 9.00E-04 -0.3510454 -0.0904 

chr22:19020000-
20290000 FVC -0.3928109 1.20E-03 -0.6303855 -0.15523 

chr16:15502499-
16292499 BF 0.2060179 1.30E-03 0.0803321 0.3317 

chr16:15502499-
16292499 Income -0.2235328 1.30E-03 -0.3596054 -0.08746 

chr16:29652499-
30202499 

Fluid 
Intelligence -0.9611624 2.40E-03 -1.580716 -0.3416 

chr16:15502499-
16292499 

Fluid 
Intelligence -0.3312719 3.10E-03 -0.5505222 -0.11202 

chr22:19020000-
20290000 WC 0.3385275 3.30E-03 0.1126106 0.56444 

chr22:19020000-
20290000 

Fluid 
Intelligence -0.6444623 6.20E-03 -1.106305 -0.18261 

chr16:15502499-
16292499 TDI 0.1724727 6.50E-03 0.0481577 0.29678 

chr16:15502499-
16292499 WC 0.1727811 6.60E-03 0.0481992 0.29736 

chr22:19020000-
20290000 BMI 0.3149141 6.70E-03 0.0873446 0.54248 

chr16:29652499-
30202499 Height 0.4420509 7.10E-03 0.120121 0.76398 

chr16:21942499-
22462499 BF -0.3494294 7.70E-03 -0.6064873 -0.09237 

chr2:111383531- WC -0.5212194 7.70E-03 -0.9048443 -0.13759 
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113093529 

chr17:14069275-
15499275 BMD -0.4705459 7.80E-03 -0.8169804 -0.12411 

chr22:19020000-
20290000 BF 0.3094642 8.10E-03 0.0803194 0.5386 

chr17:14069275-
15499275 TDI 0.445126 8.30E-03 0.1145118 0.77574 

chr16:29652499-
30202499 Menarche 0.6042885 8.40E-03 0.1546583 1.0539 

chr16:29652499-
30202499 Mental Health 0.4557851 8.80E-03 0.1147116 0.79685 

chr15:31132708-
32482708 Menarche -0.4672409 9.30E-03 -0.8192764 -0.1152 

chr15:22798636-
23088559 Pairs Test 0.1075248 9.40E-03 0.0263705 0.18867 

chr16:15502499-
16292499 BMD 0.1611572 1.10E-02 0.0363456 0.28596 

chr2:96726273-
97676273 Menarche 1.144153 1.10E-02 0.2677756 2.02 

chr17:34815887-
36205887 

Fluid 
Intelligence -0.924841 1.40E-02 -1.665358 -0.18432 

chr17:34815887-
36205887 Hearing Right 0.8635691 1.50E-02 0.170747 1.5563 

chr15:22798636-
23088559 TDI 0.10064 1.50E-02 0.0195857 0.18169 

chr2:111383531-
113093529 BMI -0.4733959 1.60E-02 -0.8572435 -0.08954 

chr2:111383531-
113093529 Height -0.4740238 1.60E-02 -0.8580413 -0.09 

chr17:14069275-
15499275 DBP -0.4040618 1.70E-02 -0.7352916 -0.0728 

chr17:34815887-
36205887 Income -0.4976708 1.70E-02 -0.9055277 -0.08981 

chr2:96726273-
97676273 TDI -0.6706185 2.00E-02 -1.235199 -0.10603 

chr16:29652499-
30202499 N Dep Ep 1.032854 2.10E-02 0.1566896 1.909 

chr2:96726273-
97676273 BMI -0.6624781 2.20E-02 -1.227456 -0.0975 

chr15:31132708-
32482708 Pairs Test 0.2508288 2.40E-02 0.033005 0.46865 

chr15:31132708-
32482708 

Fluid 
Intelligence -0.4386381 2.50E-02 -0.8229652 -0.05431 

chr16:15502499-
16292499 BMI 0.1401646 2.70E-02 0.0157605 0.26456 

chr15:31132708-
32482708 WHR-BMI -0.2455209 2.70E-02 -0.4633482 -0.02769 

chr16:15502499-
16292499 BW -0.1857166 2.80E-02 -0.3509261 -0.0205 

chr16:29652499-
30202499 TDI 0.3579006 2.90E-02 0.0363358 0.67946 

chr16:29652499-
30202499 Happiness 0.6836079 3.10E-02 0.0639338 1.3032 

chr16:29652499-
30202499 Income -0.3981735 3.50E-02 -0.7678401 -0.0285 

chr16:29652499-
30202499 SBP -0.3470937 3.50E-02 -0.6692032 -0.02498 

chr22:19020000-
20290000 Hand Grip Max -0.2411037 3.70E-02 -0.4674696 -0.01473 

chr16:21942499-
22462499 Reaction Time 0.2634418 4.00E-02 0.0124536 0.51442 

chr16:21942499-
22462499 BMI -0.2633772 4.10E-02 -0.5160948 -0.01065 

chr16:15502499-
16292499 Pairs Test 0.1298384 4.10E-02 0.005262 0.25441 
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chr16:29652499-
30202499 BF -0.3381259 4.20E-02 -0.6643861 -0.01186 

chr15:31132708-
32482708 Hearing Left 0.4069673 4.20E-02 0.0149358 0.79899 

chr22:19020000-
20290000 Height -0.2351322 4.20E-02 -0.4612833 -0.0089 

chr16:15502499-
16292499 SBP 0.1284589 4.40E-02 0.0036805 0.25323 

chr16:29652499-
30202499 BMI -0.3271512 4.60E-02 -0.6489432 -0.00535 

chr17:14069275-
15499275 Income -0.4160416 4.60E-02 -0.8239055 -0.00817 

chr15:31132708-
32482708 SBP 0.2216817 4.60E-02 0.0039431 0.43942 

chr17:14069275-
15499275 BMR -0.3567136 4.70E-02 -0.7087388 -0.00468 

chr17:14069275-
15499275 SBP -0.3344085 4.80E-02 -0.6655865 -0.00323 

chr22:19020000-
20290000 Mental Health 0.2340828 4.90E-02 0.0015136 0.4666 
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Table S7. Results of CNV visual inspection 

Locus Deletion score Dup score 

chr1:145288643-145628643 Second round – bad Second round - bad 

chr1:146573376-147393376 Good Second round - bad 

chr2:96726273-97676273 Second round – good good 

chr2:111383531-113093529 Good good 

chr3:87237310-87557310 Good bad 

chr3:191517306-193017306 Good Second round - bad 

chr3:195715603-197355603 Good good 

chr4:1870202-2010202 Bad bad 

chr5:175717394-177057394 Bad bad 

chr6:100813279-100943279 Bad bad 

chr7:72742064-74142064 Good good 

chr7:74962064-76662064 Good good 

chr8:8092590-11892591 Bad good 

chr9:137860179-141080179 Bad bad 

chr10:49389994-52389994 Good good 

chr10:81690020-88940020 Good good 

chr10:81960020-88800020 Good good 

chr12:6469739-6809739 Bad bad 

chr13:20812000-21012000 Good bad 

chr15:22798636-23088559 Good good 

chr15:31132708-32482708 Good good 

chr15:85138996-85698996 Second round – good good 

chr16:3779999-3859999 Good bad 

chr16:15502499-16292499 Good good 

chr16:21942499-22462499 Good good 

chr16:28772499-29112499 Second round – good Second round - bad 

chr16:29652499-30202499 Second round – good good 

chr17:50000-2593250 Bad bad 

chr17:553250-1353250 Second round – good Second round - bad 

chr17:2363250-2923250 Bad good 

chr17:14069275-15499275 Good good 

chr17:16709275-20479408 Bad bad 

chr17:29165874-30215887 Second round – good Second round - good 

chr17:34815887-36205887 Good good 

chr17:43704217-44184217 Bad bad 

chr17:57655218-58075218 Bad bad 

chr22:19020000-20290000 Good good 

chr22:21910000-23650000 Good good 

chr22:51113134-51173134 Bad bad 
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CHAPTER 5 

 
 

A Genome-wide association study of large genetic deletions and duplications 

in 120,286 individuals 
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5.1 Abstract 

Since the first Genome-wide Association Studies (GWAS), Copy Number Variation 

(CNV) has given researchers an early glimpse into the polygenicity of rare genetic 

variation. In the pre next-generation sequencing era, genome-wide association 

studies were limited to being able to detect common SNPs (>5% frequency in the 

population) but CNVs could be detected at singleton resolution. The sample size of 

GWAS has been limited however, and many of the CNVs that have been implicated 

in complex traits and disease risk have been too rare to study We detected CNVs 

genome-wide in a sample of 120,286 individuals from the UK Biobank where we had 

power to detect these rare events, and used novel approaches to test their 

association with 204 complex traits. We found two deletions and two duplications out 

of a total of 2,258 detected CNVs to be both genome-wide and nominally associated 

with many traits including novel signals associated with sedentary lifestyle 

phenotypes such as television watching. These results suggest that there are copy 

number variants associated with many different complex traits in the general 

population. More work is now needed to classify these variants more accurately in 

order to detect more novel associations, and even larger sample sizes will allow the 

penetrance of these CNVs to be more fully understood with regards to complex traits 

and common disease risk.  
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5.2 Introduction 

Large duplications and deletions have been implicated as causal to severe 

developmental delay, mental disorders, obesity, and other congenital disorders [1-4]. 

These so called pathogenic duplications and deletions are highly pleiotropic with 

variable penetrance [2] and have also been detected in subjects without severe 

phenotypes. It is also now known that there are many putative benign CNVs in the 

population [5] and it has become a challenge within the field to pinpoint which CNVs 

are pathogenic. Large CNVs can delete or duplicate many genes in one single event, 

but it is not clear how they act upon the gene to alter the phenotype. There are 

several potential mechanisms that are thought to mediate the effect large deletions 

and duplications on phenotypes, for example: copy number correlating with gene 

dosage effects and the combination of an encompassing deletion and loss-of-

function variant deleting both copies of a gene [6,7]. It has also been hypothesised 

that as deletions and duplications decrease and increase gene dosage respectively, 

for example, deletions and duplications at 16p11.2 are implicated as exhibiting a 

‘mirrored’ effect where a deletion at this locus is associated with increased BMI and 

a duplication is associated with decreased BMI [3]. There are well-established 

methods to detect copy number variation (CNVs) in the population, but these CNVs 

tend to be extremely rare and can have a high false discovery rate. Studies such as 

the UK Biobank allow us to exploit samples sizes large enough to adequately 

characterise and associate these large CNVs with continuous phenotypes in the 

general population. 
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We investigated the genome-wide effect of large (≥50Kb) deletions and duplications 

in the UK Biobank by testing their genome-wide association with 204 continuous 

phenotypes. We called CNVs genome-wide across 120,286 UK Biobank individuals 

using an established method and then utilised a CNV scoring model to weight CNVs 

according to their likelihood of being a true positive and tested their association with 

a range of complex traits. 
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5.3 Materials and Methods 

 

5.3.1 Probe intensity normalisation and CNV calling 

We normalised probe intensity data using an in-house pipeline (refer to Chapter 4, 

sections 4.3.2 and 4.3.3). CNVs were then cluster-normalised using PennCNV-Affy 

and PennCNV HMM caller (refer to Chapter 4, sections 4.3.4). 

 

5.3.2 CNV scoring 

CNV calls were then scored using PennCNV-pipeline [8]. Each CNV was assigned a 

real number score of between -1 and 1, with a value of 0 indicating a 100% 

probability of the CNV being a false positive (Box S1). A negative score represents a 

deletion call, and a positive score indicates duplication (Fig. S1A).  

 

5.3.3 CNV selection for association analyses 

Calls were grouped by 90% reciprocal intersection to combine multi-breakpoint 

CNVs and different probesets in different batches. For each CNV call, if at least 90% 

of both of the CNV calls intersect with each other, they were classified as being the 

same CNV.  

 

CNVs were then stratified into deletions and duplications. CNVs with a negative 

score were labelled as deletions and positive scores were labelled as duplications. 

The negative deletion values were then converted to positive values to allow for 
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consistent directionality between deletions and duplications when associating with 

traits. 

 

After CNV classification and stratification into duplication and deletions, variants 

were then only used for inclusion in association analyses if they were present in ≥ 10 

individuals with a score of ≥ 0.7 to ensure a 95% statistical power to detect 

phenotype associations with an effect size (Beta) of ≥ 0.8 (Table S8). 

 

5.3.4 Phenotype selection and normalisation 

We selected 204 continuous phenotypes in the UK Biobank (Table S1). The 

phenotypes were selected as indicators of overall health, including diet, physical 

activity socioeconomic status and anthropometric traits. These phenotypes were all 

residualised correcting for age, sex, recruitment centre. Population stratification was 

accounted for by correcting for the first five principal components of the population. 

The phenotypes were then inverse normal quantile transformed to account for 

associations driven by outliers.   

 

5.3.5 Association analyses 

We tested all 204 phenotypes against 798 scored deletions and 1,520 duplications. 

Linear regression in STATA version 13 was used to test for association between 

each these deletions and against inverse quantile normalised continuous traits. 
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5.3.6 P value thresholds 

We calculated a Bonferroni significance threshold for deletions and duplications 

separately to account for multiple testing. A total of 161,976 tests were carried out for 

deletions giving a significance threshold of 3.09 x 10-7, and a total of 329,840 tests 

were carried out for duplications giving a significance threshold of 1.67 x 10-7. 
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5.4 Results 

 

5.4.1 Summary of variants tested 

There were 3,029,650 deletion and duplication events detected overall with an event 

being defined as a single CNV detected in a single individual. The majority of quality 

scores in these events were less than 0.2 (Fig. S1A).  After merging CNVs with a 

90% reciprocal overlap and selecting only CNVs present in ≥ 10 individuals, the 

number of events was filtered to 467,748 (197,006 deletions and 270,742 

duplications). After this filtering procedure, many of the events that had a quality 

score of less than 0.2 were removed (Fig. S1B). A total of 794 deletions and 1,463 

duplication events were carried forward for testing (Table S2A and Table S2B).   

