
Earth Syst. Dynam., 7, 313–326, 2016

www.earth-syst-dynam.net/7/313/2016/

doi:10.5194/esd-7-313-2016

© Author(s) 2016. CC Attribution 3.0 License.

Early warning signals of tipping points in

periodically forced systems

Mark S. Williamson1, Sebastian Bathiany2, and Timothy M. Lenton1

1Earth System Science group, College of Life and Environmental Sciences, University of Exeter,

Laver Building, North Park Road, Exeter EX4 4QE, UK
2Aquatic Ecology and Water Quality Management, Wageningen University, PO Box 47,

Wageningen, the Netherlands

Correspondence to: Mark S. Williamson (m.s.williamson@exeter.ac.uk)

Received: 27 October 2015 – Published in Earth Syst. Dynam. Discuss.: 6 November 2015

Revised: 4 February 2016 – Accepted: 26 March 2016 – Published: 13 April 2016

Abstract. The prospect of finding generic early warning signals of an approaching tipping point in a complex

system has generated much interest recently. Existing methods are predicated on a separation of timescales

between the system studied and its forcing. However, many systems, including several candidate tipping elements

in the climate system, are forced periodically at a timescale comparable to their internal dynamics. Here we

use alternative early warning signals of tipping points due to local bifurcations in systems subjected to periodic

forcing whose timescale is similar to the period of the forcing. These systems are not in, or close to, a fixed point.

Instead their steady state is described by a periodic attractor. For these systems, phase lag and amplification of

the system response can provide early warning signals, based on a linear dynamics approximation. Furthermore,

the Fourier spectrum of the system’s time series reveals harmonics of the forcing period in the system response

whose amplitude is related to how nonlinear the system’s response is becoming with nonlinear effects becoming

more prominent closer to a bifurcation. We apply these indicators as well as a return map analysis to a simple

conceptual system and satellite observations of Arctic sea ice area, the latter conjectured to have a bifurcation

type tipping point. We find no detectable signal of the Arctic sea ice approaching a local bifurcation.

1 Introduction

The potential for early warning of an approaching abrupt

change or “tipping point” in a complex, dynamical sys-

tem has been the focus of much research, see for example

Wiesenfeld (1985), Held and Kleinen (2004), Thompson and

Sieber (2011) and Scheffer et al. (2012). Abrupt change in

a system can occur due to a bifurcation – that is, a small

smooth change in parameter values can result in a sudden or

topological change in the system’s attractors. This extreme

sensitivity of systems close to criticality is familiar from

studies of critical phenomena in statistical mechanics (Domb

et al., 1972–2001) and stability analysis in nonlinear dynam-

ical systems (Kuznetsov, 2004). Much work on the anticipa-

tion of bifurcations from time series data, e.g. in ecosystems

(Carpenter et al., 2011), or the climate system (Dakos et al.,

2008; Lenton, 2011), is based on methods that infer the time

taken for the system to recover to its steady state (the sys-

tem’s timescale) from perturbations away from that steady

state. The methods are usually based on a clear separation

of three timescales: (i) The timescale of the dynamics of the

system one wants to study, (ii) much faster processes than

the timescale of the system, usually thought of as the per-

turbations the system recovers from and (iii) much slower

processes than the timescale of the system which govern

the present system steady state. In addition, the system dy-

namics are modelled as overdamped, the fast dynamics as a

noisy, normally distributed random variable of small variance

and the slow dynamics as a constant, control parameter. Pro-

vided these are good working approximations, critical slow-

ing down – the increase of the system’s timescale, is expected

prior to a local bifurcation and can be detected by computing

the lag 1 autocorrelation in a sliding window of a system’s
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time series. An increasing trend in autocorrelation shows the

stability of the system is weakening or equivalently, the sys-

tem’s timescale is increasing – which is a generic feature of

a system approaching a local bifurcation. Provided the vari-

ance of the fast noisy process is constant, increasing variance

of the system’s time series is also a good indicator of critical

slowing down, although it is less robust than lag 1 autocorre-

lation due to its dependence on the noisy process.

For many systems of interest one or more of the above as-

sumptions may be invalid (Williamson and Lenton, 2015).

In particular, when the forcing of a system has a comparable

period to the timescale of the system, the forcing cannot be

modelled as a slow, constant control parameter or a fast, ran-

dom process; however they can still be thought of as a pertur-

bation away from the system steady state that one can mea-

sure the recovery time from, an observation we exploit in this

manuscript. These systems are particularly relevant in the cli-

mate system where periodic forcing is a consequence of the

motion of the Earth relative to the Sun; for example, solar

insolation variation from the diurnal, annual or Milankovich

cycles. These systems have steady states described by peri-

odic attractors rather than the simpler, fixed point type attrac-

tors required for lag 1 autocorrelation and variance to be used

as early warning indicators.

In an elegant study Wiesenfeld (1985) computed the

Fourier spectra of noisy perturbations in systems with peri-

odic attractors. Very close to a local bifurcation, the dominant

system timescale asymptotes towards infinity causing the dy-

namics of the noisy perturbations away from the attractor to

be dependent only on the type of bifurcation and not on the

details of the system’s specific equations. This observation

allowed the author to classify all codimension 1 bifurcations

in an arbitrary periodic system by the harmonics in the spec-

tra of residuals. He called these early warning signals noisy

precursors.

A common method to study stability changes in periodic

attractors is the return or Poincaré map, see Strogatz (2001).

Here, one converts the continuous-time periodic orbit into

the fixed point of a return map by sampling the orbit once

every period. One can then compute the usual fixed point in-

dicators for the resulting return map time series such as lag

1 autocorrelation and variance. Advantages of this approach

include no linearity requirement on the dynamics of the peri-

odic attractor although perturbations away from the attractor

must be small enough to be treated linearly. One can also

handle systems with internally generated cycles rather than

those generated by external periodic forcing that we look at

in this manuscript. To detect any change in stability from the

return map, the timescale of the system must also be greater

than the period of the forcing. To see this, imagine one sam-

ples the cycle to create a point in the return map and then

immediately after perturbs the system away from the stable

cycle. If the system timescale is shorter than the cycle pe-

riod, which is determined by the forcing period, the system

will have recovered back to the stable cycle before the sys-

tem is sampled again for the next point in the return map.

