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Abstract Listeria monocytogenes is a Gram-positive bacteri-
um that can cause a serious infection. Intestinal microorgan-
isms have been demonstrated to contribute to intestinal phys-
iology not only through immunological responses but also by
modulating the intestinal serotonergic system. Serotonin (5-
HT) is a neuromodulator that is synthesized in the intestinal
epithelium and regulates the whole intestinal physiology. The
serotonin transporter (SERT), located in enterocytes, controls
intestinal 5-HT availability and therefore serotonin’s effects.
Infections caused by L. monocytogenes are well described as
being due to the invasion of intestinal epithelial cells; howev-
er, the effect of L. monocytogenes on the intestinal epithelium
remains unknown. The main aim of this work, therefore, was
to study the effect of L. monocytogenes on SERT. Caco2/TC7
cell line was used as an enterocyte-like in vitro model, and
SERT functional and molecular expression assays were per-
formed. Our results demonstrate that living L. monocytogenes
inhibits serotonin uptake by reducing SERT expression at the
brush border membrane. However, neither inactivated

L. monocytogenes nor soluble metabolites were able to affect
SERT. The results also demonstrate that L. monocytogenes
yields TLR2 and TLR10 transcriptional changes in intestinal
epithelial cells and suggest that TLR10 is potentially involved
in the inhibitory effect observed on SERT. Therefore,
L. monocytogenes, through TLR10-mediated SERT inhibi-
tion, may induce increased intestinal serotonin availability
and potentially contributing to intestinal physiological chang-
es and the initiation of the inflammatory response.
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Introduction

Listeria monocytogenes is a food-borne Gram-positive bacte-
rium that might cause the serious listeriosis infection, partic-
ularly in immune-compromised individuals [1]. After the in-
gestion of food or contaminated water, L. monocytogenes
crosses the intestinal barrier by invading intestinal epithelial
cells. An effective immune response to L. monocytogenes in-
fection relies on coordinated innate and adaptive immune re-
sponses, where the first line of defense is mediated by toll-like
receptors (TLRs). However, the activation of innate immunity
in response to L. monocytogenes infection is still not fully
understood. L. monocytogenes has been shown to be recog-
nized by TLR2 [2], TLR5 [3], and orphan TLR10 [4], without
ruling out other immune receptors such as NOD1 [5] or
NOD2 [6].

The intestinal epithelium forms a mucosal surface provid-
ing a critical barrier function against microbial invasion.
Similar to immune cells, intestinal epithelial cells express
TLRs and are the first line of bacterial recognition in the in-
testine [7]. Recent results have demonstrated that bacteria
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resident in the intestinal lumen, through the activation of
TLRs, may affect intestinal pathophysiology [8] by acting
on the intestinal serotonergic system [9]. Serotonin (5-HT)
is a neuromodulator that is mainly synthesized in the intestinal
epithelium, and it has been shown to regulate the whole intes-
tinal physiology and to be essential for the maintenance of
intestinal homeostasis [10–12]. In fact, the excess of extracel-
lular 5-HT has been described as contributing to intestinal
inflammation [13, 14]. 5-HT activity depends on the extracel-
lular 5-HT availability, which is mainly modulated by the
serotonin transporter (SERT) located in the enterocytes.
SERT is responsible for the 5-HT uptake into these cells and
controls its effects; consequently, SERT takes part in both
intestinal homeostasis and inflammatory responses.

Since some studies have demonstrated that the stimulation
of different TLRs modulates the intestinal serotonergic sys-
tem by inhibiting SERT [15, 16], the main aim of the present
work was to analyze whether L. monocytogenes, a pathogenic
microorganism ingested with food, affects intestinal SERT
activity and expression. We have used human intestinal epi-
thelial Caco-2/TC7 cells as an in vitro model, since previous
studies have shown the suitability of this cellular model to
SERT and TLRs investigations [16, 17].

