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Abstract

The epidemiology of dengue is characterised by irregular epidemic outbreaks and desynchronised dynamics of its four co-
circulating virus serotypes. Whilst infection by one serotype appears to convey life-long protection to homologous
infection, it is believed to be a risk factor for severe disease manifestations upon secondary, heterologous infection due to
the phenomenon of Antibody-Dependent Enhancement (ADE). Subsequent clinical infections are rarely reported and, since
the majority of dengue infections are generally asymptomatic, it is not clear if and to what degree tertiary or quaternary
infections contribute to dengue epidemiology. Here we investigate the effect of third and subsequent infections on the
transmission dynamics of dengue and show that although the qualitative patterns are largely equivalent, the system more
readily exhibits the desynchronised serotype oscillations and multi-annual epidemic outbreaks upon their inclusion. More
importantly, permitting third and fourth infections significantly increases the force of infection without resorting to high
basic reproductive numbers. Realistic age-prevalent patterns and seroconversion rates are therefore easier reconciled with a
low value of dengue’s transmission potential if allowing for more than two infections; this should have important
consequences for dengue control and intervention measures.
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Introduction

Dengue viruses belong to the Flavivirus group of the family

Flaviviridae and today represent a major global concern; transmit-

ted from person to person mainly by the mosquito vector Aedes

aegypti (and to a lesser degree Aedes albopictus) they infect roughly 50

million people every year. Of these, some tens of thousands die

mostly from the more serious disease forms dengue hemorrhagic

fever (DHF) and dengue shock syndrome (DSS). Without

treatment, case-fatality rates for the latter can be as high as

20%, though this drops to around 1% with medical intervention.

The virus itself is organised into four closely related, co-circulating

serotypes: DENV-1, DENV-2, DENV-3 and DENV-4 and long-

term epidemiological data reveal multi-annual cycles in disease

prevalence and sequential replacement of the dominant serotypes

(see Figure 1).

One distinguishing feature of dengue infection is that the risk of

developing DHF and DSS is increased by previous exposure.

Although infection by one serotype results in an individual gaining

complete protective immunity to homologous infection, the

immune response stimulated by this exposure paradoxically

renders the individual much more likely to develop DHF and

DSS upon secondary infection by a heterologous virus. This is

believed to be due to the phenomenon of ‘Antibody-Dependent

Enhancement’ (ADE) whereby sub-neutralising titres of cross-

reactive antibodies promote viral replication [1–3].

The mechanism of ADE and its effect on dengue epidemiology

have been extensively investigated by both clinical studies and

mathematical models (for example [1,3–9]), and it has been

established that there is a competitive advantage for serotypes

conferring ADE. However, there also is a limit on how large the

effect can be before it induces large amplitude oscillations in

serotype incidence that could threaten their continued persistence

[6]. Furthermore, enhancement of either susceptibility to and/or

transmissibility of secondary infection through the action of ADE

seems sufficient to explain the desynchronised serotype dynamics

and observed 3–5 year epidemic cycles [7,9]. However, other

factors such as temporary or clinical cross-protection with or

without seasonal forcing have also been shown to desynchronise

the system into irregular epidemic behaviour [8,10–12], and it is

not yet clear if dengue epidemiology can really be attributed to any

of these factors alone or if it is indeed their combined effect.

A major obstacle in determining the underlying nature of

dengue epidemiology lies in the fact that most data are based on

clinically reported cases. However, it is widely recognised that a

high proportion of dengue infections are asymptomatic and

clinically imperceptible [1,13,14]. For example, a 1996 study in

Haiti demonstrated that over 85% of children had antibodies to

two or more dengue serotypes despite no child having been

hospitalized or dying with clinical symptoms or signs suggestive of

DHF/DSS for at least 16 years [15]. A further complication is a

potential bias in much of the available data towards first and

secondary infection. This is mainly because of the rarity of

clinically observed third and fourth infections [16,17] but also

because of the antibodies’ high cross-reactivity that complicates

the distinction of more than two preceding infections.
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The lack of knowledge in this area is also reflected in the various

theoretical approaches to elucidating dengue’s intriguing epidemi-

ology: whilst some models explicitly include the possibility of third

and fourth infection (e.g. [10,11,18]) others have assumed complete

immunity after a secondary heterologous infection (e.g. [6,9]). In

this paper we explicitly examine the effect of tertiary and quaternary

dengue infections by contrasting the epidemiological dynamics of a

previously analysed ‘twice infected – protected’ model [9] to one

that permits further infections. We show that whilst preserving the

general dynamical behaviour, third and subsequent infections

significantly affect the overall force of infection and the ensuing age-

dependent incidence rates of DHF/DSS in the population.