The perturbation and its recovery will therefore be invisible

to stability analysis on the return map time series. It should

be noted that close to a local bifurcation the system timescale

approaches infinity so satisfying this requirement. However,

if this requirement is met only over a few cycles or less it will

be very hard to detect.

With this limitation in mind we suggest alternative early

warning signals of approaching local bifurcations when the

period of the forcing is similar to the timescale of the sys-

tem. We look particularly at sinusoidal forcing since this ap-

proximates the variation of solar insolation well. However,

the method works for any periodic forcing and we give the

derivation of the general case in the Appendix. We demon-

strate that increasing the system timescale as it approaches

a local bifurcation shows up as an increasing phase lag in

the system response relative to the forcing. In addition, the

amplitude of the system response increases as well. These

indicators, like lag 1 autocorrelation and variance in fixed

point attractor methods, assume the linearised dynamics ap-

proximate the true nonlinear dynamics well. One might ask

how well the linear approximation works, especially near the

bifurcation, since bifurcations are strictly nonlinear phenom-

ena. A quantitative answer to this question can be provided

by computing the Fourier spectrum of the system’s time se-

ries. In particular, as the system’s behaviour becomes more

nonlinear, harmonics of the forcing period are generated in

the system response and their amplitudes may be obtained

from the system’s Fourier spectra. Since the system response

becomes more nonlinear as one approaches the bifurcation,

one can view the increasing amplitude of harmonics as an-

other early warning signal.

The paper is organised as follows: in Sect. 2 the early

warning indicators used in the manuscript are introduced,

namely the system response phase lag and amplification as

well as harmonic amplitudes. We also review a common

approach to periodic attractors, the return map, which is

complementary to phase lag and response amplification. In

Sect. 3 a periodically forced overdamped system in a double

well potential is used to illustrate the timescale separation

problem and the properties of the early warning indicators

when a local bifurcation is approached. In Sect. 4 we apply

the early warning indicators to satellite observations of Arc-

tic sea ice area, a system conjectured to be approaching a

local bifurcation. We conclude in Sect. 5.

2 Early warning indicators of local bifurcations in

periodic systems

As previously mentioned in the introduction, the Arctic sea-

ice has been conjectured to be approaching a local bifur-

cation. Treating this system approximately, one can think

crudely of the slow control parameter as the decrease of out-

going long-wave radiation, giving a warming trend in air
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temperature as the Earth’s atmospheric CO2 concentration

increases. This is a system that is forced periodically and de-

terministically by the annual cycle of short-wave solar in-

solation. The system response is dominated by this periodic

forcing rather than small amplitude; random noisy forcing is

also present and system timescale is roughly the same order

of the forcing period. In this section, motivated by detection

of local bifurcations in systems like the sea-ice type from

time series, we look for suitable methods. Although this sys-

tem has no clear separation of timescales with which to use

fixed point methods directly, the fact that this system has a

large and predictable perturbation one can measure the re-

sponse to reduces the need for the statistical methods (and

therefore large numbers of data) required for noisy perturba-

tions and so the number of data in a time series becomes less

of an issue.

Students of physics or engineering will likely have solved

the equation for the forced damped harmonic oscillator and

observed in the overdamped limit that the phase and am-

plitude depend on the damping parameter (see for example

Main, 1993). In the following subsections we propose to use

this fact and phase lag and response amplification as sim-

ple non-statistical indicators of system timescale. We demon-

strate their properties and their functional dependence on sys-

tem timescale. These early warnings are based on a linear dy-

namics approximation but by taking the Fourier transform of

the system response, one can also look at the magnitude of

the nonlinear response. This has two purposes, first one can

check the linear approximation is good and second, because

bifurcations are strictly nonlinear phenomena, the system re-

sponse will become more nonlinear as one approaches the

bifurcation giving another early warning indicator that can

be monitored.

The systems we concentrate on in this manuscript, relevant

to externally forced climate problems, have cycle periods de-

termined by the period of forcing and a one-way coupling

from the forcing to the system and so are special cases of pe-

riodic attractors. For these special cases, when forcing period

and system timescale are similar, phase lag and response am-

plification are useful indicators. However, return maps are

generally more useful when treating more general periodic

attractors. At the end of the section we briefly review the

method of return maps.

2.1 Phase lag and response amplification

We consider systems that can be described by

ẋ = f (x)+D(t) (1)

where f (x) is, generally, a nonlinear function of the system

state scalar variable x with forcing D(t) given by

D(t)=Dm+Da cos(ωt). (2)

Dm and Da are constants, ω = 2π
T

is the angular frequency

and T is the period of the forcing. We have assumed any

other random, noisy external forcing to be very small and

can be neglected. The solution for a general form for D(t)

is given in the Appendix, however here we use sinusoidal

forcing as this is most relevant for many climate systems and

we wish not to obscure the simplicity of the main result. ẋ

describes the dynamics of a forced overdamped system. This

is a nonautonomous system whose state can be completely

described by t and x. After some time ts � τ , where τ is

the system timescale, the system will settle into some sort of

steady state, either an orbit or a fixed point whose mean state

x̄ is

x̄ =
1

T

T+ts∫
ts

x(t)dt. (3)

We now Taylor expand f (x) to first order around x̄ so that

ẋ ≈ a−
x

τ
+Da cos(ωt), (4)

where

a = f (x̄)−
∂f

∂x
|x=x̄ x̄+Dm (5)

τ =−1/
∂f

∂x
|x=x̄ (6)

are the linearisation constants. We have assumed higher order

terms such as 1
n!
∂nf
∂xn

(x−x̄)n, n≥ 2 are small relative to zeroth

and first order terms so that the linearised dynamics approx-

imates the full nonlinear dynamics well. We show how to

check this approximation in Sect. 2.2. Assuming the approx-

imation is good, one can solve Eq. (4). As t � τ the system

settles into the orbit

lim
t�τ

x(t)= aτ +
Daτ

√
1+ω2τ 2

cos(ωt +φ), (7)

where the system response lags the forcing by phase φlag =

ωtlag =−φ given by

φlag = arctan(ωτ ), (8)

that is, the phase lag is a function of the forcing frequency

and the system response timescale. One also notices that the

system response, relative to the forcing amplitude,Da , is am-

plified by a factor

τ
√

1+ω2τ 2
, (9)

which is also a direct function of ω and τ . The more general

derivation when D(t) can be any periodic function is given

in the Appendix Sect. A.

