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abstract: Bird eggs show striking diversity in color and pattern.
One explanation for this is that interactions between avian brood
parasites and their hosts drive egg phenotype evolution. Brood par-
asites lay their eggs in the nests of other species, their hosts. Many
hosts defend their nests against parasitism by rejecting foreign eggs,
which selects for parasite eggs that mimic those of the host. In the-
ory, this may in turn select for changes in host egg phenotypes over
time to facilitate discrimination of parasite eggs. Here, we test for the
first time whether parasitism by brood parasites has led to increased di-
vergence in egg phenotype among host species. Using Australian host
and nonhost species and objective measures of egg color and pattern,
we show that (i) hosts of brood parasites have higher within-species
variation in egg pattern than nonhosts, supporting previous findings
in other systems, and (ii) host species have diverged more in their egg
patterns than nonhost species after controlling for divergence time.
Overall, our results suggest that brood parasitism has played a signifi-
cant role in the evolution of egg diversity and that these effects are evi-
dent, not only within species, but also among species.

Keywords: diversity, egg phenotype, brood parasitism, variability, di-
versity, Cuculidae.

Introduction

Explaining phenotypic diversity is one of the main chal-
lenges of evolutionary biology. To understand observed di-
versity patterns, it is important to identify the mechanisms
that underlie phenotypic variation within species and then
study these in a broader context with the use of phyloge-
netic methods. For instance, egg phenotype in birds is im-
pressively diverse, and such variability is unevenly distrib-
uted across the avian phylogeny; some families of birds
produce immaculate white eggs exclusively, whereas others
show dramatic variability between and even within species
(Kilner 2006). Earlier studies have proposed thermoregula-
tion and camouflage as possible explanations for this vari-

ability (Westmoreland et al. 2007; Mayer et al. 2009), but
another interesting hypothesis that has not been explicitly
tested is that coevolution between avian interspecific brood
parasites and their hosts might drive increased diversity in
egg phenotypes among species (Kilner 2006).
Avian brood parasites lay their eggs in the nests of other

species (their hosts). This behavior has evolved indepen-
dently seven times in the avian phylogeny, and the largest
radiation has occurred in the family Cuculidae (∼40 species;
Payne and Payne 1998). Parasitism typically results in the
loss of host young, and the host parents then invest many
weeks rearing the imposter chick, often reducing opportuni-
ties for renesting within the season (Davies 2000). This be-
havior is so costly to the host that it has led to the evolution
of multiple defenses against parasitism, including mobbing
of adult brood parasites (Welbergen andDavies 2009; Feeney
et al. 2012; Langmore et al. 2012) and rejection of foreign
eggs (Rothstein 1975; Moksnes et al. 1991; Avilés et al. 2004;
Spottiswoode and Stevens 2010), chicks (Grim 2007; Lang-
more et al. 2003; Sato et al. 2010), or fledglings (de Mársico
et al. 2012).
Rejection of foreign eggs by hosts is one of themost wide-

spread defenses against brood parasitism. In empirical stud-
ies, 63.3% of commonly exploited species showed egg rejec-
tion (i.e., they effectively reject 190% of foreign eggs; Soler
2014). The evolution of egg rejection has led to an arms race;
egg rejection by hosts selects for brood parasite eggs that re-
semble those of the host (Stoddard and Stevens 2010, 2011),
which in turn selects for changes to the host egg phenotype
that facilitate discrimination of foreign eggs (Davies 2000).
Brood parasitismhas proved to be a particularly important