 

5.4.2 Significant associations 

We found 2 deletions and 2 duplications that were associated with ≥ 1 phenotype at 

genome-wide significance.   

 

5.4.2.1 The 16p11.2 deletion is genome-wide significantly associated with 

18 traits 

This deletion is published as being associated with multiple traits [4,9] and has a 

mean quality score of 0.87 across 40 individuals (Table S2A). Here we confirm this 

pleiotropy, or influence on multiple potentially unrelated traits by observing its 

significance in 18 traits with P values ranging from 8.5 x 10-8 to 9.7 x 10-14 (Table 1) 

and its nominal association with a further 65 traits (Table S4). The deletion is 
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significantly associated with known published traits including increased fat mass (leg, 

trunk, body and arm), anthropometric traits (decreased height, waist-hip ratio and 

higher BMI), socioeconomic status (increased Townsend Deprivation Index, 

decreased Income and Number of Vehicles) and lung function (decreased Forced 

Expiratory Volume, Peak Expiratory Flow and Forced Vital Capacity). 

 

5.4.2.2 The 16p12.1 deletion is genome-wide significant against 

increased hours of television watching 

The 16p12.1 deletion is present in 78 individuals with a mean quality score of 0.92 is 

significantly associated with increased television watching time (P = 4.3 x 10-9) 

(Table 1, Fig. 1) and also nominally associated with lung function phenotypes, 

sedentary lifestyle, decreased fluid intelligence and longevity (Table S3).  

 

5.4.2.3 The 17p12 CMT1A duplication is significantly associated with 

hand grip strength 

Duplications at this locus are known to be associated with Charcot-Marie disease. 

The duplication encompasses the PMP22 gene which encodes a myelin protein 

responsible for insulating axons in the peripheral nervous system [10]. The 

duplication is present in 33 UK Biobank individuals with a mean quality score of 0.99 

(Table 2, Fig. 2). The duplication is associated with maximum hand grip strength (P 

= 1.4 x 10-9), and hand grip strength corrected for height (P = 3.6 x 10-8). 
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5.4.2.4 The 15q13.2-13.3 duplication is significantly associated with 

household ownership of fewer vehicles  

The 15q13.2-13.3 duplication is associated with a decreased vehicle ownership (P = 

2 x 10-8) as surrogate measure of socioeconomic status (Table 2, Fig. 3). The 

duplication is present in 60 individuals and is nominally associated with a further 35 

traits including a higher Townsend Deprivation Index and lower income (Table S5). 

The duplication is also associated with an increased red blood cell distribution width 

(P = 4.7 x 10-7) and decreased bone mineral density (P = 3.2 x 10-5). 



167 
 

Table 1. Deletions found to be genome-wide significant when tested against 

continuous traits. Full phenotype names can be found in Table S1 

 
 
 
 

Table 2. Duplications found to be genome-wide significant when tested against 

continuous traits. Full phenotype names can be found in Table S1 

 
 

Deletion Trait SIN Beta P low 95% CI high 95% CI 

chr16:29596230-30190891 LFP 1.612803 9.70E-14 1.188223 2.0373 
chr16:29596230-30190891 WC 1.448171 3.10E-13 1.058776 1.8375 
chr16:29596230-30190891 BF 1.513584 9.00E-13 1.098471 1.9286 
chr16:29596230-30190891 BMI 1.336544 1.80E-11 0.9469122 1.7261 
chr16:29596230-30190891 AFP 1.416062 2.30E-11 1.000919 1.8312 
chr16:29596230-30190891 FVC -1.553319 2.30E-11 -2.008664 -1.0979 
chr16:29596230-30190891 BMI Rural 1.323336 2.80E-11 0.9337429 1.7129 
chr16:29596230-30190891 TDI 1.316318 3.50E-11 0.9269578 1.7056 
chr16:21946524-22440319 TV Watching 0.8585542 4.30E-11 0.6033926 1.1137 
chr16:29596230-30190891 WHR 1.265148 1.90E-10 0.8760565 1.6542 
chr16:29596230-30190891 N Vehicles -1.339631 2.10E-10 -1.75262 -0.92664 
chr16:29596230-30190891 Height -1.255512 2.80E-10 -1.645325 -0.86569 
chr16:29596230-30190891 Height Norm -1.685404 5.80E-10 -2.218496 -1.1523 
chr16:29596230-30190891 TFP 1.306288 7.00E-10 0.8910309 1.7215 
chr16:29596230-30190891 FEV1 -1.399517 1.40E-09 -1.852321 -0.94671 
chr16:29596230-30190891 BF Mass 1.233629 5.80E-09 0.8183725 1.6488 
chr16:29596230-30190891 Hand Grip Max -1.135978 2.20E-08 -1.534138 -0.73781 
chr16:29596230-30190891 PEF -1.296347 3.00E-08 -1.75487 -0.83782 
chr16:29596230-30190891 Income -1.260254 8.50E-08 -1.721299 -0.7992 

Duplication Trait SIN Beta P low 95% CI high 95% CI 

chr17:14047617-15483611 Hand Grip Max -1.09673 1.40E-09 -1.451734 -0.74172 
chr15:30912719-32516949 N Vehicles -0.7934671 2.00E-08 -1.070443 -0.51649 
chr17:14047617-15483611 Ht Hand Grip -1.032203 3.60E-08 -1.399472 -0.66493 
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Figure 1. Quantile-quantile plot of genome wide deletions associated with TV 

watching with strongest signal at 16p12.1 
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Figure 2. Quantile-quantile plot of P values for genome-wide duplication association 

with maximum hand grip strength, the 17p12 CMT1A duplication is the strongest 

signal 
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Figure 3. Quantile-quantile plot of P values for genome-wide duplication association 

with number of vehicles owned, a surrogate measure of social deprivation with 

15q13.2-13.3 duplication as the strongest signal 
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Figure 4. Known GENCODE genes within the 16p12.1 TV watching associated 

deletion 
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5.5 Discussion 

 

5.5.1 Four CNVs are significantly associated with continuous traits in 120,286 

UK Biobank individuals 

We detected 2 deletions and 2 duplications in the UK Biobank that were significantly 

associated with multiple traits. All four of these CNVs have been previously 

characterised as being part of a morbidity map of developmental delay [2,4]. The 

deletion at 16p11.2 is negatively genome-wide significantly associated with multiple 

traits, whereas the 16p12.1 deletion, 17p12 duplication and the 15q13.2-13.3 are all 

genome-wide significant for single traits, but nominally associated with a number of 

related traits. This supports published evidence [11] that both deletions and 

duplications are pleiotropic, albeit rare in general populations at varying levels of 

penetrance. Although these CNVs are pleotropic, they tend to be associated with 

specific phenotype groups, which would be expected when several genes are altered 

in dosage. We discuss this further in the subsections below. 

 

5.5.1.1 The 16p11.2 deletion remains highly pleiotropic  

The 16p11.2 deletion is the most highly significant variant in this study. Both 

deletions and duplications at this locus have been associated with many traits 

including cognitive disorders [2,4] and BMI [9]. Specifically, these studies have 

indicated that the deletions and duplications have separate effects in phenotypes, for 

example 16p11.2 duplications have been associated with schizophrenia and 

deletions associated with Autism. Published findings have also indicated a decrease 

in BMI at this locus, potentially mirroring the effects of the deletion on BMI [3]. We 
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detected 33 duplications at this locus in the UK Biobank (Table S2A) but found no 

association any traits, although we did detect 46 nominal associations (Table S6). 

The nominal associations for duplications at this locus showed a decreased bone 

mineral density, negative effect on mental health, and a decreased leg fat 

percentage, and an increase in height. No association with BMI was observed. 

These results show that deletions are likely to have an effect on increased BMI and 

related traits, whereas the duplication exhibits a more subtle link to diet and mental 

health related traits that could influence BMI in certain cases, but not in this UK 

Biobank cohort. A larger sample set is required to further ascertain the role of this 

duplication in BMI and to fully compare its effects to the deletion. 

 

5.5.1.2 The 16p12.1 deletion is significantly associated with increased 

sedentary time 

The 16p12.1 deletion is genome-wide significantly associated with television 

watching time and nominally associated with traits associated with decreased 

cognitive function, decreased lung function and increased sedentary time (Table 

S3). The deletion intersects with approximately 7 genes including UQCRC2 (Fig. 4). 

Deleterious UQCRC2 variants are present in individuals with mitochondrial complex 

III deficiency nuclear type 5 [12]. Individuals with this complex have variable 

symptoms including severe metabolic acidosis associated with hyperammonemia 

(excess of ammonia in the blood), hypoglycaemia, tachypnea (rapid breathing) and 

mild developmental delay. Previous publications have associated deletions in this 

region with childhood developmental delay and also neuropsychiatric phenotypes 

[13] which would fit with increased less severe phenotypes associated with 
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decreased physical activity, lung function and cognitive function. Further replication 

would be required in other large control populations to further characterise the 

prevalence and penetrance of the effect of this deletion on these phenotypes in the 

general population. 

 

5.5.1.3 The 17p12 CMT1A duplication is associated with traits surrogate 

to neuropathy 

Thirty-three UK Biobank individuals have a duplication known to have an association 

with Charcot-Marie-Tooth disease type 1A (CMT1A) and hereditary neuropathy with 

liability to pressure palsy (HNPP) [14,15]. The duplication is genome-wide 

associated with a decreased hand grip strength and is also nominally associated 

with an increased number of falls and a decreased bone mineral density (BMD) 

(Table S7). These are surrogate traits of individuals with CMT1A and HNPP with a 

duplication encompassing the PMP22 gene and are characterised by decreased 

muscle strength and bone mineral density. A follow up of diagnoses and/or access to 

medical records for each of these individuals would be required to ascertain if these 

findings are all syndromic of CMT1A or HNPP or if there is a prevalence in the 

general population for individuals with the duplication that exhibit a similar but less 

severe phenotype. 
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5.5.1.4 The 15q13.2-13.3 duplication is associated with decreased socio-

economic status through household ownership of fewer vehicles 

The duplication has been associated with various rare disorders including 

developmental delay and epilepsy [16]. An insufficient number of individuals carried 

out the cognitive ability test (fluid intelligence) to look for association between this 

duplication and cognitive function. We did however find an association present with 

ownership of fewer vehicles and other measures of socioeconomic status such as 

higher Townsend Deprivation Index and lower income, potential population-level 

surrogate measures of cognitive impairment. The duplication is nominally associated 

with a total of 69 traits (Table S5) including increased red blood cell distribution width 

and decreased bone mineral density, indicators of poor health/diet and increased 

mental health problems. Further phenotypic information would be required to further 

understand how these findings relate to the more severe published diagnoses 

exhibited by this duplication. 

 

5.5.2 Limitations of this study 

We have shown that it is possible to accurately characterise and score large (≥50Kb) 

biallellic heterozygous copy number variants and associate them with complex traits 

in the general population, however, few novel CNVs were detected in this study. 

There are three possible reasons, breakpoint heterogeneity, sample size and 

detection technology.  
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5.5.2.1 Breakpoint heterogeneity 

Deletions and duplications with different breakpoints may represent the same 

genetic variant, or intersect common genes. We used a 90% reciprocal intersect to 

combine duplications or deletions with breakpoints that vary between individuals, a 

highly conservative threshold. There are many potential instances whereby two 

CNVs outside this threshold have the same effect on a given phenotype, for 

example, a very large deletion in an individual and a deletion in another individual 

that is, say 10% if its size, but intersecting the same genetic region that has influence 

on a given trait. A solution to the problem of multi-breakpoint CNVs is to assign 

quality scores to all SNP probes in each called region and then associate all of these 

probe quality scores with the phenotype [8]. The region in each CNV that is 

associated with the trait will then be reflected more strongly in the association 

statistic. 

 

5.5.2.2 Sample size 

Novel associations may in part be due to the sample size. We analysed 120,286 

white-British individuals in total with CNV deletion counts ranging from 10 to 6,523 (a 

maximum 2.7% deletion allele frequency) and 10 to 11,774 (4.9% maximum 

duplication allele frequency). Sixty-eight percent of total deletions and 71% of 

duplications were present in ≤ 100 individuals. An increased sample size is needed 

to allow for a more adequate statistical power. At a CNV frequency of 0.000083% for 

example (10 in 120,286 individuals), we have 43% power to detect an association 

with an effect size (Beta) of 0.4. With a sample size of 400,000, the predicted full UK 
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Biobank population after correcting for population stratification, this power increases 

to 90% with the same effect size (Table S8). 

 

5.5.2.3 Detection Technology 

A lack of novel variation is likely due to limitations in the technology. The Affymetrix 

Axiom array used in this study generally required at least 50 genotyping probes and 

a size greater than 50Kb for a CNV call to appear convincing when plotting Log R 

Ratio and B Allele Frequency.  