2.2 System nonlinearity and harmonic amplitude from

Fourier analysis

By simply looking at the time series of the system response

and the forcing one can determine what the amplitude and
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phase lag are when the driving is of the form Eq. (2) and

the system response is approximately linear without the need

for statistics. However, the system is essentially nonlinear

and these nonlinear effects may become large near a bifurca-

tion or when the system is driven hard. By taking the Fourier

transform of the time series of the system response one can

quantify how large these nonlinear effects are. With a simi-

lar motivation Wiesenfeld (1985) and Wiesenfeld and McNa-

mara (1986) calculated the Fourier spectra of the perturba-

tions, rather than the response, away from periodic attractors

very close to local bifurcations with noisy and weak periodic

modulation respectively.

Once the system has settled into an orbit of period T , the

full nonlinear response of an arbitrary system can be written

as a Fourier series, a sum of N sinusoidal functions with an-

gular frequencies ωn =
2πn
T

, amplitudes An and phases φn,

i.e.

x(t)=

N∑
n=0

An cos(ωnt +φn). (10)

The n= 0 component is a constant, the long-term mean of

the response; the n= 1 component is the linear response of

the system and the n≥ 2 components are the nth order har-

monics and come about from the nonlinear response of the

system. Since the system has settled into a periodic orbit the

system must repeat itself every cycle. The only way the sys-

tem can do this is by adding harmonics to linear response.

By looking at the ratios An/A1 for n≥ 2 the nonlinear ef-

fects relative to the linear approximation can be quantified.

In practice the largest harmonics will generally be the 2nd

(n= 2) and 3rd order (n= 3) harmonics and provided they

are an order of magnitude (10 times, An/A1 < 10−1) less

than the fundamental harmonic, the linear analysis in the last

section works well. Calculation of the amplitudes, An, can

be made via a Fourier transform of the time series.

One may also expect subharmonics, components that have

periods that are integer multiples of the forcing period, to

be observed in the system response. Subharmonics are not

possible in the systems we consider here due to the dimen-

sionality of the phase space. 1

Since the ratios An/A1 measure how nonlinear the system

is one expects these to increase as the system approaches a

1Systems described by Eq. (1) are completely described by the

two-dimensional space of variables x and t . Recasting the nonau-

tonomous system in Eq. (1) as a two dimensional autonomous sys-

tem by identifying a new angular variable φ = ωt , the system is

then described by ẋ = f (x)+D(φ) and φ̇ = ω. The resulting phase

space (x,φ) is then cylindrical as φ is 2π modular. If subharmon-

ics are possible in the periodic system response the trajectory must

wind around the cylinder at least twice before repeating itself. Such

a trajectory implies it crosses itself which is not allowed due to the

existence and uniqueness theorem. Therefore subharmonics cannot

exist in the two-dimensional systems. This is of course not true for

three- and higher-dimensional systems.

bifurcation. These ratios can be plotted for a time series by

taking the Fourier transform for a data window consisting of

an integer number of cycles and sliding this window forward

by one cycle recursively through the time series. The number

of cycles in the window must be large enough that the har-

monics can be satisfactorily resolved in the Fourier spectra.

In addition, each cycle must be sampled at a time interval

1t ≤ TNyquist/2 where TNyquist is the minimum harmonic pe-

riod you want to resolve.

2.3 Lag 1 autocorrelation of a return map

Provided the system timescale is larger than its period,

τ/T > 1, one can use return maps to assess the stability of

a periodic attractor. The return map time series, generated by

sampling the system response once every cycle, allows one

to apply fixed point statistical early warning indicators such

as lag 1 autocorrelation. It is the random forcing away from

the periodic attractor that this method infers timescale from,

rather than response to deterministic, periodic forcing. This

is usually done by calculating the lag 1 autocorrelation for

a sliding data window of the return map time series at least

as long as the system timescale but not so long that any in-

creasing trend in system timescale skews the autocorrelation

estimate. It is also desirable to have many points within this

window as the standard error of the estimate scales as 1/
√
m,

where m is the number of cycles (points) within the window

(see Williamson and Lenton (2015) for a discussion). For

time series consisting of a small number of cycles this can

be a limiting factor.

3 Examples

We now demonstrate the early warning indicators in Sect. 2

for different ratios of forcing period, T , (or equivalently an-

gular frequency ω) to system timescale τ . In particular, we

use a periodically forced double well potential as our main

system. This system has been extensively studied in the con-

text of stochastic resonance (see McNamara and Wiesenfeld

(1989) and Gammaitoni et al. (1998) for reviews) as the sim-

plest model of the phenomena when noise is also added.

Phase and amplitude have been investigated in this setting by

Shneidman et al. (1994) and Jung and Hänggi (1993). This

literature is largely concerned with resonance effects in tran-

sition probabilities between the wells (finite barrier height

between the wells) rather than the anticipation of local bifur-

cations (barrier height tends to zero).

Our system which has one dynamical variable, x, and

evolves according to

ẋ = x− x3
+D(t), (11)

where overdots denote differentiation with respect to time, t

and the periodic forcing function D(t) is given by Eq. (2).

Equation (11) models a nonautonomous nonlinear system,
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the overdamped limit of a Duffing oscillator (Thompson and

Stewart, 2002). When forcing is constant (ω = 0) the famil-

iar, well-studied autonomous fold bifurcation is recovered

(for example see Strogatz, 2001). For ω = 0, the solutions

of ẋ = 0, give the system’s fixed points, x∗ (the nullclines)

and number either one or three depending on the value of

Dm. One can evaluate the stability of these fixed points by

looking at the linearised dynamics close to the fixed points,

J (x∗):

J (x∗)=
∂ẋ

∂x
|x=x∗ = 1− 3x∗2. (12)

If J (x∗) is negative, the fixed point is stable, if it is positive

it is unstable. In the region where three fixed points exist one

finds a bistable region, i.e. two points are stable while the

third is unstable. The bistable region has boundaries marked

by the local bifurcations and these can be found by solving

J (x∗)= 0 for x∗ when the fixed point becomes neutrally sta-

ble. One can also calculate the e-folding timescale of the sys-

tem in state x, τ from the Jacobian τ =−1/J (x). We will re-

fer to the e-folding time as the system timescale. As the sys-

tem gets closer to the bifurcation the system timescale will

increase and tend to infinity at the bifurcation. Early warning

indicators are simply functions of J (x∗) or equivalently τ .