driver of variation in egg phenotype within species (Stokke
et al. 2002; Underwood and Sealy 2002; Kilner 2006; Spot-
tiswoode and Stevens 2012). Host species can evolve dif-
ferent strategies to increase discrimination abilities and fa-
cilitate the detection of a parasitic egg. Theory predicts that
(i) hosts should evolve eggs that are individually distinct
from those of other females (e.g., high within-species varia-
tion), whichdecreases the likelihood that a parasite’s eggswill
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match their own eggs, and (ii) hosts should evolve reduced
within-clutch variation, because uniformity should facilitate
discrimination of a foreign egg (Davies and Brooke 1989a;
Langmore and Spottiswoode 2012). The first hypothesis has
been well supported by comparing within-population egg
variation in host populations that are allopatric and sympat-
ric with brood parasites (Avilés andMøller 2003; Lahti 2005)
and in comparative analyses (Soler and Møller 1995; Stokke
et al. 2002). Moreover, individuals within the same host spe-
ciesmay evolve distinctive signature patterns of blotches and
markings (Swynnerton 1918; Victoria 1972; Stoddard et al.
2014; Caves et al. 2015), which makes their eggs highly rec-
ognizable. The second hypothesis has received mixed sup-
port. Some studies have found greater within-clutch egg uni-
formity in hosts than nonhosts (Avilés and Møller 2003;
Moskát et al. 2008), but many others have failed to find sup-
port for the prediction (Avilés et al. 2004; Stokke et al. 2004;
Cherry et al. 2007; Landstrom et al. 2010; Stoddard et al.
2014). Discrimination can be achieved by the use of just one
of the strategies mentioned above; for example, species with
high within-clutch variation can still have highly recogniz-
able eggs if these have distinctive markings (Stoddard et al.
2014). Indeed, a recent study used image analysis and calcu-
lations of “entropy” of the egg markings of hosts and non-
hosts of two African parasitic species, showing that host egg
color and marking components have lower levels of corre-

lation with one another than do those of nonhosts, thus po-
tentially affording greater information about egg identity
(Caves et al. 2015).
Many studies have supported the predictions stated above

within various host species (Soler and Møller 1995; Stokke
et al. 2002; Spottiswoode and Stevens 2011; Stoddard et al.
2014; Caves et al. 2015), suggesting that variation in egg color
and pattern within species may be a response to brood par-
asitism. But can brood parasitism also be associated with egg
diversity among species? If there is selection for novel phe-
notypes within host species (e.g., to have particularly distin-
guishable patterns, which facilitate discrimination of para-
site eggs), and host eggs are selected to occupy different
regions in the phenotypic space, variation among host spe-
cies may arise as a byproduct of selection (fig. 1). The sce-
nario described above leads to the prediction that, in the
same amount of evolutionary time, two host species that
are subject to brood parasitism will evolve more differences
in egg phenotype between them than two nonhost species.
Alternatively, increased constraints on the evolution of egg
phenotype of hosts could result in decreased diversity of
egg phenotypes among host species. The hypothesis that
brood parasitism is associated with increased egg diversity
among species is somewhat supported by an analysis per-
formed at high taxonomic levels, where Kilner (2006) found
a slight, nonsignificant association between high egg diversity
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Figure 1: Illustration of the three hypotheses tested in the article. The Y-axis represents the values for any egg phenotypic trait (color or
pattern). Left, points correspond to the value for each egg within a clutch. Middle, the different lines represent averages per individual in
their egg phenotype. Right, the stars represent the average egg phenotype for a species, and hosts are predicted to have higher egg phenotypic
variation among species than nonhosts.
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between species within a family and the level of exploita-
tion by interspecific brood parasites. However, this study was
based on family-level information and a data set that did not
use objective measures of color and pattern. Since then, there
have been well-resolved bird phylogenies and significant
technological advances that allow quantification of color
and pattern as seen through the eyes of a bird (Spottiswoode
and Stevens 2010; Stoddard and Stevens 2011).

In our study, we use reflectance spectrometry, digital pat-
tern analyses, and phylogenetic information to test whether
brood parasitism is associated with higher egg diversity be-
tween host species. We used species of Australian hosts
and nonhosts together with their phylogenetic relationships
to test whether host species have evolved greater differences
in egg phenotype than nonhost species, controlling for evo-
lutionary time. Moreover, because our data set includes
hosts of six different brood parasite species, we explored
whether species exploited by the same parasite evolve more
or fewer differences between them than host species para-
sitized by different species.

