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ABSTRACT

This paper describes a sliding mode observer scheme for estimation of the
shear force affecting the cantilever in a Transverse Dynamic Force Microscope
(TDFM). The vertically oriented cantilever is oscillated in proximity to the
specimen under investigation. The amplitude of oscillation of the cantilever
tip is affected by these shear forces. They are created by the ordered-water
layer above the specimen. The oscillation amplitude is therefore a measure
of distance between the tip and the surface of the specimen. Consequently,
the estimation of the shear forces provides useful information about the
specimen characteristics. For estimating the shear forces, an approximate
finite dimensional model of the cantilever is created using the method of
lines. This model is subsequently reduced for its model order. An unknown
input sliding mode observer has been used to reconstruct the unknown shear
forces using only tip position measurements and the cantilever excitation. This
paper describes the development of the sliding mode scheme and presents
experimental results from the TDFM set up at the Centre for Nanoscience and
Quantum Information (NSQI) at Bristol University.
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I. INTRODUCTION

The Atomic Force Microscope (AFM) is an
important instrument for investigating specimens
at nano-scale. These devices can provide high
resolution images in ambient, aqueous and vacuum
environments, and consequently are invaluable for
studying biological specimens under physiological
conditions. In traditional contact AFM with a horizontal

Manuscript received July 8, 2015.
1 College of Engineering, Mathematics and Physical

Sciences, University of Exeter, Exeter UK EX4 4QF, UK;
Corresponding Author at Exeter: C.Edwards@exeter.ac.uk; 2

Department of Mechanical Engineering, University of Bristol,
University Walk, Bristol, BS8 1TR, UK; Corresponding Author
at Bristol: G.Herrmann@bris.ac.uk; 3 Centre for Nanoscience
and Quantum Information, University of Bristol, Tyndall
Avenue, Bristol, BS8 1FD, UK;

This research is supported under the EPSRC grants
EP/I034882/1 & EP/I034831/1

cantilever arrangement, the (force) interaction between
the cantilever tip and the specimen is inferred by the
induced bending of the cantilever. The bending of the
cantilever, when obtained at different positions as part
of a raster scan of the sample surface, creates a high
resolution topographical image.

Significant advances have been made in terms of
achieving higher temporal resolution through improved
electronics in conjunction with sophisticated control
approaches [1, 23, 29, 30], stable fast-scan sample
stages [38], and by miniaturising cantilevers [25]. In
particular, the miniaturisation of cantilevers increases
their resonance frequency, and thus increases the
bandwidth of the detection system [21].

Most AFMs are set up in such a way that the
cantilever is oscillated in the horizontal plane, and they
operate in a tapping mode [27, 35] or contact mode
[29, 38]. In contrast, the Transverse Dynamic Force
Microscope (TDFM) at Bristol addresses the issue of
non-contact imaging. The setup at Bristol employs
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a vertically oriented cantilever (VOC) with a length
of 28 μm and a first modal frequency of 353 kHz.
The surface is identified by observing changes in the
cantilever resonant dynamics. The vertical orientation
of the cantilever prevents the ‘snap-to-contact’ effect
experienced by conventional AFM cantilevers when
the gradient of the surface attractive force becomes
larger than the spring constant of the cantilever [7].
This results in the possibility of operating the TDFM
in a non-contact fashion allowing delicate biological
specimens to be tested in situ.

It can be seen from the arguments above, the
cantilever probe in the TDFM (or indeed in AFMs
in general) is a vital component of the device.
The (dynamic) changes in the cantilever during its
interaction with the specimen indirectly captures a
wealth of information related to the mechanical
characteristics of the specimen. Hence, understanding
the dynamic behaviour of the cantilever in real-
time and identifying key model parameters is very
beneficial. Unsurprisingly, the problem of estimating
the cantilever parameters has been investigated by
many researchers. Besancon et al. [6] considered an
observer-based approach to estimate unknown forces
affecting the dynamics of a cantilever in Electric
Force Microscopy devices. De et al. [10] proposed a
real-time scheme to determine the probe loss areas
in atomic force microscopy using imaging systems
based on tapping modes. Later, Xu et al. [43] studied
a two degree of freedom mathematical model of a
tapping mode AFM when the cantilever is immersed
in liquid, from which the tip-sample interaction forces
are estimated. For horizontally oriented cantilevers, the
team of Jalili, has developed a series of interesting
results for estimation and control in simulated AFM
problems using a lumped parameter model [19, 20] and
also a distributed model [16]. In these results, the output
signal derivative is needed. Jalili and co-workers also
tested an experimental controller for a relatively large
cantilever with resonance frequencies below 3 kHz
using a distributed cantilever model [17]. Also practical
studies for the identification of a distributed model have
been carried out in [18] for a cantilever with resonance
frequencies below 55 kHz.

