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Abstract 

DNA microarray technology has been extensively utilized in the biomedical field, 

becoming a standard in identifying gene expression signatures for disease 

diagnosis/prognosis and pharmaceutical practices. Although cancer research 

has benefited from this technology, challenges such as large-scale data size, 

few replicates and complex heterogeneous data types remain; thus the 

biomarkers identified by various studies have a small proportion of overlap 

because of molecular heterogeneity. However, it is desirable in cancer research 

to consider robust and consistent biomarkers for drug development as well as 

diagnosis/prognosis.  Although cancer is a highly heterogeneous disease, some 

mechanism common to developing cancers is believed to exist; integrating 

datasets from multiple experiments increases the accuracy of predictions 

because increasing the sample size improves and enhances biomarkers 

detection. Therefore, integrative study is required for compiling multiple cancer 

data sets when searching for the common mechanism leading to cancers. 

Some critical challenges of integration analysis remain despite many successful 

methods introduced. Few is able to work on data sets with different 

dimensionalities. More seriously, when the replicate number is small, most 

existing algorithms cannot deliver robust predictions through an integrative 

study. In fact, as modern high-throughput technology matures to provide 

increasingly precise data, and with well-designed experiments, variance across 

replicates is believed to be small for us to consider a mean pattern model. This 

model assumes that all the genes (or metabolites, proteins or DNA copies) are 

random samples of a hidden (mean pattern) model. The study implements this 

model using a hierarchical modelling structure. As the primary component of the 

system, a multi-scale Gaussian (MSG) model, designed to identify robust 

differentially-expressed genes to be integrated, was developed for predicting 

differentially expressed genes from microarray expression data of small 

replicate numbers. To assure the validity of the mean pattern hypothesis, a 

bimodality detection method that was a revision of the Bimodality index was 

proposed.  
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Chapter 1 

Introduction and Overview 

 

Abstract 

This chapter briefly introduces the methods used to analyse gene expression 

microarrays and analyses their advantages as well as their limitations. In 

particular, I introduce three statistical tools for data mining that I have developed 

during my PhD study. These tools constitute a complete system for an 

integrative study of microarrays. Further, I outline the thesis and show my 

contributions to the area. 
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1.1 Microarrays and Cancer Research 

This section gives basic information that is important to understand the rest of 

this thesis. I begin with a brief introduction of gene expression and the 

technologies used to generate expression data. Then I highlight its applications 

in cancer research.  

1.1.1 The Basics of Microarray 

The central dogma of molecular biology [1] explains the flow of genetic 

information from DNA into RNA (transcription) and from RNA into protein 

(translation). Gene expression is the quantitative measure of the amount of 

transcribed mRNA (level of transcript) produced by the gene’s of interest.  The 

study of gene expression can reveal the function of genes associated with a 

disease. Many technologies have been used to measure/analyse gene 

expression. In the past, Northern Blot analysis was used to quantify mRNA 

levels [2], as was differential display [3]. However, these methods can only 

analyse small number of genes at a time and do not provide much information 

pertaining to gene-gene interaction. To avoid these limitations, researchers 

have moved to using DNA microarrays [4, 5] and Serial Analysis of Gene 

Expression (SAGE) [6]. Unlike northern blots, microarrays and SAGE 

technologies allow measurement of the abundance of tens of thousands of 

transcripts in a tissue sample concurrently. The major difference between the 

two technologies is that microarrays require a prior knowledge of the sequence. 

Generally, a DNA microarray is a collection of ordered sets of DNA 

spots/fragments of known sequences on a solid surface [7]. The DNA 

microarrays can be classified into two main types based on the DNA fragments 

designed. 
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 1.1.1.1 Spotted microarrays 

Spotted microarrays or complementary DNA arrays (cDNA) [5] consist of long 

cDNA molecules prepared from a cDNA library and attached to a solid surface 

(i.e. glass slide) by robotic arm [7]. This platform has two channels. It measures 

the expression profile of genes from two different cell samples simultaneously 

(e.g., control and disease).The extracted RNAs from a pair of samples are 

reverse transcribed into cDNA by a polymerisation reaction and labelled using 

two fluorescent dyes (Red and Green) as illustrated in Figure 1.1.a.  Then 

RNAs from the two samples are combined and placed onto the glass slide 

(array) to hybridise to their complementary probes. After this process, the 

microarrays are washed and dried to remove any non-specific hybridization. 

Finally the hybridised microarray is scanned to determine fluorescent dye 

intensities using two laser sources with two different wavelengths to stimulate 

each fluorescent dye, to illuminate each probe and both targets (control and 

disease condition) will fluoresce. The ratio of green and red fluorescence 

indicates the expression level of the gene corresponding to that probe (i.e. 

relative gene expression). This done by different imaging processes on the two 

images produced. First, identify the local background intensity and the spot 

intensity by taking either mean or median intensity of pixels, which represents 

the intensity of fluorescence determined by focusing the laser beam on that 

point of the array. 
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Figure1.1. Schematic illustrates the microarray workflow. (a) cDNA microarray, 
and (b) oligo microarray[8].    

 

1.1.1.1 Oligonucleotide microarrays 

The other major type of microarray is oligonucleotide arrays or single channel 

arrays which have been used widely [4] - commonly known as Affymetrix gene 

chip (Figure1.1 b).  This is slightly different than the previous one where it uses 

a single colour designed to detect the expression of one tissue (i.e cancer) at a 

time. The probes of this type are made from short (segments of cDNA) 

oligonucleotides (20~25 nucleotides) that are synthesized in situ using 

photolithography on the microarray plate [7, 8]. In oligonucleotide arrays, each 

gene is represented by a group of probes called a probe-set in order to 

eliminate the systemic errors. There are usually 11or 16 (or 10-20) probe-pairs. 

One is a perfect match (PM) that is identical to the reference sequence and the 

other is a mismatch (MM) which differs from the PM only in the middle base 
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(base 13), in order to quantify the non-specific hybridization. The principle of 

this technology is slightly different to that described above - in the preparation 

phase the side with 11-20 short oligos with (25 mers) are synthesized in situ 

using light into the array/surface. Target preparation is done on the opposite 

side, and differs in that RNA extracted from the tissue is converted to cDNA 

then labeled and hybridized to the array. The binding between target and 

prepared is detected by a single fluorescent dye to calculate the absolute 

abundance. The final step - the image processing – functions as per the spotted 

array. The expression levels are estimated for each pair of probes as the 

difference between PM and MM. Finally, the gene expression is the average of 

the kth expression values obtained from the different pairs. It’s worth noting that 

there are other technologies that been employed in Agilent microarrays, such as 

ink-jet technology.  

1.1.1.3 Normalisation 

The most important step after obtaining raw data, from the above mentioned 

technologies, is the normalisation.  Normalisation is applied to microarrays in 

order to remove any variations caused by microarray technology itself rather 

than the biological difference between different experimental conditions, thus 

allowing fair comparison between different experimental conditions. In this 

section the most common approaches will be described. 

The MAS5 algorithm was developed by Affymetrix, it normalises individual 

arrays independently and sequentially. MM probes are taken into account to 

estimate average expression by subtracting MM probe value from the PM probe 

value (i.e. PM-MM).  

RMA is a popular normalisation technique, which uses multi chip. In contrast to 
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MAS5, RMA does not uses MM probe values in its normalisation step because 

most often the MM probes values are higher than that of PM probe values, 

which signifies that MM probes as an unreliable measure for non-specific 

binding. 

 
1.1.2 The Applications of Microarrays 

Gene expression has been widely used for research in the biomedical field and 

many studies have employed it to identify biomarkers in complex diseases such 

as cancer. Because microarrays can measure expression levels of mRNA for 

tens of thousands of genes across samples simultaneously, the technology has 

contributed significantly to the identification of signatures that distinguish 

between normal and cancerous tissues, between different drug responses and 

more.  The most obvious applications for microarrays include gene discovery, 

sample classification and stress analysis. In the next few paragraphs, the 

importance of microarrays in cancer research will be highlighted with a few 

examples from the literature pertaining to classification, diagnosis and future 

prediction. 

Golub et al. demonstrated a good example of the importance of microarrays in 

cancer research [9]. They analysed 38 acute leukaemia cancer samples and 

divided them into two types; acute myeloid leukaemia (AML) and acute 

lymphoblastic leukaemia (ALL) using self-organising map (SOM). Also they 

identified 50 genes, as predictors, which showed a significant expression 

difference between the two types. They used these genes to assign classes to 

34 unclassified samples and they achieved a high accuracy using the cross 

validation techniques [9]. Another study also used microarray data to distinguish 

between BRCA1 and BRCA2 mutations in breast cancer. They identified a 



29 
 

subset of genes that can accurately differentiate between the two BRCA types 

[10]. 

In a similar study, Ramaswamy et al. identified 128 genes that are differentially 

expressed between the primary and metastatic tumours [11]. However, they 

used them as predictor for the outcomes/future of different primary tumours 

where the tumours that have similar expression pattern genes as the metastatic 

genes are likely to become metastatic and therefore have worse outcomes. 

 

1.1.3 Microarray databases 

The abundance of data resulting from microarrays requires automated 

approaches to analyse and store. As a result, there have been many projects to 

develop microarray repositories and tools that enable researchers to 

communicate their research results [12]. Public microarray data repositories 

such as GEO [13, 14], Array Express [15] and others hold hundreds of 

thousands of arrays from multiple species and have expanded rapidly  in the 

last ten years as seen in Figure1.2. For example, GEO has collected 1,661,882 

samples from 64,516 series that performed on 15,318 platforms 

(http://www.ncbi.nlm.nih.gov/geo/summary/ ; accessed on 05/01/2016). The 

most widely known of these platforms are affymetrix and illumine arrays. The 

huge available data has enormous potential on researches in finding solid 

results by integrating different data coherent of existing gene expression data.   
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Figure 1.2: GEO Microarray data growth 2000-2015; Data for series, samples 

and platforms. 
 

1.1.4 Example of gene expression matrix 

Gene expression data are usually presented in a matrix where each column 

represents the gene expression level of a single experiment (microarrays) and 

the rows represent the genes. Table 1.1 shows an example of a real gene 

expression data set that downloaded from GEO with accession number 

(GDS3138). In this example the first column represent the probe id (ID_ref) 

while the second is the gene symbol and the first two columns after are the 

expression level in the reference samples and the last two for the testing 

sample. 
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Table 1.1: Example of a dataset the database from GEO with accession 

number (GDS3138) that contains 2 control samples and  corresponding 
samples of a homo species; in GPL570 array platform. 

ID_REF IDENTIFIER 
GSM 

242136 
GSM 

242196 
GSM 

242207 
GSM 

242208 

1007_s_at DDR1 1147.65 1101.6 645.111 529.475 

1053_at RFC2 1168.96 1294.58 2091.24 2057.69 

117_at HSPA6 101.501 113.92 112.763 159.533 

121_at PAX8 1719.46 1444.92 1481.32 1385.93 

1255_g_at GUCA1A 40.9801 41.6835 31.2603 15.6592 

1294_at UBA7 311.364 336.589 270.467 292.845 

1316_at THRA 135.231 119.512 139.73 114.26 

1320_at PTPN21 172.231 214.62 105.47 117.146 

1405_i_at CCL5 2.89906 2.74331 7.4646 3.73164 

1431_at CYP2E1 166.517 149.555 86.142 95.9834 

1438_at EPHB3 77.2017 75.2635 44.0401 32.7759 

1487_at ESRRA 850.326 720.911 690.522 694.261 

1494_f_at CYP2A6 383.847 296.31 208.898 226.698 

1552256_a_at SCARB1 1047.55 997.821 1005.8 850.118 

1552257_a_at TTLL12 1199.67 1062.9 1392.33 1223.25 

1552258_at LINC00152 375.005 339.095 246.631 309.942 

1552261_at WFDC2 47.5678 64.6362 29.0703 54.8255 

1552263_at MAPK1 363.047 231.802 319.251 392.226 

 

1.1.5 The drawback of Microarrays and the future of gene expression 

profiling 

One of the limitations of microarray technology is the noise obtained from 

experimental design. The noise results from many sources; PCR and scanners 

or as result of using different protocols or sample tissues[16].  This noise 

decreases the quality of expression quantification especially when transcripts 

are presented in low levels [17]. The low levels may obtained as a result of non-

specific binding and/or optical noise. Microarrays are designed with 

hybridization probes that are based on a priori knowledge of  sequences, as 

explained previously. Therefore, they cannot be used to identify novel genes or 
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transcripts or understand structural variations. Another issue is cross-

hybridization, where multiple probes target a single sequence or vice versa and 

influence the analysis of microarray data [18]. In addition, the comparison of 

different expression data obtained from different labs requires careful 

considerations, such as normalization, before analysis. 

Although microarrays are still used widely, a new promising technology has 

emerged that uses next-generation sequencing. Recent developments in high-

throughput sequencing have led to the birth of RNA-Sequencing. RNA-Seq is a 

method for quantifying transcriptomes, the complete set of transcripts in a 

cell[19]. One benefit of this is that it does not require a priori knowledge of probe 

design as required by microarrays. RNA-Seq is dependent on short read 

mapping that has single base resolution [19]. RNA-Seq sequences the 

transcripts directly allowing discovery of novel transcripts and to answer 

questions regarding the transcriptome[20]. Despite the advantages of RNA-Seq, 

Microarray technology is still widely used and remains the most popular 

approach for gene expression analysis. The main reasons for that are the lower 

cost, the matured analysis techniques and the availability of data. In addition, 

several studies showed a considerable overlapping of findings between the two 

platforms [20-23]. On the other hand, RNA-seq has solved most of the technical 

issues raised by using microarrays. It has the ability to detect the low 

abundance transcripts, isoforms and genetic variation [20]   

 

1.2 The Analysis Gene Expression Microarrays. 

Many data analysis techniques have been developed and applied to gene 

expression research. One of the most important gene expression analyses is 

identifying differentially expressed genes (DEGs). A gene is classified as a DEG 
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if it shows a significant difference in distribution of expression levels between 

two conditions for instance, normal versus cancer patients. The t-test is 

commonly used to detect DEGs in a gene expression data set between two 

conditions, while other approaches can also be used - such as ANOVA – where 

there are more than two conditions. The Wilcoxon test [24] is used in case of 

multiple conditions for the same participants. More advanced methods have 

been developed to tackle some common issues in microarray analysis, such as 

small sample size. For example, Significance Analysis of Microarrays (SAM) 

[25] has become a favourite choice in microarray analysis studies [26-34]. Other 

techniques have benefited from using a Bayesian approach, including Cyber-T 

[35], the random variance model [36], Limma [37], Varmixt [38], SMVar [39] and 

ROAST [40]. 

Another field of microarray analysis uses supervised and or unsupervised 

learning. Classification and prediction are types of supervised learning. The aim 

of classification is to benefit from the class label of samples and to identify gene 

expression pattern that form classification. There are many algorithms proposed 

for classification, such as support vector machine (SVM) and k-nearest 

neighbours, where their performance for this kind of analysis depends on the 

quality of training data. A further important tool for microarray analysis is 

clustering, which is unsupervised. It aims to assemble genes or samples into 

different groups based on their similarities. There are also many algorithms 

proposed for clustering, including hierarchical clustering [41], the k-means 

algorithm [42], model-based clustering  and self-organizing maps [43]. 

Clustering allows the identification of complex structures or relations between 

objects (i.e. genes) and does not require a priori knowledge of them. However, 

a microarray data set has thousands of genes between which many 
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similarities/relationships are possible. Thus clustering does not always give 

easily interpretable information. For example, including a whole genome for 

clustering in a study where about 22,000 genes are clustered into either a large 

number of clusters or large number of genes in each cluster. This makes the 

analysis of such data tedious and requires more manual work. In addition, it is 

difficult to estimate cluster number - a well-known issue in clustering and has 

become a hot topic in machine learning. Despite these issues it’s still a useful 

tool for many applications, including gene expression data, and has been used 

widely. 

More recently, researchers have integrated data to enhance the results 

obtained by the methods mentioned above. One reason for this is the different 

results achieved by different methods. The integration analysis has helped the 

cross-species studies. The cross-species study compares multiple data sets 

from biological or medical experiments, revealing how genes are conserved 

among distantly related species [44]. Integration analysis uses either univariate 

or multivariate statistical analysis methods. The univariate methods include 

correlation analysis, mutual information and the Fisher combined probability 

test, as well as a modified t test. For instance, correlation analysis and mutual 

information have been used to examine how a single gene shows differential 

expression across species [45-49]. When the number of species is large, the 

Fisher combined probability test [50] has been used [51-53], as has one of the 

modified t-test algorithms such, eBayes [54-56].  

The multivariate methods used in integrative studies include non-negative 

matrix factorization [57, 58], the k-means algorithm [42], mixture models [59] 

and self-organizing maps [43]. When a multivariate analysis method is used, the 

focus is mainly on how genes/samples from different species can be clustered 
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to form meta-knowledge (such as meta-genes or sub-populations) for further 

examination [60-72]. 

1.3.   Motivation 

DNA microarray technology has been extensively utilized in the biomedical field 

and has become a standard practice for identifying gene expression signatures 

for disease diagnosis and prognosis as well as pharmaceutical practices. 

Although cancer research benefits from this technology [73-80], challenges 

such as large data size, few replicates and the complexity of heterogeneous 

data types are still present. The biomarkers identified by different studies have 

therefore a small proportion of overlap due to molecular heterogeneity [81-83]. 

However, in cancer research, it is desirable to consider robust and consistent 

biomarkers for drug development as well as diagnosis and prognosis [84-86]. 

Although cancers are highly heterogeneous diseases, it is believed that some 

mechanism exists common to developing cancers [87] and that integrating 

datasets from multiple experiments can reduce prediction bias [88].Integrative 

approaches were therefore used for comparing multiple cancer data sets in the 

search for the common mechanism leading to cancers [89]. 

Many methods have been introduced for integration-analysis. One category 

works mainly on statistics acquired from individual analysis. First, combining p 

values which has been widely used due to its simplicity - the p values derived 

from two different technologies can simply be combined [90, 91]. Weighted 

Fisher’s method has also been used for integrative studies [90-92]. One issue of 

applying Fisher’s method is that it is biased if one p value is extremely small 

while others are not. Second, a considerable number of studies have focused 

on a more effective system of meta-analysis that combines effective sizes in 

their multiple data set analysis [93-95]. The effective size is the standardized 
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mean between two phenotypes (i.e. cancer/normal) in each set and then 

combining them as an overall mean. This method has improved the capability to 

model inter-study variation [93-96]. Third, ranked gene lists, has attracted some 

researchers for its ability to overcome the effect of outliers; a problem for the 

previous two methods [74, 97-99].  

Another category that has recently received attention is clustering and or 

decomposing. Methods include principal component analysis (PCA) and non-

negative matrix factorization (NMF) [100, 101]. Comparatively speaking, NMF 

performs better than PCA. NMF [57, 58] is a very successful tool for dimension 

reduction and visualization [102]. It decomposes an expression matrix into two 

matrices, one of which contains meta-gene expression while the other is a 

coefficient matrix that captures the relationship between genes and meta-

genes. The main disadvantage of NMF is that it fails to deal with complex 

patterns across multiple datasets since it is a linear algorithm; in addition all 

entries must be positive. Consequently, it is not applicable to a differential 

expression matrix which contains negative values. 

It has also been proposed that iCluster [103] could cluster samples of different 

genomic data by using the joint latent variable/factor analysis of a combined 

matrix. The main idea is that the latent variable model attempts to establish a 

linear correlation between the data and the latent variables. The latent variables 

are regarded as the cluster labels and can explain the co-clusters among 

integrated sets. However, this is designed to cluster samples requiring the same 

sample size across sets. More recently, an extension of PCA, called joint and 

individual variations explained, has been suggested, which breaks down the 

data into three components; one contains the structural information across 

datasets, with another for each dataset and the noise [104]. Despite the 
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successes of these methods they are still sensitive to excessive noise. 

Bayesian methods obviously make the integration of biological data robust as 

this can be done through a proper design of prior densities [105]. Bayesian 

models can also be used to integrate multiple data sources for gene function 

prediction [106] and for differential-expressed gene prediction [101, 107, 108], 

as well as for identifying biomarkers associated with clinical outcomes [109].  

Even though many successful methods have been introduced, various critical 

challenges remain. For example, none of the described approaches is able to 

work on data sets with different dimensionalities. The dimensionalities include 

number of genes and number of samples. For example, directly merging two 

datasets requires the same genes/probes. Other studies require the same 

sample sizes among the different data to be integrated, i.e., subtype 

discoveries. More seriously, when the replicate number is small, most existing 

algorithms are unable to deliver robust predictions through an integrative study. 

In fact, with the gradual maturing of modern high-throughput technology which 

is providing increasing volumes of precise data, and when experiments are well 

designed, it is believed that variance across replicates is sufficiently small.  

This has led me to consider a mean pattern model, through which I assume that 

all the genes (or metabolites, proteins or DNA copies) are in fact random 

samples of a hidden (mean pattern) model. In this thesis, I have implemented a 

mean pattern model using a hierarchical modelling structure for integration. 

However, it is important to remove bimodal genes from the basic idea of my 

proposed method, to ensure that a valid hypothesis is applied. 

The majority of gene expression patterns follow a normal distribution [110]. 

However, a large number of genes, especially in cancer, appear to have an 
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expression pattern that follows a two or more component mixture distribution 

[111]. The definition of bimodality is a continuous probability distribution with 

two distinct modes/peaks; these modes/peaks would usually be high and low 

expressing values. Several algorithms have been proposed [110, 112, 113] to 

predict bimodal genes with success. Occasionally, however, their performance 

is not very satisfactory. As a result, I have developed an algorithm to identify 

such genes with bimodal characteristics. 

Another important component in my integration system is the identification of 

differentially expressed genes, since this will enhance the analysis by 

integrating the most important genes for further investigation. In addition, it will 

increase the power of clustering and make the results interpretable. To detect 

differential expressed genes in a gene expression data set for a 

medical/biological investigation across two experiments, the t-test is commonly 

used. Other approaches, e.g., ANOVA in cases of multiple conditions. 

Alternatively, Significance Analysis of Microarrays (SAM) [25] is widely used for 

microarray analysis [26-34]. Rather than using non-parametric approaches, 

theoretical modelling using a Bayesian approach was also applied ([36, 37]; 

[38]; [39] 

The success of variance-adjustment methods such as SAM depends largely on 

an accurate identification of a subset of similar genes from the same or different 

data sets. However, there is inherent selection bias with the variance-

adjustment approach [114]. When genes have different variances, pinpointing 

similar genes can become tricky, thus affecting differential expressed gene-

detection performance. The performance of model-based algorithms, such as 

eBayes, is also insufficient when distribution of the variances within and across 

conditions is markedly different. Thus, I devised a new method to overcome 
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such limitations and also to make it possible to work with small samples of 

replicated data, which is common in gene expression data. 

1.4.   Objectives and Contribution 

This thesis aimed to investigate and develop algorithms, which would address 

the limitations of current microarray data analysis from differential gene 

expression and bimodal gene identification to comprehensive analysis through 

integration. The objectives of this work were to develop analytical tools towards 

integrating data of different sizes (i.e. number of genes/number of sample) and 

the ability to discover the relationships between different data types (i.e. gene 

expression and DNA copies).  

My research focuses therefore on developing algorithms and tools towards 

building a comprehensive system for integration by tackling some challenging 

and interesting computational problems. My principal contributions include: 

 The introduction of Multi-Scale Gaussian (MSG) model for differential 

expressed gene identification based on the observation that most microarray 

expression data show a fat-tailed distribution of differential expressions. A 

differential expression is the distance between the raw expressions of two 

different experimental groups for a gene. I modelled the fat-tailed differential 

expressions using a mixture of null and alternative densities, where the null 

density captured the minor differential expressions tightly centred near zero 

and alternative density models captured the major differential expressions 

located at the tails. 

 The introduction of a Heterogeneous Bimodality Index (hBI) to detect 

bimodal genes. It is based on the assumption that the bimodality is related to 

the gap between two consecutive sorted expressions. In addition a 
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comprehensive investigation of bimodality was undertaken in large-scale 

cancer data obtained from different platforms/studies for seven different 

cancer types. 

 A comprehensive review of the available integration methods, along with the 

introduction of a Hierarchical Integration Model (HIM), which uses mean 

pattern model for integration. 

 Extensions of MSG to work across species (CSMSG) and a multivariate 

MSG (MVMSG). 

1.5.  Thesis Overview 

The thesis sets out to present a novel and complete system for integrative study 

based on gene expression using microarray. This starts with differential gene 

identification followed by bimodal gene and outlier detection. Finally, a new 

integrated statistical tool was devised that could be presented and applied to 

various cancers as well as to cross-species.  

The thesis is organised as follows. After this introductory explanation of gene 

expression analysis methods and applications, Chapter 2 presents a survey of 

benchmark methods for differential expressed gene identification and a 

discussion of their limitations, especially in small replicate samples. The 

proposed algorithm is discussed in detail, and a comparison is made with the 

benchmarking algorithms in both simulated and real data. Chapter 3 describes 

the bimodality phenomena, along with a technical review of current methods 

and a discussion of their limitations. It was these limitations that motivated me 

to introduce a new algorithm to relax the strain by way of the Bimodality Index. 

The algorithm was also assessed with others in this chapter, based on 

simulated data.  
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Chapter 4 extends the evaluation of the proposed method and others based on 

three sets of real cancer data. Also in this chapter, comprehensive investigation 

of bimodality on 70 data sets using the proposed method to discover if the 

bimodality related to a platform or to a specific type or was common across 

cancers. Chapter 5 introduces a survey of current advances in the study of 

integrative genomics. The algorithm developed for integration is also presented 

with full details while, based on simulated data, the new algorithm is compared 

to MDI and BCC. Chapter 6 includes comprehensive details of where all 

developed algorithms have been used. Chapter 7 describes a development of 

MSG for extracting both homogeneous and heterogeneous expression patterns 

across species as well as other enhancements and the thesis concludes with a 

summary of the findings and possible directions for future research in Chapter 

8. 
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Chapter 2 

Predicting Differential Expressed Genes using multi-scale Gaussians 
 

 

Abstract 

When predicting differentially expressed genes from microarray gene 

expression data with small replicate number, conventional algorithms model the 

differential expression distribution to adjust for commonly under-estimated 

variance. I proposed a Multi-Scale Gaussian (MSG) model based on the 

observation that most microarray expression data show a fat-tailed distribution 

of differential expressions. A differential expression is the distance between the 

raw expressions of two different experimental groups. I modelled the fat-tailed 

differential expressions using a mixture of null and alternative densities, where 

the null density captured the minor differential expressions tightly centered near 

zero and alternative density modelled the major differential expressions located 

at the tails. I used simulated and real data to evaluate the algorithm 

performance with several benchmark algorithms.  
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2.1.  Introduction 

To detect differentially expressed genes in a microarray expression data set 

across two experiments, the t test is commonly used.  However the t test 

statistic is often biased when applied to a small number of samples (often called 

small replicate) of microarray gene expression data due to an underestimated 

variance.  Various algorithms have been developed to provide reliable 

prediction of differentially expressed genes from microarray gene expression 

data with small replicate number [25, 35, 36, 54, 114-118]. The majority of these 

can be thought of as variance-adjustment methods, which rely on borrowing 

information from all genes or closely related genes to modify the variance of a 

particular gene. A typical algorithm is SAM (significance analysis of 

microarrays), which increases the variance of a gene by adding to it a 

regularization parameter inferred from expressions of other genes [25]. This is 

done by assuming that the variance across the other genes is representative of 

the variance of the gene under consideration. This assumption does not 

necessarily hold in practice. Nevertheless, SAM has been widely used for 

differential expressed gene detection [26-34].  

Bayesian algorithms such as Cyber-T [35], the random variance model [36], 

Limma [116], Varmixt [38], SMVar [39], and ROAST [40] focus on estimating the 

posterior variance [119, 120], using a subset of gene expressions to adjust the 

variance of one gene. The t test is then carried out using either analytically 

derived degrees of freedom, such as Cyber-T and Limma [35, 121] or via the 

Monte Carlo approach, such as ROAST. Cyber-T and Limma are similar in 

principle. They model gene expressions in two treatments separately as two 

Gaussians in order to obtain two adjusted variances for each individual gene. 

The genes are first ranked according to their expressions. The variance of a 
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gene is then adjusted depending on the chosen window of similar genes and 

the degrees of freedom. Cyber-T sets a default window size 101 so as to 

ensure 50 genes are used for the adjustment of variance. Cyber-T and Limma 

have been widely used for differential gene identification [26, 27, 29, 34, 122-

126].  

Expressions of relevant genes in the public database gene expression omnibus 

(GEO) have also been used to aid inference [115, 127]. This means that the 

variance of a gene in a data set under investigation can be amended using the 

variance estimated from the same gene from the data sets in the GEO 

database.  

2.2. Issues related to current methods 

The success of variance-adjustment methods largely depends on an accurate 

identification of a subset of similar genes from the same or different data sets. 

However, there is inherent selection bias with the variance-adjustment 

approach [114]. When genes have different variances, pinpointing similar genes 

can become tricky, thus affecting differentially expressed gene detection 

performance. Figure 2.1 illustrates this scenario using a breast cancer data set 

from GEO with accession GDS3116 [128]. The data contains 58 baseline 

(control) samples and 58 letrozole (experimental) samples from which 

1,000,000 random samples of gene pairs were taken.  The Euclidean distance 

between two genes and the absolute distance between the standard deviations 

of the two gene expression vectors from which the two members of the pair 

were drawn was calculated for each pair. The relationship between the two 

distances is clearly not informative, so in this case it would not be appropriate to 

use similarly expressed genes to infer the variance of a gene. 
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 Figure 2.1. Absolute distances between the standard deviations versus gene 
differential expressions are for the data set (GDS3116) for the baseline samples 
(left) and the letrozole samples (right): x1 and x2 represent two expression 
vectors, while  

1x and 
2x represent their standard deviations. The expressions 

were log2 normalized. 

 

Efron et al developed eBayes [54] by modeling differential expressions as 

mixtures of non-differential expressions (around mean zero) and differential 

expressions (away from zero), i.e., the null density and the alternative density. 

The final testing is done by controlling the local False Discovery Rate (FDR) - 

the ratio of the null over the full density (which is a mixture of null density and 

alternative density) of a gene is used to determine whether the gene was 

differential. In order to estimate the null density, Efron et al assumed that the 

distribution of expression distances in the same condition (control condition) for 

all genes should be similar to the expression distances across treatments of 

non-differential genes; this assumption is not necessarily valid in practice. 

However, for the same data used in Figure 2.1, the distributions of the 

variances for the within and across conditions are markedly different (Figure 

2.2). The within condition distance was calculated by randomly selecting two 

58-dimensional vectors for the same gene in the baseline samples. 
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Figure 2.2. Distributions of within-condition standard deviations (left) and cross-
condition standard deviations (right). The analysis was based on the same data 
used in Figure 2.1. The within-condition standard deviation was estimated 
based on the differential expressions between the baseline samples. The cross-
condition standard deviation was estimated based on the differential 

expressions between the letrozole and baseline samples. b
1

a
1 xx 

 denotes the 

standard deviation of 
a

1
x and 

b

1
x , two expression vectors of baseline samples. 

12 xx 
 where x1 is expression vector of baseline samples and x2 vector of 

letrozole samples. 

 

2.3. The proposed method 

2.3.1 Multi-Scale Gaussians (MSG) 

Here I present an extension to eBayes by modeling expressions via a Bayesian 

approach. Rather than inferring the alternative density from the empirically 

estimated null and full densities, I estimate parametrically the null and 

alternative densities directly from expression distances. This is equivalent to 

considering the expressions from each condition as a mixture of null and 

differential genes. In practice, the density of expression distances often has 

heavier tails than that of a normal distribution (Figure 2.3). The heavy tails on 

both sides of zero correspond to the differential expressions of differential 

genes, i.e., genes, which show up or down differentiation between non-disease 

samples and disease samples.  



47 
 

In summary, MSG is based on a probabilistic model as eBayes but relies on 

less restrictive assumptions. MSG further extends eBayes by adopting a 

parametric Bayesian approach and models the typical fat-tailed distribution of 

expression difference across conditions as a mixture of two Gaussians – one 

describing non-differential expressions (low variance) and the other differential 

expressions (high variance). This improves upon eBayes, which treats null gene 

expressions and differential gene expressions across control as being 

equivalent.  

In case of comparing two conditions against each other (single hypothesis), 

ANOVA is similar to t test. The main issue with the t test is the variance 

estimation in the case of the small replicates. ANOVA and MSG addressed 

variance but MSG addressed variance issue differently. MSG share information 

across genes to estimate variance which gives more reliable results. 

 

 
Figure 2.3. The histograms are of differences of expressions across two 
treatments (cancer versus non-cancer samples or metastasis cancer versus 
primary cancer samples) for two real data sets discussed later on in this 
chapter. Details of these datasets are given in Table 2.1. The expressions are 
on a logarithm 2 scale.   
 

