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Abstract

Reliability and storm survival of Marine Energy Converters are critical to their

commercial development and deployment. The Intelligent Active Mooring Sys-

tem (IAMS) is a novel device intended to minimise extreme and fatigue loading

in mooring lines through a non-linear load-extension curve that is variable in

operation to adjust to the prevailing metocean conditions. A static model of

IAMS, validated by physical model tests at the Dynamic Marine Component

test facility at the University of Exeter, is used in a dynamic simulation of the

performance of IAMS as part of the mooring system of the South West Mooring

Test Facility buoy. A 10 m length of IAMS can reduce the rms line tension in

normal operating conditions by up to 21% and the peak line tension in storm

conditions by up to 21% when compared to braided nylon mooring lines. Peak

line tension reductions of over 50% can be achieved if a longer IAMS unit is

used. The resulting mooring system can be optimised to give load reductions in

a wide range of metocean conditions; while variable pre-tension could be used

for tidal range compensation or to ease access for installation and maintenance.

Keywords: Marine renewable energy, mooring systems, wave energy, tidal

energy,

∗Corresponding author
Email address: j.f.luxmoore@exeter.ac.uk (Jamie F. Luxmoore)

Preprint submitted to Ocean Engineering April 6, 2016

*Manuscript
Click here to view linked References

http://ees.elsevier.com/oe/viewRCResults.aspx?pdf=1&docID=9204&rev=0&fileID=376698&msid={FC088FE3-34CA-4D6D-97A6-46EB6BDFE17C}


 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

1. Introduction

Reliability and storm survival of Marine Energy Converters (MECs) is criti-

cal to their commercial development and deployment (Thies et al., 2011). Moor-

ing systems can significantly alter both extreme and fatigue loading in moored

wave and tidal stream energy converters and so drive both reliability and device5

survival. Mooring systems can also affect the wave energy extraction efficiency

of Wave Energy Converters (WEC) (Zanuttigh et al., 2013; Johanning et al.,

2007).

The requirements for a floating MEC mooring system are to provide high

minimum breaking load (MBL) and good reliability and position keeping in10

extreme conditions while still having sufficient compliance to reduce the peak

and operating loads on the device (Gordelier et al., 2014). The usual solution

is to employ fibre ropes, but a small number of alternative designs have been

proposed recently which offer significant advantages over fibre ropes, primar-

ily through having a stiffness characteristic which increases with increasing line15

extension. For example the TfI Mooring Tether (Thies et al., 2014) has an

elastomeric element which gives a soft response in normal operation and a sep-

arate stiff compressive element to withstand storm loads. The Seaflex system

(Bengtsson and Ekström, 2010) uses elastomeric elements with a rope as backup

in the event of over-elongation. The Exeter Tether (Gordelier et al., 2014) is a20

hollow braided fibre rope with an elastomeric core - the tension load is carried

by the rope while the core controls the extension by resisting the reduction in

diameter as the rope extends.

The performance assessment presented here is based on a novel mooring

system referred to as the Intelligent Active Mooring System (IAMS) which25

combines user controlled axial stiffness and damping with a high MBL. The

IAMS device has a load-extension curve such that the stiffness increases with

increasing axial extension. The shape and steepness of the load-extension curve

is variable in operation to adjust to the prevailing metocean conditions. This

2
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allows a much wider range of response characteristics than would otherwise be30

available. The initial aim of the novel mooring system is to minimise fatigue

loading on the device and mooring system in normal operating conditions, while

still providing adequate position keeping and reduced device and mooring loads

in storm conditions. The MBL of the device is independent of the operating

axial stiffness curve chosen.35

The technology is designed to significantly reduce the cost of mooring wave,

tidal and floating wind installations through mooring load control and the sub-

sequent reduction of structural loads on the floating device and the mooring

system components. In the special case of a Wave Energy Converter (WEC),

the stiffness and damping could potentially be tuned to enhance the motion40

of the device, thus increasing the yield. The ability to reduce the pre-tension

(by reducing the accumulator pressure) could be used to allow easy access to a

MEC for servicing and installation. The variable pre-tension could also be used

for tidal range compensation or even to artificially submerge a device for storm

survival.45

This paper describes the physical scale model and the accompanying analyt-

ical model of IAMS as they relate to the performance assessment. A case study

is then presented for model validation and the remaining sections comprise the

dynamic performance model design and results, followed by a discussion and

concluding remarks.50

2. IAMS model and test approach

The IAMS design is based around a hollow braided rope which supports

all the lengthwise loads and a flexible water filled bladder inside the hollow

braid which resists reductions in the braid diameter through hydraulic pressure.