In contrast to much of the AFM research literature
described above (which uses horizontally oriented
cantilevers), in this paper, the problem of estimating the
tip-sample interaction forces is associated with a regime
in which the cantilever probe is vertically orientated.
The practical problem addressed in this paper is very
challenging, because the techniques need to work for
cantilevers with resonance frequencies well above 300

KHz. Thus, the complexity of the techniques which can
be applied practically is very constrained.

In this paper, a robust process is suggested
which allows the estimation of the shear force arising
from the interaction of the cantilever-tip and the
sample. The top of the vertical cantilever is excited
to detect the dynamics resulting from the shear force
at the tip. Thus, the excitation signal and the shear
force are not physically collocated. This requires the
development of a mathematical model of the cantilever
to understand the dynamic interaction of the excitation
and the shear force through the cantilever. A robust
process is suggested which allows the application
of a sliding mode observer, based on a low order
linear model, avoiding the requirement of any extra
measurements such as the cantilever tip velocity. It
is well established that sliding mode observers are a
possible robust solution to this problem in comparison
to many other options [8, 9, 12, 24, 28, 32, 42]. Sliding
mode observers exhibit a high degree of accuracy
when estimating state variables in the presence of
unknown inputs [14, 22, 39]. For this reason, there
is increasing use of these ideas in the area of fault
detection and isolation. In particular, sliding mode
observers can be used to simultaneously estimate
within finite time both internal states and unknown
inputs [15] without needing to impose restrictions on
the unknown signal (see for example [8]). This is
helpful since the unknown shear force is created by
the nonlinear, partially discontinuous, characteristics of
the thin ordered layer of water molecules above the
specimen. In this paper, an observer will be designed
based on the method originally proposed in [14],
where the so-called equivalent output injection signal
is exploited to accurately reconstruct the unknown tip-
sample shear force.

Thus, in the paper a mathematical model of the
TDFM cantilever will be introduced in which the
dynamics take the form of a 4th order partial differential
equation (PDE). The method of lines is then employed
to extract a system of ordinary differential equations
(ODEs), representing a high order linear time invariant
system relating the tip position to the shear forces
and the external excitation. Model order reduction is
then employed to obtain a simple lower order model.
A sliding mode observer based on the reduced order
model is then used to reconstruct the unknown tip-
sample interaction force.

There are two main contributions in terms of
research in this paper. Firstly, it proposes a practical
process to design and synthesize an estimation scheme
using sliding mode techniques. For this purpose,
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an ODE model is derived from the spatio-temporal
PDE description of the dynamics of the vertically
oriented cantilever, and then a sliding mode observer
is suggested and designed to estimate the tip-sample
interaction force. Secondly, the process is practically
demonstrated, which is novel in terms of this realm of
application.

The paper is organised as follows. Section II
discusses the problem formulation and introduces the
mathematical model of the dynamics of the TDFM
cantilever probe in the form of a PDE. In Section
III, the method of lines and model order reduction
are employed to obtain a finite dimensional model. A
sliding mode observer for the reduced order model is
then described in Section IV. Experimental results are
demonstrated in Section V and conclusions are drawn
in Section VI.

II. The Transverse Dynamic Force Microscope -
Problem formulation

Bristol’s TDFM consists of two main (mechanical)
parts: the head and the adjustable platform which carries
the specimen. A sub-micron specimen is mounted on
a transparent substrate, typically a glass coverslip of
thickness less than 130 μm. The substrate is then
attached to two X-Y translation stages: the first X-
Y translation stage (Physik Instrumente P-734) has a
central aperture and a scan range of 100 μm; and
the second high speed X-Y stage, on top of the P-
734, increases the overall bandwidth. The sample is
then translated to create the surface image following a
typical raster scan pattern.