2.3.3. The property of DE 

DE is commonly used for testing the null hypothesis that a gene shows no 
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difference of expression between two experimental conditions. Studies on the 

robustness of biological systems have indicated that a biological system 

normally dispatches a small number of genes to respond to a stress [129, 130]. 

This means that a majority of DEs distribute densely around the origin (zero) 

and their null hypotheses cannot be rejected. The other subset of DEs 

distributes sparsely away from the origin and their null hypotheses are rejected. 

In a one-dimensional case, a sharp peak is seen around zero (a Gaussian 

distribution with a very small variance) and two long tails (a Gaussian 

distribution with a very large variance or a uniform distribution).  

In terms of hypothesis test, we have three categories of hypotheses. First, those 

DEs which are around zero are statistically non-differential. Second, those DEs 

which are positive and away from the origin are statistically up-regulated. Third, 

those DEs which are negative and away from the origin are statistically down-

regulated. It can be seen that all DEs are tested against the origin for the null 

hypothesis, 0:0 H . This makes it a natural consideration to use MSG, as 

described in the next section, Based on this observation, it was proposed that a 

Multi-Scale Gaussian (MSG) would be used [131-136] to fit the distribution of 

differential expressions (Figure 2.4). More specifically, minor differential 

expressions were modelled using a Gaussian with a small variance, while major 

differential expressions were modelled using a Gaussian with a large variance. 
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Figure 2.4: Modelling differential expressions using MSG. The broken line 

represents the null Gaussian density (with a small variance) and the solid line 
represents the alternative Gaussian density (with a large variance) which 
captures the fat tails on both sides of the null difference. Here “expression 
distance” means differential expressions. 

 

In order to demonstrate that using two Gaussians is good to fit the differential 

expression data, an evaluation analysis being conducted for this purpose. Here 

I used the regression analysis (R2) to calculate the fitness as well as p value. 

Firstly, the empirical density was identified and noted by 
ix . Secondly, the 

corresponding MSG density was identified and noted by 
iy .  Finally, the fitness 

R2  was calculated form the two pairs of values. The R-squared is 0.8317 which 

indicates that MSG model fit the data well. 

 

2.3.4.  Algorithm 

The control gene expressions and the experimental gene expressions are 

denoted by 
N

nn 111 }  {  xX  and 
N
nn 122 }  {  xX , where

d2/1X  respectively. Both 

matrices have N rows (number of genes) and d (number of replicates) columns. 

The algorithm also works for data with different replicate numbers across 

treatments. A mean differential expression vector is generated,  denoted as Z , 

which directly measures the biological significance, similar to eBayes. A multi-

scale (full) Gaussian density function )|( zf  given model parameters has the 

form: 
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2
010 w,, w,    is the model parameter set, )|( 2

mm ,z G  is the 

Gaussian distribution centred at 
m  with standard deviation m  (m = 0, 1); 0  

and 1  are the centres of the two Gaussians; 0w  and 1w  are two related mixing 

coefficients or weights ( 110 ww ); 2
0  is the variance parameter of the null 

density, 2
0

2
1    is the variance parameter of the alternative density describing 

down and up regulated genes. The likelihood function is defined as 
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where Znz . Inverse gamma distributed priors are placed (conjugated) on the 

variances: 
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The mixing coefficients are modelled using non-informative priors. The prior for 

0  and 1  are assigned a Gaussian prior with zero mean and small deviations 

m : 

),0(~ 2

mm  G  (2.4) 

As explained in section 2.3.3, the majority of DEs distribute closely around zero 

and their null hypotheses cannot be rejected. So I set the prior means to be 

zero, based on my observation that both centres are close to zero, and set both 

m = 0.5 which corresponds to 1.41 fold change for base two logged 

expressions (low biological significance). The posterior is then defined as: 
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where }  , , , , , { 101010  bbaa  is the hyper-parameter set. The log-posterior can 

be written as: 
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Here ))(5.0exp(log( 2

mnmmmmn zwA   ,

25.0 log)1( mmmmmmm baB   and 2 mm  . The model parameters are 

estimated by maximising the posterior, giving the iterative variance updates 
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where mn,  is defined as: 
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The iterative update rule for the mixing coefficients can be written as:  
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and the iterative update rule for the centres is: 
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The learning process is initiated by assigning 0.5 to mw , 1 to m , and 0 to m .  

The hyper-parameters were determined based on the empirical differential 

expression distribution. For both Gaussians, the variance hyper-parameters 0a  
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and 1a  were set to one, while 0b  was set to be the standard deviation of 90% of 

the smallest absolute differential expressions, since it is assumed that the 

majority of differential expressions correspond to those of null genes. 1b  was 

the 90th percentile of all differential expressions.  

  

Bayesian learning typically has desirable convergence properties [59, 137]. 

Figure 2.5 illustrates MSG’s estimation convergence of the standard deviation 

and mixing coefficient parameters on simulations of 10,000 genes with varying 

number of differential genes.  It has been noticed that MSG converged quickly 

after a few iterations. 

 

Figure 2.5: MSG’s convergence for   (standard deviation) and   (mixing 

coefficient) for simulated gene expressions with varying DEGs (number of 
differentially expressed genes). 

 

After convergence, the null density and the alternative density are estimated for 

each gene. Equation (2.1) defines the full density. The Bayes rule is then used 

to predict whether or not a gene is differential. The null probability is defined of 

a gene whose mean differential expression is denoted by z , as 
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The alternative probability that the gene is differentially expressed, is defined as 
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A gene is predicted as a differential gene if 

)()( 01 zfzf   (2.13) 

Otherwise a gene is predicted as a non-differential gene. 

 
 

 
 
 
2.4.  Results and Discussion 

The proposed algorithm (MSG) was compared against t.test, Cyber-T [35], SAM 

[25], and eBayes [54]. Default parameters were used for these benchmark 

algorithms.  

2.4.1. Synthetic datasets 

In order to study the performance of the proposed method as well as the 

benchmark methods, I used synthetic data. To appropriately play their role, the 

data must be designed in a way which serve as a mirror for the real microarray 

data or as closely as possible. Here, I used the flexible microarray data 

simulation model  [138]   to generate data with known DEGs. An R package 
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(madsim) implementing their method is available in CRAN. The used model 

[138] is based on the following: 

iiii nsax   (2.14) 

where ix  is a vector of values generated for gene i. These values come from 

three sources as per equation (2.14). The values of vector ia  are expression 

level for samples. They used beta distribution to obtain values varying between 

zero and one. Shape parameters of this distribution were chosen to produce 

more small values than higher ones. This is true for a real data where there are 

more genes with low intensities than genes with high intensities. The data 

obtained are scaled to fit real data, which vary between a lower bound and an 

upper bound. The scaled values represent average expression level for n 

genes. They assumed that the intensities of each gene are uniformly distributed 

around the average level.  The values of vector is  allows one to define DE 

genes. The values are zero for control samples as well as for test samples in 

genes that are not differentially expressed, and non-zero for the test samples in 

genes that are differentially expressed. Finally, the vector in   is the independent 

noise, which obtained from normal distribution with zero mean and 0.4 standard 

deviation.   
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2.4.1.1 synthetic dataset 1(2 replicate) 

To evaluate the proposed methods and others in presence of noise, I varied the 

noise levels using 0.1, 0.3, and  0.5 values for parameter n  in madsim model. 

The simulation was repeated ten times corresponding to different initialisations, 

specifically rseed  used are 50,100,150,200,250,300,350,400,450,500. For 

each noise level the replicate number was two (m1=m2=2). A set of 10,000 

genes (N=10000) was generated of which 1000 (dgs=0.1) were chosen as 

differential genes. The rest of parameter set to their default setting. For each 

dataset/scenario, corresponding to the noise level, the false discovery rate 

(FDR) [139-141] associated with treating the top 1,000 genes as being 

significant was calculated first (Figure 2.6).  It can be seen that the mean FDR 

of MSG is the smallest (0.031). The next smallest mean FDR is Cyber-T (0.032) 

for a small noise level and this has been switched for medium noise  where the 

average FDR is 0.078, 0.066 for MSG and Cyber-T respectively. For the large 

noise the MSG is again the best among the other as it gain the smallest 

FDR(0.08) while this time Cyber-T is 0.13. The FDR of MSG was derived from 

its posterior error probability (PEP) [54, 142] – i.e., its local false discovery rate. 
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Figure 2.6. Showing FDR of  the five algorithms for simulated gene expressions 

with 2 replicate numbers. The top panel is for 0.1 noise, the middle panel is for 
0.2 and the bottom is for 0.5 noise. 
 
 

The five algorithms were then validated using receiver operating characteristic 

(ROC) analysis. ROC characterizes a predictor’s robustness [143, 144]. Here a 

predictor is an algorithm used for predicting which subset of genes is significant 
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in terms of treatment (phenotypic) differentiation. This analysis is different from 

traditional classification analysis such as discriminant analysis [145], neural 

network [145], support vector machines [146], or relevance vector machines 

[147]. In a significance analysis [54] decisions are made based on an arbitrarily-

determined significance level ( ), such as 0.05 or 0.01.  For ROC analysis I 

varied the significance level between zero and one. Figure 2.7 shows the ROC 

curves for this example in the case of n = 0.1. It can be seen that the ROC 

curves of MSG are the highest (towards to the top-left corner, so that a higher 

true positive rate can be achieved for a given false positive rate);  i.e., in this 

example, MSG is the most robust with very small number of replicate. Although 

the others apart of t test performed very well. Figures S2.1 and S2.2 show 

similar patterns as figure 2.7, for the other different noise level n = 0.3 and 0.5 

respectively.  

 



58 
 

 
Figure 2.7. Showing ROC curves of the five algorithms for simulated gene 

expressions with 2 replicates and 0.1 added noise. The horizontal axis 
represents the false positive rate, which is the rate that non-differential genes 
are predicted as differential genes. The vertical axis represents the true positive 
rate (also called sensitivity), which is the rate at which differential genes are 
correctly predicted. A separate curve is shown for each of  the 10 runs. 
 

In order to facilitate the comparison between the five methods, Area under ROC 

(AUC) was calculated. Table 2.1 gives the average AUC of 10 runs under 

different noise levels. It can be seen that MSG for all time has the large AUC 

while eBayes always is the second best AUC. However, t test has the lowest 

AUC as expected. 

 

Table 2.1. The average AUC for the five algorithms using 3 different value 

for n . The bold means the best while the italic is the second best.  

NOISE t-test eBayes Cyber-T SAM MSG 

0.1 0.8909 0.9910 0.9843 0.9761 0.9926 
0.2 0.8604 0.9637 0.9555 0.9596 0.9665 
0.3 0.8037 0.9038 0.8966 0.8960 0.9053 
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2.4.1.2 Synthetic dataset 2 (3 replicate) 

Another data set was also generated with the same parameter as in dataset1 

but used 3 replicate instead of 2 (m1=m2=3). Ten random samples were 

generated for this simulation using different seeds as above. 

 

 
Figure 2.8: FDR of the five algorithms for simulated gene expressions with 3 

replicate numbers under different noise levels. The top panel is for small noise 
level. The middle one is for the medium noise and the last is for large noise. 
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Figure2.8 illustrates the comparison between the five algorithms using FDR. It 

can be seen that MSG had minimal FDR compared to the other algorithms in all 

noise levels. Among all noise levels, the difference between Cyber-T (mean 

FDR of 0.03, 0.07, 0.17) and MSG (mean FDR of 0.009, 0.04 ,0.07) is more 

pronounced compared with the previous example. As same as the previous 

dataset, the FDR of the proposed method is slightly changed with the increasing 

of noise while this almost doubled in the others.  Figure 2.9 shows the ROC 

comparison for 3 replicate numbers at 0.1 noise level, where MSG slightly 

outperforms the other algorithms. Here, the benchmark algorithms apart of t test 

give better predictions compared with the previous example. Figures S2.3 and 

S2.4 show similar patterns as figure 2.9, for the other different noise level n = 

0.3 and 0.5 respectively.  

 
Figure 2.9 ROC curves of four algorithms for simulated gene expressions with 

three replicates. The horizontal axis represents the false positive rate, which is 
the rate at which non-differential genes are predicted as differential genes. The 
vertical axis represents the true positive rate, i.e., the rate that differential genes 
are correctly predicted. A separate curve is shown for each of the 10 runs. 
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Further to facilitate the comparison between the five methods, Area under ROC 

(AUC) was calculated as displayed in Table 2.2. It can be seen that the overall 

AUC is better in this scenario compared to the previous one. MSG has the 

highest AUC while the eBayes is the second highest.  

Table 2.2. shows the average AUC for the five algorithms using 3 different 

value for n
 

in the three replicate samples datasets. The bold figures mean the 

best while the italic is the second best. 

NOISE t-test eBayes Cyber-T SAM MSG 

0.1 0.9552 0.9963 0.9941 0.9779 0.9983 
0.2 0.9372 0.9841 0.9801 0.9777 0.9869 
0.3 0.8922 0.9462 0.9414 0.8960 0.9487 

 
 

2.4.1.3 Synthetic dataset 3 (5 replicate) 

Another data set was also generated with the same parameter as in dataset1 

and dataset2  but used 5 replicate instead (m1=m2=5). Ten random samples 

were generated for this simulation using different seeds as above. 

Figure2.10 illustrates the comparison between the five algorithms using FDR. It 

can be seen that MSG had minimal FDR compared to the other algorithms in all 

noise levels. However, FDR is much lower in all algorithms compared with the 

previous examples. As same as the previous datasets, the FDR of the proposed 

method is the smallest among the others in all different noise levels.  Figure 

2.11 shows the ROC comparison, in the case of five replicate and n = 0.1 , 

where all algorithms performed well. This is because  of the replicate number is 

getting large. Figures S2.5 and S2.6 show similar patterns as figure 2.11, for 

the other different noise level n = 0.3 and 0.5 respectively.  
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Figure 2.10: FDR of the five algorithms for simulated gene expressions with 5 

replicate numbers under different noise levels. The top panel when n =0.1, the 

middle when n =0.3 and the bottom is when n =0.5. 
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Figure 2.11 ROC curves of four algorithms for simulated gene expressions with 
five replicate number. The horizontal axis represents the false positive rate, 
which is the rate at which non-differential genes are predicted as differential 
genes. The vertical axis represents the true positive rate, i.e., the rate that 
differential genes are correctly predicted. A separate curve is shown for each of 
the 10 runs. 

 

The AUC was calculated and summarised in Table 2.3. They all have large 

AUC but MSG is the highest and close to 1. 

Table 2.3. shows the average AUC for the five algorithms using 3 different 

value for n
 

in the five replicate samples datasets. The bold means the best 

while the italic is the second best. 

NOISE t-test eBayes Cyber-T SAM MSG 

0.1 0.9884 0.9979 0.9977 0.9874 0.9999 
0.2 0.9814 0.9947 0.9932 0.9877 0.9977 
0.3 0.9577 0.9793 0.9774 0.9772 0.9822 
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2.5. Applications on Real Cancer Data 

I applied the algorithms to two sets of gene expression data from GEO 

(http://www.ncbi.nlm.nih.gov/sites/GDSbrowser) Table 2.4. Both studies 

examined cancer metastasis. In the first data set [148], LM2 breast cancer cell 

line was used with a short hairpin as control and miR-335 expression as 

treatment. The second data set studied the suppression role of 4.1B in prostate 

cancer metastasis [149], where poorly metastasised samples were treated as 

control samples and highly metastasised samples were treated as experimental 

samples. 

Table 2.4. GEO data sets.  K is the number of non-cancer samples, M is the 
number of cancer samples, N is the number of genes. 

GEO ID cancer type Refs K M N 

GDS3138 Breast (metastasises) [148] 2 2 54677 

GDS2865 Prostate [149] 3 3 22281 

 

2.5.1. Breast cancer data (GDS3138 )  

The dataset for a breast cancer metastasis study [148] contained two control 

samples and two experimental samples taken on 54,677 probes. Figure 2.12 

illustrates the Venn diagrams of two analyses. The Venn diagram was 

generated using  the R package VennDiagram [150]. The left panel summarises 

the prediction results of four algorithms. The significance level was set to 0.05 

for eBayes, SAM and Cyber-T. We used 0.95 as the posterior probability 

threshold for MSG. It can be seen that MSG overlaps 60.9% with SAM, 52.8% 

with eBayes, and 83.6% with Cyber-T. Cyber-T, MSG, eBayes and SAM have 

11,184 (64%), 497 (11%), 324 (5.4%) and one distinct prediction(s) respectively. 

The right panel shows that only one of the top 20 significantly differential genes 
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was consistently predicted by all the algorithms. The top 20 predictions were 

chosen after sorting the p values in ascending order and alternative probabilities 

(see Section 2.3 for definitions) in a descending order. Both eBayes and SAM 

have three distinct predictions, MSG has nine distinct predictions and Cyber-T 

has 19 distinct predictions. MSG has 11 overlaps with eBayes and SAM.  

   

Figure 2.12. Venn diagram analysis for the breast cancer data set (GDS3138), 
where the left panel summarises the significant genes using fixed thresholds, 
while the right panel shows the result for the top 20 predictions. 
 

Figure 2.13 shows the (log2) raw expressions of 13 down regulated genes (left 

panel) and seven up regulated genes (right panel) among the top 20 predictions 

of MSG. It can be seen that the predictions are consistent with the raw 

expression distributions. Figures 2.14 to 2.16 illustrate the top 20 predictions 

made by the three benchmark algorithms. MSG is comparable to eBayes 

(Figure 2.14) and SAM (Figure 2.15), but Cyber-T (Figure 2.16) gives poorer 

predictions.  
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Figure 2.13. The log2 expression distributions of the top predictions identified 
significantly down (left panel) / up (right panel) regulated genes predicted by 
MSG for GDS3138. The arrows are used to denote the direction from control 
expressions to experimental expressions. 
 

 
Figure 2.14. The log2 expression distributions of the top predictions identified 
significantly down (left panel) / up (right panel) regulated genes predicted by 
eBayes for GDS3138. The arrows are used to denote the direction from control 
expressions to experimental expressions. 

 

  
Figure 2.15. The log2 expression distributions of the top predictions identified 

significantly down (left panel) / up (right panel) regulated genes predicted by 
SAM for GDS3138. The arrows are used to denote the direction from control 
expressions to experimental expressions. 

 

  
Figure 2.16. The log2 expression distributions of the top predictions identified 

significantly down (left panel) / up (right panel) regulated genes predicted by 
Cyber-T for GDS3138. The arrows are used to denote the direction from control 
expressions to experimental expressions. 

 

Figure 2.17 illustrates a selection of the top 10 predictions of MSG and the top 

two predictions of the benchmark algorithms plotted in terms of their MSG 
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alternative probability (i.e., that the differential expression corresponds to a 

differentially expressed gene). The predictions of MSG are located far out in the 

tails, indicating a high probability that the gene is differentially expressed. The 

predictions of eBayes are similar to those of MSG. However the SAM and 

Cyber-T predictions are closer to the null area (the area where the alternative 

probability is becoming smaller): this agrees with the characteristics of the 

predictions that were illustrated in Figures 2.13 to 2.16.  

 

Figure 2.17. The MSG alternative probability of the (log2) mean differential 
expression with annotations for a selection of the top 10 MSG predictions 
(bottom) and the top two predictions given by the other algorithms (top) for the 
breast cancer data set (GDS3138). 
 

The p values (for eBayes, Cyber-T and SAM) and the null probabilities (see 

section 2.3 for definition) for the nine distinct predictions of MSG (among MSG’s 

top 20) are shown in Table 2.5, in which a null probability is used since it is 

synonymous with a small p value. The three benchmark algorithms agree with 

MSG for these nine genes, albeit with very different rankings (the values in 

brackets in Table 2.5 are the rankings of the genes for each algorithm).  
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Table 2.5. The p values and the null probabilities of the four algorithms for the 
nine distinct genes among MSG’s top 20 genes for GDS3138 (see right panel of 
Figure 2.10). The ranking of each gene for a given algorithm is shown in the 
brackets. 
Probe/symbol eBayes Cyber-T SAM MSG 

221900_at/COL8A2 
0.00580 
(482) 

5.55E-16 
 (208) 

0.00168 
(201) 

2.91E-22  
(5) 

223749_at/C1QTNF2 
0.00133  
(31) 

1.57E-12 
 (567) 

0.00011 
 (31) 

1.65E-21  
(6) 

213668_at/SOX4 
0.00523 
(422) 

1.75E-12  
(576) 

0.00157 
(190) 

4.31E-20 
(10) 

1556760_at/R16907 
0.01563 
(1580) 

4.31E-14  
(359) 

0.00639 
(604) 

4.06E-19 
(12) 

232417-at/ZDHHC11 
0.00345 
(237) 

4.94E-14 
 (366) 

0.00109 
(135) 

1.41E-17 
(14) 

205875_at/ATRIP 
0.00587 
(493) 

7.01E-10 
(1132) 

0.00234 
(264) 

2.13E-17 
(15) 

217270_at/DYRK1B 
0.00420 
(307) 

4.38E-09 
(1396) 

0.00137 
(172) 

2.32E-17 
(17) 

207838_at/PBXIP1 
0.00652 
(561) 

4.03E-08 
(1807) 

0.00258 
(296) 

2.72E-16 
(18) 

227082_at/AI760356 
0.00226 
(101) 

7.67E-11  
(876) 

0.00063 
 (73) 

7.56E-16 
(20) 

 

C1QTNF2 has been noted as significant predictor of breast cancer [149]. 

COL8A2 has also been studied for its function in contributing to breast cancer 

development [151]. SOX4 was found in relation to breast cancer samples [152] 

and has been used for developing drugs for breast cancer [153]. ZDHHC11 has 

been found to be frequently amplified in breast cancer cell lines and primary 

tumour tissues [154], while ATRIP was found to interact with BRCA1 for the 

checkpoint function of ATR in breast/ovarian cancer [155].  
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Serine/Theronine kinase MIRK/DYRK1B demonstrates up to 10-fold over-

expression in breast tumour cells [156], and PBXIP1 has been recognised as a 

signature of breast cancer diagnosis [157]. AI760356 is related to the 

regression of DNA-binding dependent glucocorticoid [158], which is associated 

with the inhibition of apoptosis in breast epithelia cells [159].  R16907 is not well 

documented, but it did show a significant down-regulation trend (Fig 2.13). 

Table S2.1 gives the prediction details of the top 20 genes predicted by four 

algorithms. 

The correlations between the null probabilities of MSG and the p values of other 

algorithms are presented in Table 2.6. It can be seen that SAM and eBayes had 

the largest correlation. The correlation between MSG and other algorithms is 

smaller (but not insignificant) than the correlations among the three benchmark 

algorithms. 

Table 2.6. Correlation coefficients between the p values of eBayes, Cyber-T, 

SAM and the null probabilities of MSG for GDS3138. 

 Cyber-T SAM MSG 

eBayes 0.84325 0.98947 0.60235 

Cyber-T  0.84588 0.52393 

SAM   0.66889 

 
2.5.2.  Prostate cancer data (GDS2865). 

The prostate cancer study data contained 22281 probes with three control and 

three experimental samples [149]. The Venn diagram (Figure 2.18) illustrates 

all the significant predictions (significance levels were set to 0.05 for the three 

benchmark algorithms and the posterior probability threshold was again set to 

0.95), as well as the top 20 genes for the four algorithms. MSG agreed with 

eBayes for 90.3% of the predictions and agreed with SAM for 75.8% of the 

predictions. MSG had only one discordant prediction with Cyber-T, while it was 
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also evident that MSG agreed with eBayes and SAM for the 11 (=5+3+2+1) top 

genes.  The right panel of the diagram (Figure 2.18) shows that Cyber-T, SAM, 

eBayes and MSG had ten, eight, five and four distinct predictions respectively. 

The left panel of Figure 2.19 shows the log2 raw expressions of nine down 

regulated genes among the top 20 predictions of MSG, and the right panel 

shows 11 up regulated genes among the top 20 predictions of MSG: predictions 

that are consistent with the raw expression distributions. 

    
Figure 2.18 Venn diagram analysis for the prostate cancer data set (GDS2865). 
The left panel shows the result using fixed thresholds to make prediction. The 
right panel shows the result of top 20 predictions. The diagram was generated 
using VennDiagram [150] 
 

Figures 2.20 to 2.22 show the raw expression distribution of the top predictions 

of the three benchmark algorithms. Generally speaking, MSG shows larger 

distances between the two groups compared with the three benchmark-

algorithms.  

 

 
Figure 2.19. The log2 expression distributions of the top predictions identified 
significantly down (left panel) / up (right panel) regulated genes predicted by 
MSG for GDS3138. The arrows are used to denote the direction from control 
expressions to experimental expressions.  



71 
 

 

  
Figure 2.20.The log2 expression distributions of the top predictions identified 
significantly down (left panel) / up (right panel) regulated genes predicted by 
SAM for GDS3138. The arrows are used to denote the direction from control 
expressions to experimental expressions. 

 

 

Figure 2.21. The log2 expression distributions of the top predictions identified 

significantly down (left panel) / up (right panel) regulated genes predicted by 
eBayes for GDS3138. The arrows are used to denote the direction from control 
expressions to experimental expressions. 

 

  
Figure 2.22. The log2 expression distributions of the top predictions identified 

significantly down (left panel) / up (right panel) regulated genes predicted by 
Cyber-T for GDS3138. The arrows are used to denote the direction from control 
expressions to experimental expressions. 
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Figure 2.23 shows the validation of the top 10 predictions of MSG and the top 

two predictions by the other three algorithms. The predictions of eBayes are 

consistent with MSG. The gene GSN, as predicted by SAM, is located in the 

null area and the gene TGM2, predicted by Cyber-T, is close to the null area.  

 

Figure 2.23. The MSG alternative probability of the (log2) mean differential 
expressions with annotations for a selection of the top 10 MSG predictions 
(bottom) and the top two predictions given by the other algorithms (top) for the 
prostate cancer data set (GDS2865). 

 
The unique genes amongst MSG’s top 20 are summarised in Table 2.7. The 

rankings given by the algorithms here are more accordant than for the breast 

cancer data (MSG’s unique top 20 are ranked among the top 150 genes of the 

others). Table S2.2 gives the p values and the null probabilities of the top 20 

predictions of the four algorithms.  

 
Table 2.7. The table shows the p values and the null probabilities for the four 

distinct genes among MSG’s top 20 predictions for the prostate cancer data set, 
GDS2865.The ranking of each gene for a given algorithm is given within the 
brackets, but the ranking for Cyber-T is unavailable due to tied zeroes. Table 
S2.3 shows 73 genes with zero p values given by Cyber-T. 

Probe/symbol eBayes Cyber-T SAM MSG 

212667_at/SPARC 1.02E-05 (23) 0 7.85E-05 (42) 2.34E-63 (13) 

211657_at/CEACAM6 3.40E-05 (49) 0 
0.000135 

(100) 
3.04E-63 (14) 

208116_s_at/MAN1A1 5.87E-05 (61) 0 
0.000236 

(133) 
1.90E-57 (16) 

209035_at/MDK 1.74E-05 (31) 0 7.85E-05 (42) 5.64E-56 (17) 
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SPARC has been widely studied for prostate cancer metastasis progression 

[160-162]. CEACAM6 has also been found to be a significant contributor to 

prostate cancer metastasis. For instance, it was found that it does not show any 

differentiation between prostate cancer and normal tissues, but shows high 

differentiation in metastasis status [163].  It has also been recognized as a 

mediator of metastasis [164] and has been found in various metastasising 

cancer patients, including prostate cancer [165].  

MAN1A1 has been found to be differentially expressed between primary and 

metastasising prostate cancer patients [166, 167]. MDK’s function is to promote 

cell growth, survival, migration and angiogenesis. It has been found to be over-

expressed in various human cancers [168] and shows high differentiation status 

in metastasis prostate cancer patients [169]. 

Table 2.8 gives the correlations between the four algorithms. The treatment of p 

values and null posterior probabilities is similar to what was used in compiling 

Table 2.6. In this data set, the correlation of MSG with eBayes and Cyber-T is 

more significant compared with that in the breast cancer data set, although 

these methods are better correlated amongst themselves than with MSG.  

Table 2.8.  Correlation coefficients between the p values of eBayes, Cyber-T, 

SAM and the null probabilities of MSG for the GDS2865 data set. 

 Cyber-T SAM MSG 

eBayes 0.95844 0.98239 0.70459 
Cyber-T  0.93009 0.68989 

SAM   0.68097 
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2.6.   Conclusion 

A multi-scale Gaussian (MSG) model was presented for predicting differential 

expressed genes from microarray expression data of small replicate number. 

MSG models the typical fat-tailed distribution of differential expressions as a 

mixture of two Gaussians – one describing minor differential expressions using 

a small variance and one describing major differential expressions using a large 

variance. In this respect, MSG generalizes the concept of eBayes which models 

the null density and the full density empirically. MSG estimates the null density 

and the alternative density parametrically under the Bayesian framework.  

It was found that for simulated datasets, MSG compared favourably to three 

benchmark algorithms – SAM, Cyber-T and eBayes .  When applied to real data 

sets, MSG offers unique and insightful predictions of differential expressed 

genes. In summary, multi-scale mixture modelling, which is becoming more and 

more interesting for statistical purposes, helps capture the characteristics of 

differential expression data and thus serves as a useful alternative to existing 

approaches in differentially expressed gene detection. 
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Chapter 3 

Predicting bimodal genes via gap maximisation 

 

Abstract 

Bimodality is a common phenomenon that occurs in gene expression data for 

certain types of studies, including cancer studies and drug effect studies. 

Several algorithms developed to tackle this problem have met with some 

success, but since their performance is occasionally unsatisfactory, a new 

algorithm was suggested that would detect bimodal genes. This new algorithm, 

is based on the assumption that, as suggested by [110], bimodality is 

associated with the gap between two consecutive expressions. The 

performance of this new algorithm has been demonstrated against several 

widely-used benchmark algorithms, using both real and simulated data sets.  
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3.1.   Introduction  

3.1.1. Bimodality 

Although mRNA expression profile for most genes is expected to follow a 

normal distribution across samples [110],  it appears that a considerable 

number of genes have an expression pattern that follows a two or more 

component mixture distribution [111]. The mixture of two densities with distinct 

centres is known as bimodality. Furthermore, density distribution can be defined 

by the presence of two characteristic peaks (Figure 3.1).  Bimodality is caused 

by somatic mutations, such as the amplification of the tyrosine kinase proto-

oncogene receptor ‘erbB2’, during the development of cancer [170], or through 

germ cell mutations, such as SNPs [171]. Some genetic mutations can have a 

high level of genetic alteration, while the level of alteration in others can be 

normal [172]. 

 
Figure 3.1 Histograms for the SF3B2 gene (200619_at). The left panel is the 

gene expression in normal samples and shows normal distribution. The right 
panel is for the same gene in cancer samples and it has bimodal distribution 
with the broken vertical line representing the classification threshold between 
the two modes. 
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Genetic translocations, which commonly occur in cancer cells, are a result of 

the rearrangement of parts between non-homologous chromosomes [173]. 

However, these mutations play a main role in cancer progression or in disease 

development more generally. Furthermore, genomic lesions may affect some 

samples but not others; this means that bimodal expression patterns have 

occurred. An example of these recurrent fusions was observed in prostate 

cancer datasets by Tomlins et al., who found ERG and ETV1 genes over-

expressed in some of the samples in multiple datasets [174]. Another study 

showed that oncogene HER2 was over-expressed in 15–20% of breast tumours 

compared with normal breast tissues [175].  

Bimodality can appear in many biological systems as well as in cancer, as 

noted by Mason and his group [176], who observed that the expression levels 

for some genes show a distinct bimodal distribution in human skeletal muscle 

tissue. Bimodal distribution has also  been investigated in many blood glucose 

studies [177, 178]. Interestingly, bimodality can occur in homogenous disease, 

tissues or patient groups. [176, 179]. It also can be observed in healthy samples 

but gain attention in cancer or disease state where it believed to play main role 

in treatment. Thus, Bimodal genes are not always differentially expressed 

genes. This has led to the discovery of such methods that can identify the 

bimodal patterns rather than identifying differentially expressed genes. Genes 

with a bimodal distribution may be useful candidates to distinguish subgroups of 

disease such as different types of breast cancer. In addition, it has been 

demonstrated that bimodal gene expression may plays another role in 

identifying clinical groups (cancer vs normal). In some genes, the bimodal 

pattern observed in one group and unimodal in the other group. For example, 

transcription factor genes show a unimodal patterns in normal lung samples 
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while those genes showed a bimodal patterns in lung cancer samples[180, 181] 

Cancer as a complex disease [182] has many subtypes that respond to 

treatment differently [81]. Since tumours with such genetic alterations are not 

likely to respond to the same drug, finding a genotype only may not be suitable 

for drug selection. Therefore the critical key for drug design is a full 

understanding of both genotypes and phenotypes [172], and these differences 

in response have led to a focus on the testing of individual patients. Other 

important criteria for personalised medicine also include accurate decisions that 

correspond to a clear distinction of expression values of a specific gene into two 

groups. As a result, in the search for a therapeutic target, identifying such 

bimodal genes makes an important contribution to the process of treatment, and 

may also help biologists to understand the complexity of cancer or to discover 

cancer subtypes. Genes whose expression follows bimodal distribution in 

multiple cancer data are likely to be candidate biomarkers for diagnostics or 

prognostics, or for predicting therapy response [183]. 