As the rope extends, the diameter of the hollow braid decreases until the rope55

strands finally lock together at around 17 degrees braid angle; any further exten-

sion beyond this point is due to the extension of the rope strands. Braid angle is

defined as half the included angle between two crossing strands. A detailed view

3
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of the braid fibres is shown in figure 1. An accumulator is attached by hydraulic

pipe to the bladder outlet so the load-extension properties of the whole system60

can be varied by changing the accumulator air volume and pressure.

Figure 1: Detailed view of the 32 strand hollow braided Vectran rope. The individual strands

are arranged so they lie nearly flat around the circumference of the water filled bladder.

2.1. Physical scale model

A physical model was constructed by Teqniqa Systems Ltd. at reduced scale

(or for smaller applications) and was tested by the University of Exeter at the

Dynamic Marine Component (DMaC) test facility in Falmouth docks. A full65

dynamic performance assessment was carried out and will be reported in future

publications. The results presented in this paper concern only the semi-static

tests carried out to calibrate the numerical and analytical models. Tension and

position are recorded through the DMaC control system (NI Compact RIO)

at 250 kHz and 120 kHz respectively (for full details of DMaC capabilities see70

4
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Johanning et al. (2011)). Figure 2 shows the IAMS physical model installed in

DMaC.

Figure 2: IAMS installed in DMaC

The pressure supply system used in the physical model tests is not represen-

tative of the proposed final design, rather it was designed for ease of installation

in the test rig. A schematic of the pressure supply system is shown in fig-75

ure 3. The braid outlet USB pressure transducer records at 10 Hz, while the

USB pressure and temperature transducers on the accumulator record at 2.5

Hz. Emergency pressure relief valves were fitted (but not used). The main

constriction in the pipework was a globe valve which caused significant pressure

drop, but the results presented here concern only semi-static tests (period >30080

seconds) and so are unaffected by the pressure drop.

5
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Figure 3: Pressure supply system for physical model test at DMaC

2.2. Static model

The performance of IAMS can be approximated using a simplified analytical

model of the load-extension relationship based on the internal pressure and the

accumulator gas volume. The braid angle α can be calculated as:85

α = arccos

(
L0 + z

LF

)
(1)

where z is the elongation of IAMS, L0 is the hollow braid length at 0% extension

and LF is the helical length of the braid fibres (equal to the theoretical braid

length at α = 0). The cross-sectional area A of the hollow braided rope section

is then:

A = πr20

(
sinα

sinα0

)
(2)

where r0 is the hollow braid radius at 0% extension and α0 is the braid angle90

at 0% extension. The tension T on the end fixings of IAMS as a result of the

6
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the internal pressure P is then:

T = PA

(
2

tan2 α
− 1

)
(3)

The initial volume V0 and pressure P0 of the air in the top of the accumu-

lator are set manually in the physical scale model IAMS. In the static model

the internal pressure P1 at time t1 in IAMS is calculated assuming adiabatic95

compression and zero loss in the pipework system from P1 = P0(V0/V1)γ where

γ = 1.4 for air and V1 is the volume of air in the accumulator at time t1,

calculated from V0 less the volume of water displaced from IAMS.

This static model does not take in to account the friction between the braid

fibres or between the braid and the bladder or the tension due to the bladder100

material. The effects of these simplifications are investigated by reference to a

scaled physical model described below.

2.3. Static model validation

The initial internal volume of the braid and the displaced volume with exten-

sion was measured for several different fixed pressures to calibrate the analytical105

model. After calibration the static model gives an excellent prediction of the

displaced volume (R2 = 0.9998, mean of the residuals is -0.01 litres). The load

prediction however shows some structural differences between the prediction and

the measurements (Mean R2 = 0.9981 but the mean of the residuals is -0.54 kN

for the three tests shown in figure 4). Tests 1 and 2 shown in figure 4 are with110

an initial accumulator air volume of 75.0 litres while test 3 has an air volume

of 28.6 litres. The start pressures are 85 kPa, 200 kPa and 37 kPa respectively.