The head carries the vertically oriented cantilever
which is actuated in the z-direction by two piezo-
actuators. These provide fine and coarse resolution
respectively (see the simplified representation of the
TDFM in Figure 1). The cantilever is sinusoidally
oscillated in the vertical direction by a third piezo
actuator at a frequency close to its fundamental flexural
mode, and typically with an amplitude of less than
2 nm. As the tip is lowered towards the surface, a
shear force interaction produces a reduction in the
oscillation amplitude, measured on the photo-detector.
A schematic of the TDFM setup is shown in Figure 1.
In this setup, laser light is emitted from a source (A) and
is focussed through the objective lens (B). This has the
effect of illuminating the bio-specimen from below and
produces an exponentially decaying evanescent field
above the specimen, which is used to measure the
vibration amplitude [26]. When the cantilever probe
tip enters the evanescent field above the specimen, the

tip of the cantilever illuminates and light is scattered,
also reaching the optical lens (B). A complex optical
mechanism (SEW) [3] extracts from the scattered light
the vibration amplitude.

The TDFM exploits the shear force interaction that
happens in the thin ordered water layer close to the
specimen (usually a biomolecule) surface (Figure 2).
The hydrodynamic properties of this thin layer of water
(usually only a few nano metres thick) significantly
influences the amplitude of the cantilever tip. This water
layer is usually also present in specimens, which are not
immersed in a fluid, e.g. non-biological specimens. As
experiments are usually conducted at normal ambient
room conditions (in terms of temperature, pressure and
humidity), a thin ordered water layer always exists due
to humidity. As the cantilever interacts with the water
layer, the closer the cantilever tip is to the specimen,
the greater the shear force exerted by the ordered water
layer. This decreases the amplitude of oscillation of
the cantilever tip. Thus, the vibration amplitude and
the shear force are an excellent measure of specimen-
cantilever distance.

Molecule

Glass cover slip
Glass cover slip

Ordered

water layers

u(t)

u(t)

y(t)

Shear force

Fig. 2. The TDFM-cantilever in bulkwater & cantilever tip in interaction
with the ordered layers.

The next Section develops a partial differential
equation (PDE) model of the cantilever which is the
starting point for the development of the observer based
scheme.

2.1. Spatio-temporal cantilever model

To model the cantilever shear force interaction
[2, 4], the spatio-temporal dynamics can be presented
in the form

∂4EI(Y + αẎ )

∂ζ4
+ ρAsŸ + γwẎ = 0 (1)
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Fig. 1. Simplified schematic of the TDFM together with SEW system (adopted from [26]).

with boundary conditions

Y (ζ = 0) = u(t) = d0 sin(ωt), (2)
∂Y

∂ζ
(ζ = 0) = 0, (3)

∂2Y

∂ζ2
(ζ = L) = 0, (4)

EI
∂3Y

∂ζ3
(ζ = L) = −f(t), (5)

where E is Young’s modulus, α is the internal damping
constant of the cantilever, I is the secondary moment
of area, As is the cross-sectional area, ρ is the density
of the probe, L is the length of the cantilever, w is
the width of the cantilever, ζ denotes position along
the probe axis, Y is the transversal displacement at
any point along the probe during vibration. The scalar
γ is the damping coefficient of the surrounding fluid,
in which the cantilever might be fully immersed. This
is the case for inspection of biological samples (for
example), while for ‘dry’ samples γ = 0. In (1), Ẏ and
Ÿ are the first and second derivatives of Y with respect
to time t, u(t) is the harmonic excitation signal with
frequency ω and amplitude d0 applied at the top of the
cantilever, and finally f(t) is the tip-sample interaction
shear force at the tip of the cantilever. Furthermore, the
tip sample interaction force at the tip can be split into a
viscous and an elastic force [4]:

f(t) = − ν
∂Y

∂t

∣∣∣∣
ζ=L

− κY (L) (6)

where ν is the dissipative or viscous interaction constant
and κ is the elastic interaction constant.