 

3.1.2. Heterogeneity and drug resistance 

Researchers have put considerable effort into studying the complex disease of 

cancer, with the aim of understanding its molecular characteristics [184, 185]. 

Cancer patients with similar tumour characteristics are unlikely to respond to a 

specific treatment in the same way [186]. In breast cancer, for example, variant 

responses to drugs such as Tamoxifen and Herceptin are evidence of the 

heterogeneity in such pathological factors as oestrogen receptor (ER) and 

HER2 status [187]. Large numbers of patients have gained from using 

Tamoxifen for hormone receptor-positive, but the same drug has failed in 

subgroups of patients who carry specific variants in the cytochrome gene P450 
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2D6 (CYP2D6) [188, 189]. Other evidence provides clear support that HER2 

targeted therapies aim to block tumour cell growth. Trastuzumab, as a first drug 

approved by the US Food and Drug Administration (FDA) for this purpose, has 

been a beneficial therapy, either alone or in combination with chemotherapy, in 

about 25% of patients with positive HRE2 cancer [190-193]. However, some 

patients have not responded to the Trastuzumab treatments, producing the 

need for an accurate grouping of HRE2-positive patients [189].   

Another target for many cancer types was epidermal growth factor receptor 

(EGFR). The drug Gefitinib (Iressa), which has also been approved by the FDA, 

suppresses the ATP binding function of EGFR and has resulted in partial 

remission regression for 10-30% of patients with NSCLC (non-small cell lung 

cancer) [194-198]. But, as reported by Giaccone et al [199], the same drug was 

not adequate in combination with chemotherapy. Finally, a study by researchers 

at Harvard established that genetic alterations were associated with drug 

response [200]. Thus, it has become clear that efficient cancer drugs will be 

based on understanding the molecular profile of human cancers.   

The heterogeneity in cancer makes both diagnosis and treatment difficult. This 

is clear in cases of breast cancer expression patterns analysis, through which at 

least five subtypes of tumour were found [81, 201].  Chin and collaborators 

showed that tumours with the same phenotype and transcriptional factors can 

result from a different set of genomic alterations [185], and showed that ER-

negative, high-grade basal subtypes can be divided into two groups, low and 

high genetic stability. As a result, drug design based only on the phenotype will 

not be sufficient if knowledge of the genotype is not taken into account. The 

heterogeneity observed in cancer has led to personalised medicine being 
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thought of as offering better care for cancer than standard care, in the way it 

targets individual patients.  

In summary, genetic heterogeneity in cancer is common. This means that 

different subsets of people within a population that had different underlying 

factors which cause same kind of disease. These factors either genetic variation 

or environmental factors. For example, ERG and ETV1 genes over-expressed 

in some of the samples but not all in many datasets [174]. Thus, identifying 

such bimodal genes makes an important contribution to the process of 

treatment, and may also help biologists to understand the complexity of cancer 

or to discover cancer subtypes. Genes whose expression follows bimodal 

distribution in multiple cancer data are likely to be candidate biomarkers for 

diagnostics or prognostics, or for predicting therapy response [183]. 

3.2. Methods used for bimodality identification 

3.2.1. Background 

In the last few years there has been a huge number of microarray experiments 

using genome-wide analysis of gene expression that have helped biologists to 

investigate gene expression patterns for cancers and other diseases [202]. The 

first concern was to identify the differentially-expressed genes between two 

sample conditions, such as cancer vs. normal. Many methods were proposed 

and have been widely used for this task, such as the t-test, SAM [25], CyberT 

[35] and eBayes [203] that were explained in chapter 2.  Methods based on 

means and variances comparison are powerful tools for detecting the 

differential expressed genes in the case of all samples in a group sharing a 

common average, and with more or less equal variation around it. However, 

some diseases, such as cancer, are following a heterogeneous  expression 
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distribution which indicates that a subset of samples (patients/cell lines) show 

similar expressions to non-cancer samples. This skewedness lowers the mean 

of cancer samples towards the mean of non-cancer samples to affect the 

accuracy of the t-test. Thus, its important task to identify those genes with 

bimodal behaviour for its importance in cancer as seen in some studies[204-

206] and further to enhance the power of other tests such DEG identifications 

and clustering.    

It has been noticed that even within a specific subgroups of cancer patients, the 

same genes are not necessarily expressed in the same way among all samples 

[207]. This has altered the focus on identifying DEGs to search for a single 

sample (i.e. outlier) or small samples (i,e. bimodal) that have divergent 

expressions from the rest of the group. 

In relation to the detection of bimodal genes it is important to discover a set of 

genes that are tightly regulated around two conditions at the transcript level 

[208]. Genes with bimodal behaviour in multiple cancer datasets are strongly 

evidenced to be ideal biomarker candidates for the treatment of the cancer or of 

more general diseases [209]. Many studies have applied biological annotation, 

such as the Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathways 

[210], or Gene Ontology (GO) [211] to a set of bimodal genes. This shows that 

they are utilized in cell-cell communication and play a  main role in changes in 

biological function [212, 213].   

Ertel and Tozeren evaluated the expression of bimodal genes in diabetes types 

I and II in order to investigate the role of bimodal genes in cell communication 

and immune response, expanding their study to transcript level regulation using 

the available bioinformatics repositories [214]. The incidence of bimodality was 
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also mentioned in a number of cancer and other disease studies [179, 215, 

216]. The bimodality could be calculated using F-statistic [179], outlier detection 

methods [174, 217, 218], or a combination of mixture modelling and special 

coefficients [110, 112, 113, 216].  

Many clustering methods are used to group genes based on their expression 

values. These methods vary as some are classified and grouped based on the 

use of different distance metrics [41], while others can be gathered around by 

the data structure, such as k-means and mixture model [145, 219, 220], with the 

latter being widely used in bimodality pattern discoveries. A number of studies 

have used the previous clustering methods to group genes into two groups and 

have then analysed the bimodality by using Kurtosis value [113], the Likelihood 

ratio test [112], or the bimodality index [110].  

Another approach to investigate bimodality is through outlier detection methods, 

which are mainly used to identify the low or high expression values in a fraction 

of the sample. These methods group the genes expression using a specific 

quantile to detect the outlier sample expressions such as a Cancer Outlier 

Profile Analysis "COPA"  [174], outlier sum statistics "OS" [217], the outlier 

robust t-test (ORT),  MOST [221], LSOSS [222] and distribution-based outlier 

sum statistics [223]; these are some of the typical algorithms in the literature. 

3.2.2. Technical review 

Two approaches have been applied in identifying such bimodal genes. One 

approach is based on outlier detection methods, since the biologists include the 

outliers in the scope of bimodality definition. The second is designed for 

bimodality identification. For the former several methods have been proposed 

for handling gene expression data with heterogeneous distributions. Cancer 
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outlier profile analysis algorithms COPA [174], outlier sum statistics (OS) [217], 

the outlier robust t-test (ORT),  MOST [221], LSOSS [222] and distribution-

based outlier sum statistics [223], which are some typical algorithms in the 

literature. For the latter approach many algorithms have been suggested such 

as PACK [113],  Likelihood ratio test (LHR) [112], and the bimodality index (BI) 

[110]. 

3.2.2.1 Outlier detection methods 

Many methods have been proposed to identify genes with bimodal distributions 

for the first group. They were derived from the t-test by replacing the mean 

using the median, and using the median’s absolute deviation instead of 

standard error used by the standard t-test. One of these methods is COPA 

(Cancer Outlier Profile Analysis) [174], which is based on the median of gene 

expression instead of the mean. COPA consist of three steps. First, the data are 

centred to the median and each gene’s median expression set to zero. Second 

the data are scaled by dividing each gene’s expression value to their median 

average difference.  Finally, different percentiles are used in order to filter the 

data. Tomlins (2005) and MacDonald (2006) used the 75th, 90th, and 95th.  

Let ijx  be the observed expression value of a non-cancer sample i = 1, . . . ,m 

and let  ijy   be the observed expression values of cancer samples i = 1, . . . , n. 

The gene index  j = 1,. . . ., g. T-test can be calculated as the following 

equation: 

j

j
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whereas jy  and jx  are the means value for gene j in the cancer group and 

control group respectively and js  is the pooled standard deviation of gene j and 

defined as: 
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The t-test fails to detect heterogeneous differential genes. Thus, COPA was 

proposed as the following: 

j
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med
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
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)(yq ijr  (3.3) 

where rq  is the percentile of cancer data, 
jmed  is the median of all normal 

values and cancer data for gene j , while 
jMAD  is the median absolute 

difference of all values of gene j 

 

Another method, named the outlier sum statistic (OS), was proposed by 

Tibshirani and Hastie, in order to detect genes that over expressed or down 

expressed in subsets of the sample [217]. This was motivated by the limitation 

of COPA, which is that using a fixed  rth sample percentile may not work well for 

detecting more than one outlier [218]. The idea behind this method is that it 

sums up the expression of the outlier cancer samples, which are identified by 

quintiles as: 
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where )()()( 2575 jqjqjIQR  is the interquartile of all expression data for gene 

j, and q75 is the 75 percentile of expressions. This can also be used to find the 

down regulated outliers as they used the 25th as percentile minus the IQR in 

eqn 3.4.  

A common problem of COPA and OS is the use of the overall median because 

this is not the appropriate replacement of the normal sample mean, and might 

overestimate the non-cancer sample mean and affect the outlier detection. A 

slight modification to OS has been proposed by Wu which is Outlier Robust T-

statistic (ORT) [218] and defined as: 
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where N
jmed  is the median of Normal expression sample and C

jmed is the 

median obtained from Cancer expression values, m and n represent the 

number of non-cancer samples and cancer samples respectively, and   

)}1()1,(:{ 75 mxIQRmixqyniR ijijijj   (3.6) 

The only difference between OS and ORT is that ORT uses only the control 

(non-cancer) sample to centralise the data, and scales the control and cancer 

separately, whereas OS uses them both [173]. Although OS and ORT are 

designed for control and disease data, specifically normal vs. cancer, ORT has 

been modified to deal only with tumour samples, as proposed by Hellwig and 

her group [183]. In addition to this, all outlier methods mentioned are designed 

to tackle the outliers based on the quintiles of the gene expression from all the 

samples. MOST statistic was then proposed to overcome the arbitrary setting 

used by OS and ORT with the aim of considering all possible numbers of 

outliers [221].  MOST arranged the cancer samples from high to low in order to 
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find the outliers. However, this method does not work perfectly in some cases 

where the number of cancer samples is small, as the standard deviation k  for 

one is 0, 
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where k varies from one to the number of cancer samples. 

More recently, LSOSS has been proposed; based on detecting change points in 

the ordered gene expression of cancer samples it uses these points to identify 

the outliers in cancer samples [222]. 
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where k is obtained by minimizing the pooled sum of squares for cancer 

samples only and  js  is calculated as: 
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An improvement has also been made to the previous two methods by using an 

explicit form for the p value [223] . 

3.2.2.2 Bimodality detection methods/ combination of mixture modelling 

and special coefficients 

In this category, PACK (Profile Analysis using Clustering and Kurtosis) is a 

method proposed for finding the outliers or genes with bimodal distribution 

[113]. PACK’s general approach is based on two steps.  The first is clustering, 

using an EM algorithm with BIC as a model for the selection criterion in order to 
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find the optimal number of clusters. The second uses kurtosis to find relevant 

classifiers as:  
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(3.10) 

The positive kurtosis means there are outlier subgroups in the data, while the 

negative shows a major bimodal pattern. The researchers validated their 

methodology in six independent cancer datasets, three prostate cancer 

datasets and three breast cancers. They also successfully extended the 

application of their suggested method to other breast cancer data [224]. 

Although previously applied successfully, important genes could be missed in 

the case of  an 80 to 20 percent split of the samples into two groups, because 

the kurtosis is close to zero [110]. The disadvantage of PACK is that it failed to 

detect the bimodal distribution with unbalanced sizes of peaks. 

Another method is the Likelihood ratio test (LHR) which  Ertel and Tozeren  

used to identify bimodal genes [112], and their importance in disease 

progression [112, 225]. The hypothesis that gene expression distribution is 

bimodal, against the null hypothesis that the expression follows a normal 

distribution, was tested and has the form: 

normal

mixture

LH

LH
LHR   (3.11) 

Where LHmixture is the likelihood of a normal mixture model with two components 

and LHnormal is the likelihood of a normal model with one component. Small 

LHRs indicate that the distribution of data( gene expression) does not have 

bimodal patterns, while the large LHRs suggest bimodal distribution. This 

method was inherited from glucose bimodality studies [177, 178]. First Ertel and 
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Tozeren used the Box-Cox transformation to eliminate the skewedness and 

then applied the EM algorithm. Secondly, they used the log Likelihood ratio with 

the p value obtained by using chi-square with six degrees of freedom aiming to 

find more accurate p values. Finally, they used p<0.001 as an ad hoc p-value to 

target genes with bimodality function. In this regard another technique was 

developed and applied by Bessarabova and colleagues to estimate bimodality 

by maximizing t-statistic like τ [216]. 

More recently, Wang et al (2009) have proposed a new approach which they 

have called the Bimodality Index (BI) [110]. The bimodality index method was 

motivated by the limitations of using BIC or AIC as a model for criteria selection, 

so these were replaced by a criterion that gives a better discrimination between 

the bimodal distributions. The method assumes that the distribution of a gene 

with bimodal expression can be expressed as a mixture of two distributions with 

an equal variance. The bimodality index method is based on the distance 

between two clusters means and defined as: 

   2

1

)1( BI  (3.12) 

where   is the proportion of samples in cancer data and   is the distance 

between the two subgroups. Although there is merit in using BI and as it has 

also outweighed the others because of its capability to identify the bimodal 

genes and rank them, it does however have some limitations as the two 

subgroups were assumed have the same variance and this is not true in all 

cases. 

 

3.3. The proposed method 
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3.3.1. Motivation 

It is unrealistic to assume that two clusters of a bimodal gene should have the 

same variance. The examination of various data sets has clearly shown that 

one of two clusters, either being of lowly expressed samples or of highly 

expressed samples is very likely to demonstrate a comparatively flat distribution 

while the other shows a tight cluster. Thus, I deliberately removed the constraint 

of homogeneous variance across genes because this constraint is certainly not 

valid in reality. The main differences between BI and hBI are summarised in 

Table 3.1. Finally, it worth noting that since significance analysis is critical to 

real biological/medical applications, I enhanced the Bimodality Index by using 

Besag’s sequential Monte Carlo approach to deliver significance analysis.  

Table 3.1: summary of the differences between BI and hBI 

Factor BI hBI 

model parametric Non-parametric 
cross-cluster variance homogeneous heterogeneous 
variance across genes homogeneous heterogeneous 

Output  Index Index and P value 
Outlier sensitivity No Yes 

Sample size Large Large 

 

3.3.2. Algorithms 

My proposed algorithm is a revision of the Bimodal Index (BI) [110], which is 

defined in Equation (3.12). The use of this definition implies a homogeneous 

variance for two clusters of samples.  A one-side t-statistic of the ith gene can be 

defined as 
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where 
2

,iL  is the variance of lowly expressed samples; 
2

,iH  is the variance of 

highly expressed samples; 
iLn ,
 is the number of lowly expressed samples; 

iHn ,
 

is the number of highly expressed samples; iL,  is the mean of lowly expressed 

samples; and 
iH ,  is the mean of highly expressed samples of the ith gene. If 

22
,

2
, iiHiL   , this one side t-statistic becomes 



ti 
n

 i
2
 i  H ,i (1  H ,i)  (3.14) 

where 
iH ,  is the proportion of highly expressed samples of the ith gene, if the 

sample size is fixed for all genes. 



ti  i
1  H,i (1 H,i)  (3.15) 

It can be seen that if homogeneous exists across subgroups and genes, BI is 

equivalent to one side t-statistic. However this can hardly be true in real 

applications. I therefore revised BI by employing heterogeneous variance. In the 

one side t-statistic, I use percentile estimations to replace the parametric 

estimation of means and variances as shown below 
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Here 



qH
25

 is the 25th percentile of highly expressed samples, 



qL
75

 is the 75th 

percentile of lowly expressed samples, and the variances are calculated using 

34896.1

IQR
  

(3.17) 
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where IQR is the interquartile of expression data. I assume that the separation 

between lowly expressed samples and highly expressed samples occurs at one 

of the largest gaps between consecutively sorted samples. Therefore I 

introduce the gap between lowly expressed samples and highly expressed 

samples to enhance the bimodality test. My heterogeneous bimodal index (hBI) 

is then defined below: 

hBIi =a mH ,i -ML,i( )+ (1-a)ti  (3.18) 

where iHm ,  is the minimum of highly expressed samples, 



M L,i  is the maximum 

of lowly expressed samples of the ith gene and 



  0 is a trade-off between the 

gap effect and the t-statistic. In this thesis, 75.0 .  

BI uses an arbitrary threshold to make decision based on the indexes. I 

employed the sequential Monte Carlo approach [226] Besag and Clifford, 1996) 

to deliver significance analysis. The procedure for the algorithm is shown below: 

Step 1. BI calculation for each gene 

1.1. sort expressions 

1.2. calculate the distance between every consecutive expression and 

  record them as a gap list. 

1.3. sort the gap list 

1.4. calculate the revised BI for the top ten gaps and record them in a   

        bimodality list 

1.5. maximise the bimodality list 

Step 2. Apply BC algorithm to obtain p values 
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3.4.  Evaluation and comparison of the proposed method and others 

To evaluate the proposed algorithm by making a comparison with the Likelihood 

ratio test, Kurtosis test and BI test, I calculated sensitivity (Sen) and specificity 

(Spe), and used receiver operator characteristic (ROC) analysis [144]. 

Sensitivity is the ratio of correctly-predicted bimodal genes. Specificity is the 

ratio of correctly-predicted non-bimodal genes. I specifically calculated the area 

under the ROC curve (AUC) for comparison, and in all scenarios used the 

critical threshold of p=0.05. 

3.4.1.   Evaluation of control data (simulated data)           

For the evaluation, five scenarios were chosen with different combinations of 

parameters to represent a wide range of bimodal shapes. Hellwig et al.(2010) in 

their comprehensive study of bimodality have identified an impression of major 

types of bimodality distributions [183]. They employed many bimodality scores 

to identify those shapes based on a real cancer data. In this thesis I have used 

all possible shapes that identified by the reference paper [183]. In conclusion, 

all shapes are applicable for the identification of genes with characteristic 

distributions that the benchmark algorithms designed for it.  

For all five scenarios, 950 genes were designed as unimodal and 50 genes 

were designed as bimodal. Each gene had 40 replicates. Of these, 30 replicates 

were designed with low expressions, and ten with high expressions, and each 

simulation was repeated ten times. 

3.4.1.1. Scenario 1 

Samples of unimodal genes were drawn from a normal distribution of mean ten 

and standard deviation one. Lowly expressed samples of a bimodal gene were 
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drawn from a normal distribution of mean ten and standard deviation one. 

Highly expressed samples of a bimodal gene were drawn from a normal 

distribution of mean 12 with variable standard deviation drawn from a uniform 

distribution between one and five. This scenario is in favour of kurtosis whereas 

only small samples or different variance between the two subgroups exist. 

Table 3.2 shows the comparison based on the mean values among ten 

simulations for four algorithms using specificity, sensitivity, and AUC at the 

critical threshold p=0.05. It can be seen that hBI and Kurtosis have similar 

performances and hBI slightly outperforms Kurtosis analysis. The likelihood test 

shows the worst performance with the sensitivity as 0.06 although its specificity 

is 1. 

Table 3.2. The averaged measurements for scenario 1; where LHR is likelihood 
ratio, K is stand for kurtosis, BI is Bimodality index and hBI is for the proposed 
method, spe stands for specificity, sen is sensitivity and auc is Area under ROC  

 LR K BI hBI 

spe 1 0.983 0.975 0.992 
sen 0.062 0.858 0.532 0.84 
auc 0.995 0.964 0.852 0.992 

 
3.4.1.2.  Scenario 2 

Samples of unimodal genes were drawn from a normal distribution of mean ten 

and standard deviation one. Lowly expressed samples of a bimodal gene were 

drawn from a normal distribution of mean ten and standard deviation one. 

Highly expressed replicates of a bimodal gene followed a uniform distribution in 

the interval between zero and five in addition to maximum of low expressions. 

The averaged measurements are shown in Table 3.3. In this scenario, kurtosis 

has shown the worst accuracy (36%) while the other relatively similar and 

higher, 99.9%. In addition, the result has shown that the Likelihood test has very 

low sensitivity while BI and hBI perform equally well.  
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Table 3.3. The averaged measurements for scenario 2 ; where LHR is 

likelihood ratio, K is for kurtosis, BI is Bimodality index and hBI is for the 
proposed method, spe is specificity, sen is sensitivity and auc is Area under 
ROC 

 LR K BI hBI 

Spe 1 0.986 0.997 0.9963 
Sen 0.058 0 0.954 0.924 
Auc 0.999 0.36 0.999 0.9985 

 
3.4.1.3.  Scenario 3 

 Samples of unimodal genes were drawn from a uniform distribution in the 

interval between ten and 12. Lowly expressed replicates of a bimodal gene 

were drawn from the same low expression distribution as bimodal genes and 

highly expressed replicates of a bimodal gene were drawn from a normal 

distribution with two units added to the maximum of the low expressions. Table 

3.4 shows the summary of the simulations for this scenario. This scenario 

indicates that Kurtosis again failed to have a sensible accuracy (14%). 

Meanwhile hBI shows the highest AUC (0.999), similar to LR (0.996) and BI 

(0.993); hBI also outweighs LR and BI in term of sensitivity. The sensitivities of 

BI and LR are 0.81 and 0.77 respectively, while hBI’s sensitivity is 0.94.  

Table 3.4. The averaged measurements for scenario 3; where LHR is likelihood 
ratio, K is for kurtosis, BI is Bimodality index and hBI is for the proposed 
method, spe is specificity, sen is sensitivity and auc is Area under ROC 

 LR K BI hBI 

Spe 0.997 0.9519 0.9898 0.996 
Sen 0.774 0 0.812 0.94 
Auc 0.996 0.1413 0.9933 0.999 

 
3.4.1.4.  Scenario 4.  

Samples of unimodal genes were drawn from a normal distribution of mean ten 

and standard deviation one. Lowly expressed replicates of a bimodal gene were 

drawn from a mixture of a normal distribution of mean ten and a normal 

distribution of mean 12. The standard deviation of the former was designed as 

one and that of the latter was designed as three. Highly expressed replicates of 
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a bimodal gene were drawn from the low expressions plus white noise, with two 

units above the maximum low expression. Table 3.5 shows the summary of ten 

simulations on random samples for this scenario. All performed very well in 

terms of AUC. This means that there are some suitable statistical significance 

levels by which perfect separation between unimodal and bimodal genes can be 

found. 

Table 3.5. The averaged measurements for scenario 4; where LHR is likelihood 
ratio, K is for kurtosis, BI is Bimodality index and hBI is for the proposed 
method, spe is specificity, sen is sensitivity and auc is Area under ROC 

 LR K BI hBI 

spe 1 0.9861 0.9963 0.997 
sen 0.468 0 0.93 0.952 
auc 0.998 0.9572 0.9984 0.9988 

 
 

3.4.1.5.   Scenario 5 

 Samples of unimodal genes were drawn from a normal distribution of mean ten 

and standard deviation one. Lowly expressed replicates of a bimodal gene were 

organised as a mixture of three normal distributions with mean values as ten, 11 

and 12, as well as standard deviation values as three, two and one. Highly 

expressed replicates of a bimodal gene were drawn in the same way as 

Scenario 4. Based on ten random simulations for this scenario, it was observed 

that although LR and BI showed reasonably good values of AUC, their 

sensitivities were not acceptable. Table 3.6 shows that these two algorithms 

have the same problem that was encountered in Scenario 4: their p values tend 

to be large, which leads to the difficulty of using command significance levels to 

make decisions. Kurtosis analysis does not work well because its AUC value 

drops to 0.66, not very far from 0.5, hence occurs by chance.  In this scenario 

hBI performs the best in all measurements while BI has 69% sensitivity. 
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Table 3.6. The averaged measurements for scenario 5; where LHR is likelihood 

ratio, K is for kurtosis, BI is Bimodality index and hBI is for the proposed 
method, spe is specificity, sen is sensitivity and auc is Area under ROC 

 LR K BI hBI 

spe 1 0.9844 0.9845 0.9873 
sen 0 0 0.698 0.766 
auc 0.9267 0.6676 0.9593 0.9867 

 

 

3.4.2  Evaluation of Real Data  

In this section I applied all four methods to a three real cancer data sets. This is 

to make the comparison more realistic. Also, all data were normalised to base 

two logarithm scale. All evaluation measurements were based on using three 

different p values. 

3.4.2.1. The GSE11121 dataset 

The data set was downloaded from GEO (Gene Expression Omnibus) where 

the raw expression was deposited under accession number GSE11121. It 

contained 200 lymph node-negative breast cancer patients who were not 

treated by systemic therapy after surgery. The data was for a derivation study to 

find prognostic motifs [227]. Gene expression profiling of patients was done 

using the Affymetrix HG-U133A microarray platform compromising 22283 probe 

sets.  

I transformed the expression using a base two logarithm before analysis. I used 

three significance levels of critical p values (0.001, 0.01 and 0.05) to predict 

bimodal genes, and the predicted bimodal genes using these three significance 

levels are shown in Table 3.7. The Likelihood test predicted from 0.3% to 2.3% 

bimodal genes, BI predicted from 0.01% to 5% bimodal genes, and hBI 

predicted bimodal genes from 0.01% to 5% as well. However Kurtosis analysis 

ended up with too many predictions up to 54.7%, which was unreasonable. 
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Even for the significance level of 0.001, it still predicted 36.3% bimodal genes, 

which is far beyond a realistic level. 

 

Table 3.7 Predicted bimodal genes for 3 significance levels for dataset 
GDS11121. LHR is likelihood ratio, K is for kurtosis, BI is Bimodality index and 
hBI is for the proposed method. 

Significance levels LHR K BI hBI 

0.001 72 8087 22 23 

0.01 182 10065 227 221 

0.05 523 12193 1112 1112 

      
 

The overlap analysis between four algorithms based on significance level 0.001, 

using the VennDiagram  package in R [228] is shown in Figure 3.2. I found that 

hBI was the most similar to BI. The overlap percentage between these two 

algorithms is 31.8%, i.e., 100*7/(7+14+1). The overlap degree between LHR 

and hBI is 5.1%, and the overlap degree between LHR and BI is 5.6% (Figure 

4.1a). It seems that 91.3% of predicted bimodal genes of hBI are also predicted 

by Kurtosis. This percentage drops to 69.6% between hBI and LHR, and to 30% 

between hBI and BI. Further the overlap percentage between BI and hBI is 

23.3% for significance level 0.01 and 55.6% between the hBI and LHR and 

16.5% between BI and LHR (Figure 4.1.b). Here 90.9% of predicted bimodal 

genes of hBI are predicted by Kurtosis as well. This percentage drops to 46.6% 

between hBI and LHR, and to 24% between hBI and BI. For significance level 

0.05, the overlap between hBI and BI was found to be 36.2%,  between hBI and 

LHR it was 68.8%, and between BI and LHR was 19.3%  (Figure 2.1 c). In 

addition, 83.3% (32.3%, 36.2%) of hBI’s predictions are consistent with Kurtosis 

(LHR, BI).  
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(a)    (b)    (c) 

Figure 3.2. Venn diagram illustrates the overlap between the methods for 
GSE11121 with the significance levels 0.001(a), 0.01(b),  and 0.05(c). 

 

Figure 3.3 shows the top five bimodal genes predicted based on the 

significance level 0.001, where A-D was predicted by all and E was predicted by 

hBI only. It can be seen that they showed different types of distributions. Both 

FOXA1 (Fig 3.3A) and GATA3 (Fig.3.3B) show a pattern in which the high 

expressions form a tight cluster. However the low expressions demonstrate a 

flatter distribution or form smaller clusters. TDRD12 (Fig.3.3C) and GRIA2 (Fig, 

3.3D) have tight clusters formed by low expressions and their high expressions 

display flat distributions. SH3GL3 (Fig.3.3E) shows a different pattern from the 

other four. It is composed of two more tightly formed clusters, one small and 

one large, and the gap between the two clusters is large. Analysis of these 

patterns proves one important notion – that the use of restrictive assumptions of 

data distribution may not be sufficient for accurate prediction of bimodal genes 

in real applications, where distribution can be varied over many different 

formats. 
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  A             B                     C 

 
D     E 

Figure 3.3. Density analysis of four bimodal genes (A-D) predicted by all four 
algorithms at the significance level 0.001, and E predicted only by hBI at the 
same significance level. The horizontal axes represent log2 expressions and 
the vertical axes represent frequencies. All these genes show typical bimodal 
(or multi-modal) distributions. 

   

The p values of four algorithms for the genes uniquely predicted by hBI at the 

significance level 0.01 are given in Table 3.8. The data shows that for those 
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bimodal genes predicted by hBI, the ranking by other algorithms is far low. For 

instance, the Kurtosis rank of C6orf64 is 18643 and the Kurtosis rank of GULP1 

is 22101.  

Table 3.8 The p values of bimodal genes predicted ONLY by hBI at significance 
level 0.01 for GDS11121. LHR is likelihood ratio, K is for kurtosis, BI is 
Bimodality index and hBI is for the proposed method. 

Row  ID_Ref 
Gene 

symbol 
LHR K BI hBI 

4575 205048_s_at PSPH 0.27(2990) 0.1(13507) 0.058(1293) 0.002(66) 

21574 222214_at unknown 0.065(652) 0.03(11438) 0.039(864) 0.004(97) 
20803 221440_s_at RBBP9 0.052(540) 0.36(17000) 0.043(974) 0.005(113) 

15000 215627_at unknown 0.31(3584) 0.02(11311) 0.012(265) 0.008(195) 

18148 218784_s_at C6orf64 0.07(713) 0.54(18643) 0.018(416) 0.008(199) 
15288 215915_at GULP1 0.19(1879) 0.97(22101) 0.026(582) 0.009(226) 

 

Figure 3.4 shows four of them which have gene symbols and are indeed 

bimodal genes. However three other algorithms failed to predict them. For 

instance, PSPH was ranked by hBI at the 66th position (p = 0.002). Likelihood, 

Kurtosis and BI respectively ranked it at the 2990th position (p = 0.2), 13507th 

(p = 0.1), and the 1293rd (p = 0.05). This gene is highly expressed in African-

American colorectal cancer patients compared with European- Americans [229]. 

PSPH is also expressed at a higher level in responding patients versus non-

responding groups, which supports its importance as a therapeutic target for 

non-small-cell lung cancer [230]. RBBP5 was ranked at the 113th position (p = 

0.005), but was ranked at the 540th position (p = 0.52), the 17000th position (p 

= 0.36), and the 974th position (p = 0.043) by the Likelihood, Kurtosis and BI 

tests.  RBBP5 was found to show only 40% of Pancreatic ductal 

adenocarcinomas (PDAs) [231]. 
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Figure 3.4 Density analysis of four bimodal genes predicted only by hBI at the 
significance level 0.01. The horizontal axes represent log2 expressions and 
vertical axes represent frequencies. All these genes show typical bimodal (or 
multi-modal) distributions. 
 

3.4.2.2.  The GSE2034 data set   

The data set was downloaded from GEO (Gene Expression Omnibus). It 

contained 286 lymph node-negative patients who were not treated specifically 

by adjuvant systemic therapy, 180 lymph node–negative relapse-free patients, 

and 106 lymph node–negative patients who had developed a distinct 

metastasis. The data was subject to derivation analysis by Wang et al to predict 

risk to patients based on gene expression profiles [232]. Gene expression 
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profiling of patients was done using the Affymetrix HG-U133A microarray 

platform, compromising 22283 probe sets. The raw expression was deposited 

at the NCBI GEO data repository under accession number GSE2034. 

For the purposes of this study, the expressions have been transformed onto a 

common log2-scale. Table 3.9 shows the predicted bimodal genes using these 

three significance levels. The Likelihood test predicted from 0.3% to 2.44% 

bimodal genes, BI predicted from 0.09% to 5% bimodal genes and hBI 

predicted bimodal genes from 0.1% to 5% as well. However the Kurtosis 

analysis ended up with too many predictions up to 58.9%, which is 

unreasonable. Even for the significance level 0.001, it still predicted 39.7% 

bimodal genes, which is far beyond a realistic level. 

