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Abstract 

A model is proposed based on a Fourier series method to analyse the interactive 

bending wrinkling behaviour of inflated beams. The whole wrinkling evolution is 

tracked and divided into three stages by identifying the bifurcations of the equilibrium 

path. The critical wrinkling and failure moments of inflated beam are then able to be 

predicted. The global-local interactive buckling pattern is elucidated by the proposed 

theoretical model and also verified by non-contact experimental tests. The effects of 

geometric parameters, internal pressure and boundary conditions on the buckling of 

inflated beams are investigated in the end. Results reveal that the interactive buckling 

characteristics of inflated beam under bending are more sensitive to the dimensions of 

the structure and boundary conditions. We find that beams which are simply 

supported at both ends or clamped and simply supported boundary conditions may 

prevent the wrinkling formation. The results provide significant support for our 
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understanding of the bending-wrinkling behaviour of inflated beams. 

Keywords: Inflated beam; Bending wrinkling; Wrinkling evolution; Interactive pattern; 

Fourier series method 

1. Introduction 

As one of the most typical membrane-like structures, inflated beams have been 

the subject of interest in recent years owing to their distinctive features. They are of 

much lower weight and cost, can be folded easily and deployed quickly. Hence, they 

are widely applied to terrestrial and aerospace structures [1]. However, an inflated 

beam is a typical thin-wall structure and the instability phenomena, including global 

buckling, local wrinkling or both, may easily occur [2, 3]. Investigations on the 

instability phenomena of these structures can be categorized into two categories: 

global buckling analysis and local wrinkling analysis. 

The global buckling, as its name suggests, analysis mainly focuses on a global 

buckling mode and critical buckling load. Euler-Bernoulli’s kinematics was widely 

adopted because of its simplicity and ability correctly to determine the structural 

response in many practical situations. Pioneering work was carried by Comer and 

Levy [4] who provided analytical expressions for the deflection in an inflated 

cantilever beam by means of Euler-Bernoulli’s kinematics. Then, Main et al. [5] 

conducted experiments on cantilever inflated beams and compared the results with 

Comer and Levy’s theory [4]. Suhey et al. [6] considered a pressurized tube under 

uniformly distributed load in ocean aquaculture and theoretical results were obtained 

assuming Euler-Bernoulli’s kinematics as well. However, this theory did not consider 
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shear and inflation pressure effects on inflated beams. In order to improve the 

previous formulations, many other authors preferred to use the Timoshenko beam 

theory which is more appropriate for thin-walled beams. Fichter [7] published a paper 

in which the internal pressure appears in the deflection expression based on the 

minimization of total potential energy. By taking into account the deformed state of 

the beam, Wielgosz and Thomas [8, 9] gave analytical expressions for inflated beams 

and panels using Timoshenko beam theory. In their approach, the force generated by 

internal pressure was treated as a follower force which accounted for pressure 

stiffening effects. Le van and Wielgosz [10] improved Fichter's [7] theory by using 

the principle of virtual work in the context of the total Lagrangian formulation and 

proposed solutions for the bending and buckling of an inflated tube. Davids and 

Zhang [11] developed Fichter's [7] results by considering the pressure work during the 

volume change in isotropic Timoshenko beams and accounted for fabric wrinkling via 

a moment-curvature nonlinearity. Apedo et al. [12] developed efficient numerical 

techniques for predicting the nonlinear load–displacement response of inflated 

beams by proposing a 3D Timoshenko beam with a homogeneous orthotropic woven 

fabric. Barsotti and Ligarò [13] assessed the nonlinear elastic response of an inflated 

cylindrical beam through a simple mechanical model. The geometrical nonlinearities 

in the model due to both the cross-sectional ovalization and wrinkling were carefully 

considered. 

Distinct from the global buckling analysis, local wrinkling is assumed to occur 

when the maximum compressive stress reaches the uniform compression critical value 
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for a circular tube. Three models are used to describe the wrinkling of the inflated 

beam: the membrane model, the thin-shell model and the shell-membrane model. 