The model in (1)-(5) provides a first indication of
the non-trivial dynamic relationship between the input
signals u(t) (the sinusoidal excitation signal), f(t) (the
unknown shear force) and the measured output y(t) =
Y (t, ζ = L). The aim in this paper is to estimate the
unknown shear force signal f(t) using an unknown
input observer technique based only on knowledge of
y(t) and u(t). It should be noted that f(t) and u(t)
are not collocated. Because of this it is necessary to
obtain a (state space) model to relate u(t) and f(t) to
y(t) = Y (t, ζ = L) for estimation of f(t).

III. Linear differential equation model of the
cantilever

In this section, the method of lines will be
introduced to approximate the PDE in (1) by a system
of linear time-invariant (LTI) ordinary differential
equations (ODEs) [37]. This approach also retains some
of the versatility of the PDE, as forces and the level of
any possible ambient fluid can be modeled with good
accuracy by choosing for instance the model parameter
γ as function of ζ. Most importantly, this approach will
provide an accurate control engineering perspective on
the influence of the unknown shear force, f(t) (and also
the excitation signal u(t)) on the output y(t), and the
chosen observed states of the system.

The process for obtaining this model is to first
conduct a method of lines analysis and then to use an
established model reduction approach to obtain a good
low order approximation of the dynamic relationship.
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3.1. Modelling of the cantilever using the method of
lines

The main idea is to subdivide the cantilever into
n− 1 equal sections and to consider n nodes distributed
along the probe. Denote by Yj the displacement at
node j and let δζ represent the distance between two
consecutive nodes. Using a finite difference formula,
the boundary condition (3) for the discretized model
becomes

∂Y

∂ζ
(ζ = 0) ≈

Y2 − Y1

δζ
= 0 (7)

which implies
Y2 = Y1. (8)

Likewise, the boundary conditions in (4) becomes

∂2Y

∂ζ2
(ζ = L) ≈

Yn − 2Yn−1 + Yn−2

δζ2
= 0 (9)

or equivalently

Yn − 2Yn−1 + Yn−2 = 0. (10)

Finally (5) can be approximated as

EI
∂3Y

∂ζ3
(ζ = L) ≈ EIn

Yn − 3Yn−1 + 3Yn−2 − Yn−3

δζ3

= −f(t) (11)

From equations (2), (8), (10) and (11) it is clear that the
values of Y1, Y2, Yn, and Yn−1 are “known”, in the sense
that they depend on the values of the remaining nodes.
Hence, the evolution of the system depends on only n−
4 nodes. Each of these nodes is described by a second-
order ODE. Hence, the dynamics of the cantilever can
be represented by a state space system of order of
2(n− 4). The fourth partial derivative of Y with respect
to the spatial variable ζ can be approximated as

∂4Yj

∂ζ4
≈

Yj+2 − 4Yj+1 + 6Yj − 4Yj−1 + Yj−2

δζ4
(12)

for j = 3, ..., n− 3. From the boundary conditions for
the approximate model, the dynamics of Y3, Y4 are
given by

Ÿ3 =
1

ρA3

(
−(

6αEI3

δζ4
+ γ3w3)Ẏ3 −

6EI3

δζ4
Y3

+
4EI3

δζ4
(Y4 + αẎ4)−

EI3

δζ4
(Y5 + αẎ5)

+
3EI3

δζ4
(u+ αu̇)

)
, (13)

and

Ÿ4 =
1

ρA4

(
−(

6αEI4

δζ4
+ γ4w4)Ẏ4 −

6EI4

δζ4
Y4+

+
4EI4

δζ4
(Y3 + αẎ3) +

4EI4

δζ4
(Y5 + αẎ5)

−
EI4

δζ4
(Y6 + αẎ6)−

EI4

δζ4
(u+ αu̇)

)
. (14)

From (8) and (10), it follows

Yn−1 = 2Yn−2 − Yn−3 +
δζ3

EIn
f (15)

Yn = 3Yn−2 − 2Yn−3 + 2
δζ3

EIn
f. (16)

For node j = n− 3,

∂4Yn−3

∂ζ4
≈

1

δζ4
(−2Yn−2 + 5Yn−3 − 4Yn−4 + Yn−5

+
δζ3

EIn
f

)
. (17)