3.1 Period of forcing similar to system timescale, ωτ ∼ 1

This regime, T ∼ τ , is the main focus study in this

manuscript, when the system responds on approximately the

same timescale as the period of the forcing. In this regime

the dynamics are a balance between the system’s tendency

to want to decay towards the fixed point and the forcing try-

ing to push it away. After some time, t � τ , the system will

settle into an orbit rather than a fixed point due to the sim-

ilarity of the timescales. Just as there was a bistable region

where multiple stable fixed points existed for a single value

of Dm when ω = 0, analogously in the case T ∼ τ multiple

stable periodic attractors are possible given a fixed set of val-

ues for Dm, Da and ω. The system state x is plotted against

D and against t as the blue line in Fig. 1. Which state the sys-

tem settles in depends only on the system’s initial condition

x(t = 0). Local bifurcations are present in this intermediate

region, however they are local bifurcations between orbits

rather than fixed points. In this intermediate regime, one can

neither place the Da cos(ωt) part of D(t) in either the slow

or fast processes and therefore the assumptions of the usual

fixed point early warning methods are not strictly valid. This

is, however, where phase lag and response amplification are

useful early warning indicators.

To illustrate the early warning indicators we fix the forc-

ing amplitude Da and the period T ∼O(τ ) and take Dm
as a control parameter, slowly varying from negative val-

ues towards the local bifurcation in the system described by

Eq. (11). We expect to see the system response become more

phase lagged and amplified as we approach the local bifur-
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Figure 1. The dynamics of the system described by Eq. (11) in three

different timescale regimes. Forcing parameters are set to Dm = 0,

Da = 1/2. In the upper panel system state x is plotted againstD(t).

The black lines are the nullclines and the coloured lines are the sys-

tem responses for different periods of forcing. In the lower panel x

is plotted against the number of cycles, t/T , once the system has

reached a steady state. The dotted line is the forcing, D(t) while

the coloured lines are the system responses. The red line is for the

slow forcing limit, τ � T , T = 100π so ωτ ≈ 1/100. As the sys-

tem timescale is much faster than the change in the forcing, the

system essentially “sticks” to the fixed points until they become

unstable at the bifurcations and jump to a different attractor. One

can regard the system response in two different ways: (i) a single

periodic attractor giving relaxation oscillations in a monostable re-

gion. (ii) Tipping between point attractors by crossing local bifur-

cations in a bistable region. This tipping causes the dynamics to

be very nonlinear. The green line is the fast forcing limit, T � τ ,

T = π/100 so ωτ ≈ 100. There are two possible stable attractors

for this set of values. As the system timescale is much slower than

the change in the forcing, the system essentially remains static and

all the dynamics come from the forcing itself. Although it is hard

to see in the figure due to the small amplitude system response, the

lag relative to the forcing is 1/4 of a cycle and the dynamics are ap-

proximately linear. The blue line is the intermediate regime, τ ∼ T ,

T = π so ωτ ≈ 1 and there are two possible stable attractors for this

set of values. As the system timescale is approximately the same as

the period of the forcing, the system response is a competition be-

tween the system’s tendency to decay towards the nullcline and the

forcing pushing it away setting up a stable orbit. Notice that there is

some phase lag and the dynamics look approximately linear.

cation at Dm ≈ 0.33 when approaching from the lower null-

cline solutions. We also expect the amplitude of the harmon-

ics of the system response to increase.

We choose to tip the system from one state to another by

slowly altering the mean of the drivingDm. Alternatively, the

system could have tipped by changing one of the other driv-

ing parameters such as amplitude Da or frequency ω. Since

the system response amplitude depends on Da and ω and

www.earth-syst-dynam.net/7/313/2016/ Earth Syst. Dynam., 7, 313–326, 2016
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Figure 2. The dynamics of the system are described by Eq. (11)

with varyingDm. Parameters are set toDa = 1/2, T = π (the same

order as the system timescale ωτ ∼ 1) and Dm is varied linearly

with time between -2 and 2 over about 25 cycles. In the upper panel

the black lines are the nullclines while the system response is the

blue line plotted against D(t). The orbit loses stability around a

mean value ofD ≈ 0.5 and jumps to a new orbit. In the lower panel

we have plotted the system response (blue) against the forcing D

against t/T . One can see the loss of stability of the orbit around

t/T ≈ 15 and the prior increase in system response amplitude.

phase lag depends onω, one must take this into account when

inferring system timescales from the indicators.

In Fig. 2 the system is run forward in time, linearly vary-

ing Dm from −2 to 2 across the bifurcation over about 25

cycles of the forcing period (for the values of the parame-

ters see the figure caption). Plotted in Fig. 3 are phase lag

and amplitude of the system response prior to the bifurcation

at around t/T = 15. Both are increasing as the bifurcation

is approached due to the increase in τ . Phase lag is calcu-

lated from the difference between the times of the maxima

in the forcing and the system response in each cycle. Re-

sponse amplitude is calculated by taking half the difference

between the maximal and minimal values in the system re-

sponse in each cycle. Also plotted are the ratios of the sec-

ond and third harmonic amplitudes to the amplitude of the

fundamental harmonic with time using a sliding window of

length 5 complete cycles against the time at the end of the

sliding window. The window needs to be long enough to re-

solve the harmonics in the spectrum but short enough to keep

Dm approximately constant. For this example, where the har-

monic amplitudes (and the nonlinearity of the response) are

quite small, 5 cycles is the minimum to resolve the peaks.