Materials and Methods

Materials

The following drugs and substances were used (abbreviations
and suppliers in parentheses): serotonin (5-HT) from Sigma-
Aldrich (St. Louis, MO). [3H]-5-HT (specific activity 28 Ci/
mmol) was from PerkinElmer (Boston, MA). Goat polyclonal
antibody anti-human SERT (ab130130), goat polyclonal anti-
human TLR10 (ab53631), and rabbit monoclonal anti-human
TLR2 (ab108998) were supplied by Abcam (Cambridge,
UK). Goat polyclonal anti-human actin antibody (SC-1616r)
and secondary antibodies coupled to horseradish peroxidase
were from Santa Cruz Biotechnology (Santa Cruz, CA), and
Pepinh-MYD (an inhibitory peptide of MyD88) was from
InvivoGen (San Diego, CA). All generic reagents were pur-
chased from Sigma-Aldrich and Roche Applied Sciences
(Sant Cugat del Vallés, Barcelona, Spain).

Cell Culture

Human enterocyte-like cell line Caco-2/TC7 [18] was main-
tained in high glucose DMEM supplemented with 2 mM glu-
tamine, 100 U/ml penicillin, 100 μg/mL streptomycin, 1 %
non-essential amino acids, and 20 % heat-inactivated fetal
bovine serum (FBS) (from Life Technologies, Carlsbad, CA)
and cultured in a humidified incubator 37 °C with 5 % CO2.
The cell culture and management has been described

elsewhere [17]. The cells were passaged enzymatically
(0.25 % trypsin–1 mM EDTA) and subcultured in 25- or 75-
cm2 plastic culture flasks and 24-well plates (Sarstedt,
Germany). The medium was changed 48 h after seeding and
daily thereafter. Infection experimentswere carried out 14 days
after seeding, and the cell medium had been free of FBS for
24 h before the experiment. Caco-2 cells were seeded in 12-
well permeable polyester (PET) membranes with porous size
0.4 mm (Millicell cell culture inserts; Millipore, Billerica,
MA, USA) and the growth area was 1 cm2. These inserts
established the apical and basal compartments, and the con-
fluence and integrity of the cells were assessed by microscopy
(Zeiss Axiovert 200M with AxioCam HRC camera, Carl
Zeiss Microimaging, Thornwood, NY) and a determination
of transepithelial electrical resistance (TER) by epithelial
voltohmmeter (Millicell Electrical Resistance System,
Millipore).

Bacterial Culture and Infection of Caco-2/TC7 Cells

During this study, cultures of L. monocytogenes EGD-e [19]
were maintained in cryovials at −80 °C. A broth subculture
was prepared by inoculating a test tube containing 5 mL of
sterile tryptic soy broth (Biolife, Milan, Italy) with a colony
from a plate and adding 0.6 % of yeast extract (TSBYE,
Biolife). With these overnight subcultures, 250-mL
Erlenmeyer flasks containing 50 mL of TSBYE were inocu-
lated to a final concentration of 105 cells/mL. These flasks
were incubated under agitation (130 rpm; Selecta, mod.
Rotabit, Barcelona, Spain) at 37 °C for 6 h until a cell con-
centration of 108/mL was reached. The bacterial culture was
subsequently washed with sterile PBS through two steps of
centrifugation (3000×g for 5 min) and diluted in sterile PBS at
the desired multiplicity of infection (50–200). Multiplicity of
infection (MOI) is the ratio of the number of bacteria to the
number of target cells.

To infect Caco-2/TC7 cells, the L. monocytogenes cell pop-
ulation was added to 0.4 mL of sterile DMEM and supple-
mented with 2 mM glutamine and 1 % non-essential amino
acids and incubated with the Caco-2/TC7 cells at 37 °C for the
periods of treatment (1 or 2 h). After that, the cell monolayer
was treated with freshly prepared gentamicin solution (50 μg/
mL) for 30 min to remove adherent bacteria from the cell
surface. For studies about bacterial supernatants, an overnight
culture supernatant was collected by centrifuging the bacterial
culture and then filter-sterilized by passing it through a
0.22-μm sterile syringe filter.

For the L. monocytogenes growth analysis, different con-
centrations of serotonin (10−4 and 10−8 M) were prepared in
tryptic soy broth. The tubes were then inoculated with
L. monocytogenes (105 CFU/mL) and incubated at 37 °C un-
der agitation. The bacterial count was determined for each
tube after 0, 1, 2, 3, 4, 5, 6, 7, 8, and 24 h of incubation.
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Briefly, 100-μL culture was obtained for each time point, se-
rially diluted with sterile saline, and samples were pour-plated
onto tryptic soy agar (Biolife) and 0.6% of yeast extract added
(TSAYE) as a recovery medium. The plates were incubated
for 48 h at 30 °C. After incubation, colony-forming units
(CFU) were counted with an analyzer automatic counter
(Protos, Analytical Measuring System, Cambridge, UK).
The limit of detection was 10 CFU/mL. Each concentration
test was performed in duplicate.