As a result, the dynamics of Yn−3 are given by

Ÿn−3 =
1

ρAn−3

(
−(

5αEIn−3

δζ4
+ γn−3wn−3)Ẏn−3

−
5EIn−3

δζ4
Yn−3 +

4EIn−3

δζ4
(Yn−4 + αẎn−4)

−
EIn−3

δζ4
(Yn−5 + αẎn−5) +

2EIn−3

δζ4
(Yn−2 + αẎn−2)

−
In−3

δζIn
(f + αḟ)

)
. (18)

Similarly for node j = n− 2,

∂4Yn−2

∂ζ4
≈

1

δζ4

(
Yn−2 − 2Yn−3 + Yn−4 − 2

δζ3

EIn
f

)
.

Thus, the dynamics of Yn−2 are described as

Ÿn−2 =
1

ρAn−2

(
−(

αEIn−2

δζ4
+ γn−2wn−2)Ẏn−2

−
EIn−2

δζ4
Yn−2 +

2EIn−2

δζ4
(Yn−3 + αẎn−3)

−
EIn−2

δζ4
(Yn−4 + αẎn−4) +

2In−2

δζIn
(f + αḟ)

)
.

(19)
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An ODE for node j (j = 5, ..., n− 4) is given by

Ÿj =
1

ρAj

(
−(

6αEIj

δζ4
+ γjwj)Ẏj

−
6EIj

δζ4
Yj −

EIj

δζ4
(Yj−2 + αẎj−2 + Yj+2 + αẎj+2)

+
4EIj

δζ4
(Yj−1 + αẎj−1 + Yj+1 + αẎj+1)

)
.

(20)

Define state variables as follows:

x1 =Y3,

x2 =Ẏ3 −
3EI3

ρA3δζ4
αu,

x3 =Y4,

x4 =Ẏ4 +
EI4

ρA4δζ4
αu,

x2n−11 =Yn−3,

x2n−10 =Ẏn−3 +
In−3

ρAn−3δζIn
αf,

x2n−9 =Yn−2,

x2n−8 =Ẏn−2 −
2In−2

ρAn−2δζIn
αf,

and

x2j−5 =Yj ,

x2j−4 =Ẏj

for j = 5, ..., n− 4. From these definitions, the LTI
system

ẋp = Apxp +Bpu+Dpf (21)
y = Cpxp (22)

where Ap ∈ R2(n−4)×2(n−4), Bp ∈ R2(n−4)×1 and
Dp ∈ R

2(n−4)×1 can be constructed. Assuming δζ is
sufficiently small, (21) is a good approximation of the
PDE. In (22), the output y is taken as Yn−2 and hence
the (2n− 9)th entry of Cp ∈ R

1×2(n−4) is 1, whilst the
remaining entries are zero. Since Yn ≈ Yn−2 for large
enough n, the shear force from (6) can be approximated
by

f(t) ≈ −ν
∂Yn−2

∂t
− κYn−2

= −ν(x2n−8 +
2In−2

ρAn−2δζIn
αf)− κx2n−9 (23)

or

f(t) ≈ −

(
1

1 + να
2In−2

ρAn−2δζIn

)
(νx2n−8 + κx2n−9)

Note that the κ and ν are unknown and vary with
tip/specimen distance.

3.2. Reduced order model

When n is large, the model in (21) is a good
approximation of the real PDE - but at the cost of
significant computation. Since a high order system is
not convenient for computation, particularly for on-
line implementation (which is the ultimate goal of the
project), a model reduction technique will be employed
to create a more manageable lower order model. There
is of course a significant amount of literature on this
topic, and a wide range of model reduction methods
could be employed [44]. In this paper, the standard
balanced truncation method by Moore [33], which is
available in Matlab, has been used. Hence, for observer
design, a model of the form

ẋ(t) = Ax(t) +Bu(t) +Df(t) (24)
y(t) = Cx(t) (25)

where x ∈ Rnr will be used. The order of the system in
(24), represented by nr, is by construction significantly
lower than n.