Australian brood parasites (cuckoos) and their hosts are
a relatively unknown study system compared with those of
Europe or North America, where the classic predictions as-
sociated with within-species variability have already been
verified in comparative analyses (e.g., Soler andMøller 1995;
Stokke et al. 2002). The diversity of hosts (main hostsp 90
species) and cuckoo species (np 10) breeding in Australia
make this an ideal system for testing the two classic predic-
tions associated with clutch variation; whether hosts have
(i) low within-clutch variation and (ii) high within-species
variation in eggmorphology (fig. 1).We also use the Austra-
lian system to conduct the first test of the hypothesis that
host species have evolved greater diversity in their egg phe-
notypes than closely related nonhosts (fig. 1). Eight of the
10 Australian parasitic cuckoos lay eggs that closely resem-
ble those of their primary hosts (Brooker and Brooker 1989;
Beruldsen 2003; Starling et al. 2006; Feeney et al. 2014),
whereas two bronze-cuckoo species that parasitize dome-
nesting hosts have evolved egg crypsis rather than mimicry
(Langmore et al. 2009; Gloag et al. 2014). There is evidence
of polymorphic, host-specific egg types in two cuckoo spe-
cies, the Pallid cuckoo, Cacomantis pallidus, and the Brush
cuckoo, Cacomantis variolosus (Beruldsen et al. 2003; Star-
ling et al. 2006; Langmore et al. 2009). Like the majority of
cuckoo hosts elsewhere, most cup-nesting host species in
Australia show high rates of egg rejection (77%; table A1,
available online), suggesting that the morphology of host
eggs may be under selection to facilitate accurate egg dis-
crimination by hosts. Even among dome-nesting hosts,
which show lower rates of egg rejection (12.66%; table A1),
egg morphology may be under selection as a result of brood
parasitism, because the cuckoo removes a single egg dur-
ing parasitism and is more likely to remove an egg with high

luminance (Gloag et al. 2014), which may select for dark
pigment in host eggs. Moreover, cuckoos in Australia are
highly virulent, evicting all host eggs or outcompeting all
host nestlings in the nest (Brooker and Brooker 1989). This
results in higher costs of parasitism than for many hosts of
nonevicting parasites (such as cowbirds Molothrus species
and the greater spotted cuckoo Clamator glandarius), pro-
viding stronger selection for the evolution of defenses (Kil-
ner 2005).

Methods

Data Collection

We took photographs and spectral data for 517 eggs in 200
clutches from 40 Australian passerine species (22 hosts and
18 nonhost species) belonging to 25 different genera (fig. A1;
figs. A1–A4 available online) at the Australian National
Wildlife Collection egg collection in Canberra (ACT). We
measured three eggs per clutch (or fewer for species that
lay smaller clutches) and five clutches per species, and we
confirmed that the clutches were similarly distributed in
time and space for hosts and nonhosts (fig. A2). Photo-
graphs were taken for egg pattern analyses, and spectral data
were collected for color analyses (see below). For our analy-
sis, we included some of the passerine species classified by
Brooker and Brooker (1989) as either nonhosts (np 18)
or biological main hosts (np 22) of Australian cuckoos.
The species we used were selected from the Brooker and
Brooker (1989) data set to maximize the number of phylo-
genetically independent lineages present in the sample while
keeping a balance between the number of host and nonhost
species. For instance, wherever there was a phylogenetically
independent origin for host status (host or nonhost), we
sampled that clade and its sister clade. Also, almost all of
the thornbill and honeyeater species are parasitized; there-
fore, to avoid a bias in the analyses toward particularly large
clades, we arbitrarily sampled four or five species as repre-
sentatives of the clade.We collected data on host status from
Brooker and Brooker (1989). They applied rigorous crite-
ria to their classification of hosts as biological (successful)
hosts, distinct from accidental or unsuitable hosts; biological
hosts had multiple (14) independent (11 observer, 11 loca-
tion, 11 year) records of parasitism, and either (i) an egg
or authentic nestling record followed through to fledgling;
(ii) nestling and feeding records as well as egg records; or
(iii) egg records alone, if congeneric with a known biological
host of the cuckoo. We excluded species classified as non-
biological (occasional or rare) hosts, because it was not pos-
sible to infer the extent of selection on these hosts by brood
parasites.We also collected data on nest type from theHand-
book of the Birds of the World Alive (del Hoyo et al. 2014),
given the evidence showing that egg rejection is less likely
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in enclosed nests than in open cup-shaped nests (Langmore
et al. 2005). In our data set, 40% of the species were dome
nesters.