Haugthon and McKay [14] adopted the membrane model to predict the wrinkling 

characteristics of the inflated beam where the wrinkles occurred when the axial 

compression reached zero. In the membrane model, both the wrinkling and the 

collapse moments are independent of the material properties, and are only related to 

the structural cross-section size and inflation pressure. Then, Veldman [15] regarded 

the inflated beam as a thin-shell and predicted the wrinkling and collapse moments 

utilizing the buckling critical load of a shell. In fact, the membrane and thin-shell 

models correspond to two perfect states respectively which are different from 

experimental results [16-18]. Therefore, Wang et al. [18] proposed a shell-membrane 

model using a modified factor based on the membrane and thin-shell models. 

Compared with previous models, the shell-membrane model showed a better 

correlation with the experimental results in predicting the wrinkling and collapse 

loads of inflated beams. 

Inflatable structures do have additional stiffness which comes from initial 

pressure, but do not contain the stiffness that comes from material and shape. Both 

buckling and wrinkling mean a deformation process in which a structure subjected to 

high compressive stress undergoes a sudden change in morphology at a critical load. 

When the beam is compressed axially, beyond a certain critical load it spontaneously 

bows outwards, which is called global or Euler buckling. Compared to global 

buckling, characteristics of local wrinkling are wavelike and periodic. The above 
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review of literature indicates that the global buckling analysis focuses on the 

prediction of global buckling characteristics, such as the critical bifurcation and 

collapse loads, the wrinkling region and the buckling mode. In contrast, the local 

wrinkling analysis focuses on the local wrinkling characteristics, such as the 

wrinkling amplitude, the wrinkling wavelength, the wrinkling number and the 

wrinkling configuration. Furthermore, most of the experiments on the instability 

phenomena concentrate on the detection of the global buckling characteristics [19, 20] 

or of the local wrinkling characteristics [21]. Few papers focus on both of these 

features in theoretical or experimental studies. Consequently, there is a need to 

develop theoretical and experimental methods for describing the instability 

phenomena that couples global and local wrinkling characteristics. A Fourier series 

method, which corresponds to the periodic and sinusoidal characteristics of wrinkles 

correctly, is able to account for instability phenomena, such as bending instabilities of 

circular tubes [22, 23], buckling of sandwich structures [24] or of a Winkler 

foundation beam [25].  

In this paper, the Fourier series method is introduced to the Fichter's [7] theory to 

derive a Fourier model which can characterize the interactive bending wrinkling 

behaviour of inflated beams. The non-linear governing equations of the Fourier model 

are then solved by a Newton trust region method [26]. The whole wrinkling evolution 

is tracked using the proposed model and the predicted buckling patterns are verified 

by the non-contact experimental tests. Finally, the effects of geometric parameters, 

internal pressure and boundary conditions on the buckling of inflated beam are 
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investigated 

2. Methodology 

2.1 Classical model of inflated beam 

 

Fig. 1. Schematic represenation of the inflated beam, beam, defining axes, dimensions and 

displacements. 

Inflated beams are considered to be thin-walled cylinders which depend on 

internal pressure for much of their load-carrying ability as shown in Fig. 1. The axial 

displacement (in the x direction), transverse displacement (in the y direction) and 

rotation angle about the z axis are represented by u , v and  , respectively. The 

parameters L, r and t are respectively the length, cross-sectional radius, and wall 

thickness of the inflated beam. In-plane means that a steady moment M  is applied 

on each end of the beam about the x-axis. According to Fichter's [7] theory，a system 

of equilibrium equations can be obtained from the principle of virtual work following 

the Timoshenko model: 

   0str pres ext      (1) 

where str  and ext  represent the strain energy and external energy, respectively, 
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while pres  represents the potential energy of the internal pressure due to 

deformation. We make the simplification of neglecting the circumferential strain and 

twist around the longitudinal axis and thus the strain energy str  of the inflated 

beam can be expressed as: 

  
0

1

2

L

str N Mk S dx      (2) 

where  ,   and k  are respectively the axial, shearing and bending strain of the 

inflated beam. Since the inflated beam is made from isotropic Polyurethane thin film, 

the strains and the corresponding loads ( N , S , M ) are defined in Eqs. (3)-(4):  
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where E and G are the elasticity and shear modulus, respectively. In addition, if the 

inflated beam is usually made from fabric, Eq. (4) can be replaced by an orthotropic 

constitutive equation to describe the orthotropic wrinkling behavior in principle. 

