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Abstract: Wave energy has a promising technical potential that could contribute to the future
energy mix. However, costs related to the deployment of wave energy converters (WECs) are
still high compared to other technologies. In order to reduce these costs, two principle options are
available, a reduction in cost and an increase in productivity. This paper presents a reliability-based
computational tool to identify typical decision problems and to shed light on the complexity of
optimising a wave power farm. The proposed tool is used to investigate productivity and availability
of a wave energy farm during 10 years of operational life. A number of optimization possibilities
to improve productivity, namely vessel choice, maintenance regime, failure rate and component
redundancy, are then explored in order to assess their effectiveness. The paper quantifies the yield
increase and provides a practical approach to evaluate the effectiveness of strategic and operational
decision options. Results, in terms of the variations in productivity and availability of the farm,
are analysed and discussed. Conclusions highlight the importance of reliability-centred simulations
that consider the specific decision parameters throughout the operational life to find suitable solutions
that increase the productivity and reduce the running cost for offshore farms.

Keywords: reliability; availability; maintainability; optimization; operation and maintenance; wave
farm; computational model

1. Introduction

During recent decades, the quest for alternative forms of producing energy has included the
double aim of satisfying the increasing energy demand and lowering the pollutant emissions on
the environment. Renewable energies seem to satisfy both these requirements and are becoming
progressively more important in the global energy mix. Among them, wave energy, could play an
important role in the future electricity supply from renewable sources [1]. However, due to the high
costs related to the deployment of wave energy devices, the cost of energy (CoE) associated to wave
power is still too high to be competitive with that of conventional fossil fuel power plants. On one hand,
the technology still needs to be improved; producing enhanced devices, capable of harvesting more
of the energy contained in the waves and with a better chance of surviving in extreme conditions, is
pivotal [1,2]. On the other hand, improvements in the reliability and availability of the devices, as well
as advances in their operation and maintenance (O&M) are required. Both these enhancements aim
to increase the productivity and reduce the running costs of wave energy converters (WECs) which,
in turn, will lead to an increase in their competitiveness in the electricity market [3,4]. To achieve this
goal, among other tools, a number of computational models have been created in the last few years to
simulate the lifecycle logistics of an offshore farm and assess performance.
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Hofman [5] presents a comprehensive review of these models, finding a total of 49 decision
support models for offshore wind farms. Nielsen and Sørensen provide an overview of various
approaches for the risk-based planning of the O&M of wind turbines [6], highlighting the accuracy and
flexibility of the Markov decision process. Teillant et al. [7] present an example of techno-economical
assessment of a wave farm, with important considerations on availability and operational costs of the
power plant. Endrerud et al. [8] focus on marine logistics, introducing a simulation model based on a
combination of the agent-based and discrete event modelling paradigms to characterize the O&M of
offshore wind parks. Martin et al. [9] emphasize the importance of a sensitivity analysis in identifying
the factors affecting operational costs and availability of an offshore wind farm, indicating access and
repair costs as major contributors to the total O&M costs.

Most of these models permit the analysis of different aspects of the power plant, allowing the
selection of the best combination of parameters in order to maximize the incomes of the electricity sale
and minimise the expenses. Besides, they aim to overcome the lack of operational experience in this
sector due to the novelty of the same, and obtain robust estimates on the effectiveness of the farm.

In this paper, a novel computational tool for the reliability-based assessment of an offshore farm
is introduced. This tool, in addition to the characteristic features of generic reliability, availability
and maintainability (RAM) models, is exclusively dedicated to marine renewables and adaptable to a
range of technologies, namely WECs, offshore wind and tidal farms. Further, it aims to reduce the
assumptions generally needed in the assessment of the optimal management and O&M procedures for
offshore renewables, providing useful insights for farm owners and operators.