Methods

We present two models to compare the effect of tertiary and

quaternary infection on the epidemiology and transmission

dynamics of four co-circulating dengue serotypes. The models are

based on previously published epidemiological frameworks [5,6,9]

and differ in their assumptions about acquired immunity. In the first

model we assume that recovery from a secondary heterologous

infection renders the host completely immune against subsequent

challenges. In contrast, the second model assumes that exposure to

all four serotypes is necessary for complete protection. We assume

that after primary infection secondary and subsequent heterologous

infections are enhanced by means of ADE. This case clearly

represents the other extreme end in terms of cross-protection and

enhancement. However, by analysing both extremes it is possible to

interpolate other scenarios where subsequent infections are not

enhanced or even contribute less to dengue transmission.

In a previous study we have demonstrated that increased

transmission and increased susceptibility can both independently

and synergistically explain the desynchronised serotype dynamics

and irregular epidemic outbreaks [9]. For simplicity, we here

assume that enhancement manifests itself solely in terms of

increased onward transmission.

Mathematical models
Within both frameworks we divide the host population into

the following classes: zi denotes the fraction of the population

recovered from infection by at least serotype i; ẑzi denotes the

fraction of the population recovered from infection by serotype i

only; w denotes the proportion of the population that has

recovered from some form of infection; r is the proportion of the

population completely protected against further infection; s is

the proportion of the population completely susceptible to

infection; yi is the proportion infectious with a primary infection

with strain i; and ~yyi is the fraction infectious with serotype i

having previously recovered from infection with a heterologous

serotype.

The first model, where a secondary infection leads to complete

immunity, can then be written as the following set of ordinary

differential equations:

dẑzi

dt
~lis{

X
k=i

lk

 !
ẑzi{mẑzi

dyi

dt
~lis{syi

d~yyi

dt
~li
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 !
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with the proportion susceptible to any infection simply given as

s~1{r{
P4
i~1

ẑzi.

The second model, in which immunity is gained only by

exposure to all four serotypes, is given as:

Figure 1. Dengue epidemiology in South Vietnam. The total annual number of dengue cases (blue bars) and relative serotype prevalence
(lines) over the period 1994–2008 in the southern 20 provinces of Viet Nam show the characteristic fluctuation in disease incidence and sequential
replacements of dominant serotypes. Source of data: Vietnamese Ministry of Health Dengue passive surveillance scheme and kindly provided by the
Pasteur Institute, HCMC, Viet Nam. The Hospital for Tropical Diseases is a tertiary referral hospital for infectious diseases.
doi:10.1371/journal.pone.0012347.g001
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In both models, the host population size is assumed to be constant

with 1=m denoting the average host life expectancy and 1=s
representing the average duration of infection. We have assumed

that hosts recover at the same rate from primary and subsequent

infections. Since dengue infection generally lasts less than a week

[19], we assume the incidence of multiple infections to be

negligible.

The force of infection of serotype i, li, is defined as

li~byizwb~yyi, where b is the transmission coefficient of

individuals suffering from a first-time dengue infection. w describes

the increase in transmissibility during secondary (or subsequent)

infections due to the action of antibody dependent enhancement

(ADE), with w~1 denoting no enhancement and a value of

w~1:5, for example, corresponding to a 50% increase in

transmissibility.

Although differences in virulence and an effect of infection

order on disease outcome have been suggested, we assume there

are no differences between the serotypes in terms of transmissi-

bility or duration of infection.

In order to compare and contrast the dynamics of our two

models, we performed a series of simulations within the Ro,wð Þ
parameter space, with the basic reproduction number R0 here

defined as b=s. In all cases we varied R0 between 2.5 and 4 solely

through changes in transmissibility b. For simplicity we kept all

other parameter values constant and set m~0:02, equivalent to an

average host life expectancy of 1=m~50 years, and s~73,

equivalent to an infectious period of 1=s~1=73 years or <5 days.