However, in this manuscript, we make the simplification of neglecting the 

circumferential strain in this Fourier model. Therefore, the expression of orthotropic 

constitutive equation is almost similar to isotropic Eq. (4). The potential energy pres  

is then given by: 

 2 2
, ,0

1

2

L

pres x xp V p r u v dx              (5) 

where V  is the change in enclosed volume due to deformation, p is the internal 
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pressure. In addition, the external work by the applied load ext  is then given by: 

    1 2 30 0

LL

ext f u f v f dx Nu Sv M         (6) 

where 1f , 2f , 3f , N , M  and S  are the external applied loads.  

2.2 Fourier model of inflated beam  

 The Fourier series method in this part is adopted to investigate the interactive 

bending-wrinkling behaviour of the inflated beam. The deformation response of the 

system is considered as the sum of a slowly-varying mean field and a nearly periodic 

fluctuation. All the unknowns in Section 2.1 are written in the form of Fourier series: 

 ( ) ( ) ijqx
j

j

U x U x e




   (7) 

where ( )U x  is the unknown field which contains functions u , v  and  . The 

Fourier coefficients ( )jU x  represent the envelope for the jth harmonic, and the 

coefficients of the zeroth harmonic are real while the others are complex. The 

frequency q is defined as q n
L


 , where n is the wavenumber.  

 The Fourier coefficients ( )jU x  vary slowly and are assumed to be constant over 

a period  , 2 /x x q . Several calculations have been proposed by Damil and 

Potier-Ferry [27] to manage the Fourier coefficients. If ( )a x  and ( )b x  are Fourier 

series with slowly varying Fourier coefficients as in Eq. (7), the following identities 

hold: 

 
0 0

( ) ( ) ( ) ( )
L L

j j
j

a x b x dx a x b x dx





    (8) 

 , ,( ) ( )x j j j x j
j

da d
a ijn a a ijna

dx dx L L

        
 

 (9) 
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1

( ) j j j j
j
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




   (11) 

By applying the above identities to Eqs. (3)-(4), the force and strain fields of the 

new Fourier model are obtained as follows: 
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 2j jN E rt   (15) 

 j jS G rt   (16) 

 3
j jM E r tk  (17) 

In the same way, the strain energy and potential energy can be expressed as: 
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2

L

pres j j j j j
j j j

d d
p r ijn u ijn v dx

dx L dx L

    
  

 
  

          (19) 

Of course, a more refined picture could be constructed by the inclusion of more 

Fourier terms, which would also results in a correspondingly more complex and 

difficult task to ensure numerical convergence. We consider just three envelopes ( j = 

-1, 0, 1) as these are sufficient to reveal interactive buckling phenomena. 0U  is 

identified as the mean value and represents the global deformation, while 1U , which 

is conjugated with 1U , represents the amplitude of fluctuation for the local wrinkling. 

Then the energy can be expressed as: 
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where the strains in the Fourier model are expressed as: 
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As expected, Eqs. (20)-(21) include the mean field 0U  and the amplitude of the 

fluctuation 1U , which depicts the interactive instability of the inflated beam. On the 

other hand, the term 2
0, 0,

1

2x xu v  in Eq. (22) corresponds to the global strain and the 

last term 
2

2 2
1, 1xv n v

L

   
 

corresponds to local wrinkling. Meanwhile, the last term is 

always positive, which implies a decrease of the compressive strain due to local 

wrinkling. If the beam is in a compressive state, a local instability can occur and these 

two terms lead to a reduction of compressive stress. Hence, the Fourier model here 

permits a description of the stress release due to local buckling. Different from the 

classical expression of strain, the term 
2

2
1n v

L

 
 
 

 represents the wrinkling strain 

which is consistent with the Calladine’s [28] results.  
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In this paper, the wrinkling behaviour of inflated beam is studied under pure 

bending: moments are applied at both ends of the beam. As there is no applied 

external axial force and the applied moments are constant, the assumptions

0( ) ( )u x u x , 0( ) ( )x x  , are taken into account, which means the longitudinal 

displacement and rotation angle do not fluctuate. Here, the research focus is on the 

interactive global-local instability configuration and not on phase modulation. 

Therefore, a further approximation is to suppose that the envelope 1( )v x  is real, 

which only considers amplitude modulation and disregards the evolution of phase. 