The sliding window is then advanced one cycle in the time

series and the harmonic amplitudes are calculated for this

new window. This process is iterated until the local bifurca-

tion is reached to produce the lower panel in Fig. 3 which

shows both harmonic amplitudes increasing.
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Figure 3. The early warning indicators, response amplification (up-

per panel), A=
Daτ√

1+ω2τ 2
, and phase lag (middle panel),

φlag

2π
=

1
2π

arctan(ωτ ) calculated for the time series in Fig. 2. We have plot-

ted these indicators prior to the bifurcation at t/T ≈ 15. The 2nd

(blue) and 3rd (red) harmonic amplitudes An/A1 are also plotted in

the lower panel using a sliding window of 5 complete cycles. All

indicators are increasing as expected.

We also plot the complete spectrum of the ratios An/A1

against Tn/T derived from a Fourier transform of the sys-

tem response in Fig. 4. In the upper panel all parameters are

the same as Fig. 2 except we have fixed Dm in each of the

two runs. In the first run Dm =−2, this is far from the bi-

furcation and one expects the system to behave more linearly

(blue line). One sees a second harmonic around 2 orders of

magnitude smaller than the linear response. In the second run

Dm = 0.25 and the orbit is much closer to the bifurcation (red

line). The second harmonic has increased to about an order

of magnitude smaller than the fundamental harmonic and a

third harmonic is now also visible indicating the system has

become more nonlinear.

To give an example of a climate system operating in this

regime consider the annual variation in sea temperatures in

Northern Hemisphere temperate regions. A rough estimate of

the ocean surface mixed layer timescale gives τ ∼ 10 months

and this surface layer is heated by the annual cycle of solar

insolation to varying degrees throughout the year. Calcula-

tion of the phase lag for this τ and T yields a lag of about

2.6 months, i.e. roughly the maximal and minimal sea tem-

peratures are in September and March. Arctic sea ice ex-

tent also falls into this regime and we analyse this system

in Sect. 4.

3.1.1 A note about return maps

Towards the upper range of ωτ ∼ 1, specifically ωτ > 2π ,

return map analysis via statistical fixed point indicators be-

comes useful with the added caveat that the time series of
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Figure 4. Ratio of the nth order harmonic amplitude to the fun-

damental harmonic amplitude An/A1 against the ratio of the nth

harmonic period to the fundamental harmonic period Tn/T . The

dynamics of the system are described by equation 11. In the up-

per panel parameters are fixed to Da = 1/2, T = π (the same or-

der as the system timescale τ ). The blue line is for Dm =−2 (far

away from the bifurcation), the nonlinear response is dominated

by the second harmonic at Tn/T = 1/2 although small, about two

orders of magnitude less than the linear response. The red line is

Dm = 1/4, close to the bifurcation the system response has be-

come more nonlinear. The second harmonic (Tn/T = 1/2) is now

almost 1 order of magnitude less and the third order harmonic

(Tn/T = 1/3) is also prominent. In the bottom panel, we show the

spectrum when the dynamics are very nonlinear. Parameters are set

to Dm = 0, Da = 1/2, T = 100π so ωτ ≈ 1/100. This is the slow

forcing limit shown in Fig. 1 (red line) which has a very nonlin-

ear relaxation oscillation type response. Note only odd harmonics

(Tn/T = 1/3,1/5,1/7, . . . etc.) are present due to the system expe-

riencing a symmetric potential requiring the solution, x(t), to also

have this symmetry.

the system must have enough cycles to produce statistically

significant results. Return map analysis is complementary to

phase lag and response amplification since these quantities

start to asymptote when ωτ > 2π . This complementarity is

illustrated in the following figures. The blue line in Fig. 5

is essentially the same as Fig. 2 (ωτ ∼ 1) except Dm is var-

ied over 100 cycles instead of 25. This is because extra data

points are needed to calculate the lag 1 autocorrelation of the

return maps with any reliability. We have also added Gaus-

sian white noise to Eq. (11) of standard deviation 0.01 as the

return map method needs small perturbations with which to

infer return times to the cycle. In Fig. 6 we have plotted the

early warning indicators for this time series including the re-

turn map calculated with a sliding window of 25 cycles. The

black lines are the theoretical curves and the blue lines are

the estimated curves. The key point is the theory and esti-

mated autocorrelations do not show anything in this regime

(ωτ ∼ 1) however the phase lag and response amplification

are clearly increasing.
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Figure 5. Same figure as Fig. 2 in the manuscript except the varia-

tion ofDm is over more cycles to generate more points for a reliable

return map analysis. Weak Gaussian white noise of standard devia-

tion 0.01 is added to the system. Parameters are set toDa = 1/2 and

Dm is varied linearly with time between −2 and 2 over about 100

cycles. In the upper panel the black lines are the nullclines while the

system response is the blue line for T = π giving ωτ ∼ 1 whereas

the red line has a shorter period of T = 1/4 to give ωτ ∼ 4π . These

are plotted against D(t). In the lower panel we have plotted these

system responses as time series against the forcing (black line).

Conversely, the red lines in Figs. 5 and 7 are the same

quantities but with a decreased period of forcing (T = 1/4 so

ωτ ∼ 4π ). This is a regime in which phase lag and response

amplitude start to asymptote and are therefore not so useful

to infer changing system timescale. However, lag 1 autocor-

relation of the return map now becomes useful as can be seen

in Fig. 7.

3.2 Period of forcing much slower than system

timescale, ωτ� 1

When Eq. (11) is operating in this regime (period of forcing

much greater than system timescale T � τ ) the system can

adjust to changing D(t) relatively quickly and effectively re-

mains at a fixed point. D(t) can therefore be modelled as a

slow constant, control parameter and all the usual timescale

separation assumptions apply. Fixed point indicators such

as lag 1 autocorrelation are then good early warning indi-

cators of local bifurcations. In contrast, phase lag and re-

sponse amplitude are not useful as these quantities asymp-

tote to φlag→ 0 and→ τ respectively. The system state x is

plotted against D and against t as the red line in Fig. 1.

An example of a system that has the correct timescale sep-

aration and periodic forcing are the glacial and/or interglacial

cycles that have the slow build, fast collapse type behaviour

of relaxation oscillations. Ice sheets have timescales in the

order of thousands of years forced by the solar insolation

variation of Milankovitch cycles. The forcing is a superpo-
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Figure 6. ωτ ∼ 1: The early warning indicators, response amplifi-

cation (upper panel), A=
Daτ√

1+ω2τ 2
, and phase lag (middle panel),

φlag

2π
=

1
2π

arctan(ωτ ) calculated for the blue time series in Fig. 5.