We then explored the effects of both R0 and the level of ADE

within our two models.

Unless stated otherwise, all results and qualitative analyses are

performed after running our models for sufficient time to remove

the effect of transient dynamics and to allow the system to settle

onto a particular dynamical behaviour.

Results

Figure 2 shows the general model output for fixed R0 as a

selection of time series (after removing the transients) and

characterises the wide range of dynamical behaviours observed

in both models under increased levels of enhancement w. In line

with previous studies [5,6,9], the following pattern of behaviour

emerges. For low levels of enhancement we observe a steady-state

equilibrium with all serotypes persisting at equal frequencies. As

the degree of enhancement, w, is increased, the equilibrium is

replaced by synchronized oscillations. Further augmentation of w
desynchronises these oscillations, leading to the emergence of a

Figure 2. General model dynamics under parameter changes. Here we observe the fluctuations in the total proportion of the population that
has been infected by each serotype against time for different levels of transmissibility enhancement w (from left to right: w~1:0, w~1:5, w~2:0,
w~2:5; no enhancement is represented by w~1:0; increasing w corresponds to augmented levels of enhancement). The top panel is for the model
with the assumption of total immunity after two infections only (model (i)) whilst the bottom is for the model which allows for infection with all four
serotypes (model (ii)). The individual serotype dynamics seem to become ever more desynchronised as w increases in both models, though this effect
appears stronger in model (ii).
doi:10.1371/journal.pone.0012347.g002
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more ‘chaotic’ strain structure where individual serotypes are

sequentially replaced. Finally, we approach a state where we detect

periods of low disease prevalence interspersed with semi-regular

epidemic outbreaks. In both models this stage appears to be

further characterised by the sequential replacement of the

dominant serotype.

Notably, however, the time-series presented in Figure 2 suggest

that the progression between these stages is much faster in the

model allowing for third and fourth infections and also suggest that

the amplitude of oscillations in this case is around 5–10 times

larger than in the model where complete protection is attained

after only two infections. To qualitatively and quantitatively

compare both models and thus highlight the effect of third and

fourth infection we used a variety of methods for examining

serotype and incidence dynamics.

Serotype synchronisation
First we analysed the synchronisation pattern between

serotypes; we chose serotype 1 and 2 but since the dynamics of

each serotype are independent, any pair would give the same

results. We distinguished between three different behaviours: (a)

complete synchronisation, which indicates that after some initial

transient the two serotypes coalesce and remain synchronised for

the remainder of a 1000 year time period, that is, the behaviour

of one serotype exactly matches that of the other; (b) partial

synchronisation, which defines a regime where the serotypes are

not fully synchronised but are locked together for at least one

period of more than 100 years; and (c) desynchronised for all

other cases.

Figure 3a shows the synchronisation pattern of the two models

within the (R0,w)-plane. In both models we notice a general trend

from synchronised (blue squares) to desynchronised (red squares)

behaviour as we increase the level of enhancement, w. R0, on the

other hand, does not seem to have a significant effect on this trend

although we find a tendency in model (i) for some partial

synchronisation (green squares) at low levels of R0 and high levels

of w, which is not the case in model (ii).

Sequential replacement of dominant serotypes
We next looked at the serotype dynamics in terms of the

sequential replacement of a dominant serotype. To quantify

sequential dominance we used the same measure previously

introduced by Recker and colleagues [20], given as:

e~
1

P

XP

i~1

Y i
max{Y i

sub

Y i
max

,

where P = number of epidemic peaks observed in a certain time

interval considered (here 1000 years), Ymax = the prevalence of the

peaking dominant serotype and Ysub = the prevalence of the

serotype with the second-highest peak. That is, we analysed the

epidemic peaks over a certain time period (here 1000 years) and

examined whether and to what degree these epidemics consisted of

Figure 3. Comparison of synchronisation and single-serotype dominance between model (i) (top) and model (ii) (bottom). (a) The
synchronisation pattern between serotypes 1 and 2 indicates that, for both models, most of parameter space is characterised by desynchronised
behaviour i.e. the dynamics of the two serotypes are not ‘locked’ together. (b) Using a measure of single serotype dominance (where 0 corresponds
to at least two serotypes being simultaneously dominant and higher values indicate a greater tendency for one serotype to be dominating at any
given time), one can observe that in both models the trend is for increasing levels of dominance with increasing enhancement; this trend is more
pronounced in model (ii) than model (i).
doi:10.1371/journal.pone.0012347.g003
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one or more dengue serotypes, which we averaged across all