Then, the transverse displacement can be expressed as: 

 0 1( ) ( ) 2 ( )cos( )v x v x v x qx   (28) 

By substituting Eqs. (20)-(21) into Eq. (1), the final buckling governing equation 

of the inflated beam can be deduced as: 

 0, 0x   (29) 

2
2 2

0 0, 0, 1, , 0, 1 , 0, 0 , 0,

1
( ) ( ) ( ) 0

2xx x x x x x x x xEt v Etv v Et n v v Gt v pr
L

         
 

 (30) 

2 2 2
2 2

0 1, 0 1 0, 1, , 0, 1 1, 12 2 ( ) 0xx x x x x xxE v E n v Ev v E n v v Gv G n v
L L L

                   
     

 (31) 

 2
0, 0, 0( )( ) 0xx xEr t Gt pr v      (32) 

 

2.3 Numerical implementation 

The non-linear governing Eqs. (22), (29)-(32) are solved through an incremental 

Newton-Raphson numerical procedure and enhanced to enable the tracing of 

post-buckling equilibrium paths through a Newton trust region method [26]. In order 

to apply this method, the quadratic model m should be considered at first: 
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( ) ( )

2
. .

T T
k k k k

k

m s f x g s B s

s t s 

   

 

 (33) 

Here, kg is the gradient of the objective function ( )kf x  at the current iteration point

kx . s is the unknown functions and the step size is required to be bounded by the trust 

region radius k . Both the Cauchy point (the minimizer of m in the steepest descent 

direction) and the Newton point are utilized. The incremental step is then given by a 

combination of the Cauchy step with the Newton step, and the unknowns are 

determined until the norm of the scaled residual is less than a given tolerance. The 

computation is started by a damped Newton step. Here, the damping factor, which 

determines the first Newton step, is set to 0.5 to ensure good convergence. Meanwhile, 

an initial displacement imperfection is introduced as a geometric imperfection by 

applying a very small out-of-plane displacement at the center to trigger global 

buckling. The value of the displacement imperfection is 10-5, and the numerical 

results show insensitivily to the initial imperfection as long as it is small enough (～

10-5-10-6), which is also demonstrated by others [17, 29]. 

 

3. Results and discussions 

In this section, we will discuss interactive bending wrinkling behaviour of the 

simply supported inflated beam under bending without restriction on axial 

displacement ( 0u  ). The interactive buckling characteristics will be obtained by 

solving the governing Eqs. (22), (29)-(32) which include global deformation ( 0v ) and 

local wrinkling ( 1v ) using the numerical method in Section 2.3. According to the 
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following experiments, the material and structural parameters of inflated beam are 

listed in Table 1.  

 

Tab. 1. Material and geometrical parameters  

Parameters Magnitude 

Length of the beam (L) 0.3 (m) 

Young’s modulus of beam material (E) 2.0E8(Pa) 
Poisson’s ratio (  ) 0.3 

Radius of the beam (r) 0.025(m) 

Thickness of the beam (t) 5.0E-5(m) 

Internal pressure (p) 5.0E3(Pa) 

3.1 Theoretical prediction and experimental verification 

The values of moment and deflection values are normalized by s
wM  and 

thickness t respectively, in order to be given in dimensionless terms. Here, the critical 

wrinkling moment of shell model s
wM  can be expressed as follows [16, 30]: 

 
2

3

23 1
sw

rEt
M p r




 


                                                  (34) 

Then, the dimensionless moment and deflection can be obtained as: 

/ swm M M , /w v t                       (35) 

Fig. 2(a) illustrates the deformation patterns of the inflated beam under two 

different applied moments ( 0.37 and 0.93m    ). It shows that the structure is 

unstable when the applied moment is 0.37 and global bending deformation dominates 

the pattern without any local wrinkles. As the applied moment increases to 0.93, local 

wrinkling is observed and the buckling pattern is the typical interactive buckling 

between the global bending deformation and local wrinkling. Fig. 2(b) shows a 

magnified view of the local wrinkles regardless of the global deformation. As seen 
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from the diagram, local wrinkles distribute along the whole inflated beam and the 

amplitude of these wrinkles is almost same except for those near the boundary. 

Wrinkles at the edges are smaller than those in the middle owing to the boundary 

conditions which restrict on the evolution of local wrinkles. 
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-0.002

0.000
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w
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Axial direction (m)  

Fig. 2. The deformation patterns of the inflated beam under bending: (a) deformation patterns of 

the inflated beam under different moments; (b) zoomed view of local wrinkles when the applied 

moment is 0.93. 