These tests were conducted with the full system so the pressure increases as

the braid extends. For each measurement, the length of the test section was

increased by 10 cm over 10 seconds and then held steady for 30 seconds, with115

the values plotted representing the mean of the final 10 seconds of hold.

The difference between the predicted load and the measured load is primarily

due to the friction between the braid strands. As each helical braid strand

crosses over another the fibres deviate up or down from a circular helix by half

7
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Figure 4: Load predictions plotted against measured data from move and hold tests for three

pressure/volume combinations

the thickness of the strand they are crossing over. Friction is caused at the120

intersection of the strands. At short braid extensions this will tend to limit

the reduction in length due to the internal pressure (effectively the fibres lock

together at around 50 degrees braid angle), so the recorded loads will be lower

than the (pressure only) analytical model will predict. At long braid extensions

the inter-strand friction will increase the force required to extend the braid,125

resulting in higher loads for a given extension than would be predicted by the

static model. The data presented in figure 4 agrees with this hypothesis as the

load predictions are above the measurements for low extension and below the

measurements at high extension.

A further set of semi-static tests were completed with the braid extension130

increasing from nominal 0% to 33% extension (from 45 degrees to 21 degrees

braid angle) and back again in a sine wave over 5 minutes. Four initial pressure

and accumulator air volume combinations were tested as shown in table 1. The

results are shown in figure 5 together with the static model predictions. On

8
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the measured results shown in figure 5, the extending portion of the stroke is135

the higher line while the retracting portion is the lower line forming a typical

hysteresis loop.

Table 1: Accumulator air volumes and initial pressures for test cases 1 to 4

Test case Air volume Pressure

litres kPa

1 28.6 30.8

2 33.6 58.8

3 33.6 130.0

4 50.4 300.0

The static model predictions are consistently near the middle of the hystere-

sis loop for these four test cases. The braid-on-braid friction is the principle

cause of the differences between the analytical model and the physical model.140

Other factors not included in the static model are the friction between the braid

and the bladder and the tension due to the elasticity of the bladder material.

Both these additional factors are small - the bladder is separated from the braid

by two layers of polyethylene plastic sheeting which has very low frictional prop-

erties when wet and the bladder itself has a Young’s modulus of 6 N/mm2, so a145

30% extension of the bladder alone would require approximately 0.6 kN. Overall

the static model is able to predict the stiffness characteristics of IAMS well, but

the hysteresis characteristics are not included.

3. IAMS mooring case study

The dynamic models described in this paper have been run using Orcaflex150

(Orcina Ltd, 2015) version 9.8a. A case study was completed for model valida-

tion using data from the South West Moorings Test Facility (SWMTF) buoy

(Johanning et al., 2008), which is an instrumented ocean buoy designed to pro-

vide data to reduce the uncertainties in reliability and cost estimates for moored

WECs. The SWMTF buoy is instrumented with load cells on the mooring lines,155

9



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

kinematic acceleration sensors, wind and current sensors, a GPS unit, temper-

ature and humidity sensors and a heading compass. There is also a bottom

mounted Acoustic Doppler Current Profiler (ADCP) which can derive a direc-

tional surface wave profile and vertical wave and current profiles along each of

four beams. The ADCP is offset from the buoy by around 25 m horizontally.160

Validation data was selected from the 9th October 2010, when a typical sea

state (Hs = 2.44 m) resulted in a high snatch load of 54 kN with all instruments

functioning correctly. The wave frequency and directional spectra at the selected

times are shown in figure 6. Also included is a cos7.5(θ) directional distribution

as it was necessary to approximate the directional distribution to a cosS(θ)165

function in Orcaflex (the frequency spectrum could be input directly as shown).

The wave direction is such that 85.4% of the rms energy absorbed by the mooring

lines is absorbed by one line alone - line 3, resulting in very high loads on this

line.

The Orcaflex model uses a composite 6 degree of freedom buoy to represent170

SWMTF. Values of CD and CM were selected from guidance in Wilson et al.

(2003) as CD = 1.2 and CM = 1.5. Unit damping moments of 5 kN.m/(rad/s)

normally and 1 kN.m/(rad/s) axially were selected by sensitivity study compar-

ing the model motion to the motion of the real buoy. There is some uncertainty

surrounding the actual achieved position of the anchors for the SWMTF buoy,175

the positions used in this study are based on the estimated positions given in

Harnois et al. (2012), as shown in figure 7.