IV. Sliding mode observer

A sliding mode observer will then be presented
to reconstruct the tip-sample interaction shear force.
The above model (24) will be used for the design
of the sliding mode observer to estimate the shear
force f(t) from knowledge of only y(t) and u(t). In
the literature, numerous methods for designing sliding
mode observers have appeared [14,15,39]. In this paper,
the design will be based on the sliding mode observer
proposed in [14] for square systems. This particular
sliding mode observer has the structure

˙̂x(t) = Ax̂(t) +Bu(t)−Gey(t) +Dv (26)
ŷ(t) = Cx̂(t) (27)

where the output estimation error

ey(t) = ŷ(t)− y(t). (28)

The objective of the observer is to drive ey to zero in
finite time [11, 40]. In (26) the gain G must be chosen
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so that there exists a symmetric positive definite matrix
P such that

P (A−GC) + (A−GC)TP < 0 (29)

and
PD = (FC)T (30)

for some F ∈ R. This is essentially the observer
initially proposed by Walcott & Zak [41]. The nonlinear
injection signal in (26) is given by

v =

{
−σ

Fey
‖Fey‖

if ey �= 0,
0 otherwise

(31)

and the scalar gain σ must satisfy

‖f(t)‖ ≤ σ. (32)

In order for an observer of the form (26)-(31) to exist
for the particular problem under consideration, the
following conditions must be satisfied [11,13]:

• rank(CD) = 1 or in this case CD �= 0
• invariant zeros of (A,D,C) must lie in C−

Here because the system is square, an analytic solution
to the design problem can be employed. Specifically,
in this paper, the approach proposed in [14] will be
employed to compute G. Despite the model reduction
employed to create (A,D,C), the resulting state space
is of order 9, and more importantly badly numerically
conditioned. The approach in [14] does not employ any
numerical transformations of the state-space (compared
to [11] for example) and this is advantageous here. The
only transformation required is an orthogonal one to
obtain a specific “regular form” for the pair (A,D) [11].
Based on QR decomposition of the matrix D, there
exists a linear orthogonal change of coordinates x �→
χ = col(χ1, χ2) = Tx such that in the new coordinate
system

χ̇1(t) = A1χ1(t) +A2χ2(t) +B1u(t) (33)
χ̇2(t) = A3χ1(t) +A4χ2(t) +B2u(t) +D2f(t)(34)
y(t) = C1χ1(t) + C2χ2(t) (35)

where χ1 ∈ Rnr−1, χ2 ∈ R and the matrix sub-blocks
A1, . . . , A4 have no structure. Note that in (34), the
scalar satisfies D2 �= 0. As argued in [14], in the regular
form coordinates, a suitable choice for the observer gain
is

G =

[
A2C

−1
2

A4C
−1
2 − C−1

2 As
4

]
(36)

where As
4 is a negative design scalar. For details see

[14]. Note that C2 �= 0 since CD = C2D2 and CD �=

0 by assumption. The scalar F from (31) can be
parameterised in the form

F = P2C2D2 (37)

for some positive scalar P2. In the new coordinates, the
state estimation error col(e1, e2) = χ− χ̂, for χ̂ = T x̂,
satisfies

ė1(t) = (A1 −A2C
−1
2 C1)e1(t) (38)

ė2(t) = Ã3e1(t) + C−1
2 As

4C2e2(t) +D2(f(t)− v)(39)

where Ã3 = A3 −A4C
−1
2 C1 − C2A

s
4C1. During slid-

ing, ey = 0 and ėy = 0 [11, 40] and thus e2 = ė2 = 0.
From (39) it follows that

veq = f +D−1
2 Ã3e1(t) (40)

where veq is the so-called “equivalent injection”
necessary to maintain a sliding motion [11, 40]. Since
the eigenvalues of (A1 −A2C

−1
2 C1) are the invariant

zeros of (A,D,C), the subsystem (38) is stable by
assumption and e1(t) → 0 as t → ∞. Therefore from
(40) the injection signal

veq → f(t) (41)

In practice the equivalent injection veq (and hence the
shear force f(t)), can be extracted from (31) by using a
low-pass filter [40]. In the paper, a first order low pass
filter of the form