 

There are therefore three main limitations of the technology used in this study: (a) 

the study does not have the resolution to confidently detect smaller CNVs in the 

range of 100bp to 50Kb in size. CNVs generally become more prevalent as they 

become smaller [17] and it is not yet possible to detect CNVs at smaller sizes 

genome-wide without high-density signature Array CGH or whole genome 

sequencing techniques in the sample sizes large enough to detect associations with 

complex traits. (b) Smaller CNVs are generally more structurally complex and 

include inversions, translocations and multi-allelic profiles, but have been associated 

with complex traits [18,19]. SNP arrays simply do not have the resolution to detect 

these events and would be too obscured by probe intensity noise. (c) SNP arrays are 

designed around a specific genome build and it is difficult to assay regions using 

microarray technology in repetitive regions [20]. In the case of this study, the UK 

Biobank Axiom array is designed around genome build HG19 which comprises of 

comprises of many genome build gaps, and regions of the genome that haven’t fully 

been characterised at base-pair resolution level [21]. Many regions of the genome 
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still have an unknown impact on complex traits, and more advanced technologies 

and methods are required to enable a more comprehensive understanding of these 

regions.
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5.7 Supplementary Information 

 

 

Figure S1. Distribution of CNV scores, raw (A) and filtered (B) negative scores indicate a deletion event, positive scores indicate 
duplications. Duplication and deletion are stratified during association analyses 
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Table S1. A list of all 204 continuous, single inverse quantile normalised phenotypes 
tested against each deletion and duplication 
 

Trait Category 

BMI lean body size at age 10 Anthropometric 

BMI normal body size at age 10 Anthropometric 

BMI large body size at age 10 Anthropometric 

Height in those short at age 10 Anthropometric 

Height in those average height age 10 Anthropometric 

Height in those tall at age 10 Anthropometric 

Whole body fat mass Anthropometric 

Whole body fat free mass Anthropometric 

Impedance of whole body Anthropometric 

Whole body water mass Anthropometric 

Height Anthropometric 

Sitting to Standing Ratio Anthropometric 

BMI all Anthropometric 

BMI in women only Anthropometric 

BMI in never smokers only Anthropometric 

BMI in urban Anthropometric 

BMI in rural Anthropometric 

Hi circumference Anthropometric 

Waist circumference Anthropometric 

WHR Anthropometric 

WHR adjusted for BMI Anthropometric 

Skeletal Mass Index Anthropometric 

Arterial stiffness index Arterial stiffness 

Red blood cell distribution width Biomarkers 

Northing Birth location 

Easting Birth location 

Birth Weight Birth Weight 

First Child Birth Weight Birth Weight 

DBP Blood Pressure 

SBP Blood Pressure 

Arm fat percentage Body Fat 

Leg fat % Body Fat 

Trunk fat% Body Fat 

Trunk fat % to leg fat % ratio Body Fat 

Trunk fat % to limb fat % ratio Body Fat 

Bodyfat % Body Fat 

Bodyfat % in women only Body Fat 

BMD  Bone mineral density 

BMD of heel based on T score Bone mineral density 

Pairs test Cognitive function 

Fluid intelligence test score Cognitive function 
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Reaction time Cognitive function 

Numeric memory Cognitive function 

Month of birth Demographics 

Participants age at death  Demographics 

Diabetes liability score in controls Diabetes 

Diabetes liability score in all Diabetes 

Diet variation from week to week Diet 

Caffeine consumption caffeinated only Diet 

Caffeine consumption Diet 

Decaf coffee intake Diet 

Tea Intake Diet 

Energy intake Diet 

Estimated intake of protein, based on food and 
beverage consumption yesterday Diet 

Healthy diet Diet 

Prudent diet Diet 

Low calorie drinks Diet 

Fat intake Diet 

Carbohydrate intake Diet 

Sat fat intake Diet 

Polyunsaturated fat intake Diet 

Sugar intake Diet 

Fibre intake Diet 

Iron intake Diet 

Vitamin B6 Diet 

Vitamin B12 Diet 

Vitamin C Diet 

Potassium intake Diet 

Magnesium intake Diet 

Retinol intake Diet 

Carotene intake Diet 

Vitamin D Diet 

Starch intake Diet 

Vitamin E Diet 

Water intake Diet 

Fizzy drinks Diet 

Yoghurt consumption - any Diet 

Yoghurt consumption - full fat Diet 

Fried potato intake Diet 

Fried chicken intake Diet 

Folate intake Diet 

Fried foods Diet 

Brassica Diet 

Yoghurt consumption – low fat Diet 

Bread intake (white) Diet 
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Bread intake (brown) Diet 

Salt consumption Diet 

Percentage of protein in total calorie intake Diet 

Percentage of carbohydrates in total calorie intake Diet 

Percentage of fat in total calorie intake Diet 

A single Diet variable? "western diet" Diet 

Calcium intake Diet  

Vegetable intake Diet  

Body size at 10 years Early life 

Height at 10 years Early life 

Mobile phone use (years used at least once) Electronic devices 

Computer games Electronic devices 

Father current age Family 

Father age of death Family 

Mother current age Family 

Mothers age at death Family 

Mean age at death of both parents Family 

Number of brothers Family 

Number of sisters Family 

Number of older siblings Family  

All pregnancies Female specific 

Number of term pregnancies Female specific 

Age contraceptive use stopped Female specific 

Length menstrual Female specific 

Number of live births Female specific 

Age of primiparous women at birth of child Female specific 

Age at first live birth Female specific 

Age at last live birth Female specific 

Number of stillbirths Female specific 

Number of spontaneous miscarriages Female specific 

Number of pregnancy terminations Female specific 

Age at oophorectomy Female specific 

Age at hysterectomy Female specific 

participant BW females Female specific 

Menarche Female specific 

Menopause reprogen Female specific 

Menopause continuous Female specific 

Waist circumference women only Female specific 

WHR in women only Female specific 

WHR adjusted for BMI in women only Female specific 

BMI Pre Menopause Female specific 

BMI Post Menopause Female specific 

Reproductive lifespan Female specific 

Cigarettes per day Health 

Units per day Health 
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FFQ - estimated alcohol consumption Health 

Time to first cigarette Health 

Difficulty not smoking Health 

Number of stop smoking attempts Health 

Maximal hand grip  Health 

Pulse rate Health 

Unhealthy phenotype Health 

N cancer diseases Health 

N non cancer diseases Health 

N treatments taken Health 

N operations Health 

Overall health rating Health 

Tinnitus severity Health 

Hearing left ear Health 

Hearing right ear Health 

Falls in last year Health 

Age wore glasses if started at 40 years old plus Health 

Age glasses Health 

Loud music exposure Health 

PAD - leg pain action taken Health 

Visual acuity right Health 

Visual acuity left Health 

Years since last mammogram screen Health 

Hand Grip Corrected for Height Health 

Basal Metabolic Rate Health 

Smoking pack years Health 

Mental health Health 

Time since bowel cancer screen Health  

Years since cervical smear Health  

Noisy workplace Health 

Job type  Occupation 

IPAQ category Physical activity 

Stair climbing Physical activity 

TV watching Physical activity 

Time spent on computer Physical activity 

Time spent driving Physical activity 

Sedentary variable Physical activity 

A single Phys activity variable ?IPAQ Physical activity 

Happiness Psychosocial factors 

Eysenck personality questionnaire Psychosocial factors 

Subjective wellbeing Psychosocial factors 

Longest depression spell Psychosocial factors 

Longest period of disinterest Psychosocial factors 

Number of depression episodes Psychosocial factors 

Frequency of friends/family visits Psychosocial factors 
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Confide  Psychosocial factors 

Drive faster than motorway speed limit Random 

Townsend deprivation index SES 

Annual household income SES 

Age completed full time education SES 

Number in household SES 

Number of vehicles in household SES 

Years in job Occupation 

Hours per week worked Occupation 

Age when 1st had sex Sexual factors 

Number of sexual partners Sexual factors 

Number of same sex sexual partners Sexual factors 

Insomnia Sleep 

Ease of getting up Sleep 

Nap Sleep 

Narcolepsy Sleep 

Hours Slept Sleep 

Morning or evening category Sleep 

FEV1 Spirometry 

FVC Spirometry 

PEF Spirometry 

Time spent outdoors in winter Sun exposure 

Time spent outdoors in summer Sun exposure 

Skin colour Sun exposure 

Ease of tanning Sun exposure 

Childhood sunburn occasions Sun exposure 

Facial ageing Sun exposure 

Sunscreen Sun exposure 

Solarium use Sun exposure 
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Table S2. Accessible from: https://goo.gl/AUbFLr shows all CNVs that were detected 
with probe and frequency metrics for 794 deletions (A) and 1,464 duplications (B). 
The metrics listed are: CNV locus, CNV count and the mean values of CNV size, 
CNV score, LRR, LRR SD, BAF, BAF SD, BAF drift, waviness factor, N CNVs per 
genome, PennCNV confidence and probe count. 
 

 

https://goo.gl/AUbFLr
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Table S3. All nominal phenotype associations for 16p12.1 TV Watching associated 
deletion 
 

Phenotype 
Normalised 
Beta 

P Lower 95% CI Upper 95% CI 

TV watching 0.8585542 4.30E-11 0.6033926 1.1137 

Time spent on computer -0.4880257 2.30E-04 -0.7480658 -0.22798 

FVC -0.4863822 3.50E-04 -0.7532044 -0.21955 

Mobile phone use (years used at least once) -0.4639631 5.90E-04 -0.7287193 -0.1992 

FEV1 -0.4631963 6.20E-04 -0.7285216 -0.19787 

Sedentary variable 0.4286291 1.00E-03 0.1733301 0.68392 

Annual household income -0.4816897 1.10E-03 -0.7698644 -0.1935 

PEF -0.4425917 1.20E-03 -0.7112616 -0.17392 

SBP 0.404441 1.90E-03 0.148946 0.6599 

Maximal hand grip  -0.3923652 2.90E-03 -0.6501609 -0.13456 

Father current age -0.7600937 4.40E-03 -1.282785 -0.2374 

Mean age at death of both parents -0.5326593 4.60E-03 -0.9007277 -0.16459 

Age wore glasses if started at 40 years old plus 0.6299151 6.10E-03 0.1800672 1.0797 

Arm fat percentage 0.3596143 6.70E-03 0.0998804 0.61934 

Trunk fat% 0.3581075 6.90E-03 0.0983099 0.6179 

Bodyfat % 0.352788 7.80E-03 0.0930662 0.6125 

Hand Grip Corrected for Height -0.346695 8.40E-03 -0.6044938 -0.08889 

DBP 0.3319426 1.10E-02 0.0764024 0.58748 

Reaction time 0.3365049 1.10E-02 0.0771972 0.59581 

Number of vehicles in household -0.3282073 1.20E-02 -0.583618 -0.07279 

Prudent diet -0.346098 1.40E-02 -0.6232618 -0.06893 

Bodyfat % in women only 0.4360192 1.60E-02 0.0823873 0.7896 

Mother current age -0.4920842 1.60E-02 -0.8938538 -0.09031 

Overall health rating 0.3113922 1.70E-02 0.056138 0.56664 

Skin colour -0.3146711 1.70E-02 -0.5724723 -0.05686 

Stair climbing -0.3138151 1.70E-02 -0.5714966 -0.05613 

Skeletal Mass Index corrected for height -0.30884 2.00E-02 -0.5688376 -0.04884 

Whole body fat free mass -0.2996969 2.40E-02 -0.5597607 -0.03963 

Fluid intelligence test score -0.6284031 2.50E-02 -1.176001 -0.0808 

Leg fat% 0.2946105 2.60E-02 0.0350008 0.55422 

Whole body water mass -0.2939619 2.70E-02 -0.5540258 -0.03389 

Trunk fat% to leg fat % ratio 0.2913033 2.80E-02 0.0312443 0.55136 

Eysneck personality questionnaire 0.3132946 3.00E-02 0.0309434 0.59564 

Number of brothers 0.2785603 3.30E-02 0.022996 0.53412 

Red blood cell distribution width -0.3965896 3.40E-02 -0.7636223 -0.02955 

Impedance of whole body 0.2750501 3.80E-02 0.0150559 0.53504 

Skeletal Mass Index -0.2734454 3.90E-02 -0.5334085 -0.01348 

Full fat yoghurt consumption -0.5860922 4.20E-02 -1.150401 -0.02178 

Maximal hand grip in females -0.3599201 4.30E-02 -0.7083641 -0.01147 

Number of sisters 0.2664572 4.30E-02 0.0086999 0.52421 
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Height -0.2576342 4.80E-02 -0.5129958 -0.00227 

N treatments taken 0.2559862 4.90E-02 0.0007079 0.51126 

 

 



191 
 

Table S4. All nominal phenotype associations for 16p11.2 pleiotropic deletion 

Phenotype 
Normalised 
Beta 

P Low 95% CI High 95% CI 

Leg fat % 1.612803 9.70E-14 1.188223 2.0373 

Waist circumference 1.448171 3.10E-13 1.058776 1.8375 

Bodyfat % 1.513584 9.00E-13 1.098471 1.9286 

BMI all 1.336544 1.80E-11 0.9469122 1.7261 

Arm fat percentage 1.416062 2.30E-11 1.000919 1.8312 

FVC -1.553319 2.30E-11 -2.008664 -1.0979 

BMI in rural 1.323336 2.80E-11 0.9337429 1.7129 

Townsend deprivation index 1.316318 3.50E-11 0.9269578 1.7056 

WHR 1.265148 1.90E-10 0.8760565 1.6542 

Number of vehicles in household -1.339631 2.10E-10 -1.75262 -0.92664 

Height -1.255512 2.80E-10 -1.645325 -0.86569 

Height in those average height age 10 -1.685404 5.80E-10 -2.218496 -1.1523 

Trunk fat % 1.306288 7.00E-10 0.8910309 1.7215 

FEV1 -1.399517 1.40E-09 -1.852321 -0.94671 

Whole body fat mass 1.233629 5.80E-09 0.8183725 1.6488 

Maximal hand grip  -1.135978 2.20E-08 -1.534138 -0.73781 

PEF -1.296347 3.00E-08 -1.75487 -0.83782 

Annual household income -1.260254 8.50E-08 -1.721299 -0.7992 

Hip circumference 1.018165 3.10E-07 0.628116 1.4082 

Bodyfat % in women only 1.620937 1.10E-06 0.9684851 2.2733 

BMI normal body size at age 10 1.552542 1.20E-06 0.9254065 2.1796 

BMI in current smokers 1.344693 4.00E-06 0.7731275 1.9162 

Waist circumference women only 1.439326 5.10E-06 0.8210241 2.0576 

BMI in never smokers only 1.475795 5.40E-06 0.8398585 2.1117 

Time spent driving -0.9580499 6.30E-06 -1.373764 -0.54233 

Diabetes liability score in controls -0.9791062 1.30E-05 -1.419857 -0.53835 

BMI in women only 1.370447 1.40E-05 0.7516056 1.9892 

BMI in women only 1.370447 1.40E-05 0.7516056 1.9892 

Hand Grip Corrected for Height -0.8661466 2.00E-05 -1.26433 -0.46796 

Height in those tall at age 10 -2.441827 2.30E-05 -3.57213 -1.3115 

Sunscreen -0.814709 1.00E-04 -1.22556 -0.40385 

Stair climbing -0.7797053 1.40E-04 -1.181782 -0.37762 

Time spent on computer -0.8157083 2.00E-04 -1.246067 -0.385 

Overall health rating 0.7642789 2.30E-04 0.3581525 1.1704 

Vegetable intake -0.7676014 2.90E-04 -1.183155 -0.35204 

BMI all 1.088305 4.20E-04 0.4837272 1.6928 

Number in household -0.7056317 6.20E-04 -1.109847 -0.30141 

BMI lean body size at age 10 1.26099 8.40E-04 0.5211844 2.0007 

Time spent outdoors in winter 0.70056 9.60E-04 0.2848643 1.1162 

Healthy diet -0.8485359 1.20E-03 -1.363297 -0.33377 

All pregnancies -0.9897589 1.70E-03 -1.60956 -0.36995 
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Menarche -0.9782351 2.00E-03 -1.598035 -0.3584 