Table 3.9 The number of predicted bimodal genes is shown for three 

significance levels for data set GDS2034. LHR is likelihood ratio, K is for 
kurtosis, BI is Bimodality index and hBI is for the proposed method. 

Significance level LHR K BI hBI 

0.001 74 8845 24 21 

0.01 176 10961 226 229 

0.05 544 13131 1111 1108 

 

Figure 3.5 shows the overlap analysis between four algorithms at three 

different significance levels using the Venn Diagram [228]. It was found that hBI 

was most similar to BI. The overlap percentage between these two algorithms is 

39.6%. The overlap degree between LHR and hBI is 38.6%, while the overlap 

degree between LHR and BI is 11.3% (Fig 3.5b). Kurtosis as well as hBI 

predicted 74.2% of the bimodal genes. This percentage drops to 29.7% 

between hBI and LHR, as well as to 33.2% between hBI and BI. Figures 3.5a 

and 3.5c show the overlap analysis at the significance levels of 0.001 and 0.05.  
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(a)    (b)    (c) 

Figure 3.5. The Venn diagram illustrates the overlap between the methods at 

significance levels 0.001(a), 0.01(b) and 0.05(c) (GDS2034). 

 

The unique predictions of hBI at the significance level 0.01 are shown in Table 

3.10, which shows that most rankings of other algorithms are far behind. The 

three genes listed in Table 3.10, which all show typical bimodal genes are also 

shown in Figure 3.6. 

ERBB2 was identified only by hBI at the 114th position (p = 0.005), whereas it 

was ranked at the 372th position (p = 0.035), the 11301st position (p = 0.198), 

and the 1564th position (p = 0.07) respectively, by the Likelihood, Kurtosis and 

BI tests. It has been reported that over-expressed in 30% of breast cancer 

patients are linked to poor prognosis [233, 234]. FGFR3 was ranked by hBI at 

the 122nd position (p = 0.005). The Likelihood, Kurtosis and BI tests ranked it at 

the 3609th position (p = 0.267), the 11594th position (p = 0.198), and the 1564th 

position (p = 0.07), respectively. It was highly expressed in Tamoxifen 

resistance breast tumours [235]. WHSC1 was ranked by hBI at the 155th 

position (p = 0.006), but ranked respectively at the 2194th position (p = 0.18), 

the 12468th position (p = 0.276) and the 775th position (p = 0.034) by the 

Likelihood, Kurtosis and BI tests. It is over-expressed in approximately 75% of 

neuroblastomas and is associated with aggressiveness [236].  
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Table 3.10  The p values of top bimodal genes predicted only by hBI at 

significance level 0.01 for data set GDS2034. LHR is likelihood ratio, K is for 
kurtosis, BI is Bimodality index and hBI is for the proposed method. 

ID_Ref  Gene symbol LH K BI hBI 

210246_s_at ABCC8 0.07(730) 0.56(14986) 0.015(336) 0.004(95) 

216836_s_at ERBB2 0.035(372) 0.17(11301) 0.019(433) 0.005(114) 

204379_s_at FGFR3 0.267(3609) 0.198(11594) 0.07(1564) 0.005(122) 

203163_at KATNB1 0.044(452) 0.844(17028) 0.016(361) 0.006(152) 

220559_at EN1 0.084(908) 1.3E-05(18580) 0.134(2987) 0.006(154) 

209052_s_at WHSC1 0.180(2194) 0.276(12468) 0.034(775) 0.006(155) 

221195_at RNFT1 0.301(4169) 6.2E-05(21324) 0.011(245) 0.007(160) 

209644_x_at CDKN2A 0.032(344) 7.1E-09(21579) 0.101(2251) 0.007(166) 

210990_s_at  LAMA4 0.051(526) 3.9E-06(20503) 0.077(1717) 0.008(181) 

215867_x_at  CA12 0.112(1234) 0.595(15222) 0.028(633) 0.008(186) 

210066_s_at  AQP4 0.059(618) 0.193(11527) 0.015(342) 0.009(217) 

207302_at  SGCG 0.071(770) 2.2E-05(19451) 0.095(2133) 0.009(220) 

213174_at TTC9 0.042(432) 0.576(15072) 0.015(333) 0.01(227) 

 

 

Figure 3.6. Density analysis of three bimodal genes only predicted by hBI at the 

significance level 0.01. The horizontal axes represent log2 expressions and 
vertical axes represent frequencies. All these genes show typical bimodal (or 
multi-modal) distributions. 

 

3.4.2.3. The GSE1456 dataset  

The data set was downloaded from GEO (Gene Expression Omnibus). It 

contained 159 patients with breast cancer, 126 of whom received adjuvant 

systemic therapy and 33 who were not being treated with it. The data was 

derivation research to predict the impact of adjuvant therapies on breast cancer 

patients using gene expression profiling [237]. Gene expression profiling of 
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patients was done using the Affymetrix HG-U133B microarray platform, 

compromising 22283 probe sets. The row expression was deposited at the 

NCBI GEO data repository under accession number GSE1456. Table 3.11 

shows the numbers of genes identified within different thresholds. The overlap 

between the four methods at the significance level 0.01 is indicated in Figure 

3.7. The Likelihood test predicted from 1.16% to 8.4% bimodal genes, BI 

predicted from 0.1% to 5% bimodal genes and hBI predicted bimodal genes 

from 0.1% to 5% as well (Figure 4.6a). However the Kurtosis analysis ends up 

with too many predictions (up to 57.9%), which is unreasonable. Even for the 

significance level 0.001, it still predicts 36.6% bimodal genes, which is a far 

more realistic level. Figures 4.6b and 4.6c show the overlap analysis for the 

significance levels at 0.001 and 0.05. 

Table 3.11.  Number of predicted bimodal genes for three critical p values for 
data set GDS1456. LHR is likelihood ratio, K is for kurtosis, BI is Bimodality 
index and hBI is for the proposed method. 

Significance level LHR K BI hBI 

0.001 260 8152 23 24 

0.01 701 10299 226 227 

0.05 1878 12909 1129 1136 

 
 
 
 

 
(a)    (b)    (c) 

Figure 3.7.  Venn diagram illustrating the overlap between methods at 

significance levels 0.001(a), 0.01(b), and 0.5(c). 
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Table 3.12 gives the bimodal genes uniquely predicted by hBI. It again shows 

that the rankings of other algorithms sometimes are very behind. Figure 3.8 

shows six of them with typical bimodality. RBP5 was ranked at the 181th 

position (p = 0.008), but ranked at the 779th position (p = 0.011), the 13344th 

position (p = 0.062) and the 533th position (p = 0.023) by the Likelihood, 

Kurtosis and BI tests. It is reported to be associated with axillary lymph node 

metastases in breast cancer and to play an important role in regulating the 

migration of breast  cancer tumours[238]. 

Table 3.12 The p values of top bimodal genes predicted by hBI at critical p 
value 0.01 for data set GDS1456. LHR is likelihood ratio, K is for kurtosis, BI is 
Bimodality index and hBI is for the proposed method. 

Row ID_Ref Gene symbol LH K BI hBI 

12745 235059_at RAB12 0.042(1684) 0.278(16884) 0.016(363) 0.003(76) 

9989 232298_at hCG_1806964 0.038(1568) 0.833(21499) 0.014(333) 0.005(135) 

7862 230171_at unknown 0.05(1961) 0.091(14083) 0.026(608) 0.006(141) 

21196 243510_at unknown 0.728(11372) 0.476(18813) 0.187(4253) 0.006(144) 

17140 239454_at SCARF2 0.069(2454) 0.061(13303) 0.029(665) 0.006(149) 

14704 237018_at unknown 0.048(1843) 0.164(15391) 0.015(351) 0.007(166) 

11510 233823_at FAM184B 0.095(3096) 0.206(15980) 0.01(244) 0.007(172) 

1533 223820_at RBP5 0.011(779) 0.062(13344) 0.023(533) 0.008(181) 

17089 239403_at CCDC120 0.191(5381) 0.014(10857) 0.015(361) 0.008(188) 

10932 233243_at unknown 0.042(1699) 0.215(16123) 0.01(243) 0.009(241) 

14467 236781_at unknown 0.199(5582) 0.016(11068) 0.017(397) 0.009(221) 
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Figure 3.8  Density analysis of six bimodal genes predicted only by hBI at the 

significance level 0.001. The horizontal axes represent log2 expressions and 
vertical axes represent frequencies. All these genes show typical bimodal (or 
multi-modal) distributions. 

3.5 Remarks 

It is worth to discuss the differences in these methods in term of characteristic 

distributions. Out of the top 10 genes identified by each method, I have 

summarised the differences of these algorithms. For example genes with the 

smallest p value from  kurtosis method  is either of a unimodal with a small 

outlier group with high expression values except for one case the other way 

around  or bimodal densities with nearly equal sizes in both groups (Fig 3.9,top 
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two rows). This can be linked to the negative kurtosis (outliers) and positive 

kurtosis (bimodal). The top 10 genes identified by LHR show clearly a large 

group with a small variance and a small group with large variance (Fig 3.9, top 

two rows). 

Figure 3.9: The characteristic distributions of the top 10 genes identified by 
kurtosis (top 2 rows- labelled in brackets with (K)), and LHR(row 3 and 4- 
labelled in brackets with(LHR)).  
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Similarly, the top genes recognized by BI clearly show bimodal genes with two 

peaks (Fig 3.10, top two rows). BI was able to identify unbalanced sizes 

between the two groups. The majority of top ranked genes by BI is bimodal 

genes with considerable sizes in both groups and there is no outlier identified in 

the top ones. However, top ten genes predicted by hBI show a combination 

between all cases identified by all algorithms (Fig 3.10, bottom two rows). I 

have admitted that the proposed method is sensitive to outliers as the others, 

but not BI. Four genes are in the top 10 genes for both hBI and BI and 3 genes 

common between k and hBI. As noticed in this chapter that each algorithm is 

designed to target genes with special characteristic distributions as seen in 

(Figs 3.9 and 3.10). Thus, relying on one algorithm will definitely ignore some 

bimodal genes. However, hBI promised to be a good method for such analysis 

where it able to identify different shapes.  
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Figure 3.10: The characteristic distributions of the top 10 genes identified by BI 

(top 2 rows- labelled in brackets with(BI)), and hBI(row 3 and 4- labelled in 
brackets with(hBI)). 
 
 
 

3.6.  Conclusion 

The importance of bimodality was examined with some examples of its effects 

in cancer and drug design, and all available methods for bimodality identification 

were critically discussed. To overcome all the disadvantages of other methods, 

a novel bimodal gene prediction algorithm (hBI) proposed by way of relaxing the 

constraints of the Bimodal Index algorithm. First, the constraint of cross-cluster 

homogeneous variance was removed. It is very unrealistic to assume that two 
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clusters of a bimodal gene should have the same variance. Examination of 

various real data sets has clearly shown that one of two clusters, either being of 

lowly expressed samples or of highly expressed samples, is very likely to 

demonstrate a comparatively flat distribution while the other shows a tight 

cluster. Secondly, I deliberately removed the constraint of homogeneous 

variance across genes because this constraint is certainly confusing. Obvious 

evidence of this is that the variance of unimodal genes and bimodal genes will 

not show homogeneous variance.  

In addition to these two revisions, I also emphasised the impact of gaps 

between consecutive expressions of sorted samples on bimodal formulation. 

This is because I have observed in real data sets that lowly expressed samples 

often demonstrate a tight cluster and highly expressed samples show; i) a 

comparatively large variance; and ii) distantly depart from the tight cluster of 

lowly expressed samples -or the other way around. In this case, although I was 

using percentiles to estimate mean values and standard deviations, the t-

statistic was still not working well, i.e., it was very likely to be small due to the 

large variance of the highly expressed samples. A gap impact was therefore 

introduced into the prediction of bimodal genes. Because significance analysis 

is critical to real biological/medical applications, I enhanced the Bimodal Index 

using Besag’s sequential Monte Carlo approach to deliver significance analysis 

for the proposed algorithm as well as for the Bimodal Index algorithm. 

In this chapter, all simulations showed that the new algorithm is comparable or 

better than the benchmark algorithms in simulated data sets. However, when 

applying to real cancer data sets, the new algorithm is partially consistent with 

benchmark algorithms and provides better insights into the analysis of bimodal 

genes. Importantly, most of the bimodal genes predicted by the new algorithm 
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do show typical bimodality. A small percentage of my predictions are not 

favoured by benchmark algorithms.  
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Chapter 4 

 

Investigation of Bimodality Patterns in Cancer gene expression data 

Abstract 

Bimodality is one of the common phenomena observed in many cancer studies, 

and the identification of bimodal genes is an important task since these genes 

can be biomarker candidates. Chapter 3 presented a new algorithm to identify 

bimodal genes and showed that it performed better in the simulated data than 

other algorithms and worked well on a real data. Here, I used the proposed 

method to extend the investigation to real applications, since it was most 

important to study the phenomena among large-scale gene expressions of 

cancer. In this chapter I investigate bimodality patterns among different patient 

cohorts, platforms, and cancer types, and showed that diversity among cancer 

samples is common.  

 



114 
 

4.1.  Introduction 

A comprehensive investigation of the genes with bimodal distribution was 

carried out in different cancer types and included more than 70 data sets, 

covering seven cancer types. The data were performed on different platforms. 

The study designed to test if the bimodality is common phenomenon in cancer 

gene expression and not influenced by specific platform, type, or study.  

The gene expression distribution is assumed to be a normal distribution. As a 

result, many studies have used differential expression methods to identify 

biomarkers in cancer by comparing the two states (normal vs. cancer; type I vs. 

type II). However, this is not always a true assumption since many studies have 

recently indicated that some genes show a bimodal distribution within the 

category [179, 205]. Bimodality has been reported in many different cancer 

types as well as in other diseases, e.g., diabetes, and this might be related to 

the heterogeneity of cancer.  

In this section, I investigate the genes with comprehensive bimodal distribution 

in different cancer types. I hypothesised that bimodality of gene expression is 

dependent on the disease and common property of a gene, and not related to a 

specific platforms or so. However, it is obvious that various groupings of 

different samples, arrays, and platforms may influence and/or increase certain 

outcomes with regard to bimodality. Thus, in this chapter an investigation is 

conducted to validate this assumption, based on a large-scale analysis. It has 

been reported in a small scale analysis on breast cancer that bimodality is 

platform-independent [216]. Large numbers of the bimodal genes have been 

identified as differential expressed genes as reported in some studies [239]. 

However, the normal samples might have a bimodal distribution. This is linked 
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to the subgroups in a population (i.e. disease free samples/control). All data 

used in this chapter were selected from the same physiological stage of cancer 

(i.e. stage1 or stage 2). In this regards some of the original datasets in this 

chapter were divided into two or more independent sets. This has been 

explained in following section.   

4.2.   Datasets  

The datasets used in this project were downloaded from the NCBI GEO data 

repository [13, 14]. In this study I include seven cancer types with a minimum of 

ten sets of each type. A simple explanation of each dataset is presented here 

with information on the design of the experiments, but full details can be found 

in the reference for each dataset or on the GEO website. 

4.2.1.  Colon Cancer Data   

Table 4.1. Colon cancer data sets used in this study 
Dataset Probe ID Sample Microarrays platform 

GSE18088 54675 53 HG-U133_Plus_2 

GSE31595 _1 54675 20 HG-U133_Plus_2 

GSE31595 _2 54675 17 HG-U133_Plus_2 

GSE38026 33257 16 HuGene-1_1-st 

GSE4107 54675 12 HG-U133_Plus_2 

GSE4183 _1 54675 15 HG-U133_Plus_2 

GSE4183 _2 54675 15 HG-U133_Plus_2 

GSE4183 _3 54675 15 HG-U133_Plus_2 

GSE8671 54675 32 HG-U133_Plus_2 

GSE10950 22184 24 Illumina BeadChip Human Ref8-v2 

 

Table 4.1 gives a summary of colon cancer data sets used later in this chapter 

for bimodality investigation. The GSE18088 set profiled 53 primary stage II 

colon cancer patients treated by elective standard oncological resection, none 

of whom had received adjuvant chemotherapy [240]. This was profiled on HG-

U133_Plus_2 platform. The GSE31595 set contains 37 samples from stage II 

and III colon cancer patients. Concerning bimodality identification, each stage 

was used as an independent set, specifically 20 for stage II and 17 for stage III. 
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These were also performed on HG-U133_Plus_2 platform. The GSE38026 

dataset contains 16 colorectal cancer patients with their normal corresponding. 

This project used only the 16 cancer samples regardless of KRAS-mutation 

presence or absences, and was profiled on HuGene-1_1-st microarray platform.  

The GSE4107 expression data [241] were extracted from the colonic mucosa of 

healthy controls and patients where only 12 cancer cases were included in the 

study. This data was analysed using U133-Plus 2.0 Array. The GSE4183 

dataset contained 15 patients with colorectal carcinomas (CRC), 15 with 

adenoma, 15 with inflammatory bowel diseases (IBD) and eight control samples 

[242, 243]. The analysis used only three different disease states as independent 

sets, and the data was analysed on HGU133 Plus 2.0 microarrays.  

The GSE8671 dataset containing 32 samples from patients with colorectal 

adenomas and a corresponding normal sample were used as the disease cases 

in the analysis, which was performed on HG-U133_Plus_2 [244]. The 

GSE10950 set was designed to compare colon tumours (24 sample) with 

normal colon mucosa (24 sample) and was analysed using Illumina BeadChip 

Human Ref8-v2 [245]. 

4.2. 2.  Liver Cancer Data    

Table 4.2 gives a summary of liver cancer data sets used in this chapter for 

bimodality investigation. The GSE24520 set was divided to three separate data 

sets of 13, 12, and 13 samples respectively. The data from 24526 probes was 

conducted on the Illumina platform but needs to be removed or replaced as it is 

too complicated. 

Table 4.2. Liver cancer data sets used in this study  
Dataset Probe ID Sample Microarrays platform 

GSE10694_2 121 78 CapitalBio Mammalian miRNA Array Services V1 
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GSE14520 22268 22 HG-U133A_2 

GSE24520_1 24526 13 Illumina HumanRef-8 v3.0 expression beadchip 

GSE24520_2 24526 12 Illumina HumanRef-8 v3.0 expression beadchip 

GSE24520_3 24526 13 Illumina HumanRef-8 v3.0 expression beadchip 

GSE25097 37582 268 Affymetrix 1.0 microarray, Custom CDF 

GSE29721 54675 10 HG-U133_Plus_2 

GSE31370_2 47323 15 Illumina HumanHT-12 V4.0 expression beadchip 

GSE32225 24526 149 Illumina HumanRef-8 WG-DASL v3.0 

GSE35306 33297 20 HuGene-1_0-st 

GSE38941 54675 17 HG-U133_Plus_2 

 

The GSE29721 dataset  consists of 10 cancer samples and 10 normal  adjacent 

tissues obtained from patients with hepatic cellular carcinoma (HCC) [246]. The 

expression data for this set was generated using HG-U133_Plus_2 platform. 

The GSE31370 data includes expression profiles of three different type of liver 

cancer, namely hepatocellular carcinoma (HCC), cholangiocarcinoma (CC) and 

HCC with fibrous stroma. In respect of bimodality analysis only one type was 

included, with 15 samples [247]. All data were obtained using Illumina 

HumanHT-12 V4.0 expression beadchip platform. The GSE32225 dataset was 

performed on Illumina HumanRef-8 WG-DASL v3.0 for 149 patients with 

intrahepatic cholangiocarcinoma (ICC).  They also provided six samples as 

control [248], but were dropped from our analysis for the reason mentioned 

earlier. The GSE35306 dataset contained three different types of disease [249], 

but only the combined hepatocholangiocarcinomas (cHCC-CC) were included. 

This type consisted of 20 samples profiled on HuGene-1_0-st.  

The GSE38941 data were obtained from four patients with HBV-associated 

acute liver failure; there were 17 samples which were amplified on HG-

U133_Plus_2 [250]. Part of the GSE10694 was included. GSE14520 contains 

huge gene expression data of human hepatocellular carcinoma (HCC) as well 

as their normal corresponding tissues. From this only 22 samples were carried 

out on HG-U133A 2.0 arrays. The GSE25097 data were profiled from human 
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liver hepatocellular carcinoma profiles on Rosetta/Merck Human RSTA 

Affymetrix 1.0 microarray, Custom CDF and used only the 268 HCC tumour 

samples. 

4.2.3.  Prostate Cancer Data 

 

Table 4.3. Prostate cancer data sets used in this study 
Dataset Probe ID Sample Microarrays platform 

GSE16560_1 6144 281 Human 6k  

GSE21034 43419 131 HuEx-1_0-st 

GSE29079 17881 47 HuEx-1_0-st 

GSE41408_1 17881 48 HuEx-1_0-st 

GSE6605-GPL8300 12558 25 HG_U95Av2 

GSE6605-GPL92 12553 25 HG_U95B 

GSE6605-GPL93 12579 25 HG_U95C 

GSE6606-GPL8300 12625 65 HG_U95Av2 

GSE6606-GPL92 12553 66 HG_U95B 

GSE6606-GPL93 12646 65 HG_U95C 

 

Table 4.3 gives a summary of prostate cancer data sets used later in the 

chapter for bimodality investigation. The GSE29079 data contains gene 

expression profiles of 48 normal and 47 prostate tumour tissue samples. Those 

performed on HuEx-1_0-st  (Affymetrix GeneChip Exon 1.0 ST microarrays) 

[251] were only the cancer data included in my analysis. The GSE41408 data 

include 48 Prostate cancer samples from radical prostatectomies [252]. The 

GSE6605 data contains metastatic prostate tumour samples obtained from 4 

patients which were profiled on three different platforms (HG_U95B, HG_U95C 

and HG_U95Av2) [253], and were used as 3 independent sets. The GSE6606 

was similar to the previous one but the sample size was larger. The GSE16560 

contains 281 prostate cancer cases from Sweden and the data is widely known 

as the ‘Swedish-cohort’ [254]. This set was profiled using Human 6k 

Transcriptionally Informative Gene Panel for DASL. The GSE21034 set [255] 

contained 370 prostate samples from which only the 131 cancer cases were 
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included in the analysis. These samples were also profiled using Affymetrix 

Human Exon 1.0 ST.   

4.2.4.  Ovarian Cancer Data.   

 
Table 4.4. Ovarian cancer data sets used in this study 

Dataset Probe ID Sample Microarrays platform 

GSE17260 41000 110 Agilent-014850 - G4112F 

GSE19829-GPL8300 12558 42 HG_U95Av2 

GSE9891 54621 285 HG-U133_Plus_2 

GSE29450 54675 10 HG-U133_Plus_2 

GSE30161-1 54675 38 HG-U133_Plus_2 

GSE30161_ 2 54675 11 HG-U133_Plus_2 

GSE19829-GPL570 54675 28 HG-U133_Plus_2 

GSE23554 22283 28 HG-U133A 

GSE3149 22283 153 HG-U133A 

GSE29175_1 22277 25 HG-U133A_2 

GSE29175_ 2 22277 13 HG-U133A_2 

GSE19161 658 61 CustOva1a520455F 

GSE16708_ 1 48803 17 Illumina HumanWG-6 v3.0  

GSE16708_2 48803 7 Illumina HumanWG-6 v3.0  

 

Table 4.4 gives a summary of ovarian cancer data sets used later in the chapter 

for bimodality investigation. The GSE16708 consist of 7 serous cell lines,17 

serous tumour  and 9  normal [256]. All samples have been performed on 

Illumina HumanHT-12 V3.0 expression beadchip and we used the first 2 groups 

as separate sets. The GSE19161 set obtained expression from 61 patients with 

advanced ovarian cancer and profiled using CustOva1a520455F platform. The 

GSE23554 set contained 28 advanced stage serous epithelial ovarian cancers 

and they were profiled using  HG-U133A [257]. The GSE29175 contained 38 

ovarian cancer cell lines conducted using HG-U133A_2 [258]. The dataset has 

been divided into 13 samples as ovarian clear cell carcinoma (OCCC) and 25 

samples as non-OCCC. The GSE29450 set includes 10 clear cell ovarian 

cancer and 10 normal samples using the Affymetrix-human_U133Plus2.0Arrays 

(HG-U133_Plus_2)[259]. The GSE30161 contains expression data from 58 

ovarian cancer patients stage III-IV profiled using the Affymetrix-



120 
 

human_U133Plus2.0Arrays (HG-U133_Plus_2). In our analysis we only 

included 38 samples of stage III-C as one set and 11 samples of stage III-B 

[260]. The GSE3149 contains expression of 182 ovarian tumours which were 

profiled using HG-U133A/ Affymetrix Human Genome U133A Array [261]. The 

GSE9891 consisted of 285 samples from the AOCS (Australian Ovarian Cancer 

Study) and these were profiled on the affymetrix U133_plus2 platform [262]. 

The GSE19829 consisted of gene expression 28/42. The GSE17260 contains 

110 samples from patients with advanced-stage serous ovarian cancer and 

profiled on Agilent-014850 Whole Human Genome Microarray 4x44K G4112F 

[263]. 

4.2.5. Leukaemia Cancer Data.  

 

Table 4.5. Leukaemia cancer data sets used in this study 
Dataset Probe ID Sample Microarrays platform 

GSE10255  22283 161 HG-U133A 
GSE10358  54675 279 HG-U133_Plus_2 
GSE12995  22283 175 HG-U133A 
GSE15434  54675 251 HG-U133_Plus_2 
GSE17855  54675 237 HG-U133_Plus_2 
GSE34861  36846 191 NimbleGen Human Expression Array  
GSE38611  33297 136 HuGene-1_0-st 
GSE39381  33297 21 HuGene-1_0-st 
GSE39671  54675 130 HG-U133_Plus_2 
GSE44247 27068 20 HuGene-1_0-st 

 

Table 4.5 summarises leukaemia cancer data sets used later in this chapter for 

bimodality investigation. The GSE34861 consisted of 191 samples of adult B-

lineage acute lymphoblastic leukaemia (ALL) and 3 normal; these were done 

using NimbleGen Human Expression Array [264]. The GSE38611 contains 

gene expression of B-cell chronic lymphocytic leukaemia (B-CLL) obtained from 

136 patients and analysed on Affymetrix Human Gene 1.0 ST Array. The 

GSE39381 contains gene expression of 21 primary Plasma Cell Leukaemia 

(pPCL) that were performed using Affymetrix Human Gene 1.0 ST Array. The 
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GSE39671 contained 130 samples from patients with chronic lymphocytic 

leukaemia (CLL) that were conducted on Affymetrix Human Genome U133 Plus 

2.0 [265]. The GSE44247 contained 20 cancer samples performed on 

Affymetrix Human Gene 1.0 ST Array.  The GSE10255 contains 161 samples 

from  primary acute lymphoblastic leukaemia patients which was profiled using 

Affymetrix Human Genome U133A Array [266]. 

 The GSE10358 contained 279 acute myeloid leukaemia (AML) patient samples 

and was performed using Affymetrix Human Genome U133 Plus 2.0 [267]. The 

GSE12995 set  included 175 paediatric B-progenitor ALL samples that were 

studied using Affymetrix U133A [268]. The GSE15434 contains expression of 

251 samples of AML with normal karyotype (AML-NK) which were profiled on 

Affymetrix Human Genome U133 Plus 2.0 Array [269]. The GSE17855 

contained gene expression microarray data of 237 patients with AML that were 

profiled using Affymetrix Human Genome U133 Plus 2.0 [270]. 

4.2.6. Lung Cancer Data 

 

Table 4.6 Lung cancer data sets used in this study 
Dataset Probe ID Sample Microarrays platform 

GSE18842 54675 46 HG-U133_Plus_2 

GSE20189 22277 81 HG-U133A_2 

GSE29016 48803 72 Illumina HumanWG-6 v3.0 expression beadchip 

GSE31267 _1 48803 12 Illumina HumanWG-6 v3.0 expression beadchip 

GSE31267 _2 48803 12 Illumina HumanWG-6 v3.0 expression beadchip 

GSE32175 54675 10 HG-U133_Plus_2 

GSE32863 48803 58 Illumina HumanWG-6 v3.0 expression beadchip 

GSE32989 48701 68 Illumina HumanWG-6 v2.0 expression beadchip 

GSE33072 33297 131 HuGene-1_0-st 

GSE37745 54675 196 HG-U133_Plus_2 

GSE42127 48803 176 Illumina HumanWG-6 v3.0 expression beadchip 

 

Table 4.6 gives a summary of lung cancer data sets used later in this chapter 

for bimodality investigation. The GSE29016 set contained the expression 

profiling of 72 lung carcinomas using Illumina HumanHT-12 V3.0 expression 



122 
 

beadchip. The GSE31267 set contained 12 samples of stage I lung patients and 

12 stage II, and was conducted using Illumina HumanHT-12 V3.0 expression 

beadchip. In this project stage I samples were used as one set, and stage II 

samples is another set. The GSE32175 contained 10 lung cancer samples and 

10 matched normal samples and were profiled using Affymetrix Human 

Genome U133 Plus 2.0 Array. The GSE32863 contained 58 lung 

adenocarcinoma and 58 adjacent non-tumour lung tissues. These were 

analysed using the Illumina HumanWG-6 v3.0 expression beadchip. The GSE 

32989 set contained 58 non-small cell lung cancer (NSCLC) and 2 HBEC-KT 

cell lines and were profiled using Illumina HumanWG-6 v2.0 expression 

beadchip.  

The GSE33072 contained the expression data of 131 NSCLC and was profiled 

using Affymetrix Human Gene 1.0 ST Array. The GSE37745 contained 169 

samples from NSCLC patients profiled on Affymetrix Human Genome U133 

Plus 2.0 Array. The GSE42127 included 176 samples of NSCLC patients who 

were profiled using Illumina HumanWG-6 v3.0 expression beadchip. (This could 

also be used as 4 sets 2/2). The GSE18842 contained 43 tumours and 45 

controls, and was profiled using Affymetrix Human Genome U133 Plus 2.0 

Array. The GSE20189 contained 81 lung cancer samples which were profiled 

using Affymetrix Human Genome U133A 2.0 Array. 
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4.2.7. Breast Cancer Data.   

 

Table 4.7. Breast cancer data sets used in this study 
Dataset Probe ID Sample Microarrays platform 

GSE11121 22283 200 HG-U133A 

GSE1456-GPL96 22283 39 HG-U133A 

GSE15852 22283 43 HG-U133A 

GSE2034_1 22283 179 HG-U133A 

GSE2034_2 22283 107 HG-U133A 

GSE22820 41000 176 
Agilent-014850 Whole Human Genome 

Microarray 4x44K G4112F 

GSE24450 41000 183 Illumina HumanHT-12 V3.0 expression beadchip 

GSE38959 45015 30 
Agilent-014850 Whole Human Genome 

Microarray 4x44K G4112F 

GSE6532-GPL570 54675 87 HG-U133_Plus_2 

GSE7390 22283 198 HG-U133A 

 

Table 4.7 gives a summary of lung cancer data sets used later in this chapter 

for bimodality investigation. The GSE2034 contains 180/179 lymph node-

negative relapse-free patients and 106/107 lymph-node negate patients that 

developed to metastasis. These were profiled using Affymetrix Human Genome 

U133A Array and were used as two sets in the analysis. The data set was 

downloaded from GEO (Gene Expression Omnibus). The data was derived 

from analysis by Wang et al., to predict patients’ risk based on gene expression 

profiles [232]. The GSE6532 contained 87 samples from primary breast 

tumours performed using Affymetrix Human Genome U133 Plus 2.0, while the 

rest of the datasets were performed on a different platform. The GSE7390 

contained 198 samples from primary breast tumours performed on Affymetrix 

Human Genome U133A Array. The GSE11121 dataset was downloaded from 

GEO (Gene Expression Omnibus) and contains 200 lymph node-negative 

breast cancer patients who were not treated by systemic therapy after surgery. 

The data was derived from a study that aimed to find prognostic motifs [227]. 

Gene expression profiling of patients was done using the Affymetrix HG-U133A 

microarray platform compromising 22283 probe sets.  
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The GSE38959 data contains 30 triple negative breast cancer (TNBC) and 13 

normal mammary ductal cells with a laser microbeam microdissection system 

that was profiled using Agilent-014850 Whole Human Genome Microarray 

4x44K G4112F. The GSE1456 set contained tissue material which was 

collected from all breast cancer patients receiving surgery at Karolinska 

Hospital (Sweden) between 1994 and 1996. However, my analysis included 

only 30 samples of luminal A type that were analysed on MMM platform. The 

GSE15852 contained samples from 43 tumours and 43 normal tissues that were 

profiled using Affymetrix Human Genome U133A Array. Also, as before, only 

the cancer cases were used in the investigation. The GSE22820 set contained 

176 primary breast cancer patients and 10 normal breast samples. Only the 

cancer cases were included in the analysis and these were profiled using 

Agilent-014850 Whole Human Genome Microarray 4x44K G4112F. The 

GSE24450 contained 183 breast tumours obtained from the Helsinki University 

hospital and profiled using Illumina HumanHT-12 V3.0 expression beadchip. 