The input metrics for the characterization of the farm are presented together with the mechanisms
and constraints that permit the performance assessment. A case study is hence proposed to show
the modelling possibilities offered by the implemented tool, and the support this can provide in the
decision-making process to improve the cost efficiency of an offshore farm. In order to do so, a number
of optimization possibilities are suggested and assessed through an iterative analysis. This means that
after each simulation the results obtained are analysed; then the initial set of parameters is changed
and the simulation repeated in order to quantify the effects of the variations. Focus is given to the
maximization of the electrical production and the availability of the farm. Key input parameters can
be varied with regard to maintenance vessels, maintenance strategies and design characteristics of
the device.

The specifics of the computational model are illustrated in Section 2, while the base case study
and the related optimization possibilities follow in Section 3. Results of the proposed variations are
summarised in Section 4 and conclusions drawn in Section 5.

2. Model

The computational tool used in this work belongs to the class of Monte Carlo models, which
repeatedly perform a non-deterministic calculation in order to obtain the most probable result [10].
The Monte Carlo method coupled with the computational simulation uses a pseudorandom number
generator (PRNG) to generate numbers uniformly distributed between zero and one. The PRNG used
in this work exploits the Mersenne Twister algorithm, which generates primes of the form 2p − 1
where p itself is prime.

The implemented tool uses this methodology and the related reliability data to perform the
energetic and economic characterization of offshore farms, simulating the failures that limit their
availability, and consequently, productivity.

A failure is simulated when the condition NR ≥ e −(λ (t))B
is satisfied, where NR is the

pseudorandom number generated, λ is the failure rate of the considered component of the system and
B is the shape parameter of the distribution. B = 1 in the case of the exponential distribution. A logical
0 is then assigned to the status of the component if a failure has happened, while a logical 1 is assigned
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otherwise. Therefore, if xi is the status of the generic component and Y is the status of the complete

system [11]: Y =
n
∏
i=1

xi for components in series and Y = 1 −
n
∏
i=1

(1 − xi) for components in parallel.

In order to obtain the necessary information for the assessment, a number of inputs have to
be provided. These are, first of all, the metocean data and the device’s performance characteristics,
together with the number of devices in the farm. These inputs permit the calculation of the energetic
yield that would be obtained in ideal conditions, i.e., in the absence of faults or failures in any of the
constituents of the device. In addition, indicators of the farm’s efficiency can be calculated in terms of
capacity factor and equivalent hours.

Furthermore, details on the reliability structure of the devices are needed to simulate the operation
of the farm. These specifics include information on the taxonomy of the device, i.e., its composition in
terms of systems, subsystems and single components, and related information for the repair processes.
A Reliability Block Diagram (RBD) [12] of the device is automatically created to visualize the results of
the implementation. For each component, the failure rate (in failures/hour) has to be specified together
with its failure distribution (Weibull or exponential), eventual adjustment factors due to external loads,
maintenance and fault categories, procurement and repair time, eventual redundancies and cost of
the spare parts. All this information is used to simulate eventual failures and consequent downtimes
of the devices, as well as effects on the economic valuation. Inputs in terms of maintenance vessels’
capabilities are then used to simulate the repair or replacement processes and bring back the devices to
their operating state. Times related to the return to operational conditions are established through the
proprietary offshore operations planning software Mermaid (http://mojomermaid.com/). Eventual
preventive maintenance operations can be scheduled and taken into account by the model in order to
reset the failure distribution of the components.

The working diagram of the model is schematically described in Figure 1.
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Figure 1. Workflow Diagram of the model.

Outputs are provided in the form of key performance indicators illustrating and comparing the
various options in terms of reliability, availability and maintainability of the farm. These comprehend,
but are not limited to:

• Reliability and failure rate distributions of the single components and the entire system;
• Power delivered to the grid and lost due to failures;
• Energy-based and time-based availability of the farm;
• Number of failures, contribution to unavailability and total number of failures for each component;
• Risk Priority Number (RPN) [13] and Occurrence/Severity matrix, to quantify the importance of

a failure;
• Monthly and annual analysis, convergence of the results over the total number of simulations and

probability exceedances of: power produced, power lost, revenue and losses.
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3. Case Study

This section describes the case study provided to illustrate the most pertinent optimization
practices available for wave energy deployments. The first sub-section introduces the simulated
power farm, with specifics on location and devices, and results of the simulation considering this base
case scenario. The following four sub-sections show a selection of the same number of optimization
processes, and their correspondent effects on the productivity of the farm. The results of the simulations
obtained for the base case scenarios, as well as those obtained for the proposed variations, are all
summarised at the end of this section, in Table 3.