˙̃v = −kṽ + kv, k > 0, f̃(0) = 0 (42)

is used to obtain the force estimate (i.e the equivalent
injection). For a large value of k, it follows that
ṽ ≈ veq → f(t). Consequently using the sliding mode
observer, changes in the shear force f(t) can be
estimated in real time as the tip descends towards the
sample through the ordered water layers. However,
a more succinct indication of these changes can be
observed from changes in the shear force model
parameters κ and ν from (6). In addition to estimating
f(t) in real time, this information will be used to
estimate κ(t) and ν(t) from the model given in (6)
via least squares [36]. In (6), the left hand side is
available from the equivalent injection signal which is
extracted using the low-pass filter in (42). Consequently
to obviate the effect of any phase lag associated with the
filter, all time dependent terms on the right hand side of
(6) will also be subject to the same filter, specifically:

˙̃
Y = −kỸ + kY (L), Ỹ (0) = 0. (43)
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Then it follows from (6) that

f̃(t) = −ν
∂Ỹ

∂t
− κỸ (44)

Furthermore, (43) can be used to obtain ∂Ỹ
∂t

, i.e. as
−kỸ + kY . Consequently no measured knowledge of
∂Ỹ
∂t

is required (see for example [31, 34, 36]). Adaptive
estimation procedures can then be used to estimate κ

and ν [31,34].

Remark IV.1 The combination of sliding mode
observers and least squares methods has previously
appeared in the literature: see for example [5].
However, here the formulation is quite bespoke for the
TDFM problem. The use of the low-pass filters and the
ideas of [31, 34, 36] allow the estimation of the shear
force model parameters based only on the estimates of
f(t) and measurements of Y (L).

V. Practical Results

In the Bristol TDFM, the particular cantilever
used is made of Silicon Nitride (Si3N4) by NuNano
(http://www.nunano.com/). The parameters are given
by: Young’s modulus E=210 GPa, ρ=3100 kg/m3,
length L=28 μm, width w=2 μm, thickness tc = 200
nm. The cantilever is brought into the proximity of a
quartz cover glass slide under normal room conditions,
without using any additional fluid as medium (i.e. γ =
0). Thus, a small water layer of less than 10 nm is to be
expected on the glass slide surface due to environmental
humidity. This paper presents four data sets X1, X2, X3,
and X4 comprising input and output signals collected
from the experimental setup associated with tip-to-
surface distances corresponding to 2 nm, 5 nm, 7 nm,
and 8 nm respectively. The top of the cantilever was
excited close to its first resonance frequency of 352.750
kHz. The amplitude of the excitation signal is 1.8 nm.

The input and output signals are shown in Figures
6 - 7. Since the signals contain noise, band pass filters
have been employed with the bandwidth covering the
excitation frequency. The scaling factors required to
recover the measured signals in SI units were calculated
based on the frequency responses of the input and
output signals when the data was collected at a distance
of 9 nm (considered as far) from the glass. At low
frequencies, in which the phase values are close to zero,
the magnitude of the frequency response corresponds
to 1. At the excitation signal, the magnitude of the
frequency response is equal to the magnitude of the

transfer function of the discretization model (21), which
helps to calculate the scaling factor.
Here the number of nodes used in the method of lines
was chosen as n = 100. This is a result of an empirical
analysis of the model in relation to the first resonance
frequency of 352.750 kHz and the general shape of
the frequency response Gpu(s) = Cp(sI −Ap)Bp for
different value of n. Figure 3 shows Bode diagrams
of the original PDE and the high order LTI models
obtained from the method of lines. For smaller values
of n, the method of lines models have a high value
for the first resonance frequency. It appears to be
‘stiff’ for a lower value of n. As n increases, the
value of the actual resonance frequency of 352.750
kHz is approached. Figure 4 provides Bode plots of
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Fig. 3. Discretized Bode diagrams for Gpu(s) for different values of n

both the transfer functions Gpu(s) = Cp(sI −Ap)Bp

and Gpf (s) = Cp(sI −Ap)Dp across a large frequency
range. Although both systems share the same state
space, the input-output behaviour of both systems is
non-trivially different. This is not only true for the
low frequency range but also for the frequency range
around the first (and second) resonance frequency and
the relevant gain (and phase) behaviour. This is clearly
related to very different zero-dynamics behaviour and
the fact that f(t) and u(t) are not collocated. The
suggested modelling approach ensures that this is
reflected in the overall state space model (24)-(25) (see
also (21)).