Results of the validation study are shown in figure 8 and table 2 with the

motion relative to the peak wave direction (i.e. surge is the fore/aft motion

along the 097◦ line). The standard deviation of the position excursion is used180

to compare the scale of the excursions between the numerical model and the

SWMTF buoy. A comparison of the standard deviation of the bulk angular

velocity of the buoy is also shown. The standard deviation of the buoy surge

is too high in the Orcaflex model by 63%, but the heave and sway are very

well modelled and the bulk angular velocity is 26% lower in the Orcaflex model185

compared to the measured SWMTF buoy data.

10
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Table 2: Standard deviations of position translation and angular velocity and root mean square

values of line tensions for Orcaflex model and SWMTF buoy

Standard deviations Root mean squares

Surge Sway Heave Angular vel. Line 1 Line 2 Line 3

m m m rad/s kN kN kN

SWMTF 0.47 0.40 0.55 0.31 2.37 4.86 8.82

Orcaflex 0.77 0.41 0.59 0.23 4.06 6.25 8.78

Difference 63% 0% 7% -26% 71% 29% -1%

For the line tension the root mean square values (rms) are used to com-

pare the numerical model to the SWMTF buoy as the mean values are more

important than the deviation from the mean. The modelled rms of the line

tension is very close to the measured value for the up-wave line (line 3) with a190

tension weighted mean for all three lines 19% above the measured value. The

line tensions are well matched in the frequency domain between the model and

the SWMTF buoy. The line tension peak frequencies are marginally higher in

Orcaflex and the high frequency response is also slightly elevated compared to

the measured data. Overall the Orcaflex model is able to reproduce the main195

motion and line tension characteristics of the SWMTF buoy well.

4. Dynamic model study

There are two main categories of mooring system design used in floating

WECs, catenary or taut moored systems. Taut moorings have one or several

lines and catenary systems have at least three lines with or without auxiliary200

surface buoys or lazy wave systems (Weller et al., 2013). As validation data is

available for a three leg catenary system, this paper will focus on a three leg

catenary system and a three leg taut moored system as shown in figure 9.

The catenary system is identical to the system used in the validation study

except where the IAMS device is substituted in to replace a section of the205

mooring lines. The lines are composed of 5 m of 32 mm studlink chain from the

11
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anchors and then 36 m of 24 mm studless chain, 20 m of 44 mm nylon Superline

and finally 1 m of 32 mm studlink chain attached to the buoy. The taut moored

system uses a shallow line slope (60◦ off vertical) in order to maximise the line

length to allow for the large tidal range. A 5 m length of chain with a -1 Te210

float at the junction holds 46 m of 44 mm nylon Superline off the seabed. The

top end is identical to the catenary moored system.

Two sea states are considered, the sea state used for the validation study and

a 100 year extreme sea state calculated by fitting a generalised extreme value

distribution (see figure 10) to the wave height data available from the ADCP215

at the SWMTF site (method detailed in Luxmoore (2014)). This extrapolation

gives a significant wave height of HS100
= 6.51 m. Wave steepness in extreme

seas is generally in the range 1/20 to 1/16 (Health and Safety Executive, 2002),

so assuming a steepness of 1/18 gives a zero up-crossing period of TZ = 8.17 s.

The IAMS device has a variable load-extension curve - the stiffness and220

damping characteristics can be altered based on the prevailing metocean condi-

tions. The aim at this stage is to minimise loading on the device and mooring

system in normal operating conditions, while still providing adequate position

keeping and reduced device and mooring loads in storm conditions. The load

extension curve is varied by changing the volume of air in the accumulator and225

the pressure of that air. Four air volume / initial pressure combinations were

used in the dynamic model study as detailed in figure 11 and table 3.