Drive faster than motorway speed limit -0.7567054 2.50E-03 -1.246728 -0.26668 

Number of term pregnancies -0.9151596 3.80E-03 -1.534988 -0.29533 

Number of live births -0.8940787 4.70E-03 -1.513911 -0.27424 

Diabetes liability score in all -0.5887976 5.50E-03 -1.004339 -0.17325 

Narcolepsy 0.5558702 5.70E-03 0.1618197 0.94992 

Height in females -0.864335 6.20E-03 -1.483798 -0.24487 

Skeletal Mass Index 0.5793441 6.30E-03 0.163774 0.99491 

N treatments taken 0.5411149 6.50E-03 0.1513761 0.93085 

Government health guidelines ignored 0.7584168 6.60E-03 0.2107963 1.306 

Percentage of protein in total calorie intake -2.700304 6.90E-03 -4.659859 -0.7407 

N non cancer diseases 0.5225594 8.60E-03 0.1327637 0.91235 

Hearing left ear 1.07057 8.70E-03 0.2705644 1.8705 

Job type  0.9270088 8.70E-03 0.2348013 1.6192 

BMI in female current smokers 1.280221 9.70E-03 0.3098191 2.2506 

Hearing right ear 1.018385 1.30E-02 0.2184293 1.818 

Confide  -0.5011031 1.40E-02 -0.899316 -0.10289 

Reaction time 0.5049318 1.40E-02 0.10046 0.9094 

Sitting to Standing Ratio 0.4787355 1.60E-02 0.0885307 0.86894 

Sedentary variable -0.4758039 1.70E-02 -0.8655884 -0.08601 

Pulse rate 0.5269356 1.80E-02 0.0913378 0.96253 

Visual acuity left 1.654295 1.90E-02 0.2690783 3.0395 

BMD of heel based on T score 0.5496394 2.30E-02 0.0775115 1.0217 

TV watching 0.4827105 2.30E-02 0.0676119 0.8978 

WHR in women only 0.7103096 2.40E-02 0.0921605 1.3284 

Estimated intake of protein -2.24272 2.50E-02 -4.202325 -0.28311 

IPAQ category -0.4822107 2.60E-02 -0.9075319 -0.05688 

Years since last mammogram screen 0.7758923 2.80E-02 0.0829901 1.4687 

Age contraceptive use stopped 0.9779384 2.90E-02 0.1021329 1.8537 

Prudent diet -0.5683344 3.00E-02 -1.08303 -0.05363 

Impedance of whole body -0.4511843 3.30E-02 -0.8668095 -0.03555 

Participants age at death  1.344131 3.40E-02 0.1029541 2.5853 

Units per day -0.5189651 3.40E-02 -0.9980267 -0.0399 

Skeletal Mass Index corrected for height 0.4446149 3.60E-02 0.0289822 0.86024 

BMI Pre Menopause 1.173993 4.10E-02 0.0453928 2.3025 

Frequency of friends/family visits 0.4065196 4.50E-02 0.0083101 0.80472 

Father current age 0.6643692 4.60E-02 0.0115539 1.3171 

IPAQ -0.429547 4.80E-02 -0.8549615 -0.00413 
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Table S5. All nominal phenotype associations for the 15q13.2-13.3 duplication 
associated with decreased socio-economic status through household ownership of 
fewer vehicles 
 

Phenotype 
Normalised 
Beta 

P Lower 95% CI Upper 95% CI 

Number of vehicles in household -0.7934671 2.00E-08 -1.070443 -0.51649 

Townsend deprivation index 0.7504716 1.10E-07 0.473865 1.027 

BMD  -0.5886072 3.20E-05 -0.8657661 -0.31144 

Job type  0.8455831 1.50E-04 0.4077676 1.2833 

Bodyfat % in women only 0.7351078 1.00E-03 0.2974144 1.1728 

BMD of heel based on T score -0.4816648 1.10E-03 -0.77063 -0.19269 

Bread intake (brown) -0.4669787 1.10E-03 -0.7467287 -0.18722 

Time to first cigarette -1.053852 1.30E-03 -1.697133 -0.41057 

BMI in women only 0.6808006 1.80E-03 0.2537589 1.1078 

BMI in women only 0.6808006 1.80E-03 0.2537589 1.1078 

Age completed full time education 0.605733 3.10E-03 0.2042946 1.0071 

SBP 0.5543254 3.10E-03 0.1866929 0.92195 

Hearing left ear 1.462938 3.40E-03 0.4831897 2.4426 

Bread intake (white) 0.425191 4.30E-03 0.1331534 0.71722 

Percentage of protein in total calorie intake -1.233661 5.80E-03 -2.110017 -0.3573 

Facial ageing 0.5213115 6.30E-03 0.1473479 0.89527 

BMI Post Menopause 0.6736369 7.00E-03 0.1843827 1.1628 

Pairs test 0.3700102 8.90E-03 0.0928008 0.64721 

Arm fat percentage 0.3689933 9.70E-03 0.0893173 0.64866 

Age glasses -0.8311139 9.80E-03 -1.461818 -0.20041 

Age contraceptive use stopped 0.7411537 1.00E-02 0.1758056 1.3065 

Age wore glasses if started at 40 years old 
plus 0.6432823 1.00E-02 0.1533174 1.1332 

Annual household income 0.5045515 1.10E-02 0.1164479 0.89265 

Red blood cell distribution width 1.109665 1.30E-02 0.2337598 1.9855 

BMI in urban -1.162337 1.60E-02 -2.103984 -0.22069 

Caffeine consumption 0.4669648 1.80E-02 0.0786385 0.85529 

Drive faster than motorway speed limit -0.3790809 1.80E-02 -0.692934 -0.06522 

Time spent on computer 0.4433739 1.80E-02 0.0756033 0.81114 

WHR in women only 1.052149 1.80E-02 0.1781279 1.9261 

Water intake 0.4223711 2.40E-02 0.0548374 0.7899 

TV watching 0.622166 2.50E-02 0.0794453 1.1648 

Years since cervical smear -0.6757794 2.50E-02 -1.266637 -0.08492 

Age at last live birth 0.6203414 2.80E-02 0.066686 1.1739 

Brassica 1.265118 2.80E-02 0.133727 2.3965 

PEF -0.3357399 2.80E-02 -0.6343218 -0.03715 

Difficulty not smoking -1.531572 2.90E-02 -2.902295 -0.16084 

Cups of coffee per day 0.4043535 3.10E-02 0.0366297 0.77207 

Noisy workplace 1.079165 3.10E-02 0.0996478 2.0586 

Pulse rate 0.5968048 3.10E-02 0.0534383 1.1401 
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Western diet 0.4328889 3.40E-02 0.0336412 0.83213 

Waist circumference women only 0.9419749 3.50E-02 0.067621 1.8163 

Time spent outdoors in winter 0.320338 3.60E-02 0.0214366 0.61923 

Age of primiparous women at birth of child 0.8467382 3.70E-02 0.0493649 1.6441 

Number in household 0.5719082 3.90E-02 0.0286506 1.1151 

Maximal hand grip  -0.2909439 4.00E-02 -0.5681582 -0.01372 

Morning or evening category 0.5898381 4.10E-02 0.0242035 1.1554 

Number of live births 0.4417065 4.30E-02 0.0139988 0.86941 

Number of stop smoking attempts -0.6342306 4.30E-02 -1.248359 -0.0201 

Fried chicken intake -1.154334 4.50E-02 -2.285528 -0.02313 

Skin colour -0.3026172 4.50E-02 -0.598121 -0.00711 

Mental health -0.3774734 4.60E-02 -0.7478098 -0.00713 

Time spent driving -0.5748952 4.60E-02 -1.140667 -0.00912 

Healthy diet -0.3398528 4.70E-02 -0.6758847 -0.00382 

bilateral oophorectomy age -1.975119 4.80E-02 -3.93189 -0.01834 

Number of term pregnancies 0.4306655 4.80E-02 0.0029579 0.85837 
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Table S6. All nominal phenotype associations for 16p11.2 pleiotropic duplication 

Phenotype 
Normalised 
Beta 

P Lower 95% CI Upper 95% CI 

BMD  -0.7297269 1.60E-04 -1.107994 -0.35145 

BMD of heel based on T score -0.7629354 1.90E-04 -1.164276 -0.36159 

TV watching 0.7096424 2.30E-04 0.3319108 1.0873 

Visual acuity right 1.331176 4.30E-04 0.590731 2.0716 

Reaction time 0.6682498 5.40E-04 0.2899228 1.0465 

Visual acuity left 1.267845 7.90E-04 0.5274409 2.0082 

Sitting to Standing Ratio -0.6113276 1.50E-03 -0.9896245 -0.23303 

Mental health 0.5916561 2.60E-03 0.2062193 0.97709 

SBP -0.5770981 2.80E-03 -0.955277 -0.19891 

Townsend deprivation index 0.5592894 3.70E-03 0.1817486 0.93683 

Fibre intake -1.020727 3.90E-03 -1.713247 -0.3282 

Leg fat% -0.5642107 4.10E-03 -0.9491236 -0.17929 

Bread intake (brown) -0.5330464 5.70E-03 -0.9110149 -0.15507 

Subjective wellbeing 0.9768155 5.90E-03 0.2819863 1.6716 

Menarche 0.710187 7.90E-03 0.1858528 1.2345 

Yoghurt consumption -0.937842 8.00E-03 -1.630753 -0.24493 

Low fat yoghurt consumption -0.9149886 9.70E-03 -1.607921 -0.22205 

Fluid intelligence test score -0.856544 1.00E-02 -1.511461 -0.20162 

Height in those tall at age 10 0.8437827 1.70E-02 0.1479983 1.5395 

Job type  0.7818702 1.90E-02 0.126303 1.4374 

Number of depression episodes 1.035792 2.10E-02 0.1575277 1.914 

Magnesium intake -0.8073547 2.20E-02 -1.499721 -0.11498 

Height in females 0.5522728 2.30E-02 0.0753757 1.029 

Hand Grip Corrected for Height -0.4342822 2.40E-02 -0.8126209 -0.05594 

Birth Weight 0.6745091 2.50E-02 0.0829331 1.266 

Annual household income -0.4739807 2.60E-02 -0.8925484 -0.0554 

Vitamin D -0.78734 2.60E-02 -1.480264 -0.09441 

Height 0.4236833 2.80E-02 0.0457043 0.80166 

Maximal hand grip in females -0.5347832 2.80E-02 -1.011968 -0.05759 

Units per day -0.4944835 2.80E-02 -0.9342627 -0.0547 

N treatments taken -0.4211802 2.90E-02 -0.7990359 -0.04332 

PEF -0.4627831 3.00E-02 -0.8814797 -0.04408 

Number of stillbirths -0.5247835 3.10E-02 -1.001968 -0.04759 

DBP -0.4133509 3.20E-02 -0.7915987 -0.0351 

FEV1 -0.4510913 3.20E-02 -0.8645783 -0.0376 

FVC -0.4546639 3.20E-02 -0.8704857 -0.03884 

Happiness 0.7123597 3.30E-02 0.0573362 1.3673 

Time spent outdoors in summer 0.4313999 3.50E-02 0.0303581 0.83244 

Calcium intake -0.7421281 3.60E-02 -1.434846 -0.04941 

Number of pregnancy terminations 0.5226419 3.70E-02 0.0306767 1.0146 

Eysenck personality questionnaire 0.441243 3.90E-02 0.0221855 0.8603 
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Tea Intake 0.3981386 3.90E-02 0.0197948 0.77648 

Birth Weight 0.5688798 4.00E-02 0.0247884 1.1129 

Time spent driving -0.3959318 4.00E-02 -0.7742727 -0.01759 

Iron intake -0.7103292 4.40E-02 -1.402736 -0.01792 

Number of vehicles in household -0.3872427 4.50E-02 -0.7652992 -0.00918 
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Table S7. The 17p12 CMT1A duplication is associated with traits surrogate to 
neuropathy 
 

Phenotype 
Normalised 
Beta 

P Lower 95% CI Upper 95% CI 

Maximal hand grip  -1.09673 1.40E-09 -1.451734 -0.74172 

Hand Grip Corrected for Height -1.032203 3.60E-08 -1.399472 -0.66493 

Falls in last year 0.7977108 1.10E-05 0.4427189 1.1527 

Skeletal Mass Index corrected for height -0.6512328 6.40E-04 -1.025061 -0.2774 

Skeletal Mass Index -0.6375947 8.30E-04 -1.011372 -0.2638 

Maximal hand grip in females -0.8030102 1.90E-03 -1.30904 -0.29698 

Impedance of whole body 0.579188 2.40E-03 0.2053623 0.95301 

BMD  -0.5409992 3.90E-03 -0.908246 -0.17375 

Time spent outdoors in winter -0.5398127 4.70E-03 -0.9137125 -0.16591 

IPAQ -0.5588921 6.80E-03 -0.9634133 -0.1543 

Townsend deprivation index 0.4840943 7.40E-03 0.1297887 0.83839 

Body size at 10 years -0.4824637 7.70E-03 -0.8373388 -0.12758 

BMD of heel based on T score -0.5136336 8.20E-03 -0.8945039 -0.13276 

Age at first live birth -0.7226751 1.20E-02 -1.285575 -0.15977 

Overall health rating 0.4532904 1.20E-02 0.0987242 0.80785 

Water intake 0.449465 1.30E-02 0.0946593 0.80427 

Whole body water mass -0.4699738 1.40E-02 -0.8439056 -0.096 

Number of older siblings -0.994492 1.50E-02 -1.794434 -0.19455 

Tea Intake -0.428767 1.80E-02 -0.7838223 -0.07371 

DBP -0.4232368 1.90E-02 -0.7782028 -0.06827 

Narcolepsy 0.416498 2.10E-02 0.0614582 0.77153 

Annual household income -0.5070161 2.20E-02 -0.939293 -0.07473 

Age at last live birth -0.6457073 2.50E-02 -1.210047 -0.08136 

Leg fat% 0.4405913 2.60E-02 0.052937 0.82824 

Mental health 0.4234256 2.60E-02 0.0496363 0.79721 

Bread intake (white) 0.4201922 2.80E-02 0.0464717 0.79391 

IPAQ category -0.4433139 2.80E-02 -0.8394057 -0.0472 

Number of stop smoking attempts 0.6527785 2.90E-02 0.0672577 1.2382 

Whole body fat free mass -0.41454 3.00E-02 -0.7884741 -0.0406 

WHR in women only 0.5361939 3.20E-02 0.0475527 1.0248 

Mobile phone use (years used at least 
once) -0.3794031 3.60E-02 -0.7344609 -0.02434 