Egg Pattern Analyses

We took photographs of each egg with a Canon EOS 50D
camera and a 100-mm f/2.8 Macro lens. We included a 16%
gray standard and a 1-cm scale in each of the photographs.
All image analyses were performed in ImageJ (Rasband
2014), using custom-written code. The green (mediumwave-
length) channel was extracted from each photograph and
used for pattern analysis, following Spottiswoode and Ste-
vens (2010). This approximates to an achromatic luminance
channel of avian vision, with achromatic information widely
thought to be most important in pattern processing in ani-
mal vision (Osorio and Vorobyev 2005). All photographs
were taken in the same laboratory and under similar light
conditions, but to further standardize for different lighting
conditions, each image was also linearized (fit R2 p 0:999)
and converted to reflectance relative to the gray standard
(Stevens et al. 2007). Images were scaled to 45 pixels per mil-
limeter, and eggs were selected using an egg-shape selection
tool (Troscianko 2014). Pattern analysis was then performed
using fast Fourier transform bandpass filtering at different
spatial scales from 2 pixels increasing exponentially with √2
to 512 pixels. This type of “granularity” pattern analysis has
been used in a number of previous studies to analyze animal
markings (e.g., Godfrey et al. 1987; Stoddard and Stevens
2010). The granularity filtering approach is broadly based
on well-established principles of lower-level vision, includ-
ing receptive fields and spatial frequencyfiltering, and is sup-
ported by the neurophysiology of a range of vertebrate and
invertebrate animal species (Campbell and Robson 1968;
Godfrey et al. 1987; Stoddard and Stevens 2010). In addi-
tion, granularity-based metrics have been tried and tested
with several field experimental studies of egg rejection, show-
ing that the pattern metrics derived do predict rejection be-
havior (e.g., Spottiswoode and Stevens 2010, 2012; Stevens
et al. 2013). We therefore chose this method over a recent
feature-detection-based approach (Stoddard et al. 2014),
which used techniques developed formachine vision and ob-
ject recognition, because there is little clear evidence that the
latter approach approximates to how object and pattern rec-
ognition work in animals. In addition, the machine-learning
approach is yet to be validated with behavioral egg-rejection
experiments, and so we cannot at present say with confi-
dence whether the measures derived from it are relevant to
how birds reject foreign eggs.

The amount of “energy” contained in each pattern was
measured using a histogram at each spatial scale as the stan-
dard deviation of the pixel intensities. The resulting granu-
larity spectra were used to generate descriptive statistics of

each egg pattern, including marking diversity (the propor-
tion of the total energy accounted for by the dominantmark-
ing size; i.e., the higher the value, the more one marking size
dominates), contrast of the patterns against the background
(total energy or amplitude of the spectrum), and dominant
marking size (denoted by peak frequency of the spectrum;
Stoddard and Stevens 2010).

Pattern Differences between Species

Pattern difference between two species was calculated as the
sum of the absolute differences in the species average energy
at each spatial scale (i.e., the overall differences in the gran-
ularity spectra, taking into account both shape and ampli-
tude). A matrix of between-species pairwise differences in
pattern was generated. This measurement describes pattern
similarity in a manner that, unlike the descriptive statistics,
can comparemultimodal energy spectra that havemore than
one peak frequency, preserving all pattern information and
combining across all spatial scales measured.

Pattern Variation within Species and within Clutches

To calculate the degree of polymorphism within each spe-
cies andwithin individuals, we used themean contrast, mean
dominant marking size, and mean marking diversity values
from the pattern analysis for each photograph. We then cal-
culated the standard deviation within each clutch (within-
clutch variation) and used the average value per species. To
calculate within-species variation in egg pattern, we calcu-
lated the standard deviation within each species using the
same variables described above.

Color Analyses

We measured reflectance spectra of egg background color
at three different places on the egg (base, middle, and tip)
with a 5-mm-diameter probe and measured speckle color
with a smaller probe (3-mm diameter) using an Ocean Op-
tics USB4000 spectrometer. The visual systems of birds can
be divided into two discrete classes; those with retinal pig-
ments sensitive to shorter wavelength UV light (UVS group)
and those with pigments sensitive to longer wavelength vio-
let light (VS group;Cuthill 2006).Most passerines haveUVS-
type cones, but shifts between visual systems can occur even
within a single genus (Ödeen et al. 2012). Therefore, to as-
sess egg color and pattern as seen through the eye of a bird,
we calculated photon catches for the visual systems of both
the blue tit (Cyanistes caeruleus) and the common peafowl
(Pavo cristatus), which are commonly used models of a UVS
and VS system, respectively (cone ratios UVS 1 : 0.99 : 0.71 :
0.37 and VS 1 : 1.9 : 2.2 : 2.1; Hart and Hunt 2007). Spectral

354 The American Naturalist

This content downloaded from 144.173.020.021 on July 21, 2016 02:02:03 AM
All use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).



sensitivity data are available for very few bird species (Hart
2001), so most studies use the visual systems of the blue tit
Cyanistes caeruleus and the peafowl Pavo cristatus as mod-
els of UVS and VS visual systems, respectively (e.g., Avilés
et al. 2010; Stoddard and Stevens 2010; Spottiswoode and
Stevens 2012). These model species are distantly related, so
they reveal the extent to which the results vary depending
on the visual system used. We used a linear mixed model in
R to compare the differences between visual systems; we re-
port the F statistic and the P value.