3.1. Base Case

As previously mentioned, the proposed case study is a wave farm constituted by an array of five
identical WECs. The location chosen for this study is the North Cornwall Demonstration Zone of Wave
Hub, in Cornwall, SW England [14]. This is a fully consented region located 4 km off the English coast,
in proximity to a variety of ports and associated infrastructure. The one selected for the maintenance
operations is in Hayle, 4 km distant from the offshore farm location.

The wave energy device is given the properties of the WEC Pelamis P1 [15,16], with a rated
capacity of 750 kW, Although the company had to file administration, the device is modelled here, as
information on its power performance and reliability data is readily available in the public domain [17].
Previous studies [18] tried to estimate its reliability using base values collected from a variety
of databases for offshore structures. These have then been adjusted, applying proper corrective
factors, to the considered case of a WEC. Hence, this set of exponential failure distributions has been
adopted for this work. Main parameters and device capabilities are stated in the following Table 1.
A reliability block diagram representing schematically the results of this implementation is illustrated
in the Appendix.

Table 1. Main parameters and capabilities of the modelled wave energy device [18].

Component Procurement
Time (h)

Repair Time
(h)

Failure Rate
(Fail/Year)

Replaceable
Overnight Criticality Number of

Elements

Moorings 48 22 0.185 No No 3
Hull 34 12 0.001 No Yes 1
Joints 52 44 0.315 No Yes 6
Seals 64 15 0.07 Yes Yes 12

Manifold 21 25 0.004 No Yes 1
Hydr. Ram 15 14 0.24 No Yes 1

Accumulator 12 8 0.42 Yes Yes 1
Hydr. Motor 14 6 0.17 No Yes 1
El. Generator 5 6 1.59 Yes Yes 1
415V Bus-bar 12 32 0.01 Yes Yes 1
Transformer 21 5 0.07 No Yes 1

Circuit Breaker 11 12 0.26 No No 2
Umbilical 72 48 0.04 No Yes 1
Sea cable 5 2 0.09 Yes Yes 2

Procurement time is used to indicate the amount of time needed to procure the spare part if this is
not in stock. Similarly, repair time is the time needed to perform the repair or replacement operation in
case of a failure. These values have been assumed using engineering judgement for the sole purpose
of this work, and are not to be taken as a reference for future studies. The failure rate, assumed
constant for this work, indicates the average number of failures per year. The fourth column indicates
whether maintenance operations on the component can be performed during the night or not, since
this distinction will have repercussions on the final downtime in case of failure. The criticality data is
used to specify if the functioning of the considered component is indispensable for the functioning of
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the device or not; in the first situation, the device will cease to work in case of a failure. The number of
elements is used to indicate the number of items of the same kind in the device. A further “k-out-of-n”
parameter can then be considered to assess how many of these elements are needed for the effective
functioning of the device.

The first maintenance vessel selected for the O&M of the wave farm is inspired to the Windcat
workboat (http://www.windcatworkboats.com/), a category of offshore utility vessels providing
specialist crew and cargo transfer in the offshore renewables and oil and gas industries. A set of
parameters concerning the capabilities of the vessel, has been used to assess the vessel response
time for each day of the simulation period using Mermaid. This permits avoiding one of the main
assumptions usually required in the simulation tools for offshore farms [19].

The economic values, related to gross income and lost revenue for the whole considered lifecycle
of the farm (10 years), have been calculated establishing a strike price for the generated electricity
according to the package of measures approved in 2012 by the UK Department of Energy and Climate
Change [20]. This establishes a price of 305 £/MWh for the electricity produced by wave devices for
the year 2015/2016.