epidemics within that period. Figure 3b plots e dependent on the

level of transmissibility enhancement, w, and R0. From our

definition e~0 (dark blue in Figure 3b) corresponds to at least two

strains always being simultaneously dominant, and e~1 (dark red

in Figure 3b) indicates that every epidemic consists of just a single

dominant serotype.

Figure 3b demonstrates that in both cases there is a trend of

increasing dominance by and thus replacement of a single serotype

with increasing levels of enhancement, w, and only a small increase

with R0. Importantly, this trend is substantially more pronounced

when allowing for third and fourth infection in model (ii). That is,

sequential replacement of temporary dominant serotypes, which

seems characteristic of dengue epidemiology, can be achieved

through much smaller levels of enhancement if four infections are

required to reach full immunity.

Inter-epidemic period
We next used standard spectral analysis of the total dengue

prevalence to determine the inter-epidemic period under changes

in the reproductive number and level of enhancement. Figure 4a

plots this period within the (R0,w)-plane where a blue colouring

corresponds to short epidemic cycles of roughly 2 years duration

and the transition of the colouring towards red corresponds to a

lengthening of the inter-epidemic period. These long periods of

low prevalence can generally be interpreted as the result of big

epidemic outbreaks that leave the majority of the population

immune and require sufficient time for new susceptible to enter the

population (usually through birth). Both models readily exhibit the

characteristic 3–5 year epidemic cycles of disease incidence

associated with dengue for a reasonably wide range of enhance-

ment, w. Notably, however, the cycles are generally longer and

increase more quickly with increasing levels of enhancement when

third and fourth infections are taken into consideration compared

to model (i) where immunity is already gained after two infections.

We also observe a trend towards longer cycles at high-w, low-R0;

again, this tendency is much less pronounced in model (i). The

eventual consequences are cycles in model (ii) that are practically

twice as long as those observed in model (i). Indeed, it is very rare

in model (i) to observe an inter-epidemic period of longer than 6–7

years whereas in model (ii) a significant region of parameter space

is characterised by periods fn the order of 12 years or more.

Serotype persistence
It has previously been shown that high levels of enhancement

increase the risk of serotype extinction due to large epidemic

outbreaks leading to extended periods of low transmission [6]. In

line with previous work we measured persistence as the proportion

of time a particular serotype persists above a given threshold level

of 1E-8 [6,9]. Figure 4b shows that in both models and for low

levels of enhancement there is only a marginal risk of stochastic

extinction. Nevertheless, and in agreement with previous studies,

high levels of enhancement significantly increases this risk of

extinction and much more so when allowing for third and fourth

infections in model (ii) due to its higher propensity of exhibiting

large amplitude oscillations.

Figure 4. Comparison of inter-epidemic period and serotype persistence between model (i) (top) and model (ii) (bottom). (a) As
enhancement increases so too does the epidemic period observed in each model. There is also a trend towards longer periods at lower R0. However,
these trends both appear to be stronger in model (ii). (b) The risk of stochastic extinction within the model is shown as the proportion of time in each
model that the prevalence of a particular serotype exists above a specific threshold. In both models there is a low risk of extinction but the risk
increases with enhancement; again, this trend is stronger in model (ii).
doi:10.1371/journal.pone.0012347.g004
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Age structure at equilibrium
The only notable effect of third and fourth infections, so far, has