Photon catch values were used in a model that predicts
discrimination abilities for color and yields a value of just
noticeable differences (JNDs). We used the log version of
the standard Vorobyeb and Osorio model (1998) usingWe-
ber fractions of 0.05 or 0.02 where a JND of less than 1.00
means two objects are not distinguishable, and discrimina-
tion is unlikely when values are under 3 JNDs (Siddiqi et al.
2004). We generated a pairwise distance matrix of JNDs in
color between all the species, for both visual systems. As in
the case of pattern analysis, this pairwise approach is much
more accurate than reducing variables to give color values
per species. To calculate color polymorphism, we used the
same procedures described in the pattern analyses using
values for each cone.

New Hypothesis: Diversity of Egg Color
and Pattern among Species

To test whether, on average, host species evolvemore differ-
ences in egg phenotype than nonhost species, wemade pair-
wise comparisons within two sets: among host species and
among nonhost species. Phenotypic differences between spe-
cies are expected to increase with time (Martins 1994); there-
fore, to make objective comparisons between host and non-
host pairs, we had to include information about the time of
divergence between each pair of species. To do so, we down-
loaded 1,000 different possible phylogenetic trees from a
pseudoposterior distribution from birdtree.org (Jetz et al.
2012). By doing the same analyses across different phyloge-
netic hypotheses, wemade sure that our results were indepen-
dent from the tree used. From each tree, we generated matri-
ces with phylogenetic distances between species using the
cophenetic.dist command in the R package ape (Paradis
et al. 2004). Because the trees were time calibrated, distances
are directly proportional to time (millions of years ago;
MYA) and can actually be interpreted as such.

Because we were interested in finding out whether pairs
of host species would diverge more than pairs of nonhost
species, we included another variable called “type of com-
parison.” This variable refers to the fact that some pheno-
typic distances were calculated between host species (host
vs. host) and others were calculated between nonhost spe-
cies (nonhost vs. nonhost). Thus, if hosts weremore diverse,

we would predict larger phenotypic distances in compar-
isons between host species than between nonhost species.
We used general linear models (Legendre and Fortin

2010) to test our hypothesis, and we included the follow-
ing as predictors: phylogenetic distance, type of compari-
son, andphylogenetic distance# typeof comparison.As re-
sponse variables, we included egg color differences (JNDs)
and egg pattern differences. This last variable was trans-
formed using natural logarithm to achieve normality. We
report the average P value and average b across the 1,000
trees for each predictor in the model. We also report the
standard deviation for these values.
If phylogenetic distance predicts differences in color and

pattern, it suggests that related species are more similar to
each other than nonrelated species. If the type of compari-
son effectively predicts differences in color and pattern, it
suggests that being a host or a nonhost species is associ-
ated with the degree of diversity in color and pattern, despite
phylogenetic relatedness. If the interaction between both
variables predicts differences in color and pattern, it sug-
gests that color and pattern differences evolve differently
in hosts and nonhosts (the slopes are different). Addition-
ally, to explore whether host species that shared the same
parasite evolved more or fewer phenotypic differences, we
included a variable that coded whether the pair of host spe-
cies shared the same parasite or a different parasite. It is
worth pointing out that the rationale behind all this analy-
sis is somewhat analogous to measuring evolutionary rates;
if a pair X of species evolves more phenotypic differences
than pair Y in the same time, it suggests that pair X evolved
faster. We did not use specific methods to measure evolu-
tionary rates for two reasons. First, currentmethods tomea-
sure pattern and color differences are much more accurate
when doing pairwise comparisons than when summarizing
information in a one-dimensional variable. Second, several
nonhost species are contained within clades of hosts, and
current phylogenetic methods are designed to calculate and
compare rates between clades, not among singular branches.

Classic Predictions: Variation in Egg Pattern
within Species and within Clutches

To test whether host eggs are more or less polymorphic than
nonhosts, we used a phylogenetic linear regression (pgls) in
the Caper package in R (Orme et al. 2012). We used host sta-
tus and nest type as predictor variables and within-clutch
and within-species variation in color and pattern as response
variables. Nonsignificant predictors were dropped one at
a time until we obtained a model with only significant pre-
dictors. We report the P value, b, and l (e.g., phylogenetic
signal, when lp 0 the relationship between predictor and
response is unaffected by phylogeny). The analyses were re-
peated for 1,000 different trees obtained from birdtree.org
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(Jetz et al. 2012). The data set with final pattern and color
measurements has been deposited in the Dryad Digital Re-
pository, http://dx.doi.org/10.5061/dryad.s31sp (Medina et al.
2016).