Inactivation of L. monocytogenes

To verify whether the inactivated L. monocytogenes would
affect SERT, two technologies for bacterial inactivation were
used: heat and pulsed electric fields (PEF) treatments. For
obtaining heat-inactivated L. monocytogenes cells, 1 mL ali-
quots were immersed in a water bath at 60 °C for 1 h. The PEF
treatments were carried out using equipment that delivered
exponential decay pulses, as previously described [20]. The
treatment chamber was made of a cylindrical plastic tube
closed with two polished, stainless steel electrodes. The gap
between electrodes was 0.25 cm, and the electrode area was
2.01 cm2. Before the treatment, L. monocytogenes cells were
resuspended in aMcllvaine citrate-phosphate buffer of pH 7.0,
and the electrical conductivity was adjusted to 2 mS/cm for a
final concentration of 107 CFU/mL. Then, 0.5 mL of the sam-
ples was placed into the treatment chamber with a sterile sy-
ringe, as it has been previously described. Cell suspensions
were treated for 100 pulses (1 Hz, pulse width 2 μs) at an
electric field strength of 35 kV/cm, corresponding to a specific
energy of 8.07 kJ/kg per pulse. In PEF experiments, the tem-
perature of the samples was lower than 35 °C. After bacterial
inactivation treatments, 0.1 mL samples were pour-plated on-
to TSAYE as a recovery medium. The plates were incubated
for 48 h at 37 °C. The inactivation of both L. monocytogenes
treatments (at least 5 log10 cell cycles) was verified before the
infection of the cell culture was carried out.

5-HT Uptake Studies

5-HT uptake by confluent Caco-2/TC7 monolayers was pre-
viously described by our research group [21]. In brief, the cells
were incubated with transport medium (137 mM NaCl,
4.7 mM KCl, 1.2 mM KH2PO4, 1.2 mM MgSO4, 2.5 mM
CaCl2, 10 mM HEPES pH 7.4, 4 mM glutamine, 0.1 %
BSA), and both 2 × 10−7 M 5-HT and 1.5 μCi/ml [3H]-5-HT
at 37 °C for 6 min, and the uptake reaction was terminated by
the twice addition of ice-cold substrate-free transport medium
containing 2 × 10−4 M 5-HT. The cells were lysed with 0.1 N
NaOH and then were analyzed for radioactivity in a liquid
scintillation counter (Wallac Liquid Scintillation Counter,
PerkinElmer). The total protein was measured using the
Bradford method (Bio-Rad, Hercules, CA) with BSA protein

as standard. The results were calculated in pmol 5-HT/mg
protein and expressed as a percentage of the control value
(100 %).

To analyze the involvement of TLR2 and TLR10 in the
effects of L. monocytogenes effects on 5-HT uptake, TLR
blocking was assessed. To do so, SERTactivity was measured
in cells pretreated with TLR2 or TLR10 antibodies at 1 μg/mL
for 30 min prior to the L. monocytogenes infection (MOI 200)
and then with the corresponding antibody for 2 h.