Table 3: Accumulator air volumes and initial pressures for configurations A to D

Configuration Air volume Pressure

m3 kPa

A 0.72 158

B 2.62 1198

C 0.85 89

D 2.62 278

The prototype IAMS tested at DMaC has a nominal 120 mm diameter,
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while the version used for the dynamic modelling is considerably larger (305 mm

diameter) and has been modelled up to higher pressures. The assumed MBL230

has also been increased consistent with the larger diameter end plates. A 10 m

section of IAMS was substituted into the mooring system used in the validation

study (replacing 10 m of the total 20 m of nylon Superline). The results are

compared against the validation configuration (using 20 m of 44 mm nominal

diameter braided nylon Superline from Bridon Ropes) and a configuration using235

20 m of 27 mm nominal diameter 6 strand wire rope with wire core in place of

the nylon rope. The wire rope was chosen to match the MBL of the nylon rope

and designed using the line wizard in Orcaflex described in Orcina Ltd (2015).

4.1. Dynamic model results

The Orcaflex dynamic model was run for both the taut and the catenary240

mooring designs described above for all four IAMS configurations and for the

nylon and wire mooring lines. For the taut system with a wire rope the buoy was

submerged at high tide with no waves, so this configuration is considered un-

suitable and is not discussed further. The simulations were run for 512 seconds

using both the typical sea state and the extreme sea state. A short snapshot245

of the effects of mooring line composition for the catenary system is shown

graphically in figures 12 and 13.

Figures 12 and 13 provide a reference to understand the main effects of

the different mooring line types. The nylon Superline provides a significantly

reduced peak load compared to the wire rope while the maximum excursion250

is increased. The line tension for the wire rope includes some high frequency

oscillations, caused by the very stiff lines coming taut. The high frequency

oscillations are not present for the nylon lines or the nylon plus IAMS lines.

The IAMS device can in this case be seen to provide a further load reduction

and a further increase in excursion compared to the nylon only lines. These255

results however are only for 30 seconds of data. Figure 14 presents a time-

averaged version of the results of all the simulations.

In figure 14 the standard deviation of the buoy motion in all three directions

13
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has been averaged to give a measure of the relative magnitude of the total buoy

movement. This has been plotted against the root mean square (rms) of the line260

tension for all three lines. There is a clear trend of decreasing rms line tension

with increasing the magnitude of the buoy excursion. The error bars are small

as the values are averaged over 60 to 80 waves.

Figure 15 shows the peak line tension for all three lines plotted against the

maximum displacement of the buoy from it’s starting position. Note that the265

SWMTF buoy was modelled as a 6-D Buoy in Orcaflex so the second order

wave drift is not included (this is only available for Vessels in Orcaflex 9.8a) -

the hydrodynamic forces on a 6-D Buoy are calculated using Morison’s equation

in Orcaflex. There is a trend of decreasing peak line tension with increasing

maximum buoy excursion for nearly all configurations tested. The error bars270

are large on these points as they are based on a single data point each - whichever

wave resulted in the largest loads on the lines. This may not be the same wave

in all cases and the buoy position just prior to the large wave will effect the

response during the wave.

4.2. Effects of varying IAMS stiffness275

Figure 16 shows the rms line tension for line three only (the line with the

highest loads) plotted against the mean standard deviation of the buoy excur-

sion. Of the four IAMS configurations, configuration B gives the highest rms

line tension in all cases and configuration C gives the lowest loads in all cases.

For the catenary mooring system configuration C gives a reduction in rms280

line tension of 9% at Hs = 2.44 m and a reduction of 14% at Hs = 6.51 m

compared to the braided nylon Superline alone. The increase in mean buoy

excursion is 13% for both sea states. For the taut moored system with IAMS

in configuration C the reduction in rms line tension is 21% at Hs = 2.44 m and

18% at Hs = 6.51 m compared to the nylon Superline. The increase in mean285

buoy excursion is 10% at Hs = 2.44 m and 21% at Hs = 6.51 m.

Figure 17 shows the peak line tension for line 3 only plotted against the

maximum buoy excursion. The estimated error bars are large as these data are

14
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based on a single maximum line tension value occurring once in the dataset.