4.3.  Pre-processing 

I focused on bimodal genes detection among cancer patients, acknowledging 

that my proposed method is sensitive to outliers. For example, if a gene with 

100 samples, 2 of which samples are extremely higher or lower than the others, 

my method will assign a large bimodal index for this gene. There is currently no 

way to distinguish between bimodality and outliers in their biological context. 

Therefore, in order to control the outliers, I follow the method proposed earlier 

[216] by ignoring the subgroup if they are 5% of the total sample. Furthermore, 

the log base 2 transform has been applied to the dataset that is not normalised. 
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4.4.  P-value estimation using gamma distribution. 

Due to the large-scale data set used in this chapter and with the intensive 

computing time of the sequential Monte Carlo approach [226], I found it more 

convenient to find another method to compute the p value for significance 

analysis. After careful physical  examination of the distribution of the indices, I 

noticed that all indices calculated by hBI method follow a gamma distribution, as 

illustrated in Figure 4.1. As a result, I have replaced the sequential Monte Carlo 

approach to deliver the significance analysis presented in Chapter 3 by a fitting 

gamma distribution using the MASS package implemented in the R – fitdistr 

[271]. The results from both methods are almost similar in term of significance. 

This has been investigated in some data and has showed large correlation 

between the two measurements (p values from 2 methods) where the 

correlation coefficient between them is  0.96  and 0.99 for simulated data and 

real data respectively. 
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Figure 4.1. The figure shows the gamma distribution of index obtained by hBI 

for three different datasets. The left/first column is index distribution of hBI, the 
middle/second column is the log2 normalised index, while the right/third column 
shows the p value distribution using the gamma fitting function. 

 

In order to demonstrate the power of using Gamma over other distributions, an 

evaluation analysis being conducted for goodness fit. Here I consider 

Kolmogorov Smirnov test (KS) for verifying that hBI comes from a population 

with gamma distribution. In this investigation, six distributions were fitted, which 

are Normal, Weibull, Gamma, Exponential, Poisson and Geometric 

distributions. Figure 4.2  shows clearly that Gamma is the best fit among others 

for such index data. 
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 Figure 4.2. Illustrates different distribution fitting for GSE16708 data set.  
 
To confirm the distribution of the data, whether it follows a Gamma distribution 

or not, I have used test statistic obtained from Kolmogorov Smirnov test, which 

is the maximum distance between the two cdfs. Applying this to all mentioned 

above distributions, I have found the minimum distance always linked to 

Gamma among the 75 datasets. Therefore, it can be concluded based on 

results of all data in section 4.2, that hBI indices follow a gamma distribution. 

Figure 4.3 shows boxplot of the D statistics that shows Gamma is the best fit 

among other distributions as it has the smallest Distance.   
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Figure 4.3: shows the maximum distance between the two cdfs obtained from 

(actual distribution and the fitted distribution) on all datasets used in this chapter 
 

4.5   Results and Discussion 

In order to verify my hypothesis, I undertook a comprehensive analysis on 

different cancer types that performed using different platforms from independent 

laboratories or research groups. Applying the hBI algorithm to the data 

described in  Section 4.2 above, I found that the bimodality phenomena were 

common across cancer. I identified an average of 2% and 6% of bimodal genes 

at  the p value thresholds 0.01 and 0.05 respectively, among all cancer types 

(Figure 4.4). 
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Figure 4.4. Boxplot of bimodal genes percentage among cancer types. The x-

axis represented the two p value threshold, while the y-axis represented the 
percentage of bimodal genes 
 

I have also investigated cancer types in relationship with bimodality, and have 

identified the probability of bimodality in each type. In another words the 

percentage of bimodality could be higher in some cancer types than in others. 

In the colon cancer data the average percentage was 2.01% at p = 0.01, and 

6.06% at p = 0.05, while these figures were slightly higher in the liver cancer 

data at 2.5% and 6.14% respectively. In addition, the lower percentages were 

linked to the prostate data and the leukaemia data with 1.8% at p=0.01, while 

leukaemia and lung cancer were associated with lower percentages at p= 0.05, 

with 5.35% and 4.89%. The ovarian cancer data were the second highest at 

p=0.01 while the breast cancer data ranked third in this respect (Figure 4.5).  
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Figure 4.5. Boxplot of percentage of bimodal genes in different cancer types. 
The upper box represented the bimodality percentage at p =0.01, and lower 
panel at p= 0.05. The x-axis represented the different cancer types, and the y-
axis represented the percentage of bimodal genes. 

 

Considering the effect of using different microarray platforms, the bimodality 

percentage was calculated based on the same platforms aiming to find any 

difference. Figure 4.6 shows the main platforms in which each one might have 

more than one version. Clearly there is no dependable platform in terms of 

bimodality, so that further examination is required in which each version could 

be analysed separately.   
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Figure 4.6. Boxplot of bimodal genes percentage in the main platforms. The 

upper box represents the bimodality percentage at p = 0.01, and the lower box 
at p = 0.05. The x-axis represents the different platforms, and the y-axis the 
percentage of bimodal genes. 
 
To do this the same platform versions with more than five sets to be included 

had to be identified (Figure 4.7), which showed that there was no evidence of 

bimodality-platform association.  
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Figure 4.7. Boxplot of bimodal genes percentage in different 
versions/generations of one platform. The upper box represented the bimodality 
percentage at p = 0.01, and the lower box at p = 0.05. The x-axis represented 
the different platforms and the y-axis the percentage of bimodal genes. 
 

The bimodality phenomenon in seven cancer types was comprehensively 

studied here. The analysis was enlarged to cover different studies using 

different arrays of platforms, and the results have proved the presence of 

bimodal genes in all cancer types, platforms and laboratories. As a result, 

bimodality was found to be a common phenomenon of gene expression that 

was particularly related to the heterogeneity of cancer, the properties of the 

disease, specific genetic reactions/characteristics among patients, and/or 

environmental effects but was not related to the platforms or laboratories. These 

findings also support the results obtained by Bessarabova and collaborators 

from his small scale investigation of bimodality in breast cancer [216].  
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In addition, the results have drawn attention to the genetic contribution that may 

diversify the patients expressions [272]. This would suggest identifying a 

subgroup of patients who share a common factor for further analysis.   

 

4.6.  Conclusion 

The variability in gene expression across patients due to genetic variation or 

environmental factors is common and this is important in case of cancer.  The 

heterogeneous distribution of gene expression, which indicates that a subset of 

patients show similar expressions to non-cancer patients. It also has been 

noticed that even within a specific subgroups of cancer patients, the same 

genes are not necessarily expressed in the same way among all samples. 

Thus, its important task to identify those genes with bimodal behaviour for its 

importance in cancer as seen in some studies. In relation to the detection of 

bimodal genes it is important to discover a set of genes that are tightly regulated 

around two conditions at the transcript level. Genes with bimodal behaviour in 

multiple cancer datasets are strongly evidenced to be ideal biomarker 

candidates for the treatment of the cancer. In this chapter, I investigated 

bimodal behaviour/nature among various cancer types, platforms and 

laboratories. The results showed that bimodality is common in cancer data sets 

and unrelated to platforms or experiment protocols. This suggests that, on the 

basis of many factors including, but not limited to, genetic information and 

geographical or environmental aspects, gene expression from different patients 

may also be different. Ignoring such inter-individual differences will increase 

false discoveries and negatively affect the accuracy of the bimodality detection 

algorithm. In my view, grouping patients into well-defined group with respect to 
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these factors will help in identifying more reliable biomarkers. Thus, 

understanding the molecular mechanism of cancer at the systems level may 

open up new horizons for understanding the bimodality links to cancer. 
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Chapter 5 

The Hierarchical Integrative Model 

 

Abstract 

A comprehensive survey of integration methods has motivated my proposed 

Hierarchical Integrative Model (HIM) for revealing unbiased truth from multiple 

experimental data sets. The algorithm is based on the assumption that, if an 

experiment is well designed and carried out, replicate data are random samples 

of a underlying linear density that is a priori unknown. I refer to it as a ‘mean 

pattern model’ and it is the basis of HIM. I show here how HIM is constructed, 

based on this mean pattern model, and evaluate HIM using simulated data. 

HIM’s application to real data is discussed in Chapter 6. 
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5.1.  Introduction 

DNA microarrays technology has been extensively utilised in the biomedical 

field, and it has become standard practice to identify targeted gene expression 

signatures. Those genes are useful for predicting the stages of the disease and 

providing an insight to its diagnosis and treatment. Cancer research has 

benefited from this technology, which has been used in many studies to identify 

the most important genes that contribute to cancer [73-80]. However, various 

issues have been linked to this technology, such as noise resulting from 

technical considerations and/or sample variations, while the consequence of a 

limited budget is reduced samples in most experiments, which render accurate 

and precise inference from data invisible. Although independent analysis of a 

single data is a common practice, inconsistent findings make integrative method 

for analysis urgently required [276].  

It has been noted that biomarkers identified by different studies have a small 

proportion of overlap because of molecular heterogeneity [81-83]. This can be 

associated with the use of different procedures/protocols, normalisation, 

platforms, or experimental samples; therefore, relying on one dataset will not 

always provide reliable results [91, 273-275]. This has made the identification of 

reliable biomarkers – and hence the diagnosis/prognosis of cancer – quite 

complicated. For example, in a cancer disease it is important to explore 

universal cancer signatures [84-86]. Although cancer is a highly heterogeneous 

disease, it is believed that there are common gene expression patterns across 

different cancers [87]. This confers the ability to understand gene regulation 
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which, owing to the weak signal from that gene in the specific data, may not be 

understood using a single data set [89].   

The better way to carry out such an investigation is to integrate multiple data 

sets for analysis rather than relying on a single set, since this will help to identify 

the most important signatures among data sets. Moreover, compared with a 

single data analysis, the integration approach increases the accuracy and the 

consistency of the results because it eliminates the possible error in 

independent study [276]. In addition, it will allow researchers to benefit from the 

accumulating amount of data placed in repositories such as GEO as illustrated 

in Figure 1.1 [13, 14], NASC [277], Array Express [15].  

Carrying out a reliable analysis can be satisfactorily incorporated using an 

integrative study, and will give insight to the hidden relations/patterns in multiple 

heterogeneous or homogeneous biological data sets. Heterogeneous 

integration uses different types of data, e.g., gene expression, DNA methylation, 

and protein expression, while the homogeneous focuses on one data type. 

Generally, integrating datasets from multiple experiments to target one study 

will deliver predictions that are less biased because individual 

laboratory/sample-specific biases can have less impact for truth finding. Indeed, 

a study investigated the importance of the sample size and found that large 

sample size improve data analysis accuracy [88]. 

 

The integrative analysis, in which results or data from different sources are 

combined, has the merit of strengthening the overall image through projecting 

molecules onto different aspects to examine. However, integrating different 

datasets still remains a challenge, due to the difficulty and the complexity of the 
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task, as well as the lack of proper statistical tools. The next section is a 

summarised survey of the published methods. 

5.2.  Gene expression Data Integration Methods 

The integrative study can be divided into two categories based on gene 

expression data: partial pattern discovery (PPD) and full pattern discovery 

(FPD). As illustrated in Figure 5.1, the first category is the widely used where 

common genes among datasets are targeted for analysis. The second category 

examines all genes from all data sets for analysis.  

 
Figure 5.1. Flowchart illustrating integration studies classifications used in the 

study; FPD: full pattern discovery, PPD: partial pattern analysis, and DE: 
differentially expressed genes 
 

A major limitation of PPD is that the data must be organised into a single matrix 

which means that only common genes across data/species are considered for 

analysis. The uncommon genes are missed from analysis and important 

information in data will therefore be lost. In contrast, FPD has the benefit of 

using all data for modelling/analysis. A good example of this is the direct 
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merging of gene expression, using one of the methods that will be explained in 

the sections that follow. 

There are also two general approaches for integrative study of gene expression 

data sets. The direct approach re-analyses primary/raw experimental data type, 

such as laboratories, platforms, species or cancers. The indirect approach 

combines the published results. Although the latter approach is widely used, it 

depends on long lists of genes from microarray studies that use different gene 

annotations, identifiers and/or /nomenclatures; furthermore, most differentially 

expressed genes lists are presented in tables or graphics formats that render 

them unreachable by search engines [273, 278]. Additionally, due to differences 

in protocols, small sample sizes of individual studies will affect the analysis 

negatively [279-281]  

In the sub-section below, I discuss briefly the methods that are applied to 

integrate results for further analysis. Meta-analysis is most commonly used in 

this type/category and has been very successful in many applications. Here, the 

customary approach is to compare the differentially expressed genes in two or 

more species/platforms/types in order to find the agreements or disagreements. 

Some researchers have looked into whether some genes that are co-expressed 

in one species are found co-expressed in another species [66]. This co-

expression analysis has been widely used for cross-species analysis. Stuart et 

al developed a computational method for studying different species that 

included yeast, flies, worms, and human microarrays, in order to find the 

conserved biological functions [61].  Another algorithm is presented to map an 

annotated gene module in a species to its homologous genes in another 

species: this has been used to investigate the regulatory programs in six 

different organisms [282]. 
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5.2.1.  Indirect integration 

As mentioned in a Tseng’s review [280], indirect integration or meta-analysis 

can generally be divided into three categories related to the differentially 

expressed gene information. I agree with the author's classification about the 

first three categories being indirect, whereas the other two belong more to the 

next section (5.2.2).  

First, combining p values from multiple studies has been widely used due to its 

simplicity and its ability to work with many forms and outcomes. This is because 

this type of analysis relies on the significance/summary statistics (univariate 

summary statistics) of each datasets; not on the complex underlying data 

structures. The most common method is the Fisher's combined probability test 

(Fisher, 1932). The Fisher method combines the log-transformed P values from 

K studies (i.e. microarrays) to Chi-square scores with 2K degrees of freedom. 

One of the initial efforts of employing the Fisher's test in the context of 

microarrays was made by Rhodes et al (2002), who proposed a statistical 

model that combined p values to integrate multiple microarrays from two 

different platforms. Using the simple Fisher’s method, they computed the p 

values for each gene from the individual studies to estimate an overall p value 

[90]. The same group also developed a comprehensive meta analysis 

framework in which they applied the Student’s test [91].  One issue arising from 

the use of Fisher’s method is that it is biased towards the small p values. For 

example, if one gene has very small p value in one study but is of no 

significance to the others, Fisher will classify it as significant (large Fisher’s 

score). Different variations of Fisher's test have been proposed to enhance the 

power of the traditional Fisher's method. One extended the Fisher's statistics to 

involve unequal positive weights for each k determined by an expert or prior 
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information[283]. This method called weighted Fisher’s statistics that has shown 

an improvement on the power of Fisher's method. However, it has some 

limitations where it led to miscalculations in the case of equal weights or if any 

of the weights is zero. Another is trimmed Fisher’s method that proposed to 

overcome the effect of extreme values or outliers [284]. The choice of weight is 

largely depends on expert opinion which somewhat subjective. Therefore Li and 

Tseng proposed the adaptively weighted Fisher’s statistics [92]. They used the 

data to estimate the weights which increase the statistical power to improve 

biological interpretation. 

Another method of combining P values is the minimum P value statistic [285]. 

This mainly takes for a gene  the minimum p value among the different studies 

(microarrays) and thus its clearly sensitive to outlier [286]. An enhancement to 

this was proposed that uses rth smallest p value [287]. Both methods were used 

for combining microarrays data [286, 288].  More recently, a new method 

proposed called rth ordered p value[288]. It aims to test the alternative 

hypothesis that a gene is expressed in percentage of studies.  

Although there are many powerful statistical tools for the same purpose from 

summed log-transformation of p values (Fisher's method) to the adaptively-

weighted Fisher’s method [90-92, 288], researchers prefer to use Venn 

diagrams to compare the p values of different studies. For example, Venn 

Mapper offers a comparison of the overlap of differentially expressed genes 

among different cancer types and calculates the statistical significance of the 

overlaps [289]. The advantage of this method is that it is easy to use and does 

not require additional analysis. However, by working with this type of tool, it is 

not possible to estimate the average magnitude of differential expression. In 
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contrast, Fisher’s method does introduce statistics for integration significance, 

while a Venn diagram simply gives a summary.    

Secondly, a considerable number of studies have focused on more effective 

ways of meta-analysis by combining effect sizes in their multiple data set 

analysis [93-95]. The effect size is the standardised mean between two 

phenotypes (i.e., cancer/normal) in each set, which are then combined as an 

overall mean. This method has improved the modelling capability for the inter-

study variation. There are two models commonly used for this approach: 

namely the fixed effect model and the random effect model (FEM and REM). 

Choi et al (2003) employed these models for differential expression studies of 

cancer where multiple datasets were compared. They used the homogenous 

test  Q statistics to determine which model was appropriate/better/suitable, 

since the large q values indicate the need for REM while the small Q values 

indicate the need for FEM [93].  

The Bayesian approach has also been used to estimate effect size [94-96]. As 

both of the previous two methods are sensitive to outliers, this could be a 

serious problem as I am aware of the large noise in microarrays. Hu and his 

group introduced an extended efficient method to identify the differentially 

expressed genes of lung cancer in two platforms of microarrays (Hu 2005), by 

modelling the effect size and measuring the gene chip quality of the probe sets 

of microarrays. 

Thirdly, the average rank combining method has encouraged some researchers 

to overcome the outlier sensitivity by the p value and effect size methods [97-

99].  In the rank-based approach that was used by Xu and co-workers for 

cancer gene expression from multiple experiments [74], the rankings 
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aggregation represented the results of statistical hypotheses for differential 

expression across studies for interesting genes, and then ordering the genes for 

further analysis [99]. The advantage of this kind of analyses is that they provide 

a good estimation for noisy data and/or small sample size data. 

 All these previous methods are categorised as indirect integrative study, while 

the next section focuses on direct analysis. 

5.2.2.  Direct integration 

Moving away from independent analysis (indirect integration) to raw (direct) 

expression integration, it can be seen that this type has attracted a lot of 

researchers for its usefulness in many applications[74]. However, data from 

different expression studies poses a number of difficulties which arise from the 

fact that each data exercise has been conducted using a distinct gene-

expression platform and has been carried out in a different laboratory using a 

different protocol. As a result, and due to these variations, direct combining 

cannot be useful because the two data sets are not comparable. This kind of 

analysis may suffer from study-specific concerns, as well from the heterogeneity 

seen across studies. It really depends on the quality of the data set.  

5.2.2.1. Integration by Normalisation  

Researchers have used normalisation procedures to avoid variations such as 

robust multi-array analysis (RMA) [290], median rank scores and quintile [291], 

cross-platform normalisation (XPN) [292], and ratio-adjusted gene-wise 

normalization (rGN) [293]. The main aim was to eliminate the data-specific 

effect and make the data comparable. These methods select genes that are 

common to different microarray platforms/studies for an integration analysis. 
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A brief discussion of these types of method is given here. One group combined 

rescaled expressions of the selected genes among datasets into one matrix for 

analysis [294]. Their linear scaling normalisation was based on multiplying each 

column in each data set by the inverse slope of a least-squares linear fit of the 

sample versus a first sample. They included five different cancer gene 

expression data sets to find the biomarkers that differentiated between the 

primary and metastasised cancers. Bayesian mixture model was also used to 

integrate re-scaled data to one matrix for analysis [295, 296]. This normalisation 

aimed to estimate the probability of expression (poe) for each set, and then to 

combine the results into one matrix. However, model-based transformation 

outweighs simple linear normalisation by its ability to involve biological 

information into estimating the posterior probabilities of expression as well as to 

reduce the effect of outliers [295, 296].  

Jiang and his group used a distribution transformation process to transform 

different data sets into a comparable distribution before integration [297]. Others 

used the median rank scores and quintile discretisation to transfer all 

expression to a comparable level/expression/scale, after which they applied 

support vector machine (SVM) to predict the sample type as cancerous or 

normal; they found the prediction accuracy was enhanced with integration [291]. 

They also proved that using such an integrative method helped to increase the 

accuracy of classification. Shabalin and colleagues proposed a modal-based 

method for normalisation, which they called cross-platform normalisation (XPN). 

This is based on linking gene/sample clustering of the given datasets [292]. 

Additionally, normalised linear transformation methods have been used that 

utilise the linear mapping of the two different platforms in order to obtain an 

identical scale for each gene between the two sets [298]. 
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The disadvantage of the methods explained above is that including the common 

genes across multiple arrays may led to failure to notice important genes which 

through oversight are missed by one array. Another issue related to some types 

in this category is the lack of ability to remove the systematic error produced 

when sample processed in multiple batches which is usually referred to batch 

effect [299, 300].  

5.2.2.2. Decomposition, correlation and clustering 

Other methods were proposed to tackle the issues of using normalisation for 

integration mentioned in the previous section. One of these focused on 

dimensionality reduction such as Principal Component Analysis (PCA) and Non-

negative Matrix Factorisation (NMF). A second approach benefited from 

correlation analysis [100], while a third approach focused on modelling or gene 

clustering across datasets [101]. The following paragraphs briefly discuss the 

methods proposed for this category.  

One of the early examples of this type of integrative study was carried out by 

Culhane et al (2003) who proposed an attractive method called Co-inertia 

analysis (CIA). This uses the coupling technique to identify the correlation of 

gene expression patterns among different cancer cell lines from two different 

platforms [301]. CIA is a multivariate analysis scheme that discovers 

relationships across different sets through maximising the covariance between 

them [302]. One advantage of using this method is that it does not require a 

pre-filtering of data, especially genes, and as shown by Fagan, can also be 

used to integrate different data sources [303].  Another team benefited from 

using the reduction technique to analyse the cell cycle expression data from 

humans and yeasts [304]. Singular value decomposition (SVD) was used to 



146 
 

identify robustness in response patterns. Engelmann et al. (2008) employed a 

kernel Principal Component Analysis (kPCA) to select an appropriate kernel for 

each dataset and used these for further analysis and in this particular case for 

clustering [89]. kPCA is the non-linear form of PCA where it projects the data 

into a high-dimensional feature space in order to detect the non-linear relations. 

Another successful tool is NMF [57, 58], both for dimension reduction and 

visualization [102]. It decomposes an expression matrix into two matrices. One 

matrix contains meta-gene expression while the other is a coefficient matrix that 

captures the relationship between genes and meta-genes. NMF showed merit 

in the elucidation of cancer subtypes when it was applied to leukaemia and 

brain cancer microarray data [62]., The same group also used consensus 

clustering to enhance model selection and to make use of the stochastic nature 

of NMF [62, 305]. The sparse NMF was used to improve molecular cancer class 

discovery by enforcing an additional sparseness constraint on the coefficient 

matrix [306].  

NMF has also been used as a tool to cluster genes and to predict functional 

relations in the microarray data of yeast [307]. Tamayo and his group proposed 

a method called meta-gene projection to perform similar analyses [60]. They 

have applied this approach on leukaemia and lung cancer datasets and have 

proved that it reduces noise and can work with many different platforms by 

meta-gene projection that benefit from reduction and from keeping the same 

biological features. The main disadvantage of NMF is that it fails to deal with 

complex pattern across multiple datasets since it is a linear algorithm, and also 

because all entries must be positive. 
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iCluster was then proposed by Shen for clustering samples of different genomic 

data using the joint latent variable/factor analysis of the decomposed combined 

matrix [103]. The main idea is that the latent variable model tries to find a linear 

relationship between the observed data and the latent variables. Each latent 

variable is treated as a cluster label and in integration context this can explain 

the co-clusters among sets. However, this method is designed to cluster 

samples, which means that the sample size across sets must be the same. 

Despite the successes of these methods they are still sensitive to large noise 

whilst giving global structure. 

The Bayesian approach has been extensively used for data integration. It 

employs prior distributions for integrative study [105]. One of its first application 

was by Troyanskaya et al [106], who introduced a general approach to 

integrating multi-source data to estimate gene function. The method was based 

mainly on a Bayesian network that studied the relation of different data in terms 

of biological function [106], although this supervised approach benefited from 

human knowledge of integrated predictions. Other studies used a Bayesian 

model-based clustering approach to detect differentially-expressed genes in an 

integrative context. They used a hierarchical model for integration and mixture 

prior to distinguishing between differentially-expressed genes and the 

alternatives [101]. They proposed a normal mixture prior-based on the mean 

difference of the two sets where the Bayesian estimation of the mixture 

distribution was done using the Markov Chain Monte Carlo (MCMC). An 

additional study also introduced a Bayesian hierarchical model to pool different 

microarrays from the same platform to identify differentially expressed genes 

(DEGs) [107]. Similarly, Scharp et al. (2009) applied a hierarchical Bayesian 

model to different microarrays with the aim of finding such  genes [108].  
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More recently, Wang et al. (2013) have proposed an integrative Bayesian 

analysis of genomics data (iBAG) to identify important biomarkers that are 

linked to clinical outcomes [109]. They integrated different types of cancer data 

(gene expression, methylation and patient survival rate); however, this is 

beyond the scope of this thesis as it considers the clinical data in the 

integration. Savage et al. (2010) implemented a mixture model approach and 

used a hierarchical Dirichlet process to integrate two datasets, specifically gene 

expression and transcription factor binding [308]. The same group has also 

developed a new integrative method named multiple dataset integration (MDI). 

This method has the ability to integrate many different types simultaneously, 

including time series data, and also can integrate more than 2 datasets. Each 

set is modelled separately, using a Dirichlet-multinomial allocation mixture 

model, but allows the pairwise dependencies between clusters among models 

[309].  Lock and Dunson (2013) have proposed an integrative clustering method 

that is generally similar to the MDI: however, the pairwise dependency has been 

replaced by an overall consensus clustering [310].  

Another group has developed a statistical tool for cross-species clustering that 

will identify the co-expression patterns [311]. The advantage of this model is its 

ability to cluster each data independently while allowing each to borrow strength 

from others. 
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5.3.  The Proposed Method  

5.3.1. Motivation 

The importance of multiple data integration has been explained earlier in this 

chapter. Due to lacking a proper method for integrative study of data sets of 

different dimentions, I developed a simple method to overcome the limitation.. 

5.3.2. Mean Pattern Model 

A common expression matrix contains rows that represent  genes/proteins/DNA 

copy numbers and columns in which represents the samples/replicates. Here, a 

mean pattern model was based on the assumption that with modern high-

resolution microarray technology, if an experiment is well designed,  the 

variance among replicates of each feature (i.e. genes) is small. Let’s denote a 

matrix by 
dN

nnX  1}  {x  where N is number of features (genes) and d is 

number of samples. The expression values of each feature (i.e. gene) vector 

follow one density, such as a Gaussian distribution ),(~ 2

mmn G x , where nx  

stands for the expression (or later on for differential expressions) of the nth 

feature (gene) and ),( 2

mmG   stands for the mth Gaussian with a sample mean 

m  and sample variance 
2

m . A whole matrix (dataset) is then a random sample 

of a mixture of several Gaussian densities. In a complex situation each feature 

will have distinguish mean than others where in such case, the number of 

mixtures is equal to the number of features (m=n). Often, however this is not a 

valid case in real biological data in which some correlation between features are 

preserved[312]. A univariate feature space was obtained from the whole 
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multivariate feature space. The density function in this univariate feature space 

characterized the hidden structure from which the multivariate feature space is 

a random sample.  

5.3.3.  General method 

The general idea behind the proposed method is illustrated in Figure 5.2. All 

observations from both datasets were converted to vector and then used it  to 

construct k . This was done by applying clustering on this vector  to 

estimates all possible Gaussian distributions or more specifically means. For 

easy implementation, I used the R packages Mclust or Kmeans for this purpose. 

This step identified the  mean underlying differential expressions (MUDE), top 

layer in the figure. After this step, I also generated random samples from each 

centre identified to be the Mean Observed Differential Expression (MODE) for 

each set. Each observed differential expression (ODE) is a random sample of 

its own MODE. Finally, I maximised the likelihood function to estimate the 

parameters for each layer. 
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Figure 5.2 Flowchart illustrating the proposed method. MUDU is the mean 
underlying differential expression, MODE is the mean observed deferential 
expression for each data set and ODE is the observed differential expression. 

 

 
5.3.4. Algorithm 

One observed differential expression (ODE) data set derived from a microarray 

experiment is denoted by xx

X

dN

N


 ),,,( 21 xxxX   and the other is denoted 

by yy

y

dN

N


 ),,,( 21 yyyY   , where N is the number of feature/rows (i.e. probe 

id) and d is the length of each feature (i.e samples). I assume that 

xx

x

dKx

K

xx

x


 ),,,( 21 uuuU   are the centres of X and 

that yy

y

dKy

K

yy

y


 ),,,( 21 uuuU   are the centres of Y.  I refer to xU  and yU  as 

the mean observed differential expressions (MODEs). I assume that both x

ku  

and y

ku  are random samples drawn from a mean underlying differential 

expressions (MUDE) model, which is a linear and a priori an unknown space, i.e.  
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where yxz /  : i.e., z was the X space index or the Y space index. In other 

words, each MODE is a set of random samples of MUDE. The likelihood of 

MODEs can be defined as 
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Each ODE is a set of random samples of its own MODE. The likelihood function 

for one ODE is defined as 
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The whole likelihood is the multiplication of all afore-mentioned likelihood 

functions. The log-likelihood function with Langrage coefficients is thus defined 

as 
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where the probability function is defined as a normal function with 
2 zz   , 

2 mm   and yxz /  
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Parameters thus include z

ku , z , m , m , z

kw , and mw . 
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The update rule for  
z
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The derivative of the objective function with respect to z  is 
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The update rule for 
1

z   is: 
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The derivative of the objective function with respect to 
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The derivative of the objective function with respect to m  is 
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The update rule for 
1

m  is: 
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The derivative of the objective function with respect to z

kw is 
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The derivative of the objective function with respect to mw is 
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The update rule for mw is: 
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5.4. Experimental design/ Simulated data 

Simulated data were designed to evaluate the method in identifying such pair 

information/common patterns across different datasets. As one of the main 

purposes of integrative study is to identify how genes are similarly expressed or 

differentially expressed across many datasets. In cancer researches, a common 

signatures is important tasks, where it believed that common gene signatures 



156 
 

may exists [84, 87]. Only genes that show significant differential expression 

worth to be included for integration investigation. This is because other genes 

are not biologically meaningful/interesting, at least in this context. Also, 

including large data for analysis will cost a huge computing time. Thus, in the 

following simulated data I have stuck to this and sampled 400 ~ 1000 genes. 

However, I have expanded the most complex scenario to involve 20,000 genes 

aiming to demonstrate algorithms ability in genome wide analysis. For a fair 

comparison, different scenarios were designed to integrate two datasets and 

three datasets. Each one includes variables parameter such as noise levels, 

clusters number and pairing structures, as exemplified in the following sections.  

 

Many methods were developed to generate/synthesis datasets. One of the most 

used in literature is that assume gene expression are drawn from Gaussian 

distributions [313-316]. Similarly, I have sampled genes from Gaussian mixtures 

with variables centres that represent different clusters. 

 

5.4.1.  Two datasets integration 

For scenario one: The mean underlying differential expressions (MUDE) model  

was a Gaussian mixture with mean values of DE;  2,1,1,2  . Two data sets 

were generated xx

X

dN

N


 ),,,( 21 xxxX   and yy dN

Ny


 ),,,( 21 yyyY   

where space dimensions xd and yd  are 5 and 3 respectively. Four clusters were 

chosen for both datasets and 100 vectors (genes) were randomly drawn from 

each centre, ),(~ 2

mmND   where D  is either X  or Y , and 1.0 . This scenario 

was also repeated/extended using different noise levels, specifically 3.0  and 
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5.0 , and was designed to investigate performance at different noise levels. 

(see Table 5.1: S1 panel) 

Table 5.1.  Overall design of simulated data (S means scenarios 1-3) 

Cluster Data1 Data2 

K1 100 100 

K2 100 100 

K3 100 100 

K4 100 100 

 
 
 
 
 
 

S1 

Cluster Data1 Data2 

K1 100 × 

K2 100 × 

K3 100 100 

K4 100 100 

K5 100 100 

K6 100 100 

K7 100 100 

K8 100 100 

K9 100 100 

K10 100 100 

S2 S3 

Cluster Data1 Data2 

K1 100 × 

K2 100 × 

K3 100 100 

K4 100 100 

K5 100 100 

K6 100 100 

K7 100 100 

K8 100 100 

K9 × 100 

K10 × 100 

 

Scenario 2, MUDE model was composed of ten differential expression     means 

 5,4,3,2,1,1,23,4,5  . Two data sets were generated, 

xx

X

dN

N


 ),,,( 21 xxxX    and yy

X

dN

N


 ),,,( 21 yyyY  , where the space 

dimensions ( xd and
yd ) were 5 and 3 respectively. Ten clusters were designed 

for dataset one and eight clusters were designed for dataset two. Two datasets 

had eight clusters in common and data set one has 2 clusters unique. 100 

vectors (genes) were randomly drawn from each centre for data one, while the 

last eight centres were used for data set two ),(~ 2

mmND  ,where D  is either X  

or Y , and 1.0 . This scenario was also repeated/extended using different 

noise levels, specifically 3.0  and 5.0 , and was designed to investigate 

the performance at different cluster structures and test the ability of the 

algorithm to identify the unique cluster in one data. (Table 5.1: S2). 

