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ABSTRACT
Hyper-heuristics have been used widely to solve optimisation prob-
lems, often single-objective and discrete in nature. Herein, we
extend a recently-proposed selection hyper-heuristic to the multi-
objective domain and with it optimise continuous problems. The
MOSSHH algorithm operates as a hidden Markov model, using
transition probabilities to determine which low-level heuristic or
sequence of heuristics should be applied next. By incorporating
dominance into the transition probability update rule, and an elite
archive of solutions, MOSSHH generates solutions to multi-objective
problems that are competitive with bespoke multi-objective algo-
rithms. When applied to test problems, it is able to find good ap-
proximations to the true Pareto front, and yields information about
the type of low-level heuristics that it uses to solve the problem.

CCS Concepts
•Mathematics of computing→ Optimization with randomized
search heuristics; •Applied computing→Multi-criterion opti-
mization and decision-making;
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1. INTRODUCTION
Hyper-heuristics are well suited to solving optimisation prob-

lems and are used to solve (often combinatoric) problems by opti-
mising the low level heuristics with which an optimisation problem
will be solved. They are generally classified as either generative
(creating novel low-level heuristics) or selection-based (identifying
good low level heuristics from a pool of existing heuristics). This
paper is concerned with the latter type.

A recent selection hyper-heuristic, SSHH, identifies sequences
of low level heuristics using selection probabilities that are learned
with a process based on a hidden Markov model [3]. That algorithm
has been demonstrated on single-objective combinatoric problems,
showing significant ability to both select suitable sequences of low-
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level heuristics to solve the problem at hand, as well as producing
solutions that are competitive with the current state of the art.

In this work we extend the original algorithm so that it is capable
of optimising multi-objective problems. This is done by modifying
the hidden Markov process so that the selection of low level heuris-
tics that cause the generation of dominating solutions is rewarded.
We evaluate the resulting algorithm on a range of multi-objective
test problems drawn from the DTLZ problem suite [2]. An addi-
tional novelty of this work is that the single-objective version of the
algorithm has so far not been applied to continuous problems, and
we show that the algorithm is able to select low-level heuristics that
are well suited to solving problems with such a representation.

2. ALGORITHM
SSHH generates sequences of low-level heuristics that generate

good solutions to a given problem. It is a single-point algorithm,
generating a single child solution from the current parent. Each
low-level heuristic has an associated acceptance strategy. Each it-
eration of the algorithm begins with the application of a low-level
heuristic (chosen at random based on the probability of selecting
each heuristic). Depending on whether the acceptance strategy for
the current heuristic is met the solution is either accepted, in which
case its fitness is evaluated, or it is rejected, in which case another
heuristic is applied and a sequence of heuristics is created. Tran-
sition probabilities between low-level heuristics are used to deter-
mine which heuristic is applied next. Once the acceptance strategy
is met the solution is evaluated.

The basic operation of the multi-objective SSHH (MOSSHH) is
unchanged; sequences of low-level heuristics are still generated,
and their acceptance still depends on the acceptance strategy of
each heuristic. MOSSHH uses an elite archive; as each acceptance
strategy is met, and the objective values are evaluated, the archive
is updated with the new solution. The use of an archive presents the
possibility for incorporating genetic material from other solutions,
in lieu of a crossover operator. We use two heuristics that draw
genetic material from archived solutions. If the child solution was
archived, transition probabilities are updated and the child replaces
the parent in the next generation.

3. EXPERIMENTS
This paper is concerned with continuous problems, employing

test problems from the DTLZ toolkit [2] and apply the MOSSHH
algorithm to the solution of 2- and 3-objective instances of DTLZ1,
DTLZ2 and DTLZ3, with recommended parametrisations [2]. Al-
gorithms were run for 50,000 iterations in the case of DTLZ1 and
DTLZ3, and 25,000 iterations for DTLZ2.

The following low-level heuristics are employed in this work:
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Figure 1: Comparative hypervolume results for a 3-objective DTLZ1.
(CMA-ES results did not converge to within the reference point, bar one
runx.)

Figure 2: Sample Pareto front approximations generated by running
MOSSHH on DTLZ1 in 2- and 3-objectives.

Ruin and recreate replaces the entire chromosome (h1) or a sin-
gle parameter (h2) with an entirely new one.