Results

Eggs of both hosts and nonhosts varied from plain white
eggs, such as those of some thornbills (Acanthiza species)
and finches (Poephila species), to speckled and darker eggs,
such those of fantails (Rhipidura species) and lyrebirds (Me-
nura species). There were no significant differences in color
or pattern between hosts and nonhosts (pgls, color: P1 :5
for all the cones in both background and speckles; pattern:
proportion energy Pp :40, peak frequency Pp :18, total
energy Pp :23). In our sample, we found no association
between being a host and having a closed nest; the distribu-
tion of closed versus open nests was 40% for hosts and 38%
for nonhosts, and nest type had no significant effect in any
of the analyses reported below.

Differences between Visual Systems

Differences in color (JNDs) between pairs of species were
significantly higher when the data were analyzed with the
blue tit visual system than with the peafowl system (fig. A3).
This was true for both background (BG) and speckle color
(SP; linear mixed model, BG: for host vs. host, Fp 150:34,
P ! :0001, df p 228, 459; for nonhost vs. nonhost, Fp 91:00,
P ! :0001, df p 180, 303; SP: for host vs. host, Fp 244:14,
P ! :0001, df p 228, 459; for nonhost vs. nonhost, Fp
230:74, P! :0001, df p 180, 303). The difference between
the blue tit and peafowl visual system was more pronounced
when comparing pairs of host species (host vs. host) than
when comparing nonhosts (Fp 150:34 and Fp 91:00, re-
spectively). This means that an animal with a blue tit–like
visual system would detect even more color differences be-
tween host eggs than would an animal with a visual system
like that of the peafowl. The same analyses were performed
using aWeber fraction of 0.02 instead of 0.05, and the results
remain qualitatively the same. Despite the fact that the val-

ues of JNDs are higher for the blue tit visual system, all other
analyses shown below had the same qualitative results for
both visual systems. Thus, from now on, we will refer only
to the analyses employing the blue tit visual system and a
Weber fraction of 0.05.

New Hypothesis: Diversity of Egg Color
and Pattern among Species

Overall, phylogenetic distance was a good predictor of dif-
ferences in egg color and in egg pattern between species (ta-
ble 1; fig. 2). However, phylogenetic distance had a weaker
relationship with egg pattern differences between hosts
than between nonhosts, as indicated by the significant dif-
ferences in slope in figure 2. Moreover, in addition to the
effect of phylogenetic distance, differences in egg pattern
between host species were significantly higher than the dif-
ferences between nonhost species. This means that, over
the same period of evolutionary time, two host species will
evolvemore differences in egg pattern than two nonhost spe-
cies. However, this was not true for color (table A1). There
are no significant differences in JNDs for comparisons be-
tween hosts and nonhosts. All the findings described above
remained the same after doing the analyses using 1,000 dif-
ferent phylogenetic trees. Results remained the same both
after excluding species with closed nests and after exclud-
ing species with immaculate eggs (fig. A4). Furthermore,
among hosts, pattern differences were significantly smaller
between pairs of hosts that share the same parasite, after
controlling for phylogenetic distance (bp214:55! 3:71,
Pp :000165 :0001; fig. 3).

Classic Predictions: Variation in Egg Pattern
within Species and within Clutches

Eggs of host species were significantly more polymorphic
in egg pattern than were those of nonhost species (fig. 4).
Specifically, differences in peak energy were significantly
higher between individuals of host species (within-species
variation), and differences in peak frequency are signifi-
cantly higher within clutches of host species (within-clutch

Table 1: Mean statistics of egg phenotypic diversity between species

Differences in egg pattern JNDs in speckle color JNDs in background color

Predictor b P value b P value b P value

Phylogenetic distance .003 5 .0003 .038 ± .012 .03 5 .0005 .031 ± .02 .012 5 .001 .0008 ± .006
Type of comparison .90 5 .07 .0006 ± .0007 .30 5 .082 .198 5 .123 .121 5 .147 .607 5 .227
Phylogenetic distance #

type of comparison .006 5 .0007 .013 ± .010 .007 5 .0008 .098 5 .08 .009 5 .001 .614 5 .231

Note: We report the slope value and the significance for each predictor. Standard deviations were obtained from doing the analyses with 1,000 different
phylogenetic hypotheses. JNDs p just noticeable differences. “Type of comparison” refers to whether the distance was calculated between two host species
or two nonhost species. Significant P values are in bold type.