been an overall higher propensity for desynchronised, large

amplitude oscillations. This, however, can be directly attributed

to an overall higher level of transmission that is achieved and

maintained by a larger proportion of the population susceptible to

infection and onward transmission. We therefore also expect an

effect on age-structured prevalence and incidence rates. To

explicitly compare the age structure of prevalence within each

model we adapted the methods of [21]. We consider in both

models the distinct (unstable) equilibrium solutions where all

strains have equal forces of infection in the case of medium levels

of enhancement (w~2). This equilibrium serves as an approxi-

mation of the mean prevalence of each serotype over a long period

of time. In this case, the proportion of the population that has

experienced exactly ‘i’ different strains is given by Ii. The

probability of acquiring a new infection is then proportionate to

the number of yet un-encountered strains. In this case with four

co-circulating dengue serotypes individuals enter Iiz1 from Ii at a

rate 4{ið Þl̂l, where l̂l is the average per capita force of infection

per strain. The dynamics of this system with respect to time, t, and

age, a, may then be described by the following set of partial

differential equations for i~0::3:

dIiz1

dt
z

dIiz1

da
~ 4{ið Þl̂lIi{ 4{i{1ð Þl̂lIi,

where the proportion of individuals yet unexposed is given by

I0~1{
P

i

Ii. We can then solve these equations (noting, in this

instance, that the time derivative is zero) to approximate how the

number of infections varies with age in each model. In Figure 5a

we have then plotted this data for each model in order to compare

and contrast age structures. In Figure 5b we have made a minor

adaptation to the models in that we consider the case of just 2 or 3

co-circulating serotypes of dengue. To generate this figure we

repeated the above and show how the age of first infection,

average age of disease and total force of infection changes for each

scenario in both models. Finally, Figure 5c shows how the average

age of first infection changes with increasing R0 in both of our

models.

Figure 5 thus demonstrates that including the possibility of third

and fourth infection results in a higher force of infection

(Figure 5b), which generally exposes hosts to dengue at an earlier

age (see Figure 5c) but also delays the acquisition of full immunity.

As an example, it takes roughly twice as long for 50% of the

population to become completely immune compared to the case

where two infections are sufficient for complete protection.

Consequently, allowing for more than two infections increases

the pool of people able to onwardly transmit dengue, which in turn

explains the observed higher force of infection. We also observe in

model (ii) that the proportion of the population that has

experienced at least one heterologous infection is greater at all

ages, which could translate to an increased risk of DHF/DSS

(Figure 5a). Finally, the increased force of infection due to tertiary

or quaternary infections marks a much higher level of serocon-

version: for example, in model (i), by the age of 10 years, only 30%

have seen two infections and 30% are still completely susceptible,

whereas by the same age in model (ii) around 60% have seen at

least two infections and only 10% remain completely susceptible.

Discussion

We have constructed a framework to examine the effect of third

and subsequent infections on dengue epidemiology. Our results

indicate that the qualitative nature of the behaviour observed in

Figure 5. Comparison of age structured dynamics between model (i) and model (ii). (a) The lines show the proportion of the population at
each age (for model (i) (top) and model (ii) (bottom)) who have suffered one (solid dark blue line), two (solid red), three (solid green), four (solid
magenta) and any (solid black) dengue infections. For model (ii) the proportion of the population that is at risk of disease (defined as having seen 1, 2
or 3 serotypes) is also plotted (dotted black) for comparison to the equivalent in model (i) (solid dark blue). Generally, in model (ii) people are exposed
to dengue at an earlier age, experience heterologous infections younger, and take much longer to become completely immune. (b) For model (i) ((ii)),
the blue (green) bar shows how the average age of disease (DHF), determined as heterologous infection, changes with the number of serotypes
present whilst the small bars show the change in age of first infection. The increase in the total force of infection with the number of serotypes is
shown as dotted lines (model (i): blue, and model (ii): green). (c) For model (i) (blue line) and model (ii) (green line) we observe that increasing R0 acts
to decrease the average age of first infection (here estimated as 1/total force of infection) and that for all levels of R0 this value is significantly lower
when allowing for third and fourth infection (model (ii)). Parameter values: w~2 ((a), (b) and (c)) and R0~2 (a), R0~4 (b).
doi:10.1371/journal.pone.0012347.g005
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models with and without third and fourth infections is predom-

inantly similar – in both models, as we increase the level of

antibody dependent enhancement we see a transition from

synchronised serotype oscillations to their desynchronisation and

an increased tendency towards single serotype dominance and

replacement. We also observe an augmented risk of stochastic

extinction and longer inter-epidemic periods due to large

amplitude epidemic outbreaks that leave the majority of the

population immune. Consequently, we can argue that the

fundamental properties of both systems remain invariant to the

introduction of possible third and fourth infections.