Real-Time PCR Analysis

Total RNAwas isolated from confluent Caco-2/TC7 cells cul-
tured in 25-cm2 flaks using an RNeasy mini kit (Qiagen,
Hilden, Germany) and following the manufacturer’s instruc-
tions as previously described [22]. The extracted RNA (1 μg)
was used as a template for first-strand cDNA synthesis using
oligo(dT) primers and a reverse transcriptase (Life
Technologies). Reactions were run using the StepOnePlus
Real-Time PCR System (Life Technologies) with GAPDH
and HPRT1 housekeeping gene expression used as a calibra-
t o r. The p r ime r s u s ed we r e HPRT1 sen s e ( 5 ′
CTGACCTGCTGGATTACA 3′) and HPRT1 antisense (5′
GCGACCTTGACCATCTTT 3 ′), GADPH sense (5 ′
CATGACCACAGTCCATGCCATCACT 3′) and GADPH
antisense (5′ TGAGGTCCACCACCCTGTTGCTGTA 3′),
TLR2 sense (5′ GAAGCTCCAGCAGGAACATC 3′) and
TLR2 an t i s e n s e ( 5 ′ GAATGAAGTCCCGCTT
ATGAAGACA 3′), TLR10 sense (5′ TTGCATTCCCACC
AGGTATC 3′) and TLR10 antisense (5′ AGCCCACATTTA
CGCCTATC 3′), and SERT sense (5′ 5AAATCCAAG
CACCCAGAGAT 3′) and SERT antisense (5′ AGACT
GTGTCCCTGTGGAGA 3′). Each sample was run in tripli-
cate, and the mean Ct was determined. The relative gene
mRNA expression under each experimental condition (control
or treatment) was expressed asΔCt (= Ctgene −Ctcalibrator), and
the relative gene mRNA expression was calculated as ΔΔCt
(=ΔCtcontrol −ΔCttreatment). Finally, the relative gene expres-
sion levels were converted and expressed as a fold difference
(=2–ΔΔCt).

Brush Border-Enriched Fraction from Caco-2/TC7 Cells
and Western Blotting

The enriched fraction of the intestinal brush border was pre-
pared following the procedure previously described [23]. The
brush border-enriched fraction and the cell lysate (60 μg of
total protein) from Caco-2/TC7 cells were electrophoresed in
8 % SDS-PAGE gels and then transferred to PVDF mem-
branes by electroblotting. The membranes were blocked with
5 % nonfat dried milk plus 1 % BSA and probed using a
specific primary antibody (anti-SERT 1:500, anti-TLR2
1:1000, and anti-TLR10 1:1000). The primary antibody was
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detected using a secondary antibody coupled to horseradish
peroxidase and the WesternBright Sirius Kit (Advansta,
Menio Park, CA) and was visualized with VersaDoc
(Imaging System, Bio-Rad). The blots were reprobed after
stripping, with goat polyclonal anti-human β-actin used to
determine differences in the sample load. The specific
protein/β-actin protein ratio was calculated in densitometric
units from the film with Quantity One Analysis Software
(Bio-Rad), and the results were expressed as a percentage of
the control values.

Statistical Analysis

All results are expressed as mean ± the standard error of the
mean (SEM). Statistical comparisons were performed by one-
way ANOVA followed by the Bonferroni posttest with a con-
fidence interval of 95 % (P < 0.05). The normal distribution
has been previously confirmed with the D’Agostino-Pearson
test. The statistical analysis was carried out with the computer-
assisted GraphPad Prism Program (Prism version 4.0,
GraphPad Software, San Diego, CA).

Results

L. monocytogenes Inhibits 5-HT Uptake

To determine if L. monocytogenes affects 5-HT uptake, the
Caco-2/TC7 monolayer was first studied; the confluence and
integrity of the cells after L. monocytogenes infection were
assessed by microscopy and by determining the TER. The
infection of L. monocytogenes at the maximum concentration
used in this study (MOI 200 or 200 bacteria per cell) for 2 h
did not affect neither the morphology nor the TER of the cell
monolayer (data not shown). Next, we examined the effect of
L. monocytogenes on the 5-HTuptake for 1 and 2 h at different
MOIs (50, 100, and 200). The results showed that
L. Monocytogenes causes a significant inhibition of 5-HT up-
take and that this inhibition is bacterial load-dependent for the
1-h infection; however, for the 2-h infection, the same reduc-
tion was observed at different MOIs (Fig. 1a).

To characterize the SERT inhibition by L. monocytogenes,
we examined the effect of treated Caco-2/TC7 monolayers
w i t h i n a c t i v a t ed L . monocy t ogene s . I n i t i a l l y,
L. monocytogenes was inactivated by heat; however, the re-
sults obtained showed that this was not able to affect SERT
activity (Fig. 1b).