N operations 0.3792775 3.60E-02 0.02425 0.7343 
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Table S8. Power calculations under the additive model for Beta values < 1 at a CNV 
frequency equal to 0.000083 (~10 in 120,283 individuals) in the current number of 
individuals and a predicted approximate full UK Biobank sample size when 
accounting for population stratification of 400,000 
 
 

Effect size (Beta) N Power 

0.2 120,286 14.5% 

 400,000 37.1% 

0.4 120,286 43.2% 

 400,000 90.3% 

0.6 120,286 76.5% 

 400,000 99.8% 

0.8 120,286 94.7% 

 400,000 100.0% 
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Box S1. Details of the CNV scoring algorithm showing the truth dataset, metrics 
used, and the equation (Eq. 1) used to define the score 
 

 

A truth dataset was defined in ~1000 Illumina Omni 2.5 individuals as those CNVs 

intersecting across 3 calling algorithms. And used 8 CNV call metrics to score: 

 

Individual Level 

 # CNVs / sample 

 Waviness Factor 

 BAF drift 

 BAF SD & Mean 

 LRR SD & Mean 
 
CNV call level 
 

 CNV length 

 # of probes 

 Confidence Score 
 

))(exp(1

1

1

0 i

N

i

i

cnv

V

QS










                         (1) 

  = Residuals of logistic regression model for the above 8 metrics with ‘true’ or 

‘false’ as the outcome variables.  
 
V = Actual value in the UK Biobank call dataset 
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CHAPTER 6 

 

Discussion and Future Work 
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6.1 Overview 

Genome-wide association studies have given us the ability to identify many genetic 

markers associated with complex traits and disease risk. There are now over 10,000 

known SNP-trait associations, giving us a powerful overview of the heritability of 

these traits [1]. Estimations of narrow-sense heritability (h2) however, tell a different 

story as to how much of this known genetic variation explains the heritability of 

complex traits. We described a number of hypotheses that have been proposed to 

explain missing h2 including the possibility that these estimates were over-estimated, 

or could be accounted for by smaller effect variation that would become apparent 

when using larger sample sizes. Another hypothesis was that rare and low frequency 

and/or structural forms of ‘still-missing’ variation contribute towards explaining this 

missing h2. It has, and continues to be a challenging task to detect and characterise 

rare, low-frequency and structural variation. This thesis has presented some 

approaches to explaining missing h2 by analysing and interpreting the additive effect 

of low frequency variants and structural variation on complex traits and disease risk. 

By analysing low-frequency and structural variation, we hoped to shed some light on 

this dark-matter and further pinpoint the most appropriate next steps in fully 

understanding the heritability of complex traits and common disease risk. 
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6.2 Low frequency - large effect variants detected using WGS may explain 

more of the variance explained for some complex traits – but only fractionally 

more than imputing the 1000 genomes reference panel into SNP chip data 

Before the advent of whole genome sequencing, low frequency variants were difficult 

to detect and it has therefore been difficult to determine their contribution to complex 

trait effects and disease risk. In chapter 2 we sequenced 680 whole human genomes 

at 7X median read depth. Variants were called filtered and missing data were 

imputed missing using our extensive processing pipeline [2]. Variants were quality 

controlled by checking concordance with SNP chip and targeted high-depth 

sequencing data. We then carried out association analyses against 11,132 cis-

eQTLs and 93 circulating biomarkers.  

 

Of the 11.7 million variants detected, we found there to be 1,314 cis-eQTL 

associations at P<1x10-06 and 8 biomarker associations at P<8x10-10. Seven percent 

of our detectable cis-gene expression traits (89 of 1,314) and 1/8 biomarker 

associations were low frequency and large effect. All nominal evidence of 

association was lost for 13 of 1,232 common variant associations when conditioning 

on the strongest low frequency variant suggesting that few common variants are 

driven by low frequency variants. Conversely, all nominal significance was lost for 11 

of 90 low frequency variant associations when adjusting for the strongest common 

variant in the region, suggesting that ~12% of significant low frequency variation can 

be explained by common variation. Sixty two of the 90 low frequency variant 

associations (69%) detected using sequencing were found at P<0.0001 in 1000 

genomes imputed data. Furthermore, associated variants were reduced to 33 (37%) 
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when based on the same statistical thresholds. These results illustrate that 

imputation can capture most low frequency variation, albeit less accurately. 

 

Our data show that low frequency variants contribute to the heritability of complex 

traits. This study confirms that whole genome sequencing can identify low frequency 

variants not discovered by genotyping based approaches when sample sizes are 

sufficiently large to detect substantial numbers of common variant associations, and 

that common variant associations are rarely explained by single low frequency 

variants of large effect. These findings show that searching for low frequency 

variation associated with complex traits and disease risk is not a futile effort. The 

study highlights the fact there fewer low frequency variants associated with complex 

traits, but they do exist, however, it may be more resource and time effective to 

detect these using imputation reference panels rather than whole genome sequence 

data. 

 

6.3 No evidence that a complex region encompassing the AMY1 locus 

previously implicated as associated with obesity has an effect on BMI 

Regions of the genome that harbour complex, multi-allelic copy number variants or 

repetitive regions confound genome-wide association studies. These regions are 

generally masked from SNP chip design due to their unpredictable nature, and are of 

a low quality when attempting to map reads in that region to the reference genome 

using next generation sequencing [3]. In chapter 3 we attempted to characterise one 

of these complex regions harbouring the AMY1 and AMY2 genes. A previous study 

found that the highly copy-number polymorphic AMY1 gene that transcribes the 

salivary Amylase enzyme responsible for converting dietary starch into sugar 
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exhibited an additive association with BMI with each additional copy decreasing risk 

of obesity with an odds ratio of 1.19 [4].  

 

We characterised absolute copy number in 657 individuals in the AMY region using 

two computational tools that use read depth accounting for GC bias, repetitive 

regions and only loci that are triplicated to account for the three AMY1 homologs 

present in the reference genome. Genome STRiP then continues to classify 

calculated absolute copy number for each individual into a constrained Gaussian 

mixture model using expectation-maximization. When incrementing mrCaNaVaR 

calculated absolute copy number by one, we found that mrCaNaVaR and Genome 

STRiP were correlated when accounting for differences expected when not using 

population-level data. We found after carrying out ddPCR in 54 samples that copy 

number was almost perfectly concordant with the Genome STRiP copy number calls. 

 

We found that copy number detected using both methods showed no evidence of 

nominal association with BMI in the 657 individuals even though the individuals’ FTO 

variant and BMI polygenic score was significantly associated with BMI. The results 

were replicated in 2 additional European cohorts: GoT2D and the Estonian biobank. 

These results show that although complex structural variants can now be 

characterised, extreme care is needed when attempting to do so. Although it is 

important to understand the causes of missing heritability in complex traits such as 

obesity, it is also important to ensure that the methods used and the results obtained 

are rigorously tested. That being said, the AMY region is just one of many complex, 

multi-allelic structurally variable regions in the genome. More work is now needed to 
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characterise these regions and attempt to understand their impact on complex traits 

and disease risk [5-8]. 

 

6.4 Large, rare pathogenic deletions and duplications detected using 

custom SNP chip intensity data in 120,286 individuals are highly pleiotropic 

and increase in pathogenicity with several exceptions 

Structural variation with the most striking impact on complex traits and disease risk 

are large (≥50Kb), rare single-event deletions and duplications. Coe and colleagues 

[9] characterised a morbidity map of developmental delay that comprises of the 

majority of large deletions and duplications that are known to be pathogenic, but not 

full chromosomal/congenital abnormalities. In chapter 4 we wanted to characterise 

these known pathogenic copy number variants in 120,286 UK Biobank individuals 

because they were extremely rare or completely lacking prevalence in the original 

study that used ~20,000 controls. We wanted to find out if prevalence of controls 

changed in a 6-fold larger sample size. These variants generally have highly 

deleterious effects and if they were to be prevalent in control populations, they may 

be less penetrant in developmental delay and may account for some of the additive 

heritability in complex traits. 

 

We found that most of the deletion and duplication associations with developmental 

delay were strengthened when using the UK Biobank as a control population. This is 

reflected by the lower prevalence, or lack of CNVs in the control population 

strengthening their pathogenic role in developmental delay. We found four notable 

exceptions, one deletion and three duplications that are no longer significantly 
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associated with developmental delay. These consisted of a 320Kb deletion at 

3p11.2, a 1.7 Mb duplication at 2q13, a 290 Kb duplication at 15q11.2 and a 790 Kb 

duplication at 16p13.11. The deletion at 3p11.2 was newly discovered in the 

previous study using the ~20,000 controls so additional replication with large 

numbers may be required to ascertain its prevalence in control populations. The 

three duplications are previously discovered associations and also have less 

association with surrogate continuous traits. These results indicate that duplications 

are less likely to be associated with developmental delay, and also have a less 

noticeable effect in complex traits than deletions in general. These data may also 

suggest that deletions many have more of a residual polygenic effect than 

duplications and the duplications that are pathogenic are less frequent, but less 

pleiotropic. This study was limited by the differences in technology between cases 

and controls with the developmental delay case CNVs being detected using 

signature array CGH methods that may have different biases and levels of resolution 

compared to SNP chip. 

 

6.5 A genome-wide scan of large, rare deletions and duplications reveals 

known CNVs to be associated with many continuous traits 

In chapter 5 we explored the extent of large, rare duplications and deletions 

throughout the genome. Duplications and deletions larger than 50Kb are very rare in 

the general population. We wanted to harness the large sample size of UK Biobank 

to detect potentially novel CNVs associated with complex traits that may have been 

missed in smaller studies. We accounted for false positives by applying a novel CNV 

quality score to each deletion and duplication. The quality score was a function of 



208 
 

population and individual-level metrics weighted for presence within a truth dataset 

that was based on CNVs called using 3 separate calling methods. Using this 

approach, we were able to scan the UK Biobank for known and novel copy number 

variants without needing to visually score the levels of Log R Ratio and B Allele 

frequency in each CNV call. 

 

We found two deletions and two duplications to be genome-wide significantly 

associated with at least one of the 204 complex traits tested. The 16p11.2 deletion 

was associated with 18 traits including height, BMI, lung function, social economic 

status. The deletion is highly pleiotropic at genome-wide significance whereas the 

duplication was not genome-wide significant for any traits, but nominally significant 

for 46 of the traits tested. The results for 16p11.2 indicated that duplications and 

deletions at the same locus have different effect sizes on the phenotype. The 

16p12.1 deletion is genome-wide associated with number of hours of television 

watched per day and nominally associated with increased sedentary lifestyle and 

decreased lung function, intelligence and longevity. We also found a genome-wide 

association between the 17p12 duplication and hand grip strength, a duplication 

known to be associated with Charcot-Marie neuropathy. Finally, we found a genome-

wide association between the 15q13.2-13.3 duplication and a decreased vehicle 

ownership with further nominal negative associations with social economic status, 

bone mineral density and red blood cell count distribution width.  

 

Our results show that large-effect, copy number variants encompassing multiple 

genes that are too rare to be in linkage disequilibrium with common SNPs variants 

are highly pleiotropic, but a small proportion (4 out of 2,257 deletions and 
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duplications tested) are genome-wide associated with the complex traits tested. The 

study was limited however, in the following ways: (a) array design – SNP probes are 

less abundant in structurally complex regions, (b) resolving and classifying CNVs 

with heterogeneous breakpoints is a complex task and (c) even larger sample sizes 

being required for studies involving very rare variants such as CNVs in order to 

detect association. Larger and more comprehensive study designs, along with more 

sophisticated approaches to resolving breakpoint heterogeneity will alleviate these 

limitations in future studies. 

 

6.6 Missing heritability explained by low frequency and structural variation 

or overestimated? 

We have shown that there are both low frequency and structural variant signals 

associated with complex traits and disease risk. These findings by no means explain 

the full extent of missing heritability, and there are many avenues of research left to 

explore. There are now more accurate methods for estimating narrow sense 

heritability (h2) in complex traits. New methods such as restricted maximum 

likelihood (REML) [10] and another method that uses a Monte-Carlo algorithm based 

around it [11] have emerged that account for many small effects from all genetic 

variants. It is important to continue to explore both larger sample sizes and also 

structural and low frequency variants much further, but to also us these results to 

recalibrate our estimations of h2 with ‘gold standard’ datasets with the ultimate goal 

of these paradigms converging and h2 being fully explained. 
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6.7 Future directions 

As previously mentioned, the findings from this thesis are the tip of the iceberg when 

exploring the full extent of complex trait genetics. There is a whole spectrum of rare, 

low frequency and structural variation yet to be explored. These areas will need to be 

adequately studied before we can come to any firm quantifications of the presence of 

additional heritability over what we’ve already found using GWAS. Once h2 has been 

fully explained, the field must also understand the full extent of broad-sense 

heritability (H2) and its implications. Genotyping increasingly larger sample sizes and 

developing more refined and comprehensive imputation reference panels that 

include rare, low-frequency and structural variation including structurally complex 

and repetitive regions will be of much benefit to complex trait and common disease 

genetics. Below we explain some potential directions leading on from this thesis. 