In order to verify the theoretical results, a non-contact testing scheme is proposed 

to measure the buckling pattern of the inflated beam. In the experiment, an inflated 

beam, which is made from polyurethane thin film, is fixed onto the bending test 

apparatus (as shown in Fig. 3). The properties of polyurethane thin film are Young’s 

modulus of 200MPa, Poisson’s ratio of 0.3 with 50μm thickness. The length and 

cross-sectional radius are 0.942m and 0.025m, respectively. The bending moment is 

carried out by rotating a support disk gradually. The buckling pattern is captured using 

VIC-3D and T-Scan laser tracker instruments (as shown in Fig. 3). The global bending 

deformation belongs to a macroscale and is captured using VIC-3D instrument based 

on DIC (Digital Image Correlation) technique which is an effective and reliable 

method to test the displacement field with an approving precision [31]. There are four 
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main steps in the VIC-3D wrinkling measurement: (i) random speckles made on the 

inflated beam surface; (ii) CCD camera calibration; (iii) capture photos; (iv) images 

post-processing. The local wrinkling configuration belongs to a microscale and is 

captured using T-Scan laser tracker instrument based on the laser interferometer 

technique. The instrument can obtain the wrinkling characteristics accurately with a 

measurement precision of 1μm and a speed of 7000 points per second.  

 

Fig. 3. The wrinkling test apparatus. 

The interactive bending wrinkling pattern is observed and tested in the 

experiment (as shown in Fig. 4). The buckling pattern of the inflated beam under 

bending behaves as an interactive feature of the global bending deformation and local 

wrinkling configuration. The experimental results of the global deformation and local 

wrinkling configuration under 0.25 N m  moment are respectively shown in Fig. 4 (a) 

and Fig. 4 (b) The tested global deformation (0.045m) agrees with the theoretical 

result (0.041m) within a difference of 9.7% (as listed in Tab.2). In addition, the ratio 

of the mean wrinkling amplitude A to the mean wrinkling wavelength   is defined 

as = /A   to characterize the local wrinkling level. Large   ratio changes mean 
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the high wrinkling level. Obtained from Fig. 4 (b) and Tab.2, the tested ratio   is 

0.23 which is close to the theoretical result (0.20).  

 

Fig. 4. The experimental interactive bending wrinkling pattern: (a) the experimental global 

deformation result using VIC-3D instrument; (b) the experimental local wrinkling configuration 

result using T-Scan laser tracker instrument. 

In addition, the global deformations and the ratio = /A   (denoting the 

wrinkling level) under different applied moments are tested and compared with 

theoretical predictions in Tab.2. Accompanied by the increasing moment, the ratio   

is increased, indicating the rise in the wrinkling level. The tested global deformations 

are close to the theoretical results within a mean difference of 9.9%. The difference 

between the experimental and theoretical results may be because the Fourier model is 

established on a natural state rather than the deformed configuration and the effects of 

the follower loads are neglected. Moreover, some inevitable limitations in test 

techniques may also cause the differences between the experiment and theory.  

Tab. 2. The experimental and theoretical results of global deformations and /A   

 Applied moment ( N m ) 0.10 0.15 0.25 0.30 

Deformation 

(m) 

theoretical results 0.017 0.025 0.045 0.054 

experimental results 0.015 0.023 0.041 0.050 

/A   
theoretical results 0 0 0.20 0.25 

experimental results 0 0 0.23 0.30 

3.2 Wrinkling evolution analysis 

Fig. 5 shows the moment-deflection response of the inflated beam under bending. 

a) b) 



17 
 

Observed from Fig. 5, there are two critical points which are named as the critical 

wrinkling point (marked as A) and the failure point (marked as C). The critical 

wrinkling load corresponds to the point where a nonlinear equilibrium path departs 

from the initial linear one. The failure point is determined as the following 

intersection between the bifurcation path and the primary path. Based on the critical 

points in the equilibrium path, the wrinkling evolution can be divided into three stages, 

which are named as I, II, III. Stage I (OA) is named as a pre-bucking stage and a 

linear response characterizes the primary path. In this stage, without any local 

wrinkles ( 1 0v  ), global bending dominates the deformation pattern of the inflated 

beam. The applied moment at the critical wrinkling point A is 0.78, which is at the 

critical wrinkling moment wM . When the applied moment reaches wM , an obvious 

bifurcation occurs at the point A and the primary path turns to the bifurcation path. 