Extending this result, heat could damage to most microbial
structures and components, limiting their effects on SERT
activity. Thus, a different inactivation technology that is less
harmful to microbial structures was used. To this end, PEF
treatment, a less aggressive method that is known to only
affect cell envelopes, was used [20]. The results showed that

L. monocytogenes inactivated by PEF was not able to affect
SERT (Fig. 1c).

We also examined the effect of L. monocytogenes culture
supernatant to evaluate its ability to produce toxins that could
affect 5-HT uptake. The results showed that no effect of
L. monocytogenes supernatant on 5-HT uptake, indicating that
only living L. monocytogenes cells seem to affect SERT ac-
tivity (Fig. 1d).

The Effects of L. monocytogenes on SERT Molecular
Expression

To analyze the effects of L. monocytogenes on SERT ac-
tivity in more depth, SERT molecular expression was
assessed. Thus, SERT mRNA and protein levels were
measured in Caco-2/TC7 cells that had been treated for
2 h w i t h MOI 200 . The r e su l t s s howed th a t
L. monocytogenes infection decreases SERT mRNA level
(Fig. 2a). In relation to SERT protein analysis, the results
showed that SERT was significantly diminished in the
brush border of cells infected with L. monocytogenes;
however, the SERT protein level in the whole cell homog-
enate was not modified (Fig. 2b, c).

The Role of MyD88 on L. monocytogenes Effects on SERT
Function

TLRs have been clearly established as the major sensors of the
innate immune system, and they seem to play a key role in
immunity against L. monocytogenes infection. MyD88 is a
universal adapter protein used by most of TLRs to start their
effects. Thus, to clarify the effects of L. monocytogenes on
SERT, the role of MyD88 was analyzed. SERT activity was
measured in cells treated with Pepinh-MYD (an inhibitory
peptide of MyD88) plus a L. monocytogenes infection. The
results showed that MyD88 inhibition did not alter 5-HT up-
take in control conditions; however, MyD88 blocking signif-
icantly increased the inhibitory effect of L. monocytogenes on
5-HT uptake (Fig. 3).

Involvement of TLR2 and TLR10 in the Effects
of L. monocytogenes on SERT

As recent studies have postulated that both TLR2 and TLR10
play a key role in the inflammatory response against
L. monocytogenes [4] and in order to clarify the previous
results, the involvement of TLR2 and TLR10 was studied.
TLR’s role was analyzed by blocking TLR2 or TLR10 with
specific antibodies. To do so, SERT activity was measured in
cells pretreatedwith the TLR2 antibody at 1μg/mL for 30min
prior to a L. monocytogenes infection (MOI 200) along with
the TLR2 antibody for 2 h. The results showed that the TLR2
blocking did not modify the inhibitory effect of

E. Latorre et al.



L. monocytogenes on 5-HT uptake, so TLR2 does not seem to
be involved in the effects of L. monocytogenes on SERT ac-
tivity (Fig. 4a). Interestingly, the L. monocytogenes infection
affected TLR2 expression by decreasing both TLR2 mRNA
and protein (Fig. 4b, c).

Regarding TLR10, we first described TLR10 expression in
our cell model by analyzing mRNA and protein expression
(data not shown), as the expression of TLR10was unknown in
Caco-2/TC7 cells. Then, TLR10 involvement was analyzed
by blocking TLR10 with a specific antibody (1 μg/mL for
30 min before the infection with L. monocytogenes MOI 200
along with the TLR10 antibody for 2 h), and 5-HT uptake was
analyzed. The resul ts showed that the effect of
L. monocytogenes on SERT was reversed by blocking
TLR10, suggesting that this TLR could mediate the effects
of L. monocytogenes on SERT activity (Fig. 5a). Moreover,
Caco-2/TC7 cells infected with L. monocytogenes seemed to
present an altered TLR10 expression. Indeed, the results
showed that L. monocytogenes causes a decrease in the
TLR10 mRNA level; however, the TLR10 protein level did
not seem to be modified (Fig. 5b, c), possibly due to the short
time of infection.

The Effects of 5-HT on L. monocytogenes Growth

Our results demonstrate that L. monocytogenes inhibits SERT.
Consequently, this effect may trigger an increase of extracel-
lular 5-HT availability in the intestinal lumen, which in turn
may yield possible feedback on L. monocytogenes. To study
this hypothesis, L. monocytogenes growth was evaluated by
adding increasing concentrations of 5-HT to the bacterial me-
dium. As a physiological condition, 5-HT 10−8 M was used,
and as an inflammatory condition, 5-HT 10−4 M was used.
The results showed that 5-HT (at any concentration assayed)
did not seem to modify L. monocytogenes growth (Fig. 6).