 

6.7.1 More complex, accurate and comprehensive reference panels 

The 1000 genomes reference panel as proved to be an invaluable resource for 

discovering new signals associated with complex traits [12,13] and includes a large 

amount of information on both low-frequency, rare and structural variation. The next 

generation of reference panel is now coming into fruition with projects such as the 

Haplotype Reference Consortium (refer to http://www.haplotype-reference-

consortium.org/) which includes whole genome sequence data from over 38,000 

individuals in 20 cohorts from around the world, including 1000 genomes. Imputing 

massive reference panels such as these into existing studies will help us to 

potentially uncover more signals associated of complex traits and disease risk and 
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help us gain a further estimation of their heritability using emerging methods such as 

REML. 

 

6.7.2 Larger sample sizes 

Larger sample sizes will allow us to more fully understand both hiding heritability and 

also impute more of the rare variation from these more sophisticated reference 

panels into larger sample sizes, increasing their confidence. We will have power to 

detect those rarer variants that have smaller effects. The UK Biobank will be 

releasing its second phase of genetic data in late 2016, this will prove to be a huge 

leap forward when combined with more comprehensive reference panels. It could 

indeed be said that larger sample sizes and more detailed reference panels have a 

symbiotic relationship when it comes to drawing a more complete picture of the 

heritable components of complex traits and disease risk.  

 

6.7.3 Droplet digital PCR and whole genome sequencing to understand 

structurally complex regions 

Much work is being dedicated to understanding the structurally complex regions of 

the genome from a variety of different angles. Some successful work is now 

beginning to surface showing that complex structural variants do play a role in 

complex traits and disease risk [6,7]. These methods use droplet digital PCR 

(ddPCR) and whole-genome sequencing as their primary methods to accurately 

characterise these complex regions. We explored these methods in chapter 3, but it 

has been found that when these complex structural variants are accurately defined in 

hundreds of individuals, each of their structural configurations can be in linkage 
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disequilibrium with groups of known SNPs. In other words, large numbers of 

common and low frequency SNPs can, when compounded, allow us to accurately 

infer the structural haplotypes of a complex region (Fig. 1). Having these regions 

accurately characterised in reference genomes will allow them to be routinely 

included in future GWAS. These variants could shed light on causality/aetiology – as 

these complex regions may intersect with candidate disease regions. These 

structural variants can also create a new structural haplotype not seen when looking 

at individual SNPs.
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Figure 1. The 17q21.31 locus is an example of a structurally complex region. (A) 

Shows the nine most common structural forms of this locus with its frequency in 

HapMap 3. (B) Represents the haplotypes of the structural forms of this locus 

reconstructed using SNPs distal to the structural variant. The branches represent 

allele frequency of SNPs relative to the structural variant shown on the x-axis 

showing how many neighbouring SNPs can be used to infer haplotypes of complex 

structural regions. Taken from Boettger et al. 2012.
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6.7.4 Single molecule read technology – widening the goal posts? 

Much of the human reference genome is highly repetitive or contains gaps due to 

complex regions, rendering it difficult or impossible to align short 100-250bp reads in 

these regions. Single-molecule read technology (SMRT) such as the PacBio Sequel 

System will allow us to analyse repetitive and structural regions and their 

architecture because of their extremely long sequencing reads that span upwards of 

10Kb. Studies of these complex structural and repetitive regions require very 

accurate data for them to be useful in imputation. The quality of the sequencing is 

still evolving, but work is already in progress to develop a new gold standard human 

reference genome that accounts for complex structural & difficult to decipher 

repetitive regions that comprise so much of the genome [14]. This approach could in 

theory open a new frontier research in complex trait genetics, with imputation 

reference panels based on these technologies, but is still very much science fiction 

for the near future. 

 

6.8 Conclusion  

 

In this thesis I have shown how understanding low-frequency and structural genetic 

variation will help us understand more about the heritability of complex traits and 

disease risk. These approaches make for a promising and exciting future for the field 

of human genetics. A great deal of care needs to be taken however, in how we go 

about moving forward in these areas of the field with respect to both methodology 

and study design. More work needs to be done towards these existing a reference 

panel that reflects accurate structural variation, repetitive regions and rare/low 
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frequency variation, along with GWAS with very large sample sizes to resolve the 

complexity of the heritable component of complex traits and disease risk. 
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APPENDIX I 

 
 

Source code used to bulk quantile normalise raw probeset intensities in 

152,729 UK Biobank individuals 

 

Full source code, binaries, example workflows and README file is accessible from: 

http://goo.gl/iKm196 

 

https://goo.gl/iKm196
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Box 1. quantileNorm1 sorts and ranks each individual’s raw probeset for processing by quantileNorm2 (Box 2) 
/* Author: Marcus Tuke. 

 * Date: 26th Oct 2015  

 * Generate input vector temp files for running quantileNorm2 (raw, sorted & rank intensity vector files for each 

sample) 

 * Usage: ./quantileNorm1 <UK Biobank intensity file> <path to tmp data> 

 */  

 

#include <thread> 

#include <iostream> 

#include <sstream> 

#include <fstream> 

#include <string> 

#include <vector> 

#include <algorithm> 

#include <boost/algorithm/string.hpp> 

#include <unordered_map> 

#include <cassert> 

#include <ext/pb_ds/assoc_container.hpp> 

#include <ext/pb_ds/tree_policy.hpp> 

#include <iomanip> 

 

// Define namespaces 

 

using namespace std; 

using namespace __gnu_pbds; 

using namespace boost; 

 

// Define Order Statistic Tree - data structure to store intensity rankings 

 

typedef 

    tree< 

    long double, 

    null_type, 

    less<long double>, 

    rb_tree_tag, 

    tree_order_statistics_node_update> 

set_t; 
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// Execute main code importing arguments: [ UKBB_file , temp_data_path ] 

 

int main (int argc, char *argv[]) { 

    cout << setprecision(12);  

    cout << "Input files are:" << endl << endl; 

    for(int arg_list = 1; arg_list < argc; arg_list++) { 

        cout << argv[arg_list] << endl; 

    } 

    cout << endl; 

    for(int arg_list = 1; arg_list < argc; arg_list++) { 

    ifstream infile(argv[arg_list]); 

    string line; 

    int linenum=1; 

    while (getline(infile, line)) { 

        // Create an order statistic tree so value ranks can be detected more quickly 

        set_t strs_t; 

        vector<string> strs; 

        split(strs, line, is_any_of(" ")); 

        const int NMISS_SIZE=strs.size(); 

        vector<long double> nmiss(NMISS_SIZE); 

        long double median=0; 

        if(strs[0]!="Person") { 

            // Loop split array and get N that are not lines 1 or 2 and are not == NA 

            // Get size of float-only array 

            int num_float=0; 

            for(int i = 2; i<strs.size(); i++) { 

                if(strs[i]!="NA") num_float++; 

            } 

            const int FLOAT_ARRAY_SIZE=num_float; 

            vector<long double> float_array(FLOAT_ARRAY_SIZE); 

            // Now create a float array to get median value of non-missing data 

            num_float=0; 

            for(int i = 2; i<strs.size(); i++) { 

                if(strs[i]!="NA") { 

                    float_array[num_float]=stold(strs[i]); 

                    num_float++; 

                } 

            } 

            // Sort the float array numerically 
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            sort(float_array.begin(), float_array.end()); 

            median=float_array[ceil(float_array.size()/2)]; 

            //Create float array (nmiss) where first 2 values are zero (subject and sex) and NAs converted to 

medians 

            nmiss[0]=0.00; 

            nmiss[1]=0.00; 

            for(int i = 2; i<strs.size(); i++) { 

                if(strs[i]=="NA") { 

                   nmiss[i]=median; 

                } else { 

                   nmiss[i]=stold(strs[i]); 

                } 

            } 

            // If first line, these are the probe IDs, so create one standard file to contain these first 

            // Declare header/unsorted file output stream 

        } 

        // Assign the two arguments  

        string argv1=argv[1]; 

        string path=argv[2]; 

        // Set temp file prefix 

        string arg_str = argv1.substr(0, argv1.size()-4); 

        // Set raw vector temp file 

        stringstream outstring; 

        outstring << path << "." << arg_str << "." << strs[0] << ".temp"; 

        string opath = outstring.str(); 

        // Set sorted vector temp file 

        stringstream outstringsrt; 

        outstringsrt << path << "." << arg_str << "." << strs[0] << ".sorted.temp"; 

        string srtopath = outstringsrt.str(); 

        // Set rank vector temp file 

        stringstream outstringrank; 

        outstringrank << path << "." << arg_str << "." << strs[0] << ".ranks.temp"; 

        string rankopath = outstringrank.str(); 

        // Open input test streams for each file and if any do not exist then continue 

        ifstream inout(opath.c_str()); 

        ifstream inout2(srtopath.c_str()); 

        ifstream inout3(rankopath.c_str()); 

        if((inout.good()==0 || inout2.good()==0 || inout3.good()==0 || inout.peek() == 

std::ifstream::traits_type::eof() || inout2.peek() == std::ifstream::traits_type::eof() || inout3.peek() == 
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std::ifstream::traits_type::eof())) { 

            // Close test streams 

            inout.close(); 

            inout2.close(); 

            inout3.close(); 

            // Create output streams for raw, sorted & rank vector files 

            stringstream outstring2; 

            outstring2 << path << "." << arg_str << "." << strs[0] << ".temp"; 

            string opath2 = outstring2.str(); 

            stringstream outstringsrt2; 

            outstringsrt2 << path << "." << arg_str << "." << strs[0] << ".sorted.temp"; 

            string srtopath2 = outstringsrt2.str(); 

            stringstream outstringrank2; 

            outstringrank2 << path << "." << arg_str << "." << strs[0] << ".ranks.temp"; 

            string rankopath2 = outstringrank2.str(); 

            // First line of first file is the sample list 

            if(strs[0]=="Person" && arg_list==1) { 

                ofstream out(opath2.c_str()); 

                // Populate raw vector for sample list & then close file 

                for(int i = 2; i<strs.size(); i++) { 

                    out << strs[i] << endl; 

                } 

                out.close(); 

                out.clear(); 

                // Print confirmation to stdout 

                cout << "Column " << linenum << " written to " << opath2 << " (header)" << endl; 

            } else { 

                // Print unsorted values to file (strs) 

                ofstream out(opath2.c_str()); 

                for(int i = 2; i<strs.size(); i++) { 

                    out << strs[i] << endl; 

                } 

                out.close(); 

                out.clear(); 

                cout << "Column " << linenum << " written to " << opath2 << " (unsorted)" << endl; 

                // Print ranking file go through each unsorted line and find value in sorted, when found print to 

rank file and break 

                int itm = strs_t.order_of_key(median); 

                // Loop to populate the tree 
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                for(int i=2; i<nmiss.size(); i++) { 

                    // Find out if nmiss[i] has already been added to the tree. If it has then "untie" it 

                    while((strs_t.find(nmiss[i])==strs_t.end())==0) { 

                        nmiss[i]+=0.000001; 

                    } 

                    if((strs_t.find(nmiss[i])==strs_t.end())==1)  

                        strs_t.insert(nmiss[i]); 

                } 

                ofstream out3(rankopath2.c_str()); 

                for(int i=2; i<nmiss.size(); i++) { 

                    out3 << (strs_t.order_of_key(nmiss[i]))+1 << endl; 

                } 

                out3.close(); 

                out3.clear(); 

                cout << "Column " << linenum << " written to " << rankopath2 << " (ranks)" << endl; 

                // Now sort the float array from 3rd element to the end (check that this is a natural sort!!) 

                sort(nmiss.begin()+2, nmiss.end()); 

                // Print sorted array 

                ofstream out2(srtopath2.c_str()); 

                for(int i = 2; i<nmiss.size(); i++) { 

                    out2 << nmiss[i] << endl; 

                } 

                out2.close(); 

                out2.clear(); 

                cout << "Column " << linenum << " written to " << srtopath2 << " (sorted)" << endl; 

            } 

            linenum++; 

            } else { 

                // If all vector files already exist, just write to stdout. 

                cout << opath.c_str() << " already written" << endl; 

                cout << srtopath.c_str() << " already written" << endl; 

                cout << rankopath.c_str() << " already written" << endl; 

            } 

        } 

    } 

} 
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Box 2. quantileNorm2 creates quantile normalised output data from ranked and sorted data 
 
/* Author: Marcus Tuke. 