356 The American Naturalist

This content downloaded from 144.173.020.021 on July 21, 2016 02:02:03 AM
All use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).



variation). Differences remained significant after doing the
analyses for 1,000 different phylogenetic trees (pgls, peak
frequency 5 SD: lp 02 0:762, bp 28:815 13:980, Pp
:04615 :0001; peak energy 5 SD: lp 02 0:438, bp
2:225 1:057, Pp :0415 1#102 4). We found no evidence
for differences in color variation or in total energy; hosts
were nomorepolymorphic thannonhosts in eggbackground
color (bp20:021, Pp :251), speckle color (bp20:075,
Pp :483), or contrast (bp 3:25, Pp :45).

Discussion

In this study, we aimed to explain avian egg diversity among
species by testing the role of brood parasitism in the evo-
lution of egg phenotype. By using a data set of Australian
passerines that are hosts and nonhosts of different cuckoo
species, we demonstrate that, in the same system, brood par-
asitism is associatedwith egg phenotypic variation within in-
dividuals, within species, and among species. We show for
the first time, to our knowledge, that pairs of host species
have divergedmore in egg pattern than pairs of nonhost spe-
cies. Additionally, divergence in egg phenotype is smaller in
hosts that are exploited by the same parasite than in those
exploited by different parasites.

Traditional hypotheses to explain egg phenotypic di-
versity include thermoregulation and camouflage against
predation (Westmoreland et al. 2007; Mayer et al. 2009).

However, coevolution with brood parasites may also be
responsible for phenotypic differences across species. Our
analyses show that host species are likely to evolve more
egg pattern differences among them than nonhost species,
even if they have evolved independently for the same length
of time. This supports a scenario where host species may
escape a parasitic egg phenotype through the evolution of
different strategies or different adaptive phenotypes, result-
ing in divergence. Our study also shows that egg pattern
evolves differently in hosts and nonhosts. Under a neutral
scenario, the expectation is that phenotypic differences be-
tween two species should increase in relation to the time
since divergence (Martins 1994). This scenario is supported
by the results for nonhost species (fig. 2). However, the slope
of the relationship between phylogenetic distance and egg
pattern dissimilarity is significantly less steep for the host
versus host comparison (fig. 2). This suggests that phyloge-
netic history is less important than selective pressures in
shaping the differences in egg pattern between host species.
The results do not differ between open nesters and dome
nesters (fig. A4), suggesting that possible egg rejection dif-
ferences between hosts with different nest types are not crit-
ical at this macroevolutionary scale. Possible explanations
for this are that (i) the effect is sufficiently strong to persist
even with the inclusion of a few species with low rates of
egg rejection, (ii) even low rates of egg rejection have evo-
lutionary consequences, and (iii) the egg morphology of
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dome-nesting hosts may be under selection as a result of
selective egg removal by the parasite (Gloag et al. 2014).

Our study shows that brood parasitism is associated with
an increase in egg pattern divergence among host species
and across different families. Moreover, we show that par-
asite diversity increases the likelihood of divergence. The
egg pattern of hosts that are exploited by the same brood
parasite was less diverse than that of hosts exploited by dif-
ferent parasites (fig. 3). This trend was to be expected, given
that hosts of the same parasite are often phylogenetically re-
lated, so their eggsmay bemore similar from the outset, and
they may be more likely to evolve along similar evolutionary
trajectories.

We have shown that the eggs of host species have evolved
more phenotypic differences than those of nonhost species,
controlling for divergence time. Correspondingly, it is also
possible that, in nonhost species, there are additional stabi-
lizing selection sources on egg phenotype that hinder vari-
ability, such as camouflage and thermoregulation (Stuart-
Fox and Moussalli 2009; Vignieri et al. 2010; Hegna et al.
2013), whereas brood parasitism is the leading selective
pressure in hosts.