3.2. Variation 1: Maintenance Vessel

The first proposed variation consists in changing the vessel selected for the repairs and
replacements of the farm. This is a determining choice for the O&M strategies, since a vessel with
higher capabilities can exploit a higher number of weather windows being decisive on the availability
of the devices and, consequently, on their annual production. The vessel chosen for this variation is
inspired to the dynamic positioning vessel HF4, suitable for a range of offshore services and capable
of operating in higher sea states and tidal flows [21]. Respect to the previous vessel, having higher
specifics for wind and wave limits, this can deal with harsher metocean conditions. This implies larger
vessel weather windows which subsequently allows the reduction of the time needed to perform a
maintenance operation and restore a failed device to the operating state. The results obtained with this
first variation in the inputs of the model are shown in at the end of the section, in Table 3.

With respect to the base case, higher values of production and availability are obtained,
maintaining the expectation of using a more capable vessel. However, a technical choice should
always be accompanied by an economic one, including for instance considerations on the vessel
daily rate and its running costs. Hence, before of an eventual final choice, a balance should be made
between higher revenues due to greater availability of the farm and additional expenses due to higher
vessel’s rates.

3.3. Variation 2: Planned Maintenance

A “scheduled maintenance” module is provided with the implemented tool. This can be used in
order to introduce planned or periodic maintenance activities on any component of the devices which,
as a consequence, will reset the failure distribution of the maintained component during the simulation.
This action will have a positive impact provided that the failure distribution is variable, thus a
scheduled maintenance operation results in a reduction of the instantaneous failure rate. As previously
stated, the failure distributions used in this work are exponential, i.e., constant with time. Nevertheless,
this variation is worth to be exemplified in order to illustrate the process to obtain support on the
decision-making process in this area.

Therefore, a suggested practice consists of the following. First, a simulation of the lifecycle
of the farm is run without any planned maintenance. This, among other information, permits the
identification of the most sensitive components, or in other words, those that most contribute to the
unavailability of the devices. Once these components have been identified, a scheduled maintenance
plan can be devised for them. Repeating the simulation subsequently reveals how the maintenance
planning affects the final results.
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For this reason, the first step consists in using the capabilities of the computational model
to identify those components of the device that most often have failed during the simulation, or,
for reasons related to their repair time, constitute the majority of farm downtime.

The chart in Figure 2, relative to the base case scenario, permits to recognize both the
aforementioned components and perform this distinction. The percentage contribution to the total
number of failures and to the respective downtime caused is shown for each component.
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Figure 2. Percentage contribution to total number of failures and total downtime caused for each
component of the wave energy converter (WEC).

From Figure 2, the components that caused most downtime to the wave farm were, in descending
order, the seals, the electric generator, the hydraulic ram, the accumulator and the hydraulic motor.
Other contributions are less significant. A similar trend can be verified for the contribution to the
total number of failures. Therefore, considering 10 years for the total simulated lifetime of the farm,
the proposed planned maintenance strategy has been assumed as follows:

• Every 2 years on the electric generator
• Every 3 years on the seals
• Every 5 years on accumulator and hydraulic ram

This maintenance strategy is further illustrated in Table 2. In this case, even if the model allows
the option of performing scheduled maintenance while the device is in operation, it has been assumed
that the device requiring maintenance has to be shut down during the O&M procedures. Subsequently,
this choice adds extra downtime with respect to the corrective maintenance regime alone, but a gain in
availability may be obtained thanks to the reduction of the unpredicted failures. In addition, in this
case the electricity lost due to the planned maintenance can be quantified, which resulted to be 0.5% of
the ideal average annual generation.

Table 2. Planned maintenance strategy for the WECs.