 * Date: 26th Oct 2015  

 * Usage: ./quantileNorm2 <UK Biobank intensity file> <path to tmp data> 

 * 

 * Process output and generate quantile normalised PennCNV-Affy input using Unix paste command. For example: 

 *  

 * # Create paste command 

 * $ awk 'BEGIN {print "paste -d \0\4\7\t\0\4\7"} NR==1 {print "<PATH>/.test."$1".temp"} NR>1 {print 

"<PATH>/.test."$1".quant.temp"}' batch.txt | tr '\n' ' ' > tmp.sh 

 *  

 * # Join paste output with batch header 

 * $ { tr '\n' '\t' < batch.txt | sed 's/$/\n/g' & sh tmp.sh; } > quantile_normalised_intensities.txt 

 *  

 * $ rm tmp.sh  

 *  

 */  

 

#include <math.h> 

#include <omp.h> 

#include <thread> 

#include <iostream> 

#include <sstream> 

#include <fstream> 

#include <string> 

#include <vector> 

#include <algorithm> 

#include <boost/algorithm/string.hpp> 

#include <unordered_map> 

#include <cassert> 

#include <iomanip> 

 

// Define namespaces 

 

using namespace std; 

using namespace boost; 

 

// Execute main code importing arguments: [ UKBB_file , Genotyping_batch_ID, temp_data_path ] 
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int main (int argc, char *argv[]) { 

    cout << setprecision(12);  

    cout << "Input files are:" << endl << endl; 

    string path=argv[3]; 

    string argv1=argv[1]; 

    string arg_str = argv1.substr(0, argv1.size()-4); 

    for(int arg_list = 1; arg_list < argc; arg_list++) { 

        cout << argv[arg_list] << endl; 

    } 

    cout << endl; 

    int arg_list; 

 

    for(arg_list = 1; arg_list < 2; arg_list++) { 

        int linenum=1; 

        ifstream infile(argv[arg_list]); 

        string line, ln; 

        // Output totals file: 

        stringstream totstring; 

        //outstringrank << path << "." << arg_str << "." << strs[0] << ".ranks.temp"; 

        totstring << path << "." << arg_str << "." << argv[2] << ".totals.temp"; 

        string totl = totstring.str(); 

        // Read in 'Person' column 

        getline(infile, line); 

        // Read in each line of samples list (after header) 

        int z; 

        while(getline(infile, line)) { 

            // Loop here to read in totals file 

            stringstream curstring; 

            string cur2; 

            curstring << path << "." << arg_str << "." << line << ".sorted.temp"; 

            // Read in sorted file twice. Once to count elements (1st loop) and once to populate array 

            string cur = curstring.str(); 

            ifstream curfile(cur.c_str()); 

            // Set a group of empty streams for below 'if' blocks. These blocks are created to account for 

occasional unreadable temp files due to corrupt disk blocks on NFS. Create a file postfixed with "2" of this is the 

case. 

            ifstream curfile0; 

            ifstream curfile1; 
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            ifstream curfile2; 

            ifstream curfile12;  

            if(curfile.good()==0  || curfile.peek() == std::ifstream::traits_type::eof()) { 

                curstring << "2"; 

                cur2 = curstring.str(); 

                curfile1.open(cur2.c_str()); 

                curfile12.open(cur2.c_str()); 

            } else { 

                curfile0.open(cur.c_str()); 

                curfile2.open(cur.c_str()); 

            } 

            z=0; 

            // Determine vector size z depending on file type 

            if(curfile.good()==0  || curfile.peek() == std::ifstream::traits_type::eof()) { 

                while (getline(curfile12, ln)) { 

                    z++; 

                } 

            } else { 

                while (getline(curfile2, ln)) { 

                    z++; 

                } 

            } 

            curfile2.close(); 

            // Allocate two vectors in memory: one for current sorted array, and one for running total 

            vector<long double> curarr(z); 

            vector<long double> totarr(z); 

            int y=0; 

            // Assign sorted data values to current vector 'currarr' 

            if(curfile.good()==0 || curfile.peek() == std::ifstream::traits_type::eof()) { 

                while (getline(curfile1, ln)) { 

                    curarr[y]=stold(ln); 

                    y++; 

                } 

            } else { 

                while (getline(curfile0, ln)) { 

                    curarr[y]=stold(ln); 

                    y++; 

                } 

            } 
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            y=0; 

            // Read in totals file and assign sorted file to 'totals' array. 

            ifstream totfile(totl.c_str()); 

            while (getline(totfile, ln)) { 

                totarr[y]=stold(ln); 

                y++; 

            } 

            totfile.close(); 

            // Sum current vector with total vector and re-write total vector file 

            ofstream tot_out(totl.c_str()); 

            for(int j=0; j<totarr.size(); j++) { 

                if(linenum==1) { 

                    tot_out << curarr[j] << endl; 

                } else { 

                    tot_out << totarr[j]+curarr[j] << endl; 

                } 

            } 

            tot_out.close(); 

            linenum++; 

        } 

 

        // Create 'averages' vector file 

        stringstream avestring; 

        avestring << path << "." << arg_str << "." << argv[2] << ".averages.temp"; 

        string ave = avestring.str(); 

        ofstream avefile(ave.c_str()); 

        // Allocate averages vector in memory 

        vector<long double> averages(z); 

        int a=0; 

        string total; 

        ifstream totfile(totl.c_str()); 

        // Calculate log2(mean) of total vector 

        while(getline(totfile, total)) { 

            long double tot = stold(total); 

            avefile << log2(tot/linenum) << endl; 

            averages[a]=log2(tot/linenum); 

            a++; 

        }  

        // Loop through sample vectors again to allocate each log2(mean) to its equivalent rankings in the original 
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file 

        // These are the quantile normalised values 'quant' for short 

        ifstream infile2(argv[arg_list]); 

        // Skip header line  

        getline(infile2, line); 

        while (getline(infile2, line)) { 

            // Read raw (curstring), ranks (ranstring). Open 'quant' file to write to  

            stringstream curstring; 

            stringstream ranstring; 

            stringstream quantstring; 

            curstring << path << "." << arg_str << "." << line << ".temp"; 

            ranstring << path << "." << arg_str << "." << line << ".ranks.temp"; 

            quantstring << path << "." << arg_str << "." << line << ".quant.temp"; 

            string cur = curstring.str(); 

            string quant = quantstring.str(); 

            string ran = ranstring.str(); 

            //  

            ifstream quantfile1(quant.c_str()); 

            string quanttest; 

            getline(quantfile1, quanttest); 

            // Open raw vector file 

            ifstream curfile3;  

            ifstream curfile4;  

            ifstream curfile41; 

            curfile3.open(cur.c_str()); 

            if(curfile3.good()==0 || curfile3.peek() == std::ifstream::traits_type::eof()) { 

                curstring << "2"; 

                string cur2 = curstring.str(); 

               curfile41.open(cur2.c_str()); 

            } else { 

               curfile4.open(cur.c_str()); 

            } 

            // Open rank vector file 

            ifstream ranfile; 

            ifstream ranfile1; 

            ifstream ranfile3; 

            ranfile3.open(ran.c_str()); 

            if(ranfile3.good()==0 || ranfile3.peek() == std::ifstream::traits_type::eof()) { 

                ranstring << "2"; 
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                string ran2 = ranstring.str(); 

                ranfile1.open(ran2.c_str()); 

            } else { 

                ranfile.open(ran.c_str()); 

            } 

            ofstream quantfile(quant.c_str()); 

            // Allocate vector for 'ranks' file 

            vector<int> ranks(z); 

            a=0; 

            // Put rank file contents into array 

            string rank; 

            if(ranfile3.good()==0 || ranfile3.peek() == std::ifstream::traits_type::eof())  { 

                while(getline(ranfile1, rank)) { 

                    ranks[a] = stoi(rank); 

                    a++; 

                } 

            } else { 

                while(getline(ranfile, rank)) { 

                    ranks[a] = stoi(rank); 

                    a++; 

                } 

            } 

            // Now loop through the raw vector file and print average using rank as index 

            string curln; 

            a=0; 

            int rankid; 

            // 'averages' file is in an array. Loop through 'raw' intensity file. In each loop, load 'ranks' into 

array.  

            if(curfile3.good()==0 || curfile3.peek() == std::ifstream::traits_type::eof()) { 

                while(getline(curfile41, curln)) { 

                    if(curln=="NA") { 

                        // Keep missing data points as missing 

                        quantfile << "NA" << endl; 

                    } else { 

                        // Add average value indexed by rank item 

                        rankid = ranks[a]; 

                        quantfile << averages[rankid-1] << endl; 

                    } 

                    a++; 



231 
 

                } 

            } else { 

                while(getline(curfile4, curln)) { 

                    if(curln=="NA") { 

                        // Keep missing data points as missing 

                        quantfile << "NA" << endl; 

                    } else { 

                        // Add average value indexed by rank item 

                        rankid = ranks[a]; 

                        quantfile << averages[rankid-1] << endl; 

                    } 

                    a++; 

                } 

            } 

        // Print 'processed' message to stdout 

        cout << "Quant file " << quant.c_str() << " processed." << endl; 

        } 

    } 

} 
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APPENDIX II 

 
 

Exemplar probe intensity Log R Ratio (LRR) and B Allele Frequency (BAF) 

plots for the 49 unique deletion (n=25) and duplication (n=24) copy number 

variants that are present in greater than or equal to one individual in the UK 

Biobank 

 

 
A full set of 2,168 LRR/BAF plots for all deletion (n=937) and duplication (n=1,231) 

calls plus 2,223 calls that were rejected from visual inspection (Section 4.3.7) is 

accessible from: https://goo.gl/X1J0Zv (491 MB) 

 

NOTE: interpretation of plot titles are ‘CN1’ = Deletion, ‘CN3’ = Duplication, ‘ID’ = UK 

Biobank subject ID 

 

 

 

 

https://goo.gl/X1J0Zv
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1. Yaghootkar, H., L. A. Lotta, J. Tyrrell, R. A. Smit, S. E. Jones, L. Donnelly, R. 
Beaumont, A. Campbell, M. A. Tuke, C. Hayward, K. S. Ruth, S. 
Padmanabhan, J. W. Jukema, C. C. Palmer, A. Hattersley, R. M. Freathy, C. 
Langenberg, N. J. Wareham, A. R. Wood, A. Murray, M. N. Weedon, N. 
Sattar, E. Pearson, R. A. Scott and T. M. Frayling (2016). "Genetic evidence 
for a link between favorable adiposity and lower risk of type 2 diabetes, 
hypertension and heart disease." Diabetes. 

Recent genetic studies have identified some alleles associated with higher BMI but 
lower risk of type 2 diabetes, hypertension and heart disease. These "favorable 
adiposity" alleles are collectively associated with lower insulin levels and higher 
subcutaneous-to-visceral adipose tissue ratio and may protect from disease through 
higher adipose storage capacity. We aimed to use data from 164,609 individuals 
from the UK Biobank and five other studies to replicate associations between a 
genetic score of 11 favorable adiposity variants and adiposity and risk of disease, 
test for interactions between BMI and favorable adiposity genetics and test effects 
separately in men and women.In the UK Biobank the 50% of individuals carrying the 
most favorable adiposity alleles had higher BMIs (0.120 Kg/m2 [0.066,0.174]; p=1E-
5) and higher body fat percentage (0.301 % [0.230,0.372]; p=1E-16) compared to 
the 50% of individuals carrying the fewest alleles. For a given BMI, the 50% of 
individuals carrying the most favourable adiposity alleles were at: 0.837 OR 
[0.784,0.894] lower risk of type 2 diabetes (p=1E-7), -0.859 mmHg [-1.099,-0.618] 
lower systolic (p=3E-12) and -0.394 mmHg [-0.534,-0.254] lower diastolic blood 
pressure (p=4E-8), 0.935 OR [0.911,0.958] lower risk of hypertension (p=1E-7) and 
0.921 OR [0.872,0.973] lower risk of heart disease (p=3E-3). In women, these 
associations could be explained by the observation that the alleles associated with 
higher BMI but lower risk of disease were also associated with a favourable body fat 
distribution, with a lower waist-hip ratio (-0.004 [-0.005,-0.003] 50% vs 50%; p=3E-
14) but in men, the favourable adiposity alleles were associated with higher waist 
circumference (0.454 cm [0.267,0.641] 50% vs 50%; p=2E-6) and higher waist-hip 
ratio (0.0013 [0.0003,0.0024] 50% vs 50%; p=0.01). Results were strengthened 
when meta-analysing with five additional studies. There was no evidence of 
interaction between a genetic score consisting of known BMI variants and the 
favorable adiposity genetic score.In conclusion, different molecular mechanisms that 
lead to higher body fat percentage (with greater subcutaneous storage capacity) can 
have different impacts on cardiometabolic disease risk. While higher BMI is 
associated with higher risk of diseases, better fat storage capacity could reduce the 
risk. 
 

2. Wood, A. R., J. Tyrrell, R. Beaumont, S. E. Jones, M. A. Tuke, K. S. Ruth, H. 
Yaghootkar, R. M. Freathy, A. Murray, T. M. Frayling and M. N. Weedon 
(2016). "Variants in the FTO and CDKAL1 loci have recessive effects on 
risk of obesity and type 2 diabetes, respectively." Diabetologia 59(6): 
1214-1221. 

AIMS/HYPOTHESIS: Genome-wide association (GWA) studies have identified 
hundreds of common genetic variants associated with obesity and type 2 diabetes. 
These studies have usually focused on additive association tests. Identifying 
deviations from additivity may provide new biological insights and explain some of 
the missing heritability for these diseases. METHODS: We performed a GWA study 
using a dominance deviation model for BMI, obesity (29,925 cases) and type 2 
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diabetes (4,040 cases) in 120,286 individuals of British ancestry from the UK 
Biobank study. We also investigated whether single nucleotide polymorphisms 
previously shown to be associated with these traits showed any enrichment for 
departures from additivity. RESULTS: Known obesity-associated variants in FTO 
showed strong evidence of deviation from additivity (p DOMDEV = 3 x 10(-5)) 
through a recessive effect of the allele associated with higher BMI. The average BMI 
of individuals carrying zero, one or two BMI-raising alleles was 27.27 (95% CI 27.22, 
27.31) kg/m(2), 27.54 (95% CI 27.50, 27.58) kg/m(2) and 28.07 (95% CI 28.00, 
28.14) kg/m(2), respectively. A similar effect was observed in 105,643 individuals 
from the GIANT Consortium (p DOMDEV = 0.003; meta-analysis p DOMDEV = 1 x 
10(-7)). For type 2 diabetes, we detected a recessive effect (p DOMDEV = 5 x 10(-
4)) at CDKAL1. Relative to homozygous non-risk allele carriers, homozygous risk 
allele carriers had an OR of 1.48 (95% CI 1.32, 1.65), while the heterozygous group 
had an OR of 1.06 (95% CI 0.99, 1.14), a result consistent with that of a previous 
study. We did not identify any novel associations at genome-wide significance. 
CONCLUSIONS/INTERPRETATION: Although we found no evidence of widespread 
non-additive genetic effects contributing to obesity and type 2 diabetes risk, we did 
find robust examples of recessive effects at the FTO and CDKAL1 loci. ACCESS TO 
RESEARCH MATERIALS: Summary statistics are available at 
www.t2diabetesgenes.org and by request (a.r.wood@exeter.ac.uk). All underlying 
data are available on application from the UK Biobank. 
 