Discussion

Understanding host-microbe interaction in the intestinal tract
may provide new insights into intestinal homeostasis and in-
flammation. Recent studies have demonstrated that some gut
microbes can modulate serotonergic system expression, pro-
mote 5-HT biosynthesis from enterochromaffin cells, and di-
rectly produce or release serotonin [24, 25], consequently

Fig. 1 L. monocytogenes effects on 5-HT uptake. Cells were infected
with alive or inactivated L. monocytogenes at MOI 50, 100, and 200 for
1 or 2 h. 5-HT uptake was measured after 6 min incubation with 0.2 μM
5-HT. Control condition corresponds to untreated cells. a Effect of live
L. monocytogenes on 5-HT uptake. The results are expressed as the
percentage of the uptake control and are the mean ± SE of six biological
replicates in seven independent experiments (n = 42). ***P < 0.001
compared with the control. b Effect of heat-killed L. monocytogenes
on 5-HT uptake. The results are expressed as the percentage of

the uptake control and are the mean ± SE of six biological replicates in
seven independent experiments (n = 42). c Effect of L. monocytogenes
inactivated by PEF on 5-HT uptake. The results are expressed as the
percentage of the uptake control and are the mean ± SE of three
biological replicates in four independent experiments (n = 12). d Effect
of L. monocytogenes supernatant on 5-HT uptake. The results are
expressed as the percentage of the uptake control and are the mean ± SE
of three biological replicates in four independent experiments (n = 12)
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contributing to intestinal homeostasis. Moreover, some TLRs
have also been reported to regulate SERT activity and expres-
sion [15, 16]. Therefore, our main aims in this study were to
analyze the effects of L. monocytogenes on intestinal SERT
activity and expression and to determine the TLRs involved.

Our results showed that living L. monocytogenes cells
cause a significant and MOI-dependent reduction of 5-HT
uptake for 1 h of infection, with the maximum effect occurring
at MOI 200. The inhibitory effect of L. monocytogenes on
intestinal 5-HT uptake did appear to require direct contact
between living bacteria and the intestinal epithelial cells, as
inactivated L. monocytogenes cells and bacterial supernatants
did not modify 5-HT uptake. Several studies have shown that
entry of L. monocytogenes into the cells is dependent on cell
polarization and differentiation [26, 27]. In fact,
L. monocytogenes is able to invade differentiated polarized
Caco-2 cells predominantly through the basolateral surface
[26]. Our study was carried out in 14-day-old Caco-2 mono-
layers, when the cells have reached total confluency and de-
veloped enterocyte differentiation [18]. At this culture stage,
no basolateral surfaces are accessible to bacteria, and levels of
invasion dramatically decrease compared with invasion of
non-confluent monolayers [26]. In addition, our results
showed not TER change, indicating that the integrity of the

Fig. 2 L. monocytogenes inhibit SERT mRNA and protein expression. a
Quantitative RT-PCR analysis of SERT mRNA expression in cells
infected with L. monocytogenes for 2 h at MOI 200. Relative
quantification was performed using comparative Ct (2−ΔΔCt) of three
biological replicates in five independent experiments (n = 15). Results
are expressed as arbitrary units of control = 1. ***P < 0.001 compared
with the control value. b Immunodetection of SERT by western blot in
cell lysate and brush border from Caco-2/TC7 cells infected with
L. monocytogenes for 2 h at MOI 200. c Quantification of SERT
protein in both cell lysate and brush border using β-actin as an internal
control of the protein load (SERT/β-actin ratio). The results are expressed
as a percentage of the control value and are the mean ± SEM of two
biological replicates in five independent experiments (n = 10).
**P < 0.01 compared with the control value

Fig. 3 MyD88 involvement on L. monocytogenes effect on 5-HTuptake.
Cells were infected with L. monocytogenes at MOI 100 and 200 for 2 h
and/or MyD88 inhibitor (100 μM 1 h previous and during the infection
with Listeria) and compared with untreated cells (control). Uptake of 5-
HTwas measured after 6 min of incubation, and 5-HT concentration was
0.2 μM. The results are expressed as the percentage of the uptake control
and are the mean ± SE of three biological replicates in four independent
experiments (n = 12). ***P < 0.001 compared with the control.
###P < 0.001 and ##P < 0.01 compared with the corresponding MOI
effect without MyD88 inhibitor