The Matlab function “modred” was employed
to generate a reduced-order model of order nr = 9,
(which is based on the balanced truncation method by
Moore [33]). The Matlab function “balreal” was also
used to improve the conditioning of the state-space
representation for implementation. The 9 largest Hankel
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Fig. 4. Magnitude and Phase Plot of Gpu(s) = Cp(sI −Ap)Bp and
Gpf (s) = Cp(sI −Ap)Dp

singular values preserved in the reduced model are:
734.6345, 722.6798, 5.3423, 4.8253, 0.9912, 0.8024,
0.2473, 0.2088, 0.0414. The model mismatch between
the discretized model and the reduced-order one is

‖H(s)−Hr(s)‖∞ = 0.0697 (45)

where H(s) is the transfer function of the discretized
model in (21) and Hr(s) is the transfer function
of the reduced-order model from (24). Furthermore,
‖H(s)‖∞ = 1457.4743 and ‖Hr(s)‖∞ = 1457.4758

and hence the error in (45) is relatively small, and the
reduced-order model is considered reliable. Figure 5
shows Bode diagrams of the original PDE, the high
order LTI model obtained from the method of lines, and
the 9th order model used for the design of the observer,
over a frequency range about the 1st flexural frequency.
It is clear that there is a good fit between the reduced
order model used for the observer design and the PDE
(in the frequency range of interest).
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The parameters for the observer (26) were chosen as:
σ = 2000, As

4 = −109, and

G =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

849698.1752
830497.8541

−280876.6790
22948.7125

−128982.3488
1589.1755
8361.6753

−4507.1457
8661.2590

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

A typical example of the sinusoidal excitation signal
applied to the top of the cantilever is shown in Figure 6.
The position signals of the tip of the cantilever, for each
of the four data sets, are shown in Figure 7. Figure 8
shows the output estimation error ey(t) for data set X1

(which is typical of the ones obtained for X2, X3 and
X4). Since the signal ey is of order 10−5 compared
to the output signals themselves, this demonstrates that
the sliding mode observer performs well and accurately
tracks the measured signal in each case. The shear
force estimates are shown in Figure 9 which exhibit
noisy sinusoidal-like signals with the same underlying
frequency as the excitation signal u(t). It is clear that the
shear force corresponding to the data set X1 exhibits the
largest interaction with the sample, i.e. it has the largest
amplitude among the shear forces. This agrees with the
fact that the shear force is larger when the tip is put
closer to the sample on the glass surface.

In the tests, it can be noticed that the elastic
component κỸ in the overall shear force is negligible
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(44) so that only the viscous coefficient ν was estimated
as depicted in Figure 10. Estimates are obtained with an
initial settling time of less than 50 μs, which is due to
the combined dynamics of the observer, together with
the various low and band-pass filters. From thereon,
highly dynamic real-time results (settling faster than
50 μs) are obtained. The viscous coefficient clearly
increases in value as the distance to the glass surface
decreases, i.e. considering case X4 as the farthest from
the glass surface.
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Fig. 6. A typical input signal applied at the top of the cantilever
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VI. Conclusion

It has been shown that it is possible to obtain
real-time estimates of the shear forces affecting the
vertically oriented cantilever in Bristol’s TDFM. This
information has been complemented by a parametric
representation of the shear force, in terms of elastic and
dissipative constants, which gives a scaled measure of
the cantilever-specimen distance. These estimates of the
shear force have been obtained using a sliding mode
observer and by considering the problem as a classical
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Fig. 8. A typical output estimation error ey (technically for data X1)
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Fig. 9. Estimate of shear force
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Fig. 10. Estimate of the viscous coefficient ν for the 4 different cases

unknown input formulation. It has been shown that it is
sufficient to use a reduced order model, derived from an
approximate ODE model of the cantilever dynamics, as
the basis for the observer design. Experimental results
have been presented based on tests carried out on the
TDFM rig at the Centre for NSQI at Bristol. The
results confirm an increasing shear force and viscous
coefficient with closer proximity of the cantilever tip to
the bottom glass slide.
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