Scenario 3, I design a mean underlying differential expressions (MUDE) model 

with ten differential expression means;  5,4,3,2,1,1,23,4,5  . Two data 
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sets were generated xx

X

dN

N


 ),,,( 21 xxxX    and yy

y

dN

N


 ),,,( 21 yyyY   

where the space dimensions ( xd and
yd ) are 5 and 3 respectively. 100 vectors 

are randomly drawn from the first eight centres for data one and from the last 8 

centres for data set two.  This means there are only 6 clusters common across 

the two sets and 2 unique clusters for each data set one. Each vector is drawn 

from the hidden model, ),(~ 2

mmND  ,where D  is either X  or Y , and 1.0 . 

This scenario is also repeated/extended using different noise levels, specifically  

3.0  and 5.0 . This scenario was designed to investigate the performance 

at different cluster structures and to test the algorithm's ability to identify the 

unique cluster in one data. (Table 5.1: S3) 

 

5.4.2.  Three data sets 

 In this section I have repeated the previous scenarios but this extended to three 

data sets. In Scenario 4, a mean underlying differential expressions (MUDE) 

model was designed with four differential expression means;  2,1,1,2  . 

Three data sets are generated X , Y andZ  where the space dimensions are 5, 4 

and 3 respectively. 100 vectors are randomly drawn from each centre for each 

dataset. Each vector is drawn from the hidden model, ),(~ 2

mmND  , where D  

is X , Yor Z , and 1.0 . This scenario is also repeated/extended using different 

noise levels, specifically  3.0  and 5.0 . This scenario was designed to 

investigate performance at different noise level on more than 2 datasets. (Table 

5.2: S4). 
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Table 5.2. Overall design of simulated data for 3 integration sets (S represents 

scenarios 4-6) 

K D1 D2 D3 

K1 100 100 100 

K2 100 100 100 

K3 100 100 100 

K4 100 100 100 

 
 
 
 
 
 

S4 

K D1 D2 D3 

K1 100 × × 

K2 100 × × 

K3 100 100 × 

K4 100 100 × 

K5 100 100 100 

K6 100 100 100 

K7 100 100 100 

K8 100 100 100 

K9 100 100 100 

K10 100 100 100 

S5 S6 

K D1 D2 D3 

K1 100 × × 

K2 100 × 100 

K3 100 100 100 

K4 100 100 100 

K5 100 100 100 

K6 100 100 100 

K7 100 100 100 

K8 100 100 100 

K9 × 100 100 

K10 × 100 × 

 
 
Scenario 5: a mean underlying differential expressions (MUDE) model was 

designed with ten differential expression means;  5,4,3,2,1,1,23,4,5  . 

Three data sets were generated, X , Y and Z where the space dimensions were 5, 

4 and 3 respectively. One hundred vectors were randomly drawn from each 

centre for data one while only 8 centres were used for data set two and 6 

centres used for data 3.This means there are only 6 clusters common across 

the three sets and 2 unique clusters belong to data set one: also there are 2 

clusters common between data 1 and data 2 but not data 3.  Each vector is 

drawn from the hidden model, ),(~ 2

mmND  ,where D  is X , Y or Z , and 1.0 . 

Also, this scenario is repeated/extended using different noise levels ,specifically  

3.0  and 5.0 . This scenario was designed to investigate the performance 

at different cluster size with more than 2 datasets. (Table 5.2: S5). 

For Scenario 6: MUDE model was designed with ten differential expression 

means;  5,4,3,2,1,1,23,4,5  . Three data sets are generated 

X , YandZ where the space dimensions are 5, 4 and 3 respectively. 100 vectors 

are randomly drawn from the first eight centres for data one and from the last 8 

centres for data set two and the middle 8 centres for data 3 (Table 5.2: S6). 
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This means there are only 6 clusters common across the three sets. Each 

vector is drawn from the hidden model, ),(~ 2

mmND  ,where D  is X , Y or Z , and 

1.0 . This scenario is also repeated/extended using different noise levels, 

specifically 3.0   and 5.0 . This scenario was designed to investigate the 

performance of integrate more than 2 datasets at different complex cluster 

structures and to test the ability of the algorithm to identify the unique cluster in 

one data or in two sets only. 

5.4.3. Large scale data integration (full genome data integration) 

Scenario 7: This scenario was designed for genome wide integration. This 

scenario is similar to scenario 5 but with a very large mean vector. In each data 

set 21,000 genes were simulated. MUDE model was designed with fifty 

means;  25:1&1:25  . Three data sets were generated X , Y and Z where 

the space dimensions were 5, 4 and 3 respectively. Here 500 vectors were 

randomly drawn from the 42 centres for data one and from the last 42 centres 

for data set two and the middle 42 centres for data set three. This means there 

are only 34 clusters common across the three sets. Each vector was drawn 

from the hidden model, ),(~ 2

mmND  ,where D  was X , Y or Z , and 1.0 . This 

scenario was also repeated/extended using different noise levels, specifically 

3.0   and 5.0 . This scenario was designed to evaluate the performance of 

integration algorithms for large datasets (>20,000 genes/set).  

 

5.5.   Evaluation measurements 

I introduced two measurements to the evaluations. The first was to evaluate 

whether a cluster size was correctly estimated. The second was to evaluate 
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whether gene-gene independence/dependence was correctly maintained after 

clustering the data sets. In the design, a gene either belonged to an 

independent cluster or belonged to a dependent cluster. An independent gene 

was unique to one data set, such as genes in some clusters of Scenarios Two, 

Three, Five and Six. A dependent gene demonstrated similar differential 

expression across datasets. For each classification (a gene was classified into a 

cluster), I calculated an error as:  

  2)()ˆ(

]1),ˆ([*2
1






mimi

mimi
mi

lengthlength

match
E

 (5.14) 

where miE  lies between 0 and 1  

mi  is a list of designed genes that belong to the same label of  ith gene in mth 

data set. 

mi̂  is a list of predicted genes that belong to the same label of  ith gene in mth 

data set. 

),ˆ( mimimatch   is the total number of common genes in both designed and 

predicted. 

The total error ( totE ) is calculated below:  



 



 
M

m
m

M

m

N

i
mi

N

E
totE

m

1

1 1
 (5.15) 

where M is the number of data sets and mN  is the total number of genes in the 

mth data set 

 

5.6.  Benchmark algorithms 
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I used two benchmark algorithms for the comparison. They were BCC [310] and 

MDI [309]. The Multiple Dataset Integration (MDI) method [309] clusters each 

data set separately while concurrently modelling dependence between the 

clusters. It assumes a finite mixture model for each set while the dependence 

between data sets is exploited using the Dirchlet mixture coefficients describing 

their cluster membership. Similarly to MDI, Bayesian Consensus Clustering 

(BCC) [310] proposed different dependence modelling. MDI models the 

dependence pair wisely between data sources while BCC focuses on 

adherence to the overall clustering. Those methods outweigh the separate 

modelling in which each dataset clustered independently and then followed by 

manual integration [317, 318], since the joint modelling allow borrowing strength 

through/across many data sets. 

5.7. Results and Discussions  

Evaluation of the three scenarios on two data sets using three variance values 

is shown in Table 5.3. The first measurement is beyond the scope of this thesis 

but is examined here to make a full comparison. In this scenario, the cluster 

size prediction shows that the proposed algorithm performed well in this term 

under all variance values. The others have lower percentage at the large s.d 

of 5.0 . However, in terms of dependency/independency relations I compute 

the error percentage as proposed in the evaluation criteria section. They all 

performed well with s.d=0.1 with no errors at all. This means that the 

relationship is preserved after clustering. This is also the case at variance =0.3 

with the 0.3% maximum error belonging to my proposed method and 0.26% and 

0.03% for BCC and MDI respectively. The error figures increased with the large 
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s.d at 0.5 with a maximum 8.4% obtained, while the minimum error was 

observed in the HIM model. 

Table 5.3.  The average results of 50 simulations, including all scenarios in two 
datasets. Figures in bold mean the best performance and the underlined 

means the worst performance. k%: percentage of correctly cluster estimation, 
Error: is average  error percentage. S indicates for Scenarios 

S 
Noise 
level 

BCC MDI HIM 

K% Error% K% Error% K% Error% 

1 

0.1 100 0 100 0 100 0 

0.3 96.6 0.26 100 0.03 100 0.31 

0.5 16.6 8.4 60 7.8 100 5.6 

2 

0.1 

NA NA 

100 0 

0.3 60 1.5 

0.5 0 34.6 

3 

0.1 36.6 53.1 100 72.8 86.6 0.56 

0.3 73.3 51.07 43.3 75 80 2.7 

0.5 66.6 52.8 3.3 72.8 0 49 

 
In scenario 2 only, my proposed method is able to integrate such data with 

different sizes. The maximum error rate is 34.6% for simulated data at the large 

variance. Scenario 3 shows the merit of the proposed method in terms of the 

error rate. Despite the fact that MDI correctly gained 100% cluster numbers 

estimation for 0.1 noise, it has the maximum error rate with 72.8% since it 

barely distinguishes the different cluster designs due to the so-called correlation 

clustering it applies.  

Next I wanted to see how far each method estimated the clusters as well as the 

variation of the error obtained. Therefore I used the boxplots in Figure 5.3 and 

Figure 5.4 to evaluate the stability/variations of each method. Figure 5.3 shows 

the cluster estimated by each method for each data set among 50 simulations. 

It can be seen that BCC was the worst for scenario one at large noise. However 

BCC was the best for scenario 3 at the large noise level while both MDI and 

HIM always estimated the clusters below the correct clusters. 
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Figure 5.3. Boxplot to illustrate the cluster estimation accuracy for each dataset 
on different algorithms and scenarios on 2 sets integration. D1, D2 are Datasets 
1 and 2. 

 

According to Figure 5.4, HIM always has the least error rate in all simulations. 

In scenario 3 both MDI and BCC gain a relatively larger error rate compared to 

HIM. Although HIM fails to estimate the number of clusters correctly in scenario 

3 noise 0.5, it is still able to maintain the designed structure. In contrast to HIM, 

BCC gained the highest percentage for cluster estimation but fails to capture 

the relation of the designed data.  
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Figure 5.4.   Boxplot of the error by all methods among 50 runs; A, B and C 
signify 0.1, 0.3 and 0.5 noise levels respectively on 2 datasets integration. 

 

All methods included in this study/evaluation/comparison are able to work with 

more than two datasets. Here I present the result of those algorithms on 

extended scenarios. Table 5.4 indicates that BCC performed the worst in terms 

of both clusters’ size/estimation and the error rate. In the first scenario(S4) the 

cluster estimation showed that the proposed algorithm performed well for all 

variance values, with 100% correctly-estimated accuracy. In scenario 2(S5), 

where only HIM was able to integrate data with such a design, the error rate 

was high, with a maximum 58.2% at the large variance of 0.5. Although this 

scenario worked well in the two datasets integration it seems to have been less 
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accurate within 3 sets. This drop could be related to the low estimation of 

cluster numbers (Figure 5.5). 

Similar to the 2 datasets application (Scenario 3), BCC and MDI failed to 

capture the designed pairing information with less than 45% of the correctly-

maintained relationship being preserved after clustering. Interestingly, the 

number of clusters in BCC increased with the noise level increasing, while the 

others decreased as can be seen in Figure 5.5. The reason for this is that BCC 

always assumes the large number of clusters; then after the clustering equips 

only the relevant cluster. Thus, the number of used clusters will definitely be 

larger with the large noise. In contrast to that, MDI and HIM predict fewer 

clusters with the large noise as they merge the overlapped clusters together, or, 

in other words, shift the centres to estimate a new centre in between. This is a 

hot topic in the machine learning world but is beyond the scope of this thesis. 

 
Table 5.4 Average results of 50 simulations including all scenarios for three 
datasets integration. Figures in bold mean the best performance. S = scenario, 
underline figures are the worst, K: percentage of correctly cluster estimation, 
Error is percentage of average error. 

S 
Noise 
level 

BCC MDI HIM 

K% Error% K% Error% K% Error% 

4 

0.1 15 24.12 100 0 100 0 

0.3 0 49.52 100 0 100 0.09 

0.5 0 56.37 61.1 6.6 100 4.33 

5 

0.1 

NA NA 

100 38.8 

0.3 55 39.57 

0.5 0 58.23 

6 

0.1 5 71.63 100 66.66 100 41.66 

0.3 0 73.37 33.33 66.02 45 41.71 

0.5 0 76.64 0 65.22 0 50.24 
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Figure 5.5. Boxplot to illustrate the cluster estimation accuracy for each data 

set on different algorithms and scenarios on 3 integration sets. D1, D2, 
D3=Datasets 1,2 and 3. 
 

 
Figure 5.6 showed that HIM always had the least error rate in all simulations. In 

scenario 6 both MDI and BCC gained a large error rate compare to HIM. 

Although HIM failed to estimate the number for clusters correctly in scenario 

3(S6) noise 0.5, it is still able to maintain almost 50% of designed structure.  
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Figure 5.6 Boxplot of error by all methods among 50 runs. A, B and C mean  

0.1, 0.3 and 0.5 noise level respectively on 3 datasets integration. 
 
 
Finally, It worth to see the ability of those algorithms on a large scale data. One 

issue arisen  of such analysis is huge computing cost . For example in this case 

three months were needed to finished this scenario and hence that I repeat 

them only 10 times. MDI is the slowest where it takes 6 weeks to finish one sub-

scenario (i.e. noise level=0.1). BCC also takes long time ( ~ 2 weeks) for a sub-

scenario. The number of sampling for both MDI and BCC used in this study 

were set to the default (10,000).  

 
Table 5.4.  The average results of ten simulations for  scenario 7 (large scale 
integration). Figures in bold mean the best performance and the underlined 

means the worst performance. k%: percentage of correctly cluster estimation, 
Error: is average  error percentage. S indicates for Scenarios 

S 
Noise 
level 

BCC MDI HIM 

K% Error% K% Error% K% Error% 

7 

0.1 0 73.45 0 80.74 0 1.64 

0.3 0 73.80 0 80.65 0 6.77 

0.5 0 78.43 0 82.42 0 45.43 
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Surprisingly, all algorithms failed to estimate cluster numbers correctly (Table 

5.4). This is due the complexity of large number of data to be analysed. It can 

be seen in Figure 5.7  that HIM's cluster estimation was the closest to the 

correct number of clusters especially for the small and medium noise levels. 

BCC has the same issue  as in small data integration where it always estimates 

large  cluster number. However, this can be explained by the way BCC cluster 

estimation proposed. They suggest to put a large cluster number then map the 

data into the clusters. In contrast MDI tends to have a very small numbers of 

clusters, this also encountered for the previous scenarios. One way to explain 

this is that  in such large data it is recommended to increase the number of 

mixtures to be used. Although there is no clear guide on this in their paper, I 

have found that they used in their data number of mixtures equal to the total 

number of genes over two. Different numbers of mixture were used to see if this 

can improve the estimation or not. Specifically 100,200,1000 and 2000 were 

chosen as the number of mixtures with no improvement noticed.    
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Figure 5.7. Boxplot to illustrate the cluster estimation accuracy for each data 

set based on different algorithms for scenarios7. D1, D2 and D3 are Datasets 1, 
2 and 3. 

 

The poor cluster number estimation had led to large errors(Table 5.4) for BCC 

and MDI where they only maintain the dependency/independency pairing for 

less than 26%, while HIM has very small error percentages (1.65% and 6.77%) 

in the small and medium noise. In the large noise HIM also gained large error 

and this can be linked to the small number of cluster estimated (Figure 5.8). 
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 Figure 5.8 Boxplot of error by all methods among 10 runs. A, B and C mean  
0.1, 0.3 and 0.5 noise level respectively for large scale integration(Scenario 7). 

 

 

5.8. Conclusion 

In this chapter, a comprehensive survey of integrative methods was given. The 

limitations of those method also discussed and considered in the design of the 

proposed method. A mean pattern model for integrative study was introduced 

based on the assumption that an experiment is well designed. Therefore, I 

assume that all the replicates (observations) in an experiment are random 

samples of a mixture of one-dimensional Gaussians. This simplification makes 

modelling of differential expressions of integrative study much easier. I have 

used simulated data to show that the mean pattern model outperforms the 

existing algorithms used for integrative study. The main issue is the poor cluster 

estimation; especially when large data are included for analysis. One way to 

overcome the common issue in clustering is to filter the data by including only 

the differentially expressed genes in each data set. In the next chapter I will 
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apply the algorithms to the real data to show how the mean pattern model 

explores biological relations/meaning inside biological data. 
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Chapter 6 

Application of the Integrative Study 

 

Abstract  

Integrative study has been an important approach for revealing unbiased truth 

from multiple biological experiments for one investigation. The challenge in 

integrative study is large-scale data and the complexity of different data types. 

Based on the proposed method for integration, I show in this chapter that the 

mean pattern model implemented in a hierarchical structure works well 

compared with benchmark algorithms in real data. 
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6.1.  Introduction  

In this chapter, I have applied BCC, MDI and HIM to different real data sets to 

compare their performance. The first data, which is hereafter named Application 

One, is cross-species data, which aimed to integrate data from different species 

(Mouse and Rat). The second data, which is after this named Application Two, 

is cross-cancer data, which integrates four different cancer datasets from two 

cancer type. 

6.2.  Application 1.  

6.2.1.  Data  

The data which was downloaded from gene expression omnibus (GEO) with the 

accession number GSE42081, includes expression from Mouse and Rat at 

three different cell development stages (figure 6.1), each containing two 

replicates The stages are blastocyst (B), inner cell mass (ICM) and Morula (M) 

[23]. 

 
Figure 6.1 illustration of  the development stages of embryo from  fertilization of 
the egg to the implantation of the blastocyst. (downloaded form wisegeek; 
http://www.wisegeek.com/what-is-mesenchyme.htm) 
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It's an important study of the regulatory networks in the preimplantation embryo 

that determine cell fate decisions. More specifically, the transition between 

morula to blastocysts is attractive, as during this time the pluripotent cells are 

created [23]. In Casanova study, they performed a microarray analysis to study 

the different regulation patterns of mouse and rat. Three populations of cells 

were collected from the two organisms. Morula and blastocysts stages embryos 

and inner cell mass cells isolated from the blastocysts are the three different 

populations used in this study.  

  

6.2.2. Data pre-processing 

To use all data, I took the difference expression of; i) B and ICM as mod 1; ii) 

ICM and M as mod 2; and iii) B and M as mod 3 for each species (Mouse and 

Rat) (Figure 6.2), as done in the original research. It is an important task to 

remove bimodal genes. Including such genes in a study may affect the result of 

modelling where the proposed method in chapter 5 designed to assume that all 

replicates/samples in a gene are random samples from the same Gaussian. 

Thus, removing such genes with bimodal behaviour before using the HIM 

algorithm is required.  

In order to remove the bimodal/outlier genes, MSG algorithm proposed in 

Chapter 2 was used.  The reason for using MSG instead of hBI is that hBI 

requires more than two replicates to be used as explained in chapter 3. In this 

case MSG can be used for bimodality detection for two replicates, as the 

differential expressed gene identified is a bimodal. After modelling the data 

using MSG, I removed the top 10% of genes that were associated with the large 

posterior probability obtained by MSG.  
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Figure 6.2. Diagram of the integration process of two species that include 3 
stages 

 
Having removed such bimodal genes I used MSG again to identify the 

differentially expressed genes (DEGs). I then selected the top 5000 genes 

differentially expressed from each mode (M1:M3) to be integrated across 

species. In order to make the expression level comparable, normalisation was 

applied before integration.  

6.2.3.  Integration Results 

It was noticed that allowing each algorithm to estimate the cluster number gives 

very different results. Thus, it is difficult to compare the results obtained by each 

algorithm where the number of clusters between them is different. For example, 

using Mclust packages for large noisy data in HIM always returns very small 

clusters (i.e., K=3), whereas this is always the other way around for BCC as 

shown in the simulated data in the previous chapter. As a corrective action, I 

used the maximum cluster number estimated by MDI to be the number of 

cluster for both BCC and HIM. I have rely on MDI to estimate the cluster for the 

reason that I cannot enforce MDI to be cluster into a predefine cluster number 

while this possible for HIM and BCC. More enhancement, I replaced the Mclust 
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package used for clustering in HIM with Kmeans package as there is no need to 

estimate the cluster number.  

Using BCC, MDI and HIM to integrate model 1, model 2 and model 3, as in 

Table 6.1, it was found that 5.6% of genes had the same cluster label among 

species for model 1 by BCC while the percentage increased to 8.16% and 

8.28% respectively for MDI and HIM. However, MDI linked to the lower 

percentage for model 2 (2.9%) and to the higher percentage in model 3 

(14.6%).  

Table 6.1. Percentage of common genes assigned to the same cluster across 
species 

Method Model 1 Model 2 Model 3 

BCC 5.64% 7.5% 6.5% 

MDI 8.16% 2.94% 14.6% 

HIM 8.43% 8.28% 6.78% 

 

Table 6.2 shows that BCC always has common clusters while MDI only has 

unique clusters at model 3. As expected, HIM has unique clusters in all models, 

which is further supportive evidence for the merit of the HIM algorithm in such 

data as seen in the simulated data. 
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Table 6.2. shows the cluster numbers for each species in all three models. Bold 

numbers signify input cluster number for BCC and HIM. Underline italic 
numbers signify some unique clusters.  

species Model 1 Model 2 Model 3 

 
Mouse Rat Mouse Rat Mouse Rat 

BCC 27 27 20 20 28 28 

MDI 27 27 28 28 26 28 

HIM 18 23 20 25 23 26 

 
 

Further evaluation was conducted using the R package ClusterProfiler [319] to 

map each cluster for GO enrichment molecular function (MF), biological process 

(BP), and cellular component (CC). Figure 6.3 shows the MF mapping of 

clustered genes for model 1 of the mouse species using BCC, MDI and HIM. It 

can be seen that some clusters are conserved to certain molecular functions. 

This is clear in clusters 6, 8 and 16 from HIM. Figures S6.1:S6.5 show the 

molecular function mapping of clustered genes from models 2 and 3 of the 

mouse species, and all models for rat species using the three algorithms. 
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Figure 6.3 Molecular function mapping for clustered genes for model 1 of 
Mouse species, identified by BCC (left), MDI (centre) and HIM (right); the 
horizontal axis is the cluster label and the vertical line is for molecular function. 
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Figure 6.4 shows the cellular component enriched for each cluster in model 2 of 

the rat species. Also this has shown some homogenous clusters that conserved 

to certain CC. Figures S6.6:S6.10 shows the cellular component mapping of 

clustered genes from models 1 and 3 of the rat species and all models for 

mouse species using the three algorithms.  
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Figure 6.4. Cellular component mapping for clustered genes for model 2 of Rat 
species identified by BCC (left), MDI (centre) and HIM (right).  The horizontal 
axis is the cluster label and the vertical line is for cellular component. 
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Figure 6.5 shows the biological process enriched for each cluster in model 3 of 

the mouse species. This showed that some clusters are conserved to certain 

BP. Figures S6.11:S6.15 shows the biological process mapping of clustered 

genes from model 1and 2 of the mouse species and all models for rat species 

using the three algorithms.  
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Figure 6.5. Biological process mapping for clustered genes for model 3 of 
mouse species identified by BCC (left), MDI (centre) and HIM (right). The 
horizontal axis is the cluster label and the vertical line is for biological process.  
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Table 6.3 shows genes that cluster in the same cluster among the two species. 

Although the top 5000 DEGs were selected from each species in the three 

models, it was found that out of 5000 genes, 1470, 1292 and 1519 were 

differentially expressed in both species in model 1, model 2 and model 3 

respectively. However only 150 genes were common among all models. 

Table 6.3. Genes identified as being in the same cluster across species. ALL 
means having same cluster by all methods. B-H in same cluster by BCC and 
HIM, B-M in same cluster by BCC and MDI, and M-H in same cluster by MDI 
and HIM 

ALL B_H B_M M-H 

Bloc1s5 Acsl4 Apmap Epha1 Sbds Slc38a5 Asz1 

Lgals1 Myh11 Capn13 Meis3 Slc22a18 Snx27 Cd79b 

Lsm3 Wdr4 Car7 Nckap1l Fgl1 Ssrp1 Cyfip1 

Nsmce2 
 

Ccdc102a Nr1i3 Foxi1 Stk25 Ift43 

Pfkfb3 
 

Ccnb1 Pdhx Gpr84 Supt20 Mfge8 

Tmbim6 
 

Cdc23 Pou2f1 Ict1 Tmed9 Nck2 

  
Cops3 Prss42 Krt26 Trio Ptbp3 

  
Cox7a2l Psmb4 Ly6h Vps45 Rtcb 

  
Dapl1 Ring1 Med8 Wdr43 Wipf1 

  
Ddc S1pr2 Meis1  Zfp292 

 

To present a fair comparison I selected some genes for further comparison 

against the literature. One important work is the study that produced the data 

[23].  I found that the gene Stat3 cluster was in the same cluster for model 1 as 

well as model 3, but was not differentially expressed from model 2. This totally 

agreed with the finding by Casanova et al since they identified this gene to be 

up-regulated in model 1 and 3 but not differentially expressed in model 2 [23].  

The same study also revealed that the gene Lifr had the same regulated 

process as the previous gene and interestingly this was also clustered into the 

neighbouring cluster of the previous one. This suggests that the gene had the 

same direction as the other but might have a different magnitude. The gene 

Aph1a was identified as up-regulated in the mouse and slightly changed in the 
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rat [23]; this was also extracted by HIM and classified into the high positive 

cluster 24 for the mouse and in the less positive cluster 17 for the rat at model 

1, and in 25 and 18 for model one as illustrated in Figure 6.6. 

 
Figure 6.6 HIM clusters label distribution; illustration for the Aph1a cluster in 
both species by HIM  
 

Another important gene is Skp2 which was identified in two different regulation 

directions by HIM, specifically in cluster 4 for the mouse and cluster 15 in the 

rat. This also agreed with findings by Casanova et al (2012) as the gene was 

down-regulated for the mouse while up-regulated in the rat. They noticed a 

different regulation  for the gene Myl9 in all models, while my approach 

identified the same but only for model 2 while the gene was not differentially 

expressed in models 1 and 3 in both species. The gene Myc was found by 

Casanova et al to be down-regulated for the rat and not changed in the mouse; 

however, I identified this gene to be down-regulated in both species at model 1 

with different magnitude; in cluster 5 for the mouse and 2 for the rat.  

HIM successfully clustered the gene Gsk3β into the next neighbouring clusters, 

16 and 17 which reflects the same finding by Casanova et al (2012). Gene 

Bmp4 was identified with a similar expression pattern among species and the 

same was gained by HIM where it was classified in a very close up cluster. 

Finally, the gene Wnt6  was found to show a different regulation between 

mouse and rat [23]. HIM therefore classified them into two far clusters making 

them consistent with the findings of Casanova et al. 

 

 
 

 1  2  10  11  17 24 

Aph1a 
(mouse) 

Aph1a(Rat) 
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Figure 6.7. Pattern analysis of the raw expression at all 3 stages for each 

cluster 
 

Figure 6.7 shows the pattern of the raw expression for four clusters, which also 

supports the fact that each cluster has a unique pattern. It can be seen that the 

majority of genes have different regulatory direction.   

6.3.  Application 2. 

6.3.1.  Data sets 

Four cancer datasets were downloaded from Gene Expression Omnibus (GEO) 

(Table 6.4). The first data was a prostate cancer type that contained 6 normal 

samples and 6 cancer samples. The second was also prostate data that 

included 6 pairs of samples; the third set was breast cancer data that contained 
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6 normal and 6 cancer samples; while the fourth was also a breast cancer set 

that included 7 normal and  7 cancer samples.  

Table 6.4. The data sets used for Application 2     

Accession# Type Sample Log 2 

GDS1439 Prostate 6N / 6C × 
GDS4114 Prostate 6N / 6C √ 

GDS4114 Breast 6N / 6C √ 

GDS2250 Breast 7N / 7C √ 

Note: The data sets used for application 2, normal (N) and cancer (C), log 2 if 

the data is already logged (√) or not 
 

Figure 6.9 explains the process for this application. In order to remove the 

bimodal/outlier genes the hBI algorithm proposed in Chapter 3 was applied. 

Using hBI the top 10% of genes associated with the smallest p values were 

removed, after which the data was modelled using MSG to find the top 1000 

genes differentially expressed between the two stages (normal and cancer) 

independently for each set. As previously noted it was not possible to use a 

critical posterior cut-off point for selection as the other algorithms were not able 

to integrate different gene numbers among the data.  
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Figure 6.8. Flow chart of the second application. The numbers mean gene 
number after each process. P = Prostate; B = breast 
 

6.3.2.  Results and Discussions 

In order to assess the integration clustering by BCC, MDI and HIM, the 

Biological Homogeneity Index (BHI) [320] was applied, using the R package 

clValid [321]. Clusters that have many genes and share GO annotations will 

have a high BHI score, with the value being between 0 and 1 where 1 is a 

completely homogenous cluster. Here four different BHI scores were included, 

namely Biological Process (BP), Cellular Component (CC), Molecular Function 

(MF), and ALL which included all three categories. Table 6.5 shows the four 

different BHI scores by each method for each data set, and Table 6.6 shows 

the BHI scores for the combined cluster of all four data sets. In most cases HIM 
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is either the best (as indicated by bold figures in the tables) or the second best 

(indicated by underlined italic figures). Interestingly, BCC was the best among 

all categories for data 1 and this could be linked to the even distribution of 

cluster size (Table 6.7) as the HIM and MDI have also only 5 and 4 clusters 

respectively, compared to 6 identified by BCC. However, among these, at least 

two clusters contained fewer than 20 genes. The reason for not using BHI for 

application one is because there is no available annotation packages for mouse 

or rat. Although I have downloaded the available packages for mouse and rat, 

but both of them returns zeros or NA. 

Table 6.5. Comparison of BHI scores for each data cluster obtained using BCC, 
MDI and HIM. Figures in bold are the best performance and the underlined 
figures are the second best performance. 

Data Method BP MF CC ALL 

1 
BCC 0.183 0.235 0.223 0.172 
MDI 0.097 0.142 0.135 0.131 
HIM 0.093  0.128 0.114 0.115 

2 
BCC 0.121 0.155 0.164 0.189 
MDI 0.123 0.149 0.173 0.192 
HIM 0.124 0.138 0.152 0.196 

3 
BCC 0.151 0.157 0.167 0.202 
MDI 0.142 0.142 0.123 0.222 
HIM 0.121 0.143 0.152 0.209 

4 
BCC 0.122 0.139 0.127 0.227 
MDI 0.119 0.117 0.136 0.243 

HIM 0.125 0.132 0.146 0.236 
 

 
 

Table 6.6. Comparison of BHI scores for combined clusters obtained using 

BCC, MDI and HIM for all data. Figures in bold are the best performance while 
the italic is the second best performance. 

method BP MF CC All 

BCC 0.132 0.171 0.161 0.191 
MDI 0.196 0.219 0.209 0.157 
HIM 0.134 0.175 0.153 0.186 
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Table 6.7: Cluster size for each cluster in each data by all methods. 

Method label data1 data2 data3 data4 

H
IM

 

1 0 35 40 59 

2 9 77 203 574 

3 337 432 332 172 

4 638 352 294 0 

5 14 65 115 187 

6 2 39 16 8 

B
C

C
 

1 89 124 80 118 

2 137 100 65 74 

3 145 125 147 149 

4 131 156 89 124 

5 152 163 194 194 

6 346 332 425 341 

M
D

I 

5 337 328 304 596 

9 0 0 0 3 

22 0 0 6 0 

31 0 0 0 58 

44 642 377 261 206 

45 9 167 158 45 

49 12 128 271 92 

 
 
The clusterProfiler package was also used to explore whether a cluster 

conserved  to MF, BP or CC. Figures 6.9-6.11 shows the mapping of clustered 

genes for data 1 (Prostate1) to MF, BP or CC, using BCC, MDI and HIM.  