In the lower panel, lag 1 autocorrelation of a sliding window of

25 points of the return map is plotted with standard errors (dashed

lines) on the estimate. Black lines are theoretical curves of all the

quantities. The key point is that phase lag and amplitude response

are useful quantities in this regime however the return map is not.

sition of many different sinusoidal frequencies, the domi-

nant ones having periods of 41 kyr (related to the obliquity

of Earth’s orbit), 19 and 23 kyr (related to the precession).

Current thinking, however, favours more complex, two- and

higher-dimensional dynamics to model these cycles than the

single variable models we consider in this paper (Saltzman,

2002; Crucifix, 2012; Saedeleer et al., 2013; Crucifix, 2013).

The spectrum of a very nonlinear, relaxation oscillation

type, dynamics is illustrated in the lower panel of Fig. 4. This

is the spectrum of the slow forcing run (red line) in Fig. 1.

Only odd harmonics appear in its spectrum because the static

potential V =−
∫
ẋdx is symmetric about x for this value of

Dm = 0, i.e. V (x)= V (−x) and therefore any solution of ẋ

must also have this symmetry, x(t+T/2)=−x(t). Only odd

harmonics have this property.2

2This is not sufficient though as there are other parameter set-

tings that feature the second harmonic and also have the same sym-

metric potential, i.e. Dm = 0 and T = π in Fig. 1 (blue line). The

difference is that the runs featuring second harmonic responses only

experience a limited part of the potential, not the full symmetric po-

tential. Even though the potential is the same, the forcing is quick

enough to trap the system in an orbit in just one of the two potential

wells. This local potential well is asymmetric and what the system

sees is effectively described by a Taylor expansion around the cen-

tre of that well. In contrast the relaxation oscillation type run travels

across both wells equally and therefore sees the global symmetric

potential requiring an odd harmonic solution. This is not a generic

case however.
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Figure 7.ωτ ∼ 4π : The early warning indicators, response amplifi-

cation (upper panel), A=
Daτ√

1+ω2τ 2
, and phase lag (middle panel),

φlag

2π
=

1
2π

arctan(ωτ ) calculated for the red time series in Fig. 5.

In the lower panel, lag 1 autocorrelation of a sliding window of

25 points of the return map is plotted with standard errors (dashed

lines) on the estimate. Black lines are theoretical curves of all the

quantities. Phase lag and amplitude response have now asymptoted

and are not useful quantities however the return map now becomes

useful.

3.3 Period of forcing much faster than system timescale,

ωτ� 1

The system state x is plotted against D and against t as the

green line in Fig. 1. The forcing is changing much faster than

the system can respond so the system effectively looks static

and all the dynamics come from the forcing directly. In this

case we can place D(t) in the fast dynamics. However, not

all of the other assumptions for use of lag 1 autocorrelation

in a fixed point analysis are satisfied. It is true that D(t) is

independent of x, however it is not uncorrelated with itself

at different times and therefore cannot strictly be modelled

as a normally distributed random variable, although at first

glance it looks as though it is again possible to use usual fixed

point early warning techniques so one must be careful. In

this regime, phase lag and response amplification asymptote

and again are not very useful to detect a trend in increasing

timescale. Phase lag, φlag→ π/2 and response amplification

→
1
ω

so one may only infer τ � T .

An example of a system approximately modelled by this

limit is the global terrestrial vegetation carbon which has a

dominant timescale on the order of decades, much larger than

its periodic forcing, the annual cycle of solar insolation. This

dominant timescale comes from the large long term carbon

storage, e.g. the timescale taken for a forest to regrow once

cut down. One sees this phase lag of quarter of a cycle in
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Figure 8. Atmospheric CO2 concentration recorded at Mauna Loa

against time in the upper panel. In the lower panel we have plot-

ted the minimum annual CO2 concentration against year. One no-

tices the minimum CO2 concentration occurs roughly 3/4 of the

way through the year. This is because maximal carbon uptake oc-

curs during the Northern Hemisphere summer from the terrestrial

vegetation and it is maximally lagged behind the maximum in the

Northern hemisphere solar insolation (best growing conditions) by

1/4 of a cycle because of the timescale difference between the re-

sponse of the system and the period of the forcing.

the annual minimum of the Mauna Loa CO2 record 3 rela-

tive to the Northern Hemisphere solar insolation maximum.

This lagged annual minimum in the integrated response of

the total atmospheric carbon results from the dominance of

the Northern Hemisphere’s mid latitude terrestrial vegetation

carbon in the global carbon flux. We have plotted the Mauna

Loa CO2 record and the time of year of the minimum con-

centration in Fig. 8.

4 Looking for a tipping point in Arctic sea ice

satellite observations

There has been much research on a possible local bifurcation

and tipping point in the Arctic sea ice, see for example Ar-

mour et al. (2011), Eisenman and Wettlaufer (2009), Lindsay

and Zhang (2005), Livina and Lenton (2013), Ridley et al.

(2012) and Wang and Overland (2012). This possible bifur-

cation in the sea ice cover may be due to the well-known

ice albedo feedback first studied by Budyko (1969) and Sell-

ers (1969). When ice is present it reflects a high proportion

of the incoming solar radiation due to its higher albedo yet

when it starts receding the darker ocean absorbs more radi-

ation increasing heating and promoting more sea ice retreat.

3Pieter Tans, NOAA/ESRL (www.esrl.noaa.gov/gmd/ccgg/

trends/) and Ralph Keeling, Scripps Institution of Oceanography

(www.scrippsco2.ucsd.edu/)
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Figure 9. Arctic sea ice area satellite observations from 1979 to

present day (2015) obtained from The Cryosphere Today project of

the University of Illinois.

This feedback can result in instability and multiple steady

states.

We calculate all the previously mentioned early warning

indicators for a time series of Arctic sea ice area satellite

observations from 1979 to present day. That is we calcu-

late phase lag, response amplitude, relative size of the 2nd

and 3rd harmonics and the lag 1 autocorrelation of the return

map with time to look for signs of critical slowing down that

might indicate the approach of a local bifurcation or “tipping

point” in the Arctic sea-ice. We also calculate the complete

Fourier spectra for the entire time series as a linearity check.