Additive mutation from a uniform distribution between (-0.05,
0.05) (h3), a Gaussian distribution N (0, 0.1) (h4), and a bi-
modal beta distribution between (-0.05, 0.05) (h5).

Archive replacement replaces the current solution with a com-
plete solution (h6) or parameter (h7) from the archive.

We compare the MOSSHH results against those generated by
optimising the problems with NSGA-II [1] and a MO-CMA-ES
[4]; experiments were repeated 30 times. The hypervolume of the
final estimated Pareto set was used to compare the results.

4. RESULTS
Figure 1 shows representative results for the 3-objective instance

of DTLZ1. The results are based on the sampled hypervolume
between the origin (0,0) and a reference point of (1,1). In these
results, and in the those conducted for DTLZ3, MOSSHH shows
competitive or improved results when compared with the three bench-
mark algorithms. In some cases, MOSSHH has benefited from the
ability to select different low-level heuristics to suit the specific
characteristics of that problem, and has generated a close approxi-
mation of the true Pareto front. Results for DTLZ2 were less com-
petitive; the online learning process is less effective for this prob-
lem, which, by design, is simpler for an EA to solve.

Example estimated Pareto fronts are shown for DTLZ1 in Figure
2. In both cases, we can see that the algorithm has both converged
to and covered the full extent of the true Pareto front.

The operation of the hyper-heuristic is shown in the transition
probabilities between and acceptance strategies of each low-level
heuristic (again for 3-objective DTLZ1, Figure 3). The heuristics
are grouped into three types. The ruin and recreate heuristics (h1

and h6) are rarely used; the parameter regeneration (h2) and muta-
tion heuristics are used with relatively equal weight; and the archive
parameter replacement heuristic (h7) is clearly used more than any

Figure 3: Top: transition probabilities for the low-level heuristics. The
region occupied by each heuristic in the transition probability matrix shows
the probability that a transition will be made between two heuristics, with
a larger region indicating a greater probability. Heuristics are coloured as
follows: grey – h1; red – h2; green – h3; blue – h4; cyan – h5; pink – h6;
and yellow – h7. Bottom: acceptance strategies; the larger the amount of
black a heuristic is represented by, the greater the probability of a sequence
being accepted following its use.

other. On inspection, this heuristic is used more frequently as the
optimisation progresses and strong solutions enter the archive.

By inspecting the use of individuals over time, archive-based and
ruin and recreate heuristics are used less frequently as optimisation
proceeds, indicating that the algorithm has entered an exploitative
mode and is mutating known good solutions.

5. CONCLUSION
We have presented the MOSSHH algorithm, demonstrating the

use of a hyper-heuristic to optimise a multi-objective problem by
selecting sequences of low-level heuristics. We have revealed use-
ful information about the type of heuristics that can be applied to
solve the multi-objective test problems used herein. Given that the
problems are generally well solved with mutation heuristics, with
some help from more disruptive heuristics on problems with chal-
lenging features (such as the deceptive fronts found in DTLZ1 and
DTLZ3) expert time can be better spent developing heuristics that
are known to be effective for those problems.

We intend to continue investigating the MOSSHH algorithm, and
one aspect of this is basing transition probabilities on ε-dominance.
Rather than considering the dominance relationship between the
current parent and child solutions, we intend to consider threshold-
ing the probability updated based on the number of archived solu-
tions dominated by the child, and the value of ε needed to cause the
child to dominate the parent. This will bring the multi-objective
algorithm closer to the operation of the original SSHH algorithm.

6. REFERENCES
[1] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and

elitist multiobjective genetic algorithm: NSGA-II. IEEE
Trans. Evol. Comp., 6(2):182–197, 2002.

[2] K. Deb, L. Thiele, M. Laumanns, and E. Zitzler. Scalable
Multi-Objective Optimization Test Problems. In Proc. IEEE
CEC 2010, volume 1, pages 825–830, May 2002.

[3] A. Kheiri and E. Keedwell. A sequence-based selection
hyper-heuristic utilising a hidden markov model. In Proc.
GECCO 2015, 2015.

[4] T. Voss, N. Hansen, and C. Igel. Improved step size adaptation
for the MO-CMA-ES. In Proc. GECCO 2010, pages 487–494,
2010.