Interestingly, it can be seen that the results of this are consistent with the 

previous findings for BHI. However, this may reveal part of the issue discovered 

earlier where BCC showed a high index/score. It can also be seen that MDI and 

HIM have some more conserved clusters but fewer – in this case 3 clusters 

each (since this package ignores clusters with a few data points) – whereas 

some clusters in BCC have the same enriched process. In other words they are 

overlapped by other clusters. This supports the notion that relying on BHI gives 

only part of the story because BHI assesses each cluster independently and 

does not look at the overlap between clusters. 
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Figure 6.9. BP (top), CC (middle) and MF(bottom) mapping for clustered genes 

for data 1 that were identified by BCC. 

 



192 
 

 

Figure 6.10. BP (top), CC (middle) and MF(bottom) mapping for clustered 

genes for data 1 that were identified by MDI. 
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Figure 6.11. BP (top), CC (middle) and MF(bottom) mapping for clustered 
genes for data 1 that were identified by HIM. 

 

Figures S6.16:S6.21 show the molecular function, biological process and 

cellular components  mapping of clustered genes from data 2-4 using the three 
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algorithms. This has a similar pattern to the one illustrated above and has also 

shown some conserved clusters. 

6.3.2.1.  Common genes 

I identified 134 genes common across all four cancer sets from the top 10,000 

differentially-expressed genes. Table 6.8 shows the percentage of genes that 

have similar cluster label among all data and within cancer specific type. The 

results are with expectation where the percentage of common genes sharing 

the same label is doubled to the specific type.   

Table 6.8 Percentage of genes that share the same cluster label 

Methods All data prostate breast 

BCC 24.6% 55.9% 55.97% 

MDI 34.32% 57.46% 70.14% 

HIM 25.37% 63.43% 57.46% 

 

 
6.4.   Conclusion 

This chapter has presented an evaluation of the proposed integration method 

against others using some evaluation methods. In this chapter all proposed 

methods in previous chapters have been used for two real applications. I 

showed that the mean pattern model implemented in a hierarchical structure 

was comparable to, and sometimes outperforms benchmark algorithms for real 

data. One issue remains unsolved is the cluster number estimation, as there is 

no common cluster number were found for the real data. This would need 

further investigation. 
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Chapter 7 

The Extensions of MSG for Cross-species Studies 

Abstract 

Cross-species studies using microarray gene expressions have helped in 

discovering genetic diversity among different species, with results that are 

fundamental to comparative genomics. Various approaches have been used for 

cross-species studies, such as homogeneity tests and cluster analysis. A 

homogeneity test provides a homogeneity significance ranking for each gene 

pair, whilst cluster analysis looks at the discovery of co-expressed meta-genes. 

I propose a unified method to extract both homogeneous and heterogeneous 

expression patterns across species. The homogeneous genes stand for genes 

which have the same differential expression pattern across two species. For 

instance, a homogeneous gene may show similar differential expression 

magnitude and the same differential expression direction in both species. The 

heterogeneous genes stand for genes which show different differential 

expression pattern across two species. For instance, a heterogeneous gene 

may show up regulation in one species but down regulation in the other 

species. Or one heterogeneous gene may show differential expression in one 

species but not the other species. The number of homogeneous genes can be 

used to interpret the similarity between two species. For instance, in drug 

design, homogeneous genes may be used for designing a drug which can be 

used for two similar diseases, such as cancer in relation with hormone 

malfunction. But the heterogeneous genes are used to interpret why two 

species respond to a stress differently. Such a gene is also useful for 

developing personalised drug for fighting a disease. The basic idea being to 

model the sum and difference of expressions across species using multi-scale 
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Gaussians which reveal information about homogeneous and heterogeneous 

expression patterns respectively. However, the difficulty of gene expression 

dynamics across stages being unable currently to be identified effectively 

motivated me to consider a further extension of MSG to develop a new method, 

whose basic idea is to model cross-species differential expressions of all stages 

using a multi-scale Gaussian mixture. This multi-scale Gaussian mixture is 

easily able to explore dynamic differential expression pattern across all stages. 
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7.1.  Introduction 

A cross-species study compares multiple data sets from biological/medical 

experiments to reveal how genes are conserved among distantly related 

species [44]. For instance, it is assumed that the primary structure of an 

orthologous gene will be conserved when species evolve, even if their 

evolutionary distance is large [322]. Biological hypotheses in one species on 

conserved genes can therefore be tested in another species if the two species 

are related. For instance, clinical trials for disease intervention are conducted on 

mice prior to being tested on humans, and there exist many such human-mice 

species comparison studies [323-327]. However, due to factors such as sample 

variation and technique resolution that pose challenges in cross-species 

studies, gene expression levels vary significantly across species [44, 322, 328-

330]. 

Two types of quantitative analytical approach are typically used for cross-

species studies. The first approach tests homogeneity of gene expressions 

across species. For example, a homogeneity test based on correlation was 

used to determine the genetic components of alcohol consumption between 

human and rats [331]. Those genes with large correlation coefficients across 

the two species were classified as homogeneous genes. As an extension to 

correlation analysis, which captures only second order and linear information, 

some studies looked at higher order statistics such as mutual information to 

detect early stress responses in rodent models of lung injury across species 

[332]. Evolutionary conservation is a complex implementation of correlation 

analysis for cross-species studies [333-335]. Both correlation analysis and 
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mutual information methods rely on large sample sizes. When examining 

homogeneity across more than two species, the Fisher combined probability 

test [336] can be used when the species number is sufficiently large. It 

combines p values derived from significance analysis carried out separately in 

each species to deliver a combined p value of the dependence across species 

[337-339]. The Fisher combined probability test is unreliable when some p 

values are extremely small [340].  

The second approach uses multivariate analysis such as unsupervised and 

supervised learning algorithms for cross-species studies. Supervised learning 

algorithms are used to examine whether a pattern conserved in one species 

can be a predictive factor for the other species. The algorithms used for 

supervised cross-species studies include artificial neural network [341], linear 

discriminant analysis [145] and k-nearest neighbours [145]. For instance, the 

artificial neural network algorithm was used for identifying conserved and 

divergent transcriptional modules across species [342], linear discriminant 

analysis was used for lung injury biomarker detection across multiple species 

[343], while the k-nearest neighbour algorithm was used for probe sequence 

identification [344].  

As phenotypic data are not always available, or are difficult to acquire, 

unsupervised learning algorithms are more often used in real applications. For 

example, non-negative matrix factorisation (NMF) [57, 58] has been used to 

analyse common meta-genes across two species [60-62]. NMF decomposes a 

gene expression matrix into a meta-gene expression matrix and a coefficient 

matrix of individual gene contributions to the meta-genes. The expression level 

of a gene is then a linear combination of the expression levels of all meta-

genes. Based on the magnitude of coefficients, one can quantify the 
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relationship of each gene to a meta-gene, giving a partition or cluster of the 

data. Common meta-genes can then be identified across species by inspecting 

the separate NMF models. Cluster analysis is another set of important 

unsupervised learning algorithms which partition data explicitly where each 

cluster corresponds to a meta-gene.  

Clustering algorithms including the k-means algorithm, mixture models, and 

self-organizing maps [43] have also been widely used for cross-species studies 

[64, 66, 69, 345]. During cluster analysis, each data point is assigned to a 

cluster and a cluster represents a meta-gene. When using cluster analysis for 

cross-species, one can model a gene expression matrix for each species 

separately [68, 346, 347], or model a combined gene expression matrix from 

multiple species [322, 345, 348]. Separate clustering suits any data size as 

each species is modelled individually to generate a cluster model through an 

unsupervised learning process. Co-expressed patterns across species are then 

extracted after individual cluster models have been generated for each species. 

Cross-species clustering can also be carried out using a combined expression 

matrix where gene expression matrices are normalized separately and then 

merged into one matrix. Clusters of genes from multiple species directly show 

the co-expression of genes across species. However, this approach requires all 

expression matrices to contain the same number of samples. 

A major distinction between the two quantitative approaches is the focus on co-

expressed genes versus the focus on co-expressed meta-genes. A 

homogeneity test can detect exactly which subset of genes is co-expressed 

across species and measure the significance of co-expressions for gene 

ranking. Cluster analysis does not produce statistics of significance but 

summarises information based on meta-genes. One critical issue with cluster 
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analysis is that cluster structures can often be badly estimated when data noise 

is large, leading to false identifications of co-expressed genes. 

 

7.2.  MSG for cross-species study of regulation patterns  

7.2.1.  Motivation 

A major common drawback with the methods discussed is that they cannot be 

used to detect heterogeneous patterns, such as when a gene shows up 

regulation in one species but down regulation in the other species. Clearly, a 

homogeneity test will attribute such a gene with a low significance for 

homogeneity; similarly, cluster analysis only identifies genes with similar 

expressions. Therefore, researchers are motivated to consider a method which 

detects heterogeneous as well as homogeneous differential expression patterns 

(DEPs) across species. This is done by modelling the sum and difference of 

DEs across two species using multi-scale Gaussians (MSG). Simulated and 

real data are used to illustrate the detection of both homogeneous and 

heterogeneous DEPs using the proposed method. 

7.2.2.  Proposed method 

7.2.2.1. MSG model 

This is similar to the main model discussed in Chapter 2, section 2.3 

7.2.2.2. Using MSG 

To use multi-scale Gaussian to model differential expressions (DEs) for a 

microarray expression data, I denoted a DE matrix by 
dN

nnX  1}  {x . It had 
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N rows of genes or probe sets. I used the biological significance [349, 350] of 

the expression data and denoted it by  )E(XZ . 

 

7.2.3  Cross-species MSG (CSMSG) for differential expression pattern 

discovery  

I am interested in discovering two kinds of cross-species differential expression 

patterns (DEPs). The first refers to the subset of genes with similar DE direction 

as well as magnitude across species - homogeneous DEP (DEP0). The second 

refers to a subset of genes with opposite DE directions across species - 

heterogeneous DEP (DEP1). DEP0s and DEP1s inform how a gene 

demonstrates similar or different responses to stress across species.  

I denoted two DE matrices for two species by xdN

nnX  1}  {x  and 

ydN

nnY  1}  {y . Both matrices had N rows of genes or probe sets. I then 

derived a co-differential expression vector )E()E( YXZ  , where ) ,(  . 

The sum and difference of DEs were then used for revealing DEP0 and DEP1 

respectively across species. The MSG posterior probability of a homogeneous 

(heterogeneous) DEG would then lie in the tail regions of the density function of 

the sum (difference) of DEs.  

7.2.4.  Experimental design 

Simulated data were designed to evaluate the method of identifying DEP0s and 

DEP1s. A thousand (1000) genes were simulated across two species, with ten 

control and ten test samples for each species. The control and test samples of 

non-DEGs were random samples of a normal distribution of mean ten and a 
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varying standard deviation. The standard deviation values were 0.5, 0.6, 0.7, 

0.8, 0.9, 1, 1.1, 1.2, 1.3 and 1.4, and the number of samples was five and ten. 

The test samples of DEGs were random samples of a normal distribution with 

mean ten and plus (minus) one unit for up (down) regulated genes.  

Table 7.1 gives the designated number of genes for each combination of 

null/up-regulated/down-regulated behaviour across the two species. The first 

800 were non-DEGs and the next 200 were DEGs (homogeneous or 

heterogeneous). Therefore a design vector (actually a label vector) was 

composed of 800 zeroes and 200 ones. The design vector was denoted by t. 

For testing homogeneous DEGs, 0900:1 t , 01000:951 t  and 1950:901 t . For testing 

heterogeneous DEGs, 0950:1 t  and 11000:951 t . 

Table 7.1. Experimental design for the simulated data with combinations of non-

DEGs (Null), up-regulated DEGs (Up) and down-regulated DEGs (Down) 
across the two species. 

 800 25 25 25 25 25 25 25 25 

Species 1 Null Null Null Up Down Up Down Up Down 
Species 2 Null Up Down Null Null Up Down Down Up 

 

To evaluate how accurate an algorithm would be in identifying hhDEGs, AUR 

was used. AUR – which stands for ‘area under ROC’ curve (where ROC stands 

for ‘receiver operating characteristic’) [143, 144] – is typically used as a 

robustness measure in two-class classification analysis tasks. A ROC curve 

describes how the sensitivity (also called the true positive rate) varies, along 

with the false positive rate (also called the false alarm rate). Varying the cutting 

point for classification between non-DEGs and DEGs gives the multiple pairs of 

false positive rates and sensitivities on a ROC curve. A robust classifier is 

characterized by a ROC curve which is close to the top-left corner, or, 

equivalently, a large AUR. In order to demonstrate the power of MSG, three 
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modified t-test algorithms were used for comparison: these were eBayes [54], 

SAMr [351], and Cyber-T [35]. 

A data set was also downloaded from the Gene Expression Omnibus (GEO), 

accession number GSE44337. The data set originated from a study on 

conserved gene differentiation in aggressive B lymphomas across human 

species (human diffuse large B cell) and mouse species (B6 iMyc). The human 

species expression data was generated using the GPL570 platform with 54,675 

probe sets, and was composed of three samples of the wide type and nine 

tumour samples. The mouse species was generated using the GPL1261 

platform with 45,101 probe sets, and was composed of three wide type samples 

and seven tumour samples. As both data sets had unmatched sample numbers 

between wide type and tumour, we used a one-to-one sample pairing approach, 

i.e., each wide type sample was paired with a tumour sample to generate a DE. 

This generated a 27-dimension DE vector for each gene for the human species 

and a 21-dimension DE vector for each gene for the mouse species.  

Because different data sets in a cross-species study may use different 

platforms, we matched probe sets to gene symbols. For gene symbols with 

more than one probe set, we selected the probe set with the maximum 

variance. For this real data, we also applied modified t-test algorithms for 

comparison. 

7.2.5  Results of CSMSG 
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7.2.5.1   Simulated data 

7.2.5.1.1.  Detecting DEP0 

The AUC measures for the DEP0 detection simulations for the data set with ten 

replicates and variable noise in data were illustrated in Figure 7.1. It can be 

seen that MSG achieved the highest AUC measure among four algorithms, and 

also that the performance of all four algorithms depended on noise in data. 

Importantly, when noise level in data was increased, the difference of AUC 

measure among four algorithms was enlarged. For instance when   was 1.4, 

the median AUC of MSG was greater than 0.95, while that of eBayes and SAMr 

was lower than 0.9. The difference of median AUC was roughly larger than 

0.05.  

 
Figure 7.1. AUC measures for detecting DEP0 for sample size ten. 

 

7.2.5.1.2.  Detecting DEP1 

The AUC measures for detecting DEP1s when sample size was ten and noise 

level varied, are shown in Figure 7.2, where the same pattern can be seen. 
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Figure 7.2. AUC measures for detecting DEP1 for sample size ten. 
 
 
Figure 7.3 shows the AUC measures for detecting DEP0 for sample size five, 

while the AUC measures for detecting DEP1 for sample size five are shown in 

Figure 7.4.  It can be seen that the difference of median AUC between MSG 

and three modified t-test algorithms was further enlarged compared with that 

shown in Figures 7.1 and 7.2.  

 

 
Figure 7.3. AUC measures for detecting DEP0 for sample size five. 
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Figure 7.4. AUC measures for detecting DEP1 for sample size five 
 

7.2.5.2.   Real data 

We extracted 27 DEs for each gene in the human data set and 21 DEs for the 

mouse data set. From a probe set - gene symbol mapping, 13,992 probe sets 

were selected for the cross-species study. Using 0.95 as the critical posterior 

probability, MSG identified 546 homogeneous DEGs and 309 heterogeneous 

DEGs. Using critical p value 0.05, eBayes, SAMr and Cyber-T identified far 

more DEGs compared with MSG, so that altogether 272 homogeneous DEGs 

and 218 heterogeneous DEGs were agreed by all algorithms. Figure 7.5 is a 

Venn diagram showing these four algorithms for two types of DEGs between 

two species. 
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Figure 7.5 Venn diagram using four algorithms for detecting two types of DEGs. 

The left panel shows the  identifying of homogeneous DEGs between two 
species, and the right panel shows the identifying of heterogeneous DEGs. 

 

Figure 7.6 shows the top ten homogeneous DEGs identified by MSG, where six 

genes showed homogeneous up-regulation in both species and the rest showed 

homogeneous down-regulation in both species. These top ten genes were then 

mapped to the Gene Ontology Biological Processes. It was found that 74 were 

identical among 87 biological processes for the human species and 74 

biological processes for the mice species. This shows that the biological 

processes are well conserved for these homogeneous DEGs. Figures S7.1 – 

S7.3 show the top ten homogeneous DEGs identified by eBayes, SAMr and 

Cyber-T respectively. It can be seen that there was some confusion with regard 

to homogeneity. Some of the homogeneous DEGs predicted by eBayes were 

weak. Some of the homogeneous DEGs predicted by SAMr were close to zero 

DE, while some of the homogeneous DEGs predicted by Cyber-T demonstrated 

larger variance.  
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Figure 7.6. Expressions of the top ten homogeneous genes identified by MSG 
across mice (blue) and human (red). The boxes in light blue (red) represent the 
27 DEs for each gene in the human species. The boxes in red represent 21 
DEs for each gene in the mouse species. The vertical axis represents DEs. The 
horizontal line in red represents zero DE. 
 

Figure 7.7 shows the top ten heterogeneous DEGs identified by MSG. When 

mapping these top ten genes to Gene ontology biological processes, it was 

found that 68 were identical among 73 biological processes for the human 

species and 77 biological processes for the mice species. Figures S7.4 – S7.6 

show the predicted heterogeneous DEGs using the modified t-test algorithms. 

Though most of them were fine, some demonstrated unreasonable patterns; for 

instance, some heterogeneous DEGs predicted by eBayes showed median DE 

close to zero DE. 

 
Figure 7.7. Expressions of the top ten heterogeneous genes identified by MSG 

across mice (blue) and human (red). The boxes in light blue (red) represent the 
27 DEs for each gene in the human species. The boxes in red represent 21 
DEs for each gene in the mouse species. The vertical axis represents DE. The 
horizontal line in red represents zero DE. 
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Table 7.2 summarizes the top ten homogeneous and heterogeneous DEGs 

across the human and mice species. Among them, several have been tested 

both in human and mice. For instance, TOMM5 has been tested in human and 

mice tissue for examining the histopathology value and mice used as the 

baseline assay for high-throughput phenotyping [352]. CALU has been 

examined in human tissue for using IRF5 as a tumour suppressor in splenic 

marginal-zone lymphoma [353]. BCAR3 has been studied in relation to B 

lymphoma in both mice and human tissue [354]. ANXA6 was studied in human 

tissue for lymphoma [355], while STMN1 has been studied in human tissue for 

its anti-cancer activity [356]. 

 
 
Table 7.2. Top ten homogeneous and heterogeneous differentially co-

expressed genes.  

Homogeneous Heterogeneous 

Symbol FChuman FCmice Symbol FChuman FCmice 

tomm5 1.61125 1.721 sn 2.489049 -2.4431 

Itch -2.35208 -1.169 dusp6 1.269211 -2.0094 

slc16a1 2.602503 3.691961 calu 2.225852 -1.41457 

anxa6 -1.40117 -1.71861 bcar3 1.141033 -2.92931 

stmn1 2.127447 1.50151 marcks 1.48766 -1.94119 

kpna2 2.883727 1.477786 tap1 1.262543 -2.22466 

mgst1 1.695297 1.64594 fuca1 3.98821 -1.40672 

tpi1 1.719474 1.76643 ccnd2 1.412139 -2.45862 

Txnip -3.59066 -1.64936 adk -2.09514 2.562235 

satb1 -1.25254 -4.37684 cyfip1 3.805123 -1.39123 
Note: FC = Fold Change. 

Finally I used the R package clusterProfiler to map clustered homogeneous 

DEGs and heterogeneous DEGs identified by MSG to GO molecular functions. 

Before the mapping, mixture models implemented in Mclust (an R package) 

were used to cluster DEGs.  
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The mapping of clustered homogeneous DEGs for the human species is shown 

in Figure 7.8.  It can be seen that most clusters were conserved with certain 

molecular functions. Figures S7.7 – S7.9 show the mappings of clustered 

homogeneous DEGs for the mice species, clustered heterogeneous DEGs for 

the human species, and clustered heterogeneous DEGs for the mice species 

that show very conserved molecular functions for clustered DEGs. Two species 

also show a large degree of diversity of mapping pattern; i.e., DEGs from 

different species tend to be clustered in different ways. 

 

Figure 7.8. Molecular function mapping for clustered homogeneous DEGs 
identified by MSG for the human species. C1 – C15 represent clusters identified 
by Mclust. 

 

 

7.3.  MSG for gene expression dynamic in different stages across species  

7.3.1.  Motivation 

Most cluster models search for non-overlapping centres. However when 

examining how genes show differential expression (DE) across species, the null 

hypothesis assumes no difference between the means from the data of different 
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experimental conditions; i.e., 
210 :  H  or 0:0 H , where 

1  is the mean of 

the data of experimental condition 1, 
2  is the mean of the data of experimental 

condition 2, and  is the mean of the data of one experiment. A very small DE 

implies the impossibility of rejecting the null hypothesis. A large absolute value 

of DE implies the likelihood of rejecting the null hypothesis. Because of this, if 

DE data is clustered, it is of more interest to place cluster centres at the origin of 

a Euclidean space. In other words, the cluster centre of differentially expressed 

genes (DEGs) and the cluster centre of non-DEGs (NEGs) should overlap at 

the origin. 

Therefore a multivariate cross species method is proposed, the basic idea of 

which is the employment of a multi-scale Gaussian mixture (MSG). MSG was 

used to partition a DE matrix derived from multi-stages gene expression data 

from two species into two clusters. One contained genes with small DE values 

across all stages and the other contained genes with large DE values at least at 

one stage. A gene which shows small DE values across all stages is certainly a 

gene which plays a key role for the similarity between species. A set of genes 

which show large DE values across all stages is not sufficient to include genes 

which play a temporal role of species diversity. Thus it is of interest to search for 

genes which contribute to temporal species diversity.  

7.3.2. The property of DE 

DE is commonly used for testing the null hypothesis that a gene shows no 

difference of expression between two experimental conditions. Studies on the 

robustness of biological systems have indicated that a biological system 

normally dispatches a small number of genes to respond to a stress [129, 130]. 

This means that a majority of DEs distribute densely around the origin (zero) 
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and their null hypotheses cannot be rejected. The other subset of DEs 

distributes sparsely away from the origin and their null hypotheses are rejected. 

In a one dimensional case, a sharp peak is seen around zero (a Gaussian 

distribution with a very small variance) and two long tails (a Gaussian 

distribution with a very large variance or a uniform distribution).  

In terms of hypothesis test, we have three categories of hypotheses. First, those 

DEs which are around zero are statistically non-differential. Second, those DEs 

which are positive and away from the origin are statistically up-regulated. Third, 

those DEs which are negative and away from the origin are statistically down-

regulated. It can be seen that all DEs are tested against the origin for the null 

hypothesis, 0:0 H . This makes it a natural consideration to use DSG as 

described below. 

7.3.3.   Multivariate Multi-Scale Gaussian (MVMSG) 

A DE matrix is denoted by 
N

nn 1}  {  xD , where 
M

n x , N is the number of 

data points, and M is the number of samples (data dimension). A multi-scale 

Gaussian mixture [357, 358] is a special case of mixture models [59, 359] 

where all Gaussians in a mixture have similar mean vectors. A mixture model of 

K Gaussians is expressed by 

 


K

k
kkk ,wf

1

)|()|(  xx G  (7.1) 

where M

k  , MM

k

  and kw are the centre, the covariance matrix and 

mixing coefficient (weight) of the kth Gaussian. )|( kk ,xG  is the Gaussian 

distribution centred at 
k  with a covariance matrix 

k , which is defined as 
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M

kk , 


xG  
(7.2) 

 

where )()( 1

2

1

kk

t

kk   
xx . The parameter set of the mixture model is 

expressed by K

kkkk ,w 1),(   . When  

C 21   (7.3) 

it is then an MSG. Note that C is a constant. Figure 7.9 illustrates an example 

of multiple Gaussians with zero mean and 20 variable variances (from one to 

20). When we draw samples from them to form a new distribution, this is a 

MSG.  

 
Figure 7.9. Gaussians with 20 variances 

 

If K is two, MSG becomes a special-case dual-scale Gaussian mixture (DSG) 

defined below 

)|()|()|( 111000  ,w,wf  xxx GG  (7.4) 

where }  , , { 101010 w,, w,    is the model parameter set and 110  ww .  

7.3.3.1.   Homogeneous DSG 

Homogeneous DSG (hoDSG) was introduced for independent and 

homogeneous variance in all dimensions 
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)(diag 2

kk   (7.5) 

where }2,1{k . In this model, all replicates were assumed to have identical and 

independent distribution. Equation (7.2) was rewritten as 

))(exp()()2()|( 2

2

122

kkkkk

MM

,  


xxG  (7.6) 

where 
2 kk  . The likelihood that N data points (genes) were considered as 

random samples of parameterised model was defined as  




N

n
nfP

1

)|()|(  xD   (7.7) 

Inverse gamma distributed priors were placed (conjugated) on the variances: 

) exp(
)(

),|( 2
)1(2

2 
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

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k

a

k

a

k
kkk b

a

b
baIG

kk




  (7.8) 

The mixing coefficients were modelled using non-informative priors and 
0  and 

1  were each assigned a Gaussian prior with zero mean and small variances m  

as shown below 

),0(~ 2
Ikk  G  (7.9) 

In this study, the prior means were set to zero on the basis of the modelling 

requirement of DE values as previously mentioned (section 7.5.2). This 

constraint was made to force all the hypothesis testing to have the same 

benchmark – i.e., zero for the null hypothesis. In the study both k  is 0.01. The 

posterior was then defined below and was approximated by a product of a 

Likelihood model and a prior model: 
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where }  , , , , , { 101010  bbaa  was the hyper-parameter set. The posterior was 

defined below with the constants removed 
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where LK was the likelihood, VP was the variance prior, MP was the mean 

vector prior and 
2 kk  . The log-posterior was defined as 
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The model parameters were estimated by maximising the log-posterior, giving 

the iterative variance update rule as 

)1(2
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1

1
2

12














k
N
n nk

k
N
n knnk

kk
aM

b






x
 (7.13) 

where nk  is defined as: 

);(
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n
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x 


G
 (7.14) 

The iterative update rule for the mixing coefficients was defined as  
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and the iterative update rule for the centres (mean vectors) was defined as 
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where ],1[ Mm . 

7.3.3.2.  Heterogeneous DSG 

For a heterogeneous DSG (heDSG), it was assumed that replicated samples 

displayed different variances. In this model, replicates were presumed to be 

independent, but with different variances. Hence, the covariance matrix was 

defined as 
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The Gaussian density for heDSG was defined as 
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where }2,1{k . The log-posterior of this model was defined as 
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The model parameters were also estimated by maximising the log-posterior. 

The variance update rule was defined as 
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Others were similar to hoDSG. 

7.3.4Training DSG 

The training process of DSG was initiated by assigning 0.5 to 
kw , 1 to 

2

km , and 

0 to 
k . The hyper-parameters were determined based on the empirical DE 

distribution. For both Gaussians, the variance hyper-parameters 
0a  and 

1a  were 

set to one, and 
0b  was set to be the standard deviation of 90% of the smallest 

absolute DEs since it was assumed that the majority of DEs corresponded to 

those of null genes. 
1b  was the 90th percentile of all DEs. 

7.3.5   Prediction 

After the training convergence was approached, the null density (with a small 

variance) and the alternative density (with a large variance) were estimated for 

each gene. Equation (7.1) defined the full density. The Bayes rule was then 

used to predict whether a gene was differentially expressed across species or 

not. The null probability of a gene, whose DE vector was denoted by x , was 

defined as 
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The alternative probability was defined as  



218 
 

)|(

)|(
)(Pr 111

1




x

x
x

f

,w 


G
 (7.22) 

A gene was predicted as a DEG if 

)(Pr)(Pr 01 xx   (7.23) 

Otherwise a gene was predicted as a NEG. 

7.3.6.   Data 

7.3.6.1. Background 

Pre-implantation embryonic development (PED) goes through a number of 

developing stages where cells grow and divide from fertilization till the embryo 

forms into a blastocyst which is implanted into the tissue of the uterus. A 

complete PED involves two major processes; zygote genome activation and 

embryonic cell compaction. Zygote genome activation is a genetic transition 

process in which the embryonic cells degrade maternal genetic material 

fertilized up to this stage. Along with the degradation of maternal material, 

zygote DNA is activated and maternal and paternal genetic material are 

combined [360]. Embryonic cell compaction is a process for compacting 

loosely-connected embryonic cells to form a tight structure called morula, which 

eventually forms the blastocyst [360, 361]. 

PED is critical for human and animal health because defects in this early stage 

result in the malfunction of embryonic development, leading to future problems 

such as hypertension and intrauterine growth retardation [362-365]. Intensive 

studies on embryonic development processes have been carried out involving 

different species, such as Drosophila [366, 367], human and mouse [365], 

mouse and rat [368], and bovine [369], to name but a few. It was found that 
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roughly 15700 genes are expressed in mice during PED [370]. Other 

mammalian species expect similar genes expressed due to the relatively 

conserved nature of PED [360]. This promotes the studies of PED across 

species using biological data such as oxygen consumption [371], glucose 

transporters [372], amino acid transport [373], and gene expression [374]. 

7.3.6.2.  GSE18290 data set 

The raw expression data used in this section was downloaded from the Gene 

Expression Omnibus (GEO); its accession number was GSE18290. The data 

was generated for a gene expression-based cross-species PED study, using 

three species; human, bovine and mouse. Table 7.3 summarizes the data for 

these three species in this data with six stages. The stages were one-cell, two-

cell, four-cell, eight-cell, morula and blastocyst. 

Table 7.3 Details of the data downloaded from GEO for the three species used 

in the analysis. 

 Human Bovine Mouse 

Platform GPL570 GPL2112 GPL339 
Probe sets 54675 24128 22690 
Replicates 3 2 3 

 

7.3.6.3. Common gene extraction 

These three species were experimented at different platforms and the mapping 

from probe set IDs to gene symbols was therefore different. The platforms used 

by these three species were compared first to find common gene symbols. 

Among multiple probe sets which were mapped to one gene symbol, the one 

probe set that was selected had the largest variance in expressions. This ended 

up with 1180 genes which were common to all three species. 
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7.3.6.4. Data organization 

These three species were organized as three raw expression matrices, each 

with 1180 rows for 1180 genes and a number of columns for replicates at six 

stages. The expressions of six stages were sequentially ordered from one-cell 

to blastocyst in columns. The main focus was to study how the human species 

was similar or different from the bovine and mouse species. For this purpose, 

we built two models: the human species versus the bovine species (referred to 

as the bovine model) and the human species versus the mouse species 

(referred to as the mouse model). What we wanted to explore was a subset of 

genes which were similar between three species and a subset of genes which 

showed significantly differential expression between the human species and the 

bovine/mouse species. Two DE matrices were formed from three raw 

expression matrices. One matrix was for the bovine model and the other was for 

the mouse model. Each matrix was formed using the base two logarithm of fold 

change ratio between two species, i.e. between the human species and the 

bovine/mouse species. The DSG was used to model each of these two 

matrices. 

7.3.7.   Results of MVMSG 

7.3.1.1. Comparison between hoDSG and heDSG 

The first thing was to define what a DEG was in this cross-species PED study. 

As noted, there were two models – the bovine model and the mouse model – 

both of which were used to examine how the human species was different from 

the other two species. My wish was to examine which gene showed conserved 

expression for PED across three species and which gene showed significant 

DE for PED between human and bovine/mouse species. A gene that showed 
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conserved expression across three species was called a cross-species NEG or 

simply NEG. A gene that showed DE between the human species and other two 

species was called a cross-species DEG or simply DEG.  

Figure 7.10 shows the Venn diagrams of detected NEGs and DEGs between 

the human species and other two species using hoDSG and heDSG. NEGs 

were identified when the posterior probability was less than 0.05. DEGs were 

identified when the posterior probability was greater than 0.95. Both NEGs and 

DEGs were identified from the bovine as well as the mouse model. More 

predictions were made by heDSG and all the predictions made by hoDSG were 

covered by the predictions made by heDSG.  

 

Figure 7.10. Venn diagrams for comparing hoDSG and heDSG for DEGs (right 

panel) and non-DEGs (left panel), between human and other two species. 
 

7. 3.1.2. Comparison between hoDSG and modified t-test 

Three modified t-test algorithms were used for this cross-species PED study. 

These algorithms were eBayes [54, 116], SAMr [351], and Cyber-T [35]. Figure 

7.11 shows the Venn diagrams for detecting NEG (left panel) and DEG (right 

panel) across three species using four algorithms which agreed for 48 

predictions of NEGs. They showed little difference in expressions between the 

human species and the bovine species and between the human species and 
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the mouse species. They therefore played a key role for these three species to 

share similar PED process. 