For the catenary system the reduction in the central estimate of the peak line290

tension is between 14% and 21% for the extreme sea state compared to the

braided nylon Superline alone. The differences among the configurations is well

within the error bars. For the taut moored system the reduction in the central

estimate of the peak line tension is between 11% and 21% for the extreme sea

state compared the braided nylon Superline alone. Again the differences among295

the configurations is within the error bars. For both the taut moored system

and the catenary system IAMS configuration B gives a reduced maximum buoy

excursion in an extreme sea state compared to the other IAMS configurations -

the maximum excursion is similar in magnitude to that of the nylon Superline

alone but with a reduced peak line tension.300

4.3. Effects of varying IAMS length

The length of the IAMS device has a significant impact on the properties of

the overall system. Simulations were re-run using configuration A only with an

IAMS unit 26 m long in the catenary system and 46 m long in the taut moored

system (in both cases these are the maximum lengths that can be accommo-305

dated in each system without risk of the IAMS unit coming into contact with

the seabed). For the catenary system the rms line tension in normal operating

conditions decreased further to a total of 18% reduction compared to the nylon

Superline only configuration, while in extreme conditions a 57% reduction in

peak line tension was achieved compared to the nylon Superline only configura-310

tion. Maximum buoy excursion was 13.8 m in extreme conditions. For the taut

moored system (with 46 m of IAMS) the rms line tension in normal operating

conditions decreased to a total of 23% reduction compared to the nylon Super-

line only configuration, while in extreme conditions a 52% reduction in peak

line tension was achieved compared to the nylon Superline only configuration.315

Maximum horizontal buoy excursion was 14.5 m in extreme conditions.
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5. Discussion

The results of the semi-static physical model tests show that the friction

between the braid fibres causes hysteresis in the IAMS load-extension curve,

giving a higher tension when the line is extending than when it is retracting.320

This may be significant in the mooring system performance, especially as it is

likely that at higher frequencies there will be some additional hysteresis from the

fluid flow to and from the accumulator. The hysteresis is equivalent to damping

in the mooring system and will tend to reduce the motion of the buoy when the

line is extending and decrease the restoring force when retracting compared to325

a line with no damping. This source of motion damping is not included in the

Orcaflex model as axial line hysteresis cannot currently be included in the model.

There is however a similar source of motion damping caused by the fluid drag on

the line due to the off-axis motion of the line as the catenary shape straightens

and of course the lifting of the chain off the seabed causes a similar effect.330

These two sources of hysteresis are included in the Orcaflex model. A possible

future improvement to the dynamic model might be to increase modelled cross-

sectional area of IAMS or the normal direction hydrodynamic drag coefficient

(without changing any other properties) to simulate the increased hysteresis.

The results of the dynamic model study confirm the already well understood335

relationship between mooring line compliance and line tension in waves - gener-

ally the stiffer the mooring line the higher the peak and rms line tensions. This

is not however true for all the results, notably in extreme storm conditions for

the catenary system design when the wire rope gives lower rms and peak loads

than the nylon Superline. This is likely due to the higher compliance of the340

nylon rope allowing the buoy to travel faster with the large waves resulting in

a high load to arrest the motion.

In normal operating conditions the mooring line design should primarily

aim to reduce the rms loading on the device to reduce fatigue. The exception

to this is for a Wave Energy Converter (WEC) when it may be desirable to345

increase to motion of the device to increase the power output. The maximum
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excursion or peak loading are unlikely to be significant compared to the peak

loading and excursion in extreme storm conditions. The shape of the IAMS

load-extension curve depends primarily on the volume of air in the accumulator

- larger volumes result in a straighter characteristic while smaller volumes give350

a more exponential characteristic. The steepness of the IAMS load-extension

curve is related to the start pressure - higher start pressures give a steeper curve.

In normal operating conditions then the IAMS configurations with lower initial

pressures A and C, in particular C, clearly offer a significant benefit over the

traditional moorings and the other IAMS configurations, reducing the rms load355

on line three by 9% to 21% compared to braided nylon mooring lines depending

on the mooring system layout.

In extreme operating conditions the mooring line design should primarily aim

to reduce the peak loading on the device, but the maximum device excursion

may also be significant in a tightly packed array of MECs. Comparing two360

configurations with the same accumulator air volume (B and D) but with very

different initial pressures (B = 1198 kPa; D = 278 kPa) shows that increasing the

pressure reduces the maximum buoy excursion considerably, but has little effect

on the peak load in extreme conditions. Comparing two configurations with

relatively similar initial pressures (A and D), but with very different accumulator365

air volumes (A = 0.72 m3; D = 2.62 m3) shows that there is a significant

decrease in peak line tension with decreasing pressure but less of an effect on

the maximum excursion. In extreme storm conditions then, configuration B

stands out as providing significantly reduced peak line tension compared to the

Nylon rope (11% to 18% depending on the mooring system layout), but with370

little increase in maximum buoy excursion.