In Fig. 9 satellite observations of Arctic sea ice area are plot-

ted against year. Sea ice area data were obtained from The

Cryosphere Today project of the University of Illinois. This

data set 4 uses SSM/I and SMMR series satellite products

and spans 1979 to present at daily resolution.

In Fig. 10 we plot the amplitude of the sea ice area annual

cycle and the phase lag between the sea ice area minimum

and maximum during each cycle. We assume the maximal

and minimal driving occurs at the same time as maximal and

minimal of the solar insolation, that is, the midpoint and end

point of the year respectively to obtain phase lags. To limit

the impact of high-frequency variability on the location of

the extrema, we have smoothed the daily data with a sliding

window of 30 days.

From Fig. 10 we see the cycle amplitude is increas-

ing with time although the phase lag does not appreciably

change. We first make some rough calculations to see if

these plots are consistent with each other: from the phase

lag figure, a timescale of τ ∼[0.33, 0.5] years from the lag

of [0.18, 0.2] of a cycle can be inferred. If we assume for

the moment the amplitude of the forcing Da is not chang-

ing throughout the time period of the observations (this may

not be true) and take the smallest value in the range for

4http://arctic.atmos.uiuc.edu/cryosphere/timeseries.anom.

1979-2008
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Figure 10. In the upper panel amplitude of sea ice area within each

cycle is plotted against year. In the middle panel phase lag is plotted

between the sea ice area minimum (red line) and maximum (blue

line) and the solar insolation minimum and maximum respectively

against the year. In the lower panel, the 2nd (blue) and 3rd (red)

harmonic amplitudes An/A1 are plotted against year end using a

sliding window of 10 years. The amplitude is increasing however

the phase lag is not. Harmonic amplitudes also show no convincing

trend.

τ1978 = 0.33 years occurring in 1978 and the largest value

in 2015, τ2015 = 0.5 years we can make a rough calculation

of how much the sea ice amplitude would have increased,

i.e.
A2015

A1978
=

τ2015

τ1978

√
1+ω2τ 2

1978

1+ω2τ2015
≈ 1.06. From Fig. 10 we take

the amplitude at 1978 to be A1978 ∼ 4.5 and at 2015 to be

A2015 ∼ 5 we find
A2015

A1978
= 1.11. These values could therefore

be consistent with a constant Da and a changing timescale.

However, the timescales inferred from either the phase lag

or amplitude are not changing appreciably and therefore it

seems unlikely the system is approaching a local bifurcation.

We note that the phase lag is a more robust indicator. This

is because the phase lag depends only on the product of the

frequency of the forcing and the system timescale whereas

the amplitude depends additionally on the amplitude of the

driving,Da , which may well be changing throughout the ob-

servational period and could account for some or all of the

increase seen in the amplitude in Fig. 10. Although the solar

insolation will be a large component of the forcing amplitude

and is essentially fixed, other factors such as clouds as well

as air and sea temperatures will also factor into the driving

amplitude. Geometrical constraints imposed by land masses

affecting the maximal extent of the sea ice will also influ-

ence the amplitude of the sea ice oscillation when ice extent

is large (Eisenman, 2010). In contrast, we can take the fre-

quency of the driving to be essentially fixed by the annual

solar insolation cycle making the phase lag more robust.

In the lower panel of Fig. 10 we have plotted the ratio of

the second and third harmonic amplitudes to the amplitude

of the fundamental harmonic with time using a sliding win-
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Figure 11. Ratio of the nth order harmonic amplitude to the fun-

damental harmonic amplitude An/A1 found from the Fourier trans-

form of the Arctic sea ice area time series against the ratio of the nth

harmonic period to the fundamental harmonic period Tn/T . One

can see the Arctic sea ice response features prominent second, third,

forth, fifth and sixth harmonics in its spectrum.

dow of 10 complete cycles against the year at the end of the

window. We have used the minimal window length needed

to resolve both harmonics reliably. This indicator also shows

no clear trend with time.

We have also calculated the lag 1 autocorrelation of the re-

turn map. From phase lag, the estimate timescale of the sea

ice is 0.5 years (ωτ ∼ π ) which is less than τ/T > 1 needed

for a reliable estimate. However, the estimated timescale is

uncertain and it is conceivable the return map analysis might

work. As there are only 37 complete years of data, any return

map time series has a maximum of 37 data points. To discern

any trend in the autocorrelation one needs as many windows

as possible, however this results in a decreasing number of

data points per time series and an increasing error in the es-

timate. We have therefore chosen a sliding window of 20 cy-

cles although the results are invariant to this choice, always

being very uncertain. We linearly detrend the cycle in each

sliding window and then create the return map time series

from that detrended window. One can also choose at which

point in the cycle one wants to take the return map from and

this additional freedom is utilised in the right hand panel in

Fig. 12. Lag 1 autocorrelation is plotted against sliding win-

dow end year (x axis) and day of the year in each cycle the

return map generated on (the y axis). We create new return

maps every 10 days giving 36 different points within each

cycle. As seen in the figure, autocorrelation depends very

heavily on where in the cycle one chooses to generate the

map, a sign that the return map is not a good approach for

this system. A good return map should be largely invariant to

where in the cycle it is taken provided the cycle is stable and
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Figure 12. Left panel: Lag 1 autocorrelation of the return map

against sliding window end year using a sliding window of 20 years

(x axis) and point within the cycle the return map is created on the

y axis (we create return maps every 10 days). One sees that auto-

correlation depends very heavily on where in the cycle one chooses

to generate the return map. Right panel: standard error of the au-

tocorrelation return map estimate divided by the estimate against

sliding window end year. The estimate is very uncertain almost ev-

erywhere with standard errors generally being at least half as big as

the estimate.

not changing. In the left hand panel of Fig. 12 we plot the

standard error divided by the autocorrelation. Note that most

estimates of lag 1 autocorrelation have standard errors larger

than half their value giving very uncertain estimates. In an

effort to reduce the uncertainty in the estimate we have also

taken the mean autocorrelation over all points in the cycle the

return map is taken in Fig. 13. The mean lag 1 autocorrela-

tion is 0.16± 0.26 which corresponds to a (very uncertain)

timescale of τ ≈ 0.55 years. This is consistent with the es-

timates from the phase lag. This also suggests that the sam-

pling interval T > τ and therefore determining the timescale

using the return map approach is difficult. We have increased

the sliding window to 37 years to minimize the standard er-

ror in the estimate, however one will not be able to then see a

trend in autocorrelation. Even so, the standard errors are still

greater than half the estimate.