Task Description Maintenance Hours per Device Start Date End Date

Maintenance on Electric Generator 1—After 2 years 10 01/05/2000 07/05/2000
Maintenance on Electric Generator 2—After 4 years 10 01/05/2002 07/05/2002
Maintenance on Electric Generator 3—After 6 years 10 01/05/2004 07/05/2004
Maintenance on Electric Generator 4—After 8 years 10 01/05/2006 07/05/2006

Maintenance on Seals 1—After 3 years 8 01/05/2001 06/05/2001
Maintenance on Seals 2—After 6 years 8 08/05/2004 13/05/2004

Maintenance on Accumulator—After 5 years 8 01/05/2003 06/05/2003
Maintenance on Hydraulic Ram—After 5 years 6 07/05/2003 10/05/2003
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However, from the results obtained, it can be seen that the planned maintenance activities did
not have the desired effect of further improving energetic production and availability. As mentioned,
this outcome was expected due to the choice of using exponential failure distributions, which do not
take into account the effects of aging. While it is difficult to foresee the outcomes of this variation when
the failure distributions variable has been chosen, attention must be paid to the planned number and
duration of scheduled maintenance operations, ensuring that these do not outweigh the additional
yield that can be achieved through the additional maintenance. In this case, if this strategy wants to be
further applied, assumptions on maintenance intervals or number of maintained components have
to be reduced. In addition, similar to the vessel’s choice, even a possible improvement in production
values should be weighed with economic considerations in a final cost/benefits balance, e.g., possible
increase in maintenance costs due to the introduction of planned activities.

3.4. Variation 3: Failure Rates

The third proposed variation is an improvement in the reliability of the WECs. This represents
the eventual developers’ choice of using more reliable components in the design of the devices,
with the goal of obtaining a decrease in the total number of faults or failures. When the inputs for
the model are considered, this variation translates into the reduction of the failure rates of one or
more selected components. As the most sensitive components have been identified in Figure 2, it is
recommendable to focus the efforts on these components. Therefore, for this variation of the base
case scenario, a decrease of 20% in the failure rate of the two most delicate components (seals and
electric generator) has been assumed due to improvements in the design of the device or the selection
of better manufacturers for these assemblies. Major values might have been chosen for this variation,
e.g., 40%–50%, supposing substantial improvements in the sizing and selection or the development
of aging-aware designs [22–24] for lifetime improvement of these components. However, a more
conservative hypothesis has been preferred for this variation.

It should be noted that the scheduled maintenance operations have now been removed as they
were not found to be advantageous to increasing the productivity. Conversely, the choice of the second
vessel selected for the corrective maintenance is preserved.

In this case, the variation has resulted in the desired increase to productivity of the power plant.
Analogously to previous variations, a definitive choice should take into account the cost necessary to
include more reliable components in future designs of the device. A detailed yield optimization model
allows the decision-maker to conduct a robust cost–benefit analysis on a sub-system or component level.

3.5. Variation 4: Redundancy

Once decisions on the positive impacts of a more capable vessel and a decrease in the failure rate
of some of the device’s components have been ascertained, a last variation to the original inputs set is
proposed. One of the modelling possibilities offered by the tool consists in selecting the number of
redundant elements for each component. This allows to take into account the redundancy elements that
permit an increase in the reliability of the device, since the system availability is still ensured in case
of a component’s failure. This approach models the redundant elements of the device as connected
in parallel, so that these can share the required load for the functioning of the whole system [25].
A k-out-of-n scheme is also permitted, considering a system in which at least k out of n units of that
kind are needed for the successful operation of the system.

In this variation, the total number of redundant elements for three components has been modified.
According again to the previous indications of Figure 2 on components that most contribute to
device downtime, redundant elements have been introduced regarding seals, electrical generators and
accumulators. The assumed variants are:

• 24 seals instead of 12 (only 12 needed for the functioning of the device)
• 2 accumulators instead of 1 (only 1 needed for the functioning of the device)
• 2 electric generators instead of 1 (only 1 needed for the functioning of the device)
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Also this last variation has positive effects on the productivity of the wave farm, which now is
close to that of an ideal case. However, the considerable change of design that would occur with
the redundancy of important components of the device should be carefully kept in mind before any
attempt at improvement based on this choice. Also the introduction of redundant elements has a cost
which would need to be taken into account in a complete economic assessment of the improvements
on the reliability of the farm.

4. Results

In order to obtain an immediate comparison of the effects of the four suggested optimization
practices on the base case scenario, all the results of the variations are summarised in Table 3.