The thresholds for selection were 0.05 for the posterior probabilities generated 

by the hoDSG model and 0.05 for the p values generated by three modified t-

test algorithms. A gene was predicted as NEG expressed only when it showed 

very insignificant difference in expression between the human and bovine 

species as well as between the human and mouse species. The four algorithms 

also agreed for 114 predictions of DEGs across three species. The identification 

of these DEGs also followed the same pattern when identifying NEGs. This 

means that these 114 DEGs showed significant DE between the human and 

bovine species as well as between the human and mouse species. 

  
Figure 7.11. Venn diagrams for comparing four algorithms for identifying NEG 

(left panel) and DEG (right panel) across three species. 
 

DSG and the modified t-test algorithms were developed based on different 

assumptions. The modified t-test algorithms followed the principle of t-test in 

that a gene is predicted as a differentially expressed one unless the mean 

difference of expressions from two conditions is sufficiently large and the pooled 

variance is sufficiently small. For this six-stage cross-species PED study, the 

aim was to ascertain the underlying cross-species gene expression dynamics. 
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Unfortunately, however, this kind of pattern may not be easily explored using 

the modified t-test algorithms.  

It worth to mentioned that the overlaps among these method are small. The 

reason behind that is each method was designed to tackle an issue as 

explained in the previous chapters. In this thesis, I have compared them on both 

simulated and real data and showed that the proposed method outweighs 

others. 

A principal component analysis was carried out using the first two principal 

components to draw two-dimensional volcano plots to visualize the relationship 

between PED stages and prediction values (posterior probabilities from hoDSG 

and p values from the modified t-test algorithms). The left panel of Figure 7.12 

shows the PCA-volcano plot of the Cyber-T model built for the bovine model. 

This displayed a flying bird pattern in which two wings represented two groups 

of DEGs – down-regulated and up-regulated ones. The hoDSG model did not 

work this way, but instead explored DEGs for all directions of PED stages. The 

right panel of Figure 7.12 clearly shows a cylindrical pattern of the PCA-volcano 

plot for the bovine model. On the top, all DEGs were sparsely distributed away 

from the centre of the cylinder, with different directions indicating DEs at 

different PED stages. 
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Figure 7.12.  2D volcano visualization for the Cyber-T model (left panel) and 

the hoDSG model (right panel) built for human-bovine cross-species study. The 
Z-axis of the Cyber-T volcano plot uses negative base ten-logarithm of p values, 
but the Z-axis of the hoDSG volcano plot uses posterior probabilities. PC1 and 
PC2 are the first two principal components derived from principal component 
analysis. 
 

Figure 7.13 shows the top ten cross-species DEGs. Nine of them showed 

down-regulation in the human species compared with the other two species and 

only one showed up-regulation in the human species. Figure 7.14 shows the 

cross-species NEGs. In both cases, all showed very similar expressions. 

 
Figure 7.13. Top ten cross-species DEGs detected by hoDSG. 
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Figure 7.14. Top ten cross-species NEGs detected by hoDSG  
 

 

The hoDSG model was also used to explore cross-species DE dynamics across 

PED stages. Figure 7.15 shows the DEGs detected by hoDSG, demonstrating 

highest level of change in the one-cell stage of PED for both the bovine and the 

mouse model. This pattern can also be explored for the other five stages of 

PED.  

 
Figure 7.15. Cross-species DEGs at one cell stage of PED detected by hoDSG, 

where the vertical axes stand for normalized fold change. 
An arbitrary fold change threshold (6) was used to select genes which showed 

cross-species DE at a specified PED stage, and was examined to see how 

hoDSG and three modified t-test algorithms detected them. Table 7.4 shows 

the fold change values for six genes in six stages, where the detected genes all 

showed large absolute fold change values at the blastocyst PED stage, but 

smaller absolute fold change values at the other five PED stages. 
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Table 7.4. Six genes were selected with absolute fold change values larger 

than 6 in the stage of blastocyst and absolute fold change values less than 6 in 
other five stages. The figures are absolute fold change values for six genes 
across six PED stages for the human-bovine model. M stands for morula stage 
and B for the blastocyst PED stage 

gene 1 cell 2 cell 4 cell 8 cell M B 

cpe 2.6 0.9 0.3 1.6 5.1 6.5 
slc7a5 0.4 1.0 0.6 0.3 3.7 6.2 
fdps 4.2 2.6 4.0 3.4 1.1 6.7 
vapb 3.5      3.7 5.6 1.3 4.4 7.1 
plcg1 1.8 3.0 2.7 4.5 4.0 7.4 
fgfr3 1.7 2.6 2.1 1.0 5.7 6.8 

 

Table 7.5 shows the posterior probability derived from the hoDSG model and p 

values derived from three modified t-test models. The posterior probabilities of 

the hoDSG model showed that these genes were differentially expressed. 

However all three modified t-test models failed to recognize stage-specific 

cross-species DEGs. The analyses for other species at other stages showed 

similar patterns. 

Table 7.5. The posterior probabilities of hoDSG and p values of three modified 

t-test algorithms for six genes, shown in Table 7.4. 
Gene DSG eBayes SAMr Cyber-T 

Cpe 1 0.97 0.91 1 
slc7a5 1 0.95 0.91 1 
Fdps 1 0.95 0.91 1 
Vapb 1 0.38 0.84 0.73 
plcg1 1 0.27 0.61 0.39 
fgfr3 1 0.08 0.23 0.10 

 

 

7.4.  Conclusion 

Here I have presented a new method for exploring homogeneous and 

heterogeneous DEPs across species using multi-scale Gaussian mixtures. The 

algorithm is motivated by the limitations in existing homogeneity tests and 

cluster analysis techniques for cross-species studies. Here an MSG model was 

used to characterise the sum and difference of DEs across species for 

homogeneous and heterogeneous DEP discovery respectively.  I used 
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simulated as well as real data to illustrate the efficacy of this method in 

revealing both homogeneous and heterogeneous DEPs. I also presented a new 

method for cross-species PED study, by identifying genes which are conserved 

between species (non-differentially expressed across species) and which are 

diverse between species (differentially expressed across species) during PED.  

The new model is called multivariate dual-scale Gaussian mixture, and the gene 

expression dynamics in PED across species can be satisfactorily explored by 

the algorithm. In applying this new algorithm to the data, I show that it is 

superior to the modified t-test algorithms for this purpose. The modified t-test 

algorithms are simple and have been used for cross-species, but they are used 

for detecting homogeneous cross-species DEGs only, and not stage-specific 

cross-species DEGs. 
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Chapter 8 
Conclusion and future projects 

8.1.   Reflections on the thesis  

This chapter reflects on the thesis as a whole and links its achievements to its 

objectives, which included a complete system for integration. It highlights some 

key improvements to the current work for future investigation.  

In attempting to address some issues toward integration this thesis has 

successfully achieved the three main aims that were noted in Section 1.2, as 

follows: 

 Chapter 2 emphasised the limitations of current algorithms for identifying 

differentially expressed genes in details with illustrative examples. It also 

introduced the MSG method for differential gene identification since it 

predicts more robustly accurately, and this method was widely investigated 

on both simulated and real data. However, this is the pre-processing method 

for the whole system: I had selected the top differential gene for integration 

as one of the main applications had only 2 replicates and none of the 

modified t-test methods worked well in such data.   

 The hBI introduced in Chapter 3 allowed the use of different variance for the 

2 modes in order to identify bimodal genes. This proved that using such a 

method enhanced bimodality prediction. However, this method is sensitive to 

the outliers and I used ad hoc methods to consider subgroups with only 5 % 

or less as outliers. This chapter met the designated objective 2 in section 1.2. 

It also identified the bimodal genes which are important in cancer research. 
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This method outweigh others as it is able to identify different types of bimodal 

distributions. It can be see that a clear bimodal genes was missed by all 

other methods and identified by hBI. It was used in my integration system as 

a pre-filtering method where my proposed method was based on a mean 

pattern model. 

 A comprehensive analysis of bimodality among large cancer data was 

successfully applied in Chapter 4, and revealed that bimodality is common in 

cancer. I found that 2% of genes were bimodal at the critical p value  p=0.01, 

and this could reach up to 8% at the significance level of p=0.05. As a result, 

I removed the top 10% as bimodal and outlier in the integrative analysis. 

 HIM was presented in Chapter 5 and was compared to current integration 

methods, showing comparable performance. Chapter 6 included various 

applications using the proposed integration system. 

 The thesis concluded with developments in MSG for cross species studies in 

Chapter 7. One such development was cross-species differential expression 

pattern discovery (CSMSG). The aim was to explore homogeneous and 

heterogeneous DEPs across species using multi-scale Gaussian mixtures. 

The second was called multivariate multi-scale Gaussian mixture (MVMSG). 

This aimed to identify genes that are conserved/diverged between species in 

many stages. 

The proposed integration system has been shown to be a highly useful 

technique for integrating biological/medical data. The system contains three 

main components which can also be used separately for a specific purpose. 

The first component is used to identify the differentially expressed genes, the 

second to detect the bimodal genes and the third to apply the mean pattern 

model for integration. 
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8.2  The Limitations 

Like most clustering methods, the proposed integration model suffers from 

estimating the number of clusters, especially when there is a large vector 

through pooling all data into it to estimate the number of clusters. However, this 

can be enhanced by vectorising the mean value for each gene in each set, 

instead of using all sample expressions. Another issue is that using normalising 

techniques does not always make the data comparable, particularly when 

different data types are included. Consequently, I have stuck to my proposed 

method to normalise the data as MDI did. Another issue is that the estimation of 

parameters is not always good enough if the data is noisy. 

It has been demonstrated that hBI required large samples to be included in the 

analysis. This limits the use of this algorithm in small samples. In addition, this 

model is sensitive to outliers. For example, if one sample is higher than other 

samples it will gain small p value. One way to solve this issue was used in 

chapter 4 is to remove the subgroup of samples if they are less than 5% of the 

total samples. However this is arbitrary set in order to make a fair comparison 

with other methods. 

8.3 Future studies and the use of models 

8.3.1.  The HIM model 

The most obvious direction for future research is to employ a Bayesian learning 

framework to enhance the parameter estimation. I used Likelihood maximisation 

in the designing of my algorithm, as it is faster as well as good for debugging 

and development procedures. Also an important future study will be to 
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investigate my model in the context of using different genomics data. This study 

aims to integrate methylation data, DNA copy number and gene expression 

data. It is has been known that epigenetic and genetic variables interplay. 

However, their complex association is still far from being explored. Modelling 

their relationship is even more difficult. My future work is to examine how 

epigenetic variables associate with genetic variables, specifically, how possibly 

genes are regulated by epigenetic variables.  

8.3.2.   The MSG model 

As has been seen, MSG is simple to implement and can be used in different 

contexts. It can also be extended to deal with more general problem settings in 

my future work. 

8.3.3.   The  hBI model 

I admit that I have introduced a hyper-parameter, i.e., a trade-off parameter. In 

order to remove this hyper-parameter, my future research will employ the 

Bayesian learning framework to overcome this difficulty. Nevertheless, the 

simulations that I have documented all show that my new algorithm is better 

than the benchmark algorithms in simulated data sets. In the application to real 

data sets, I show that my new algorithm is partially consistent with benchmark 

algorithms and that it also provides some new insights to the analysis of 

bimodal genes. Importantly, most of the bimodal genes predicted by my new 

algorithm do show typical bimodality, although a small percentage of my unique 

predictions was unfortunately not favoured by benchmark algorithms. I therefore 

look forward to some even more advanced approach, such as meta-analysis of 

prediction, to deliver even more robust predictions of bimodal genes.  
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It has been reported that some genes always showing bimodal distribution in 

cancer such as HER2 and they become a good candidate for subgroups 

identifications or so. Thus, I have downloaded more than 200 cancer datasets 

and going to identify bimodal genes in each dataset. Further analysis of those 

genes with the clinical data information provided with each dataset are required 

for more understanding of this phenomenon.  
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Table S2.1. Top 20 genes predicted by four algorithms for GDS3138. The p values 
for eBayes cyber and SAM algorithms and the null probabilities of MSG 
algorithms. The first column is for the probe ID and Gene symbol  
probe#symbol eBayes cyber SAM MSG 

1559646_a_at#NCRNA00184 0.000378546 0 1.83E-05 1.70E-29 

233626_at#AK024580 0.000504021 6.73E-12 1.83E-05 2.85E-27 

202728_s_at#LTBP1 0.000570842 1.10E-09 1.83E-05 2.50E-22 

224588_at#XIST 0.000634478 0 1.83E-05 1.72E-39 

1561245_at#BC040302 0.000672461 2.95E-14 1.83E-05 2.62E-20 

1552579_a_at#ADAM21 0.000680944 2.27E-11 1.83E-05 4.41E-17 

208395_s_at#URB1 0.000691311 5.55E-16 1.83E-05 7.87E-21 

229275_at#IGFN1 0.000729201 1.44E-15 1.83E-05 9.92E-20 

213432_at#MUC5B 0.000810501 2.46E-08 1.83E-05 2.39E-18 

209530_at#CACNB3 0.000881455 4.76E-12 2.74E-05 3.58E-21 

219643_at#LRP1B 0.00093325 4.52E-09 2.74E-05 1.07E-13 

228100_at#C1orf88 0.000956674 7.04E-08 2.74E-05 1.24E-13 

242830_at#AI092709 0.000976669 3.34E-08 2.74E-05 4.03E-13 

224590_at#XIST 0.000987926 0 1.83E-05 2.72E-35 

220784_s_at#UTS2 0.001015663 9.93E-07 4.57E-05 1.77E-13 

217439_at#AL122122 0.001046902 1.06E-10 5.49E-05 6.26E-14 

204750_s_at#DSC2 0.001050127 3.88E-07 2.74E-05 3.30E-12 

1554406_a_at#CLEC7A 0.001070305 3.42E-06 1.83E-05 6.11E-12 

219341_at#CLN8 0.001124405 8.29E-13 0.000101 3.74E-15 

206534_at#GRIN2A 0.001142977 6.23E-08 5.49E-05 5.76E-13 

1553102_a_at#CCDC69 0.009305337 0 0.011294 0.007066 

1553575_at#ND6 0.012903396 0 0.016049 0.025642 

1554462_a_at#DNAJB9 0.009282069 0 0.010947 0.021451 

1554711_at#CALHM3 0.003893065 0 0.00267 0.00015 
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1555037_a_at#IDH1 0.021629796 0 0.028404 0.138832 

1555536_at#ANTXR2 0.039657922 0 0.032968 0.006456 

1555673_at#LOC730755 0.013200221 0 0.017055 0.017248 

1555764_s_at#TIMM10 0.023415629 0 0.027179 0.168819 

200632_s_at#NDRG1 0.009548824 0 0.011559 0.01949 

200644_at#MARCKSL1 0.016277437 0 0.019497 0.158759 

200696_s_at#GSN 0.008144209 0 0.007791 0.019763 

200799_at#HSPA1B 0.051451304 0 0.057202 0.213425 

200825_s_at#HYOU1 0.025418387 0 0.026145 0.360469 

200831_s_at#SCD 0.003695327 0 0.002734 1.37E-05 

200832_s_at#SCD 0.008497816 0 0.009803 0.002794 

200875_s_at#NOP56 0.026616607 0 0.027901 0.218476 

201015_s_at#JUP 0.006542058 0 0.007124 0.000804 

201147_s_at#TIMP3 0.009283089 0 0.007819 0.036568 

201148_s_at#TIMP3 0.008835346 0 0.010572 0.011281 

1568871_at#BC032557 0.00120076 1.31E-09 2.74E-05 4.52E-12 

1561564_at#BC030741 0.001157108 6.79E-08 3.66E-05 1.68E-12 

1569719_at#BCL2L14 0.001327253 4.81E-05 5.49E-05 3.38E-11 

221900_at#COL8A2 0.005801259 5.55E-16 0.001683 2.91E-22 

223749_at#C1QTNF2 0.001333088 1.57E-12 0.000119 1.65E-21 

213668_s_at#SOX4 0.00523325 1.75E-12 0.001573 4.31E-20 

1556760_a_at#R16907 0.015633875 4.31E-14 0.006392 4.06E-19 

232417_x_at#ZDHHC11 0.003449768 4.94E-14 0.001097 1.41E-17 

205875_s_at#ATRIP 0.005874117 7.01E-10 0.002341 2.13E-17 

217270_s_at#DYRK1B 0.004206346 4.38E-09 0.001372 2.32E-17 

207838_x_at#PBXIP1 0.006526518 4.03E-08 0.002588 2.72E-16 

227082_at#AI760356 0.002264103 7.67E-11 0.000631 7.56E-16 
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Table S2.2. Top 20 genes predicted by each of the four algorithms for GDS2865. The 
p values for eBayes cyber and SAM algorithms and the null probabilities for 
MSG algorithms. The first column is for the probe ID and Gene symbol  
probe#symbol eBayes cyber SAM MSG 

201110_s_at#THBS1 1.13E-07 0 4.49E-05 3.22E-117 

209839_at#DNM3 3.46E-07 0 4.49E-05 4.37E-182 

205523_at#HAPLN1 5.28E-07 0 4.49E-05 1.01E-77 

209942_x_at#MAGEA3 7.15E-07 0 4.49E-05 1.79E-97 

200665_s_at#SPARC 9.74E-07 0 4.49E-05 1.54E-126 

220784_s_at#UTS2 1.02E-06 0 4.49E-05 0 

204455_at#DST 1.95E-06 0 4.49E-05 9.03E-49 

204932_at#TNFRSF11B 2.40E-06 0 5.61E-05 3.43E-127 

214612_x_at#MAGEA2B 2.90E-06 0 6.73E-05 5.88E-101 

211675_s_at#MDFIC 3.41E-06 0 4.49E-05 2.35E-54 

219936_s_at#GPR87 4.00E-06 0 4.49E-05 1.85E-46 

214476_at#TFF2 4.97E-06 0 4.49E-05 3.03E-31 

204933_s_at#TNFRSF11B 6.05E-06 0 6.73E-05 1.72E-100 

213273_at#ODZ4 6.33E-06 0 6.73E-05 8.48E-40 

209488_s_at#RBPMS 7.51E-06 0 6.73E-05 8.81E-51 

206710_s_at#EPB41L3 8.01E-06 0 6.73E-05 1.59E-37 

201884_at#CEACAM5 8.27E-06 0 7.85E-05 7.92E-97 

209487_at#RBPMS 8.56E-06 0 6.73E-05 6.97E-51 

205524_s_at#HAPLN1 8.79E-06 2.22E-16 4.49E-05 6.24E-30 

212681_at#EPB41L3 8.92E-06 0 6.73E-05 6.61E-37 

201042_at#TGM2 0.000585 0 0.001683 4.19E-63 

201108_s_at#THBS1 1.80E-05 0 7.85E-05 1.33E-52 

201109_s_at#THBS1 3.73E-05 0 0.000146 5.44E-96 

201242_s_at#ATP1B1 1.48E-05 0 7.85E-05 5.75E-48 

201243_s_at#ATP1B1 0.000413 0 0.001313 9.01E-34 
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201362_at#IVNS1ABP 0.000566 0 0.001705 2.31E-30 

201667_at#GJA1 9.40E-05 0 0.000348 1.73E-54 

202625_at#LYN 0.0005 0 0.0012 7.51E-12 

202626_s_at#LYN 1.22E-05 0 5.61E-05 2.13E-25 

203021_at#SLPI 1.31E-05 0 7.85E-05 1.10E-74 

203691_at#PI3 2.58E-05 0 8.98E-05 7.58E-47 

203757_s_at#CEACAM6 8.97E-06 0 6.73E-05 1.69E-54 

203889_at#SCG5 0.000114 0 0.00037 1.38E-38 

203980_at#FABP4 1.03E-05 0 6.73E-05 5.45E-30 

204597_x_at#STC1 7.01E-05 0 0.000247 3.58E-31 

204620_s_at#VCAN 0.000111 0 0.000213 3.67E-15 

200696_s_at#GSN 0.000131 4.20E-08 4.49E-05 2.52E-08 

203180_at#ALDH1A3 1.20E-05 2.93E-13 4.49E-05 1.24E-23 

205680_at#MMP10 4.56E-05 1.82E-09 4.49E-05 1.25E-13 

208078_s_at#SIK1 1.99E-05 3.44E-11 4.49E-05 6.81E-18 

214496_x_at#MYST4 3.09E-05 4.70E-10 4.49E-05 1.14E-15 

216316_x_at#GK3P 4.72E-05 1.06E-12 4.49E-05 1.04E-13 

219304_s_at#PDGFD 2.46E-05 2.81E-11 4.49E-05 3.28E-17 

221805_at#NEFL 1.36E-05 0 4.49E-05 2.97E-23 

212667_at#SPARC 1.02E-05 0 7.85E-05 2.34E-63 

211657_at#CEACAM6 3.40E-05 0 0.000135 3.04E-63 

208116_s_at#MAN1A1 5.87E-05 0 0.000236 1.90E-57 

209035_at#MDK 1.74E-05 0 7.85E-05 5.64E-56 
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Table S2.3, The genes which have zero p values given by Cyber-T. The table shows 

the p values and the null probabilities corresponding to the zero p  genes identified by 

cyber for the prostate cancer data set, GDS2865.  

 eBayes cyber SAM MSG 

200665_s_at#SPARC 9.74E-07 0 4.49E-05 1.54E-126 

201042_at#TGM2 0.000585 0 0.001683 4.19E-63 

201108_s_at#THBS1 1.80E-05 0 7.85E-05 1.33E-52 

201109_s_at#THBS1 3.73E-05 0 0.000146 5.44E-96 

201110_s_at#THBS1 1.13E-07 0 4.49E-05 3.22E-117 

201242_s_at#ATP1B1 1.48E-05 0 7.85E-05 5.75E-48 

201243_s_at#ATP1B1 0.000413 0 0.001313 9.01E-34 

201362_at#IVNS1ABP 0.000566 0 0.001705 2.31E-30 

201667_at#GJA1 9.40E-05 0 0.000348 1.73E-54 

201884_at#CEACAM5 8.27E-06 0 7.85E-05 7.92E-97 

202625_at#LYN 0.0005 0 0.0012 7.51E-12 

202626_s_at#LYN 1.22E-05 0 5.61E-05 2.13E-25 

203021_at#SLPI 1.31E-05 0 7.85E-05 1.10E-74 

203691_at#PI3 2.58E-05 0 8.98E-05 7.58E-47 

203757_s_at#CEACAM6 8.97E-06 0 6.73E-05 1.69E-54 

203889_at#SCG5 0.000114 0 0.00037 1.38E-38 

203980_at#FABP4 1.03E-05 0 6.73E-05 5.45E-30 

204455_at#DST 1.95E-06 0 4.49E-05 9.03E-49 

204597_x_at#STC1 7.01E-05 0 0.000247 3.58E-31 

204620_s_at#VCAN 0.000111 0 0.000213 3.67E-15 

204749_at#NAP1L3 0.000231 0 0.000673 2.29E-48 

204751_x_at#DSC2 6.29E-05 0 0.000247 2.92E-48 

204818_at#HSD17B2 1.00E-05 0 7.85E-05 5.52E-52 

204932_at#TNFRSF11B 2.40E-06 0 5.61E-05 3.43E-127 
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204933_s_at#TNFRSF11B 6.05E-06 0 6.73E-05 1.72E-100 

204990_s_at#ITGB4 8.91E-05 0 0.000269 5.43E-22 

205009_at#TFF1 0.00026 0 0.000572 1.41E-13 

205016_at#TGFA 0.000172 0 0.000482 4.59E-29 

205376_at#INPP4B 0.000116 0 0.00037 3.22E-34 

205523_at#HAPLN1 5.28E-07 0 4.49E-05 1.01E-77 

205992_s_at#IL15 0.001422 0 0.00414 6.77E-36 

206025_s_at#TNFAIP6 0.000647 0 0.002008 1.29E-27 

206224_at#CST1 0.000558 0 0.001683 1.96E-34 

206424_at#CYP26A1 0.000183 0 0.00046 4.82E-22 

206710_s_at#EPB41L3 8.01E-06 0 6.73E-05 1.59E-37 

206884_s_at#SCEL 0.000117 0 8.98E-05 2.17E-10 

207387_s_at#GK 3.15E-05 0 7.85E-05 9.94E-26 

207781_s_at#ZNF711 0.005569 0 0.015505 8.56E-09 

207850_at#CXCL3 0.001893 0 0.005711 5.97E-22 

208116_s_at#MAN1A1 5.87E-05 0 0.000236 1.90E-57 

209016_s_at#KRT7 2.60E-05 0 8.98E-05 5.49E-36 

209035_at#MDK 1.74E-05 0 7.85E-05 5.64E-56 

209487_at#RBPMS 8.56E-06 0 6.73E-05 6.97E-51 

209488_s_at#RBPMS 7.51E-06 0 6.73E-05 8.81E-51 

209631_s_at#GPR37 1.00E-05 0 5.61E-05 1.74E-26 

209839_at#DNM3 3.46E-07 0 4.49E-05 4.37E-182 

209942_x_at#MAGEA3 7.15E-07 0 4.49E-05 1.79E-97 

210095_s_at#IGFBP3 0.000185 0 0.000572 7.45E-53 

211549_s_at#HPGD 0.000203 0 0.000595 1.88E-34 

211573_x_at#TGM2 0.00084 0 0.002524 1.68E-47 

211657_at#CEACAM6 3.40E-05 0 0.000135 3.04E-63 

211675_s_at#MDFIC 3.41E-06 0 4.49E-05 2.35E-54 
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211776_s_at#EPB41L3 8.29E-05 0 0.000303 4.35E-44 

211959_at#IGFBP5 0.000176 0 0.000505 2.68E-30 

212667_at#SPARC 1.02E-05 0 7.85E-05 2.34E-63 

212681_at#EPB41L3 8.92E-06 0 6.73E-05 6.61E-37 

213273_at#ODZ4 6.33E-06 0 6.73E-05 8.48E-40 

213711_at#KRT81 0.000266 0 0.000684 2.11E-18 

214078_at#AF070581 0.000456 0 0.001077 5.45E-12 

214476_at#TFF2 4.97E-06 0 4.49E-05 3.03E-31 

214612_x_at#MAGEA2B 2.90E-06 0 6.73E-05 5.88E-101 

215966_x_at#GK3P 0.00016 0 0.00037 8.05E-17 

217028_at#CXCR4 0.003327 0 0.009525 4.94E-27 

217771_at#GOLM1 0.000101 0 0.000348 1.04E-38 

217787_s_at#GALNT2 5.39E-05 0 0.00018 5.15E-29 

219327_s_at#GPRC5C 1.86E-05 0 7.85E-05 1.62E-35 

219936_s_at#GPR87 4.00E-06 0 4.49E-05 1.85E-46 

220468_at#ARL14 3.51E-05 0 7.85E-05 1.42E-19 

220784_s_at#UTS2 1.02E-06 0 4.49E-05 0 

221618_s_at#TAF9B 0.008075 0 0.020172 3.70E-34 

221731_x_at#VCAN 4.86E-05 0 0.000101 1.63E-22 

221805_at#NEFL 1.36E-05 0 4.49E-05 2.97E-23 

41469_at#PI3 7.79E-05 0 0.00028 2.00E-39 
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Figure S6.1. Molecular function mapping of  Mouse species for clustered genes 
of model 2, by BCC(top), HIM(middle) and MDI(bottom)  
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Figure S6.2.Molecular function mapping of  Mouse species for clustered genes 

of model 3 by BCC(top), HIM(middle) and MDI(bottom)  
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Figure S6.3.Molecular function mapping of  Rat species for clustered genes of 

model 1 identified by BCC(top), HIM(middle) and MDI(bottom ).  
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Figure S6.4. Molecular function mapping of  Rat species for clustered genes of 

model2 identified by BCC(top), HIM(middle) and MDI(bottom ). 
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Figure S6.5. Molecular function mapping of  Rat species for clustered genes of 
model3 identified by BCC(top), HIM(middle) and MDI(bottom ). 
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Figure S6.6. Cellular component mapping of  Mouse species for clustered 
genes of model1 identified by BCC(top), HIM(middle) and MDI(bottom). 
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Figure S6.7. Cellular component mapping of  Mouse species for clustered 

genes of model2 identified by BCC(top), HIM(middle) and MDI(bottom). 
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Figure S6.8. Cellular component mapping of  Mouse species for clustered 
genes of model3 identified by BCC(top), HIM(middle) and MDI(bottom). 
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Figure S6.9. Cellular component mapping of  Rat species for clustered genes 
of model1 identified by BCC(top), HIM(middle) and MDI(bottom). 
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Figure S6.10. Cellular component mapping of  Rat species for clustered genes 

of model3 identified by BCC(top), HIM(middle) and MDI(bottom). 
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Figure S6.11. Biological process mapping of  Mouse species for clustered 
genes of model1 identified by BCC(top), HIM(middle) and MDI(bottom). 
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Figure S6.12. Biological process mapping of  Mouse species for clustered 
genes of model2 identified by BCC(top), HIM(middle) and MDI(bottom). 
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Figure S6.13. Biological process mapping of  Rat species for clustered genes 
of model1 identified by BCC(top), HIM(middle) and MDI(bottom). 
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Figure S6.14. Biological process mapping of  Rat species for clustered genes 
of model2 identified by BCC(top), HIM(middle) and MDI(bottom). 
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Figure S6.15. Biological process mapping of  Rat species for clustered genes 

of model3 identified by BCC(top), HIM(middle) and MDI(bottom). 
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Figure S6.16. Biological process mapping of  Data2(Prostate 2) for clustered 

genes that were identified by BCC(top), HIM(middle) and MDI(bottom). 
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Figure S6.17. Biological process mapping of  Data3(Breast 1) for clustered 
genes that were identified by BCC(top), HIM(middle) and MDI(bottom). 
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Figure S6.18. Biological process mapping of  Data4(Breast 2) for clustered 

genes that were identified by BCC(top), HIM(middle) and MDI(bottom). 
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Figure S6.19. Molecular function mapping of  Data2(Prostate2) for clustered 
genes that were identified by BCC(top), HIM(middle) and MDI(bottom). 
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Figure S6.20. Molecular function mapping of  Data3(Breast1) for clustered 

genes that were identified by BCC(top), HIM(middle) and MDI(bottom). 
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Figure S6.21. Cellular component mapping of  Data2(Prostatet2) for clustered 

genes that were identified by BCC(top), HIM(middle) and MDI(bottom). 
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Figure S7.1. Expressions of the top ten homogeneous genes identified by 
eBayes across mice (blue) and human (red). The boxes in light blue (red) 
represent the 27 DEs for each gene in the human species. The boxes in red 
represent 21 DEs for each gene in the mouse species. The vertical axis 
represents DEs. The horizontal line in red represents zero DE. 
 
 
 

 
Figure S7.2. Expressions of the top ten homogeneous genes identified by 
SAMr across mice (blue) and human (red). The boxes in light blue (red) 
represent the 27 DEs for each gene in the human species. The boxes in red 
represent 21 DEs for each gene in the mouse species. The vertical axis 
represents DEs. The horizontal line in red represents zero DE. 
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Figure S7.3. Expressions of the top ten homogeneous genes identified by 

Cyber-T across mice (blue) and human (red). The boxes in light blue (red) 
represent the 27 DEs for each gene in the human species. The boxes in red 
represent 21 DEs for each gene in the mouse species. The vertical axis 
represents DEs. The horizontal line in red represents zero DE. 
 
 
 

 
Figure S7.4. Expressions of the top ten heterogeneous genes identified by 
eBayes across mice (blue) and human (red). The boxes in light blue (red) 
represent the 27 DEs for each gene in the human species. The boxes in red 
represent 21 DEs for each gene in the mouse species. The vertical axis 
represents DE. The horizontal line in red represents zero DE. 
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Figure S7.5. Expressions of the top ten heterogeneous genes identified by 

SAMr across mice (blue) and human (red). The boxes in light blue (red) 
represent the 27 DEs for each gene in the human species. The boxes in red 
represent 21 DEs for each gene in the mouse species. The vertical axis 
represents DE. The horizontal line in red represents zero DE. 
 

 
Figure S7.6. Expressions of the top ten heterogeneous genes identified by 

Cyber-T across mice (blue) and human (red). The boxes in light blue (red) 
represent the 27 DEs for each gene in the human species. The boxes in red 
represent 21 DEs for each gene in the mouse species. The vertical axis 
represents DE. The horizontal line in red represents zero DE. 
 



292 
 

 
Figure S7.7. Molecular function mapping for clustered homogeneous DEGs 

identified by MSG for the mice species. C1 – C15 represent clusters identified 
by Mclust. 

 

 
Figure S7.8. Molecular function mapping for clustered heterogeneous DEGs 
identified by MSG for the human species. C1 – C15 represent clusters identified 
by Mclust. 
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Figure S7.9. Molecular function mapping for clustered heterogeneous DEGs 

identified by MSG for the mice species. C1 – C15 represent clusters identified 
by Mclust. 
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