3. Pilling, L. C., J. L. Atkins, K. Bowman, S. E. Jones, J. Tyrrell, R. N. Beaumont, 
K. S. Ruth, M. A. Tuke, H. Yaghootkar, A. R. Wood, R. M. Freathy, A. Murray, 
M. N. Weedon, L. Xue, K. Lunetta, J. M. Murabito, L. W. Harries, J. M. 
Robine, C. Brayne, G. A. Kuchel, L. Ferrucci, T. M. Frayling and D. Melzer 
(2016). "Human longevity is influenced by many genetic variants: 
evidence from 75,000 UK Biobank participants." Aging (Albany NY) 8(3): 
547-563. 

Variation in human lifespan is 20 to 30% heritable in twins but few genetic variants 
have been identified. We undertook a Genome Wide Association Study (GWAS) 
using age at death of parents of middle-aged UK Biobank participants of European 
decent (n=75,244 with father's and/or mother's data, excluding early deaths). 
Genetic risk scores for 19 phenotypes (n=777 proven variants) were also tested. In 
GWAS, a nicotine receptor locus(CHRNA3, previously associated with increased 
smoking and lung cancer) was associated with fathers' survival. Less common 
variants requiring further confirmation were also identified. Offspring of longer lived 
parents had more protective alleles for coronary artery disease, systolic blood 
pressure, body mass index, cholesterol and triglyceride levels, type-1 diabetes, 
inflammatory bowel disease and Alzheimer's disease. In candidate analyses, 
variants in the TOMM40/APOE locus were associated with longevity, but FOXO 
variants were not. Associations between extreme longevity (mother >=98 years, 
fathers >=95 years, n=1,339) and disease alleles were similar, with an additional 
association with HDL cholesterol (p=5.7x10-3). These results support a multiple 
protective factors model influencing lifespan and longevity (top 1% survival) in 
humans, with prominent roles for cardiovascular-related pathways. Several of these 
genetically influenced risks, including blood pressure and tobacco exposure, are 
potentially modifiable. 
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4. Ruth, K. S., R. N. Beaumont, J. Tyrrell, S. E. Jones, M. A. Tuke, H. 
Yaghootkar, A. R. Wood, R. M. Freathy, M. N. Weedon, T. M. Frayling and A. 
Murray (2016). "Genetic evidence that lower circulating FSH levels 
lengthen menstrual cycle, increase age at menopause and impact 
female reproductive health." Hum Reprod 31(2): 473-481. 

STUDY QUESTION: How does a genetic variant in the FSHB promoter, known to 
alter FSH levels, impact female reproductive health? SUMMARY ANSWER: The T 
allele of the FSHB promoter polymorphism (rs10835638; c.-211G>T) results in 
longer menstrual cycles and later menopause and, while having detrimental effects 
on fertility, is protective against endometriosis. WHAT IS KNOWN ALREADY: The 
FSHB promoter polymorphism (rs10835638; c.-211G>T) affects levels of FSHB 
transcription and, as a result, circulating levels of FSH. FSH is required for normal 
fertility and genetic variants at the FSHB locus are associated with age at 
menopause and polycystic ovary syndrome (PCOS). STUDY DESIGN, SIZE, 
DURATION: We used cross-sectional data from the UK Biobank to look at 
associations between the FSHB promoter polymorphism and reproductive traits, and 
performed a genome-wide association study (GWAS) for length of menstrual cycle. 
PARTICIPANTS/MATERIALS, SETTING, METHODS: We included white British 
individuals aged 40-69 years in 2006-2010, in the May 2015 release of genetic data 
from UK Biobank. We tested the FSH-lowering T allele of the FSHB promoter 
polymorphism (rs10835638; c.-211G>T) for associations with 29, mainly female, 
reproductive phenotypes in up to 63 350 women and 56 608 men. We conducted a 
GWAS in 9534 individuals to identify genetic variants associated with length of 
menstrual cycle. MAIN RESULTS AND THE ROLE OF CHANCE: The FSH-lowering 
T allele of the FSHB promoter polymorphism (rs10835638; MAF 0.16) was 
associated with longer menstrual cycles [0.16 SD (c. 1 day) per minor allele; 95% 
confidence interval (CI) 0.12-0.20; P = 6 x 10(-16)], later age at menopause (0.13 
years per minor allele; 95% CI 0.04-0.22; P = 5.7 x 10(-3)), greater female nulliparity 
[odds ratio (OR) = 1.06; 95% CI 1.02-1.11; P = 4.8 x 10(-3)] and lower risk of 
endometriosis (OR = 0.79; 95% CI 0.69-0.90; P = 4.1 x 10(-4)). The FSH-lowering T 
allele was not associated with other female reproductive illnesses or conditions in 
our study and we did not replicate associations with male infertility or PCOS. In the 
GWAS for menstrual cycle length, only variants near the FSHB gene reached 
genome-wide significance (P < 5 x 10(-9)). LIMITATIONS, REASONS FOR 
CAUTION: The data included might be affected by recall bias. Cycle length was not 
available for 25% of women still cycling (1% did not answer, 6% did not know and for 
18% cycle length was recorded as 'irregular'). Women with a cycle length recorded 
were aged over 40 and were approaching menopause; however, we did not find 
evidence that this affected the results. Many of the groups with illnesses had 
relatively small sample sizes and so the study may have been under-powered to 
detect an effect. WIDER IMPLICATIONS OF THE FINDINGS: We found a strong 
novel association between a genetic variant that lowers FSH levels and longer 
menstrual cycles, at a locus previously robustly associated with age at menopause. 
The variant was also associated with nulliparity and endometriosis risk. These 
findings should now be verified in a second independent group of patients. We 
conclude that lifetime differences in circulating levels of FSH between individuals can 
influence menstrual cycle length and a range of reproductive outcomes, including 
menopause timing, infertility, endometriosis and PCOS. STUDY 
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FUNDING/COMPETING INTERESTS: None. TRIAL REGISTRATION NUMBER: 
Not applicable. 
 

5. Tyrrell, J., S. E. Jones, R. Beaumont, C. M. Astley, R. Lovell, H. Yaghootkar, 
M. Tuke, K. S. Ruth, R. M. Freathy, J. N. Hirschhorn, A. R. Wood, A. Murray, 
M. N. Weedon and T. M. Frayling (2016). "Height, body mass index, and 
socioeconomic status: mendelian randomisation study in UK Biobank." 
BMJ 352: i582. 

OBJECTIVE: To determine whether height and body mass index (BMI) have a 
causal role in five measures of socioeconomic status. DESIGN: Mendelian 
randomisation study to test for causal effects of differences in stature and BMI on 
five measures of socioeconomic status. Mendelian randomisation exploits the fact 
that genotypes are randomly assigned at conception and thus not confounded by 
non-genetic factors. SETTING: UK Biobank. PARTICIPANTS: 119 669 men and 
women of British ancestry, aged between 37 and 73 years. MAIN OUTCOME 
MEASURES: Age completed full time education, degree level education, job class, 
annual household income, and Townsend deprivation index. RESULTS: In the UK 
Biobank study, shorter stature and higher BMI were observationally associated with 
several measures of lower socioeconomic status. The associations between shorter 
stature and lower socioeconomic status tended to be stronger in men, and the 
associations between higher BMI and lower socioeconomic status tended to be 
stronger in women. For example, a 1 standard deviation (SD) higher BMI was 
associated with a pound210 (euro276; $300; 95% confidence interval pound84 to 
pound420; P=6x10(-3)) lower annual household income in men and a pound1890 ( 
pound1680 to pound2100; P=6x10(-15)) lower annual household income in women. 
Genetic analysis provided evidence that these associations were partly causal. A 
genetically determined 1 SD (6.3 cm) taller stature caused a 0.06 (0.02 to 0.09) year 
older age of completing full time education (P=0.01), a 1.12 (1.07 to 1.18) times 
higher odds of working in a skilled profession (P=6x10(-7)), and a pound1130 ( 
pound680 to pound1580) higher annual household income (P=4x10(-8)). 
Associations were stronger in men. A genetically determined 1 SD higher BMI (4.6 
kg/m(2)) caused a pound2940 ( pound1680 to pound4200; P=1x10(-5)) lower annual 
household income and a 0.10 (0.04 to 0.16) SD (P=0.001) higher level of deprivation 
in women only. CONCLUSIONS: These data support evidence that height and BMI 
play an important partial role in determining several aspects of a person's 
socioeconomic status, especially women's BMI for income and deprivation and 
men's height for education, income, and job class. These findings have important 
social and health implications, supporting evidence that overweight people, 
especially women, are at a disadvantage and that taller people, especially men, are 
at an advantage. 
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6. Usher, C. L., R. E. Handsaker, T. Esko, M. A. Tuke, M. N. Weedon, A. R. 
Hastie, H. Cao, J. E. Moon, S. Kashin, C. Fuchsberger, A. Metspalu, C. N. 
Pato, M. T. Pato, M. I. McCarthy, M. Boehnke, D. M. Altshuler, T. M. Frayling, 
J. N. Hirschhorn and S. A. McCarroll (2015). "Structural forms of the human 
amylase locus and their relationships to SNPs, haplotypes and obesity." 
Nat Genet 47(8): 921-925. 

Hundreds of genes reside in structurally complex, poorly understood regions of the 
human genome. One such region contains the three amylase genes (AMY2B, 
AMY2A and AMY1) responsible for digesting starch into sugar. Copy number of 
AMY1 is reported to be the largest genomic influence on obesity, although genome-
wide association studies for obesity have found this locus unremarkable. Using 
whole-genome sequence analysis, droplet digital PCR and genome mapping, we 
identified eight common structural haplotypes of the amylase locus that suggest its 
mutational history. We found that the AMY1 copy number in an individual's genome 
is generally even (rather than odd) and partially correlates with nearby SNPs, which 
do not associate with body mass index (BMI). We measured amylase gene copy 
number in 1,000 obese or lean Estonians and in 2 other cohorts totaling 
approximately 3,500 individuals. We had 99% power to detect the lower bound of the 
reported effects on BMI, yet found no association. 
 

7. Wood, A. R.*, M. A. Tuke*, M. Nalls, D. Hernandez, J. R. Gibbs, H. Lin, C. S. 
Xu, Q. Li, J. Shen, G. Jun, M. Almeida, T. Tanaka, J. R. Perry, K. Gaulton, M. 
Rivas, R. Pearson, J. E. Curran, M. P. Johnson, H. H. Goring, R. Duggirala, J. 
Blangero, M. I. McCarthy, S. Bandinelli, A. Murray, M. N. Weedon, A. 
Singleton, D. Melzer, L. Ferrucci and T. M. Frayling (2015). "Whole-genome 
sequencing to understand the genetic architecture of common gene 
expression and biomarker phenotypes." Hum Mol Genet 24(5): 1504-1512. 

Initial results from sequencing studies suggest that there are relatively few low-
frequency (<5%) variants associated with large effects on common phenotypes. We 
performed low-pass whole-genome sequencing in 680 individuals from the 
InCHIANTI study to test two primary hypotheses: (i) that sequencing would detect 
single low-frequency-large effect variants that explained similar amounts of 
phenotypic variance as single common variants, and (ii) that some common variant 
associations could be explained by low-frequency variants. We tested two sets of 
disease-related common phenotypes for which we had statistical power to detect 
large numbers of common variant-common phenotype associations-11 132 cis-gene 
expression traits in 450 individuals and 93 circulating biomarkers in all 680 
individuals. From a total of 11 657 229 high-quality variants of which 6 129 221 and 5 
528 008 were common and low frequency (<5%), respectively, low frequency-large 
effect associations comprised 7% of detectable cis-gene expression traits [89 of 
1314 cis-eQTLs at P < 1 x 10(-06) (false discovery rate approximately 5%)] and one 
of eight biomarker associations at P < 8 x 10(-10). Very few (30 of 1232; 2%) 
common variant associations were fully explained by low-frequency variants. Our 
data show that whole-genome sequencing can identify low-frequency variants 
undetected by genotyping based approaches when sample sizes are sufficiently 
large to detect substantial numbers of common variant associations, and that 
common variant associations are rarely explained by single low-frequency variants of 
large effect. 
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Epistasis occurs when the effect of a genetic variant on a trait is dependent on 
genotypes of other variants elsewhere in the genome. Hemani et al. recently 
reported the detection and replication of many instances of epistasis between pairs 
of variants influencing gene expression levels in humans1. Using whole-genome 
sequencing data from 450 individuals we strongly replicated many of the reported 
interactions but, in each case, a single third variant captured by our sequencing data 
could explain all of the apparent epistasis. Our results provide an alternative 
explanation for the apparent epistasis observed for gene expression in humans. 
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Frayling and L. W. Harries (2013). "The splice site variant rs11078928 may 
be associated with a genotype-dependent alteration in expression of 
GSDMB transcripts." BMC Genomics 14: 627. 

BACKGROUND: Many genetic variants have been associated with susceptibility to 
complex traits by genome wide association studies (GWAS), but for most, causal 
genes and mechanisms of action have yet to be elucidated. Using bioinformatics, we 
identified index and proxy variants associated with autoimmune disease 
susceptibility, with the potential to affect splicing of candidate genes. PCR and 
sequence analysis of whole blood RNA samples from population controls was then 
carried out for the 8 most promising variants to determine the effect of genetic 
variation on splicing of target genes. RESULTS: We identified 31 splice site SNPs 
with the potential to affect splicing, and prioritised 8 to determine the effect of 
genotype on candidate gene splicing. We identified that variants rs11078928 and 
rs2014886 were associated with altered splicing of the GSDMB and TSFM genes 
respectively. rs11078928, present in the asthma and autoimmune disease 
susceptibility locus on chromosome 17q12-21, was associated with the production of 
a novel Delta exon5-8 transcript of the GSDMB gene, and a separate decrease in 
the percentage of transcripts with inclusion of exon 6, whereas the multiple sclerosis 
susceptibility variant rs2014886, was associated with an alternative TFSM transcript 
encompassing a short cryptic exon within intron 2. CONCLUSIONS: Our findings 
demonstrate the utility of a bioinformatic approach in identification and prioritisation 
of genetic variants effecting splicing of their host genes, and suggest that 
rs11078928 and rs2014886 may affect the splicing of the GSDMB and TSFM genes 
respectively. 
 
 
 