Table 3. Results of the simulations with the base case scenario and all the proposed variations.

Quantity Base Case Variation 1 Variation 2 Variation 3 Variation 4

Average annual generation (GWh) 5.1 5.14 5.13 5.17 5.23
Percentage with respect to ideal production (%) 97.28 98.04 97.86 98.59 99.8

Average annual lost (GWh) 0.14 0.1 0.11 0.07 0.01
Percentage lost respect to ideal production (%) 2.72 1.96 2.14 1.41 0.2

Capacity factor (%) 15.52 15.64 15.61 15.73 15.92
Equivalent hours 2719 2741.41 2736 2756 2790

Energy-based availability (%) 97.28 98.04 97.86 98.59 99.8
Time-based availability (%) 98.47 98.96 98.2 98.99 99.88

Total gross revenue (m£) 15.55 15.68 15.65 15.76 15.96
Total lost revenue (m£) 0.44 0.31 0.34 0.23 0.03

Relative increase in production 1 (%) 0 0.78 0.59 1.37 2.55
1 Measured on the average annual generation with respect to the base case scenario.

As can be seen in Table 3, all the variations proposed in this work have the intended effect of
increasing the productivity of the farm, except for Variation 2 which consisted in the creation of a
scheduled maintenance plan. This can be further visualized in Figure 3, where the percentages of
power delivered and lost with respect to the ideal production on one side, and the energy-based
and time-based availability on the other side, are graphically analyzed for the different scenarios.
In comparing the relative increase in production of Variation 2 with respect to the base case, even
though it is positive, it must be remembered that the choice of a different vessel made in Variation 1
had been kept, therefore there actually is a decrease in relative production. As mentioned earlier,
this is due to the choice of exponential failure distributions and a possible overemphasis on preventive
undertakings; use of variable distributions and less conservative maintenance strategies may be
considered for further optimization.
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5. Conclusions

In this paper, a methodology for the optimization of the productivity of a marine farm is presented.
A reliability-based computational tool that has been used for the simulations and both the energetic
and economic assessment of the farm is introduced, and a case study to exemplify the modelling
possibilities for the optimization procedure is illustrated.

The sample case study simulates the deployment of an array of five wave energy devices off
the coast of the UK during a period of 10 years. Simulations have delivered estimations on the
energetic production and availability of the farms, providing a base case scenario with no optimization
procedures and taking corrective maintenance only into account.

Under these circumstances, the projected energetic values differ from the ideal ones due to the
simulated failures and consequent repair processes, leaving room for improvement in productivity.
As a consequence, four optimization procedures are proposed to illustrate how a reliability centered
optimization model can be used to increase production and availability values. The model allows for
the convenient variation of key designs and operational parameters that can subsequently be evaluated
with regard to their effectiveness.

By performing an iterative simulation of the farm operation, we show that it is possible to
identify criticalities in the setup and management of the wave farm. Consequently, acting on these
areas, it is possible to improve the productivity of the farm and obtain valuable information for the
decision-making process that involves both device developers and project managers in the pursuit of
optimal asset use.

The results and the optimization procedures proposed can be further improved once more specific
reliability data and operational experience with marine renewables is acquired. Likewise, further
options for the optimization of the farm using this computational tool can arise as practice is gained
with the management of a project. Future work includes the integration of a complete cost assessment
for the different options in order to have a complete picture of the effects of each optimization procedure.
The presented work will be useful to device developers, asset owners and contractors to estimate the
effectiveness of design decisions and to identify suitable maintenance regimes.
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Appendix

In Figure A1 the RBD of the device selected for the case study is illustrated. It has been created
using the block diagram environment provided with Simulink (http://cn.mathworks.com/products/
simulink/index.html), and shows the main subsystem of the device. The components within each
subsystem are listed on the left. Original Simulink file is available on request.

http://cn.mathworks.com/products/simulink/index.html
http://cn.mathworks.com/products/simulink/index.html
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Figure A1. Reliability Block Diagram (RBD) in Simulink®  showing the considered subsystems of the 

device. 
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