The reduction in both the rms line tension and the peak line tension is

related to the length of the IAMS unit deployed, so greater reductions in the

line tensions could be achieved by deploying units of more than 10 m length.

Peak load reductions of over 50% have been simulated in extreme conditions375

for both the taut and the catenary moored systems. There is an accompanying

loss of position keeping ability, but the maximum excursions remain below 15
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m horizontally in a mooring system with a footprint radius of 50 m.

The IAMS device can offer a significantly reduced peak and rms loading

on a floating MEC. The most important characteristic of IAMS is that the380

system can be adjusted in operation to suit the prevailing metocean conditions.

The compliance can be increased to attain low device loading during normal

operating conditions and then can be decreased in storm conditions to maintain

position keeping while still maintaining device loading below that obtainable

using a braided nylon line. For the buoy and metocean conditions simulated385

here, configuration C would likely be best for the normal operating conditions,

while configuration B would be best in the extreme storm conditions. Again, the

exception to this would be if the buoy were to represent a WEC reliant on the

device motion to induce power generation; in which case the ideal configuration

in normal operating conditions would be determined by the natural frequency390

of the device.

6. Conclusions

The Intelligent Active Mooring System (IAMS) is a novel device intended

to reduce the wave derived loads on floating MECs and their foundations. The

work reported here is based around a fully dynamic simulation of the South395

West Mooring Test Facility (SWMTF) with IAMS in several configurations

substituted in to the mooring lines. The Orcaflex dynamic model has been vali-

dated against data collected at SWMTF in Falmouth bay. Overall the Orcaflex

model is able to simulate the main motion and line tension characteristics of

the SWMTF buoy well.400

A static mechanical model of the predicted performance of IAMS itself has

been validated against physical scale model tests conducted at the Dynamic

Marine Component (DMaC) test facility. The static model is a simplification of

IAMS, as hysteresis is not included, but the overall stiffness characteristics are

well predicted.405

The dynamic modelling carried out here shows that the modelled IAMS de-
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vice can provide significant reductions in the line tension in a mooring system

for a typical small MEC when compared to both wire moorings and braided ny-

lon moorings. Reductions in line tension are related to the length of the IAMS

units deployed; a reduction of over 50% in the peak line tension compared to a410

nylon rope system has been achieved in dynamic simulations. Active control of

the device load-extension characteristic in operation means that the response of

the mooring system can be optimised to give the lowest loads possible consistent

with a given position keeping performance in a range of environmental condi-

tions. The ability to change the load-extension curve in operation also offers415

the interesting possibility of tuning the mooring system to enhance the motion

of a WEC. The variable pre-tension could be used for tidal range compensation

or for ease of access for installation and maintenance.
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Figure 5: Measured versus predicted load-extension curves for test cases 1 to 4
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Figure 6: Wave conditions for validation test case from ADCP data. A cos7.5(θ) directional

distribution is shown for reference.

Figure 7: Anchor positions used for Orcaflex model validation. The estimated ADCP position

is also shown for reference.
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Figure 8: Comparison between Orcaflex model and SWMTF buoy line tensions for all three

mooring lines

Figure 9: Catenary and taut moored system arrangements used in the dynamic model study

(not to scale).
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Figure 10: Extrapoloation of 100 year significant wave height at SWMTF site

Figure 11: Load - extension curves used in the dynamic model. The tension at 0% extension

was set to zero for all configurations as required by Orcaflex.
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Figure 12: Effects of mooring line composition on line tension in the extreme sea state simu-

lations. Mooring lines presented are wire rope, nylon only and nylon and IAMS configuration

A.
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Figure 13: Effects of mooring line composition on buoy position keeping in the extreme sea

state simulations. Mooring lines presented are wire rope, nylon only and nylon and IAMS

configuration A.
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Figure 14: Root mean square line tension plotted against the mean standard deviation of the

buoy excursion for all dynamic simulations.
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Figure 15: Peak line tension plotted against the maximum buoy excursion for all dynamic

simulations.
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Figure 16: rms line tension in line 3 plotted against the mean standard deviation of the buoy

excursion for all dynamic simulations.
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Figure 17: Peak line tension in line 3 plotted against the maximum buoy excursion for all

dynamic simulations.
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