Then the wrinkling evolution goes into Stage II which is identified as the 

post-buckling stage. The wrinkling strain (the last term in Eq. (22)), which has an 

abrupt increase due to the local wrinkling formation, is adopted to reflect the first 

bifurcation. The local wrinkling phenomenon appears in this stage and the pattern 

characterizes as a typical interactive buckling between the global deformation and 

local wrinkling. Note that the applied moment has slight effects on the structural 

deflection in the initial postwrinkling stage (AB). From the view of the energy 

equilibrium (Eq. (1)), the wrinkling strain energy offsets the increase of external 

energy. Therefore, in this stage, the wrinkles grow in a relatively stable state and the 

global bending deformation remains almost stable. In response to the increasing 
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applied moment, the global deformation and local wrinkling increases simultaneously, 

which results in a continued monotonic increase in the moment-deflection curve (BC).  

When the moment exceeds the failure point C (the failure moment 1.19fM  ), 

the wrinkles eventually localize and cause catastrophic failure in the form of sharp 

local kinks (as shown in Fig. 5) which promotes the wrinkling evolution into the 

failure stage (CD). Recall that the results of the Fourier model are obtained under the 

assumption that the wrinkling configuration has a slow and nearly periodic fluctuation. 

Thus, the assumption is invalid in the last stage due to the existence of sharp local 

kinks.  

 

Fig. 5. The numerical moment-deflection response of the inflated beam under bending. 

3.3 Critical wrinkling moment and failure moment 

In this part, the predicted critical wrinkling and failure moments are compared 

with the results from previous models, including the membrane model [14], the 

thin-shell model [15] and the shell-membrane model [18]. The comparisons (in Fig. 6) 

show that the critical wrinkling (0.78) and failure moments (1.19) lie among the 

results predicted by the shell and membrane models.  
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In the Fourier model, the structural failure corresponds to the occurrence of sharp 

local kinks before the wrinkles distribute around the whole cross-section of the 

inflated beam. However, in the membrane and thin-shell models, the structure fails 

when the wrinkling angle reaches 2  (the whole hoop wrinkles) which does not 

comply with the practical case. Different from the membrane and thin-shell models, 

the failure of the shell-membrane inflated beam occurs when the wrinkling angle 

approaches 1.5 , which shows a better correlation with the experimental results and 

the Fourier model.  
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Fig. 6. The numerical critical wrinkling and failure moments from different models. 

3.4 Internal pressure and structural size 

The effects of the internal pressure and structural size on the wrinkling behavior 

are carried out and shown in Fig. 7. The moment-deflection responses of the inflated 

beam with 0.025m radius for different internal pressures are shown in Fig. 7 (a). The 

increasing pressure results in a slight reduction of the deflection and a slight increase 
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of the critical wrinkling and failure moment. Specifically, for a 40% variation on the 

assumed pressure of 5kPa, the critical wrinkling moment changes only by 9.52% and 

the failure moment by 6.45%. It also shows that the critical wrinkling and failure 

moments are proportional to the internal pressure due to the improvement of the 

transverse shear stiffness, which is described by Eq. (32). This is in line with the 

conclusions in the literature [8]. 
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Fig. 7. The numerical moment-deflection responses of the inflated beam with different internal 

pressures and radii: (a) the moment-deflection responses with different internal pressures; (b) the 

moment-deflection responses with different radiuses. 

Fig. 7 (b) depicts the moment-deflection responses of the inflated beam with 

internal pressure of 5kPa for different radii (0.015m, 0.025m and 0.035m). An 

increasing radius results in a large reduction of the deflection and an obvious increase 

of the critical wrinkling and failure moment due to the improvement of structural 

stiffness. Specifically, the critical wrinkling and failure moments have a more than 

three times improvement for a 40% increase on the assumed 0.025m radius. The 

effects of radius on the critical wrinkling and failure moments are more significant 

compared with the cases of internal pressure. In addition, for a slender inflated beam, 

a) b) 
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the sharp local kinks appear quickly after bifurcation due to a slower bending stiffness 

and a rapid wrinkling evolution. In such cases the inflated beam rapidly fail soon after 

it is wrinkled.  