We have also plotted the full spectrum of the ratios An/A1

for the entire time series in Fig. 11. We note the nonlinear

effects are quite prominent in this system, second and third

harmonics are around an order of magnitude smaller than the

linear response, although we can still probably get away with

the linear analysis. Forth, fifth and sixth harmonics are also

visible. These nonlinearities may be due to albedo effect or to

the geometrical effects of the Arctic ocean basin (Eisenman,

2010).

To conclude, from this simple analysis it seems that the

system’s timescale and therefore stability is not changing
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Figure 13. Mean lag 1 autocorrelation of the return map across all

starting points within the cycle using a sliding window of 20 years.

This is the same as Fig. 12 with the mean taken along the y axis.

Estimated autocorrelation is still very uncertain. The mean is the

solid line with the dotted lines being the mean plus or minus the

standard error. The mean value across all years 0.16± 0.26 which

corresponds to a (very uncertain) timescale of τ ≈ 0.55 years.

appreciably if at all and it is unlikely to be approaching a

local bifurcation. However, simple theoretical models, such

as Eisenman and Wettlaufer (2009), Eisenman (2012) and

Bathiany et al. (2016, who also used a return map approach)

suggest that the sea ice timescale does not change very much

approaching the bifurcation, even decreasing slightly before

rapidly changing over a very small interval and therefore

would be very hard to detect if present.

5 Conclusions

Much previous work on detecting local bifurcations from

time series required one to be able to partition the universe

into widely separated timescales and model the system dy-

namics as overdamped. When this is the case one can use the

usual, statistical fixed point early warning indicators of in-

creasing lag 1 autocorrelation and variance since these indi-

cators measure the system’s response to small perturbations

away from its fixed point by the fast, noisy processes. It is

the response to this small, noisy forcing that allows one to

measure the system’s timescale. The systems we have been

looking at in this paper do not have fast or random forcing.

The systems considered here have deterministic forcing with

a period roughly that of its timescale although the dynamics

are still overdamped. Deterministic forcing again allows one

to infer the system’s timescale simply by measuring the re-

sponse to the forcing without the need for large amounts of

data required by statistical quantities for robust estimates. We

used two analogous early warning indicators to lag 1 autocor-

relation and variance in these systems; these were phase lag
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and response amplification respectively. Just as autocorrela-

tion is more robust as an indicator (it is a function of fewer

parameters), the same is true of phase lag, only depending on

the frequency of the forcing and the timescale of the system.

The system response amplification also depends on the am-

plitude of forcing, which in many circumstances is probably

difficult to measure.

We also used a Fourier transform of the time series to

quantify how nonlinear the system is behaving and whether

the linear approximations usually made are good. Further, by

using a sliding window within the time series, one may also

look at the evolution of the harmonic amplitudes as a further

early warning indicator.

We also discussed return map methods that essentially

convert a periodic attractor to a fixed point type so that one

may use the usual fixed point indicators. We also showed

there was a complementarity between return map indicators

and phase lag and response amplification, the latter being

more useful for regimes in which ωτ ∼ 1 and the former be-

ing more useful when ωτ > 2π .

We applied these indicators to satellite observations of

Arctic sea ice area, a system whose period of forcing, ef-

fectively the annual cycle of insolation, is similar to the

timescale of the system. This is also a system that has been

conjectured to have a tipping point due to a local bifurca-

tion. We did not find any detectable critical slowing down

and therefore signs of this bifurcation. It should be noted,

however, that simple models of the sea ice suggest critical

slowing down only occurs very close to the bifurcation, mak-

ing it very hard to detect.

Data availability

The data sets of the Mauna Loa CO2 record (Tans and Keel-

ing, 2015) and the Arctic sea-ice area (Chapman et al., 2015)

analyzed in this manuscript are publicly available at www.

esrl.noaa.gov/gmd/ccgg/trends/ and http://arctic.atmos.uiuc.

edu/cryosphere/timeseries.anom.1979-2008 respectively.
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Appendix A: Phase lag and response amplification

with arbitrary periodic forcing

Phase lag and response amplification can be found for the

more general case of any type of periodic forcing D by solv-

ing

ẋ+
x

τ
=D(t) (A1)

τ the timescale of the system (the e folding time). For any

periodic forcing, D(t) with period T can be written as the

Fourier series

D(t)=

N∑
i=0

Bi cos(ωi t +χi). (A2)

Bi are the amplitudes of the different component sinusoidal

waves, ωi =
2πi
T

are the frequencies of the components and

χi are the phases of each of the components. As the equation

is linear the superposition principle holds. That is, we assume

the solution has the form

x(t)=

N∑
i=0

xi(t) (A3)

by setting all but the ith term of the driving to zero we can

solve the N + 1 equations

ẋi +
xi

τ
= Bi cos(ωi t +χi) (A4)

for each xi(t). These solutions can be superposed to obtain

the full solution to any periodic driving term.

This is

x(t)=

N∑
i=0

τBi√
1+ω2

i τ
2

[cos(ωi t +χi − arctan(ωiτ ))

− e−
t
τ cos(χi − arctan(ωiτ ))] + x0e

−
t
τ (A5)

which settles into orbit

x(t)=

N∑
i=0

τBi√
1+ω2

i τ
2

cos(ωi t +χi − arctan(ωiτ )) (A6)

when t � τ , that is, the solution is just the sum of each of the

forcing components i, each with a response amplification of

τ√
1+ω2

i τ
2

(A7)

and a response lagging the forcing with a phase of

φ
lag

i = arctan(ωiτ ). (A8)

One can find out what these phase lags and amplitudes are

by taking the Fourier transform of the time series of both the

forcing and response.
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