We found no evidence to suggest that particular egg col-
ors or patterns were associated with host status. Both im-
maculate and maculated eggs can be found in host and
nonhost species. However, we found that host species were

more variable in pattern than nonhost species. This sup-
ports a well-established hypothesis that a host’s egg phe-
notype will evolve in random directions away from that
of the parasite, thereby increasing within-species variation
over time (Soler andMøller 1995; Lahti 2005; Spottiswoode
and Stevens 2012). High variation in egg phenotype within
species has been reported for hosts in comparative analyses
done in other systems (Soler andMøller 1995; Kilner 2006).
Moreover, eggs of European host species tend to be more
polymorphic than those from North America, and this dif-
ference has been linked to the low specificity of the host-
parasite system in the latter (Stokke et al. 2002). Our results
also suggest that variation in the pattern, but not the color
of the background or the speckles, is influenced by selec-
tion from brood parasitism, since we found no differences
in variation between hosts and nonhosts for color traits.
Our results correspondwith studies of theEuropean cuckoo,
which show that pattern is an informative trait that in-
creases likelihood of discrimination (Stoddard and Stevens
2010). Similarly, in passerines such as the village weaver
Ploceus cucullatus and the bush warbler Cettia diphone,
the presence of spots and their density are known to influ-
ence rejection probability (Higuchi 1998; Lahti and Lahti
2002).
Contrary to theoretical predictions, we found that within-

clutch variation was also higher for hosts than nonhosts.
Our study is the first comparative analysis to find this sig-
nificant trend across different species. In theory, within-
clutch variation should decrease in hosts, because this should
facilitate discrimination between the host’s own eggs and
foreign eggs (Davies and Brooke 1989b; Jackson 1998). In
support of this theory, reed warblers are more likely to re-
ject foreign eggs if they lay a more uniform clutch (Stokke
et al. 1999; Moskát et al. 2008). However, many empirical
(Avilés et al. 2004; Cherry et al. 2007; Landstrom et al. 2010)
and comparative analyses (Soler and Møller 1995; Stod-
dard et al. 2014) fail to support this hypothesis, and Cherry
et al. (2007) found that, in a common cuckoo host, the
great reed warbler (Acrocephalus arundinaceus), rejection
of cuckoo eggs improved with increasing within-clutch var-
iation (Cherry et al. 2007). Avilés et al. (2004) also reported
that magpie hosts of the great-spotted cuckoo rejected more
model eggs if the clutch was highly variable (Avilés et al.
2004). Stoddard et al. (2014) found that eggs could be easily
recognizable in species with elevated levels of within-clutch
variation if such variation is associated with having distinc-
tive egg signatures (e.g., particular blotches and markings),
such as in the brambling (Fringilla montifringilla). In Aus-
tralian hosts, high within-clutch variation may also be re-
lated to the evolution of particular pattern signatures; how-
ever, this hypothesis remains to be tested.
Although the cause-effect relationship is hard to test, as

in any other comparative analyses, three previous studies
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on the evolution of polymorphism in hosts strongly suggest
that brood parasitism influences egg phenotype and not the
other way around. Spottiswoode and Stevens (2012) showed
that host species of brood parasites increase their egg vari-
ability after only 40 years of parasitism, and Lahti (2005)
and Yang et al. (2014) demonstrated that egg variability is re-
duced when hosts are released from selection by brood par-
asites (Lahti 2005; Yang et al. 2014). Although we cannot
completely reject the hypothesis that parasites selectively tar-
get hosts with high levels of variation, such a scenario seems
implausible, because the evolution of egg mimicry in brood
parasites would be constrained, leading to higher rates of re-
jection of brood parasite eggs.

Finally, we have shown that brood parasitism is associ-
ated with the generation of egg diversity at different taxo-
nomic levels. Currently, there is no information on egg re-
jection rates for most of the species that we used in this
study, but on the basis of our results, we predict high rates
of egg rejection as a defense in these species. In fact, egg
rejection has a high phylogenetic signal (Medina and Lang-
more 2015), and the average rejection levels for other Aus-
tralian species from the same genera are high (77.1% for
open nesters and 12.66% for dome nesters; table A1). We
would predict that similar systems of coevolution between
hosts and highly virulent parasites, such as the European
cuckoo, should also exhibit the evolutionary pattern that
we report, because rejection rates are high in many Euro-
pean hosts (Langmore et al. 2005). Moreover, studying dif-
ferent components of egg phenotype allowed us to identify
pattern as a more important trait than color. By using de-
tailed data on numerous species, we were able to show that
brood parasitism has deep implications for egg phenotype
and is influential enough to leave traces at a larger evolu-
tionary scale than previously studied.
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