3.5 Boundary conditions 

Fig. 8 shows the buckling patterns with the same applied moment (0.25 N m ) 

under four cases with different boundary conditions: simply supported and sliding 

simply supported (S-SL), simply supported and simply supported (S-S), clamped and 

sliding simply supported (C-SL), clamped and simply supported (C-S) (note that we 

refer to sliding which is sometimes elsewhere referred to as rolling). The results in Fig. 

8 reveal that the buckling pattern of the inflated beam under bending is closely 

relevant to the boundary condition. The symmetrical boundary conditions lead to a 

symmetrical buckling pattern and the same situation is met for nonsymmetrical 

boundaries.  

Global deformation dominates the configuration under the S-S or C-S boundary 

conditions and there is no wrinkle in these two cases. The configuration under the 

S-SL or C-SL boundary condition behaves with a typical interactive pattern between 

the global bending and local wrinkling. Compared with the other two boundary 

conditions (S-S and C-S), the S-SL and C-SL boundary conditions have no 

restrictions on the axial displacement ( 0u  ) and allow the material to shrink along 

the axial direction, which leads to an increase of wrinkling strain (the last term in Eq. 

(22)).  
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Fig. 8. The buckling patterns under different boundary conditions predicted by Fourier model 

( 0.93M  ). 

Conclusions 

In this study, the Fourier series method is introduced to the Fichter's theory to 

derive a Fourier model which can characterize the interactive bending wrinkling 

behaviour of inflated beams. The whole wrinkling evolution can be tracked using the 

proposed model and the predicted buckling patterns are verified by the experimental 

tests. The bending wrinkling behaviour of the inflated beam is closely related to its 

internal pressure, relative dimensions and boundary conditions. Several important 

conclusions are drawn as follows. 

The wrinkling evolution can be divided into three stages based on the critical 

wrinkling point and the failure point in the equilibrium path. In the pre-buckling stage, 

global bending dominates the deformation pattern of the inflated beam without any 

local wrinkles and a linear response characterizes the primary path. In the 

post-buckling stage, the local wrinkling phenomenon appears and the pattern 
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characterizes as a typical interactive buckling between the global deformation and 

local wrinkling. Finally, the formation of sharp local kinks transforms the wrinkling 

pattern into the failure stage and accelerates the collapse of the structure.  

In the Fourier model, the predicted critical and failure moments are respectively 

0.78 and 1.19 and the failure wrinkling angle is amount to 1.52 . Moreover, the 

effects of radius on the critical wrinkling and failure moments are more significant 

than that of internal pressure. The buckling pattern is quite sensitive to the boundary 

condition. A larger radius and internal pressure of the inflated beam with an S-S or 

C-S boundary condition will be a desired consideration to control wrinkling 

characteristics and evolution. In addition, the inflated beam is made from isotropic 

polyurethane thin film in the experiment. Therefore, the isotropic constitute equation 

is adopted here and the orthotropic mechanical behavior of inflated beam made from 

fabric will be focused on investigation in the future. 
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Figure and table captions 

Data Statement 

No additional unpublished data are available. 

Tab. 1. Material and geometrical parameters 

Tab. 2. The experimental and theoretical results of global deformations and /A   

Fig. 1. Schematic represenation of the inflated beam, beam, defining axes, dimensions and 

displacements. 

 

Fig. 2. The deformation patterns of the inflated beam under bending: (a) deformation patterns of 

the inflated beam under different moments; (b) zoomed view of local wrinkles when the applied 

moment is 0.93. 

 

Fig. 3. The wrinkling test apparatus. 

 

Fig. 4. The experimental interactive bending wrinkling pattern: (a) the experimental global 

deformation result using VIC-3D instrument; (b) the experimental local wrinkling configuration 

result using T-Scan laser tracker instrument. 

 

Fig. 5. The numerical moment-deflection response of the inflated beam under bending. 

 

Fig. 6. The numerical critical wrinkling and failure moments from different models. 

 

Fig. 7. The numerical moment-deflection responses of the inflated beam with different internal 

pressures and radii: (a) the moment-deflection responses with different internal pressures; (b) the 

moment-deflection responses with different radiuses. 

Fig. 8. The buckling patterns under different boundary conditions predicted by Fourier model 

( 0.93M  ). 

 

 