Fig. 4 TLR2 involvement on L. monocytogenes effects. a Cells were
infected with L. monocytogenes at MOI 200 for 2 h and/or TLR2
antibody (1 μg 30 min previous the infection) and compared with
untreated cells (control). Uptake of 5-HT was measured after 6 min of
incubation, and 5-HT concentration was 0.2 μM. The results are
expressed as the percentage of the uptake control and are the mean ± SE
of three biological replicates in four independent experiments (n = 12).
***P < 0.001 compared with the control. bQuantitative RT-PCR analysis
of TLR2 mRNA expression in cells infected with L. monocytogenes for
2 h atMOI 200. Relative quantificationwas performed using comparative
Ct (2−ΔΔCt) of three biological replicates in five independent experiments
(n = 15). Results are expressed as arbitrary units of control = 1.
***P < 0.001 compared with the control value. c Expression and
quantification of TLR2 protein levels in cell lysate using β-actin as an
internal control of the protein load (TLR2/β-actin ratio). The results are
expressed as a percentage of the control value and are the mean ± SEM of
two biological replicates in four independent experiments (n = 8).
**P < 0.01 compared with the control value
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cell monolayer was undamaged. Then, the observed effect on
SERTcould be a preliminary result of L. monocytogenes prior
to intestinal epithelial cells invasion. Nevertheless, we cannot
completely discard a possible L. monocytogenes cell invasion.

Our results agree with previous studies that demonstrated
the inhibitory effects of living L. monocytogenes on the sero-
tonergic system in the vascular system [27, 28]. However, a
recent study has described effects of heat-inactivated
L. monocytogenes on the immune response of human mono-
cytic THP-1 cells [29].

The inhibitory effect of L. monocytogenes seems to be due
to a decrease of SERT protein expression in the brush border
cell membrane, which is probably due to posttranslational or
posttranscriptional mechanisms. L. monocytogenes yielded a
reduction of SERT mRNA; however, only SERT protein ex-
pression in the brush border was affected; this could be due to
the processing time, as the bacteria are only in contact with the
cells for 2 h, so theymay needmore time to reduce SERT total
protein. These results suggest that L. monocytogenes may in-
hibit SERT activity by reducing SERT protein expression in
the brush border for the short term and that, in the long term,
this bacteriummight reduce SERT protein levels in cell lysate,
since it reduces SERT mRNA level. In agreement with these
results, other pathogenic bacteria, like E. coli, have also been
shown to decrease intestinal SERT activity and expression
[30].

SERT activity can also be reduced by 5-HT [22], and
some microbes are known to directly produce 5-HT by them-
selves [31], so L. monocytogenes could affect SERT in this
way; however, L. monocytogenes has not been described as a
5-HT producer.

Regarding the role of MyD88, the results surprisingly
showed that MyD88 blocking increases the inhibitory effects
of L. monocytogenes, so it seems that L. monocytogenes may
activate both a MyD88-dependent (which may increase 5-HT
uptake) and a MyD88-independent pathway (which may de-
crease 5-HT uptake). These results, like other studies, support
the hypothesis that L. monocytogenes can activate different
pathways, both dependent on and independent of MyD88
[32].

TLRs have been clearly established as the major sensors of
the innate immune system, and they seem to play a key role in
immunity against L. monocytogenes infection. Although
TLR2 [33] and MyD88 [34] have been shown to detect
L. monocytogenes infections in other cell types, only NOD2
has been directly shown tomediate the inflammatory response
to L. monocytogenes in the intestine [6]. Our investigation of
the role of TLRs in L. monocytogenes infection has yielded
several observations. TLR2 alone did not seem to play a role
in 5-HTuptake in response to L. monocytogenes, but intestinal
epithelial cells have shown a TLR2 expression inhibition by
L. monocytogenes. Our results disagree with previous results
that described a possible relationship between TLR2 and

Fig. 6 5-HT effect on growth curve of L. monocytogenes. L.
monocytogenes growth was evaluated adding increasing concentrations
of 5-HT 10−8 M and 10−4 M to the bacterial medium from 0 to 24 h.
Results are expressed as the mean of three independent experiments in
duplicate

Fig. 5 TLR10 involvement on L. monocytogenes effects. a Cells were
infected with L. monocytogenes at MOI 200 for 2 h and/or TLR10
antibody (1 μg 30 min previous the infection) and compared with
untreated cells (control). Uptake of 5-HT was measured after 6 min of
incubation, and 5-HT concentration was 0.2 μM. The results are
expressed as the percentage of the uptake control and are the mean ± SE
of three biological replicates in four independent experiments (n = 12).
***P < 0.001 compared with the control. ###P < 0.001 compared with
MOI 200 effect without antibody. b Quantitative RT-PCR analysis of
TLR10 mRNA expression in cells infected with L. monocytogenes for
2 h atMOI 200. Relative quantificationwas performed using comparative
Ct (2−ΔΔCt) of three biological replicates in five independent experiments
(n = 15). Results are expressed as arbitrary units of control = 1.
***P < 0.001 compared with the control value. c Expression and
quantification of TLR10 protein in cell lysate using β-actin as an
internal control of the protein load (TLR10/β-actin ratio). The results
are expressed as a percentage of the control value and are the mean ±
SEM of two biological replicates in four independent experiments
(n = 8)
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L. monocytogenes, although these studies were conducted in
immune cells [35, 36].

In this study, the results indicated that TLR10 may play a
role in the effects of L. monocytogenes on intestinal SERT
activity. The highest level of TLR10 expression has been re-
ported in immune cells [37, 38], but TLR10 mRNA and pro-
tein expression have previously been shown in human intes-
tinal epithelial cell lines, such as SW480 and HT-29 [4, 39].
Polarized expression of TLRs is a common mechanism for
preventing unnecessary and potentially detrimental inflamma-
tory response to bacteria. Differential TLR expression is ob-
served in intestinal epithelial cells depending on the local
commensal flora. Generally, TLR1 to TLR10 has been report-
ed on the cell apical side, but only a low constitutive expres-
sion of TLR2, TLR4, and TLR5 has been observed on the cell
basolateral side [40]. Our study has demonstrated TLR10 ex-
pression in the Caco-2/TC7 cell line, indicating a possible
functional role in the intestinal epithelium. Although the
TLR10 signaling pathway remains unknown, TLR10 expres-
sion is located in the cell membrane and has a very strong
structural association with TLR1 and TLR6, both of which
are heterodimeric with TLR2 [41]. Some studies have sug-
gested a possible TLR2/TLR10 dimer in response to
L. monocytogenes [4, 42], but this hypothesis disagrees with
our results, as TLR10 blocking is enough to reverse the effect
of L. monocytogenes on SERT activity. However, supporting
our results, a recent study has suggested a possible TLR10/
TLR10 dimer [42].

TLRs have been described as being activated by pathogen-
associated molecular patterns (PAMPs). Each TLR has differ-
ent PAMPs to be activated, for instance TLR4 detects LPS
from Gram-negative bacteria and TLR2 recognizes
lipoteichoic acid from Gram-positive bacteria. However,
TLR10 agonist is still unknown. Our results suggest that
TLR10 could be activated in a different way, as only living
L. monocytogenes seems to have effects on SERT. A recent
hypothesis has indicated that some TLRs can detect microbial
viability using vita-PAMPs, a special class of PAMPs that
recognize microbial life [43, 44]; thus, TLR10 may be a re-
ceptor for microbial viability and the TLR10 ligand could be a
vita-PAMP. In support of this hypothesis, recent studies have
demonstrated TLR10’s effects only with living bacteria [4,
45].

Regarding a possible feedback, our results demonstrated
that 5-HT does not alter L. monocytogenes growth. These
results are in agreement with recent studies, which have de-
scribed that 5-HT does not modify microbial growth; howev-
er, 5-HT could alter microbial virulence behavior and change
the composition of the intestinal microbiota [46, 47].

In summary, our study demonstrates for the first time that
only living L. monocytogenes cells lead to a significant reduc-
tion in 5-HT uptake in human intestinal epithelial cells and
that this inhibitory effect can be mediated through TLR10.

The present work contributes to the understanding of intestinal
serotonergic responses induced by gut microbes.
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