However, there are certain critical quantitative ways in which

the results of the models differ from each other. From our

analysis, markedly different patterns of the age structure of

infections can be observed depending on the number of

subsequent infections allowed (Figure 5). A notable feature of

dengue is that it can reach very high seroprevalence rates at a

relatively early age. For example, a study of 210 6–13 year olds in

Haiti revealed that 98% of the cohort had been previously

exposed to dengue [15]; similarly, a study of 4–16 year old

Nicaraguans found an overall seroprevalence of 91%, with 80%

of the children exposed by age 5 [22]. Our results show that in

order to obtain seroprevalence rates which are in line with

epidemiological data one has to assume values of the basic

reproductive number, R0, that are very much higher in a ‘twice

infected - protected’ framework than if allowing the possibility of

a third or fourth infection (Figure 5c). This is because relaxing the

assumption that two heterologous infections are sufficient to

achieve protection from further challenges leads to an overall

higher force of infection, which in turn causes a significant drop

in the age of first infection and thus higher levels of

seroprevalence across all ages (Figure 5a).

Estimates of the basic reproductive number range from R0v2
to R0w11, depending on location and the methods used (see e.g.

[11,23–26]). However, there are a number of reasons to believe

why high values of R0 are unlikely for dengue. Many other vector

borne pathogens have evolved sophisticated immune evasion

mechanisms to prolong their infectious period to overcome the

uncertainty in transmission and vector abundance; dengue, by

contrast, has a relatively short period of infection [27].

Furthermore, the average lifespan and dispersal pattern of its

principle vector, A. aegypti, are limited [28,29], which further

reduces the likelihood of sustained transmission but on the other

hand necessitates a continuous and large pool of susceptible

individuals. Therefore, tertiary and quaternary infections might be

critical for reconciling the features of dengue transmission with the

observed high levels of transmission and consequently high

seroprevalence rates in young children.

As a corollary to the above, increasing the number of co-

circulating serotypes has a much greater effect on both the force of

infection and age of first infection when allowing for tertiary and

quaternary infections. As shown in Figure 5b, and in line with

previous work [30], the overall risk of infection in this case

increases linearly with the number of serotypes whereas the

average age at first infection declines in inverse proportion. By

contrast, increasing the number of serotypes has a negligible effect

on overall force of infection when assuming full protection after

two infections only.

Another important aspect of dengue transmission and R0 which

we have not considered in this work is the effect of spatial

heterogeneity and the role of human movement (see e.g. [31,32]).

Although our results are based on simple mass-action principles

(i.e. random mixing between individuals) we expect the same to

hold true when considering explicit spatial or contact structures. In

fact, the possible constraints on dengue transmission imposed by

spatial structure should benefit from high levels of third and

subsequent infections.

Increasing the number of possible infections and thus the pool of

susceptibles also acts to decrease the average age of clinical disease

through heterologous re-infections; however, this drop could be

partially compensated for by the possibility of developing DHF/

DSS also at third and fourth infection. This means that a low age

of seroconversion and a high age of DHF/DSS are easier to

reconcile if we relax the assumption of clinical protection after

secondary infection. The average age of presentation with DHF

has seen a steady increase over the last few decades in some parts

of SE Asia [33,34], possibly in response to reduction in

transmission through vector control programs [11] or as a

consequence of demographic transitions [35]. Our analysis would

imply that this is less likely to correlate with an overall drop in

seroprevalence if complete cross-protection takes more than two

infections to be established.

The two models analysed in this work represent the two extreme

ends of a cross-immunity spectrum where at one end two

infections are sufficient to protect from further infections and on

the other hand where all four serotypes have to be experienced

and, importantly, where third and fourth infections are enhanced

by pre-existing, cross-reactive antibodies. One can equally imagine

the scenario where only secondary infections are enhanced and/or

subsequent infections contribute less to dengue transmission

through reduced levels of viraemia. However, from our analysis

it is clear that in each scenario there will be a direct relationship

between the overall level of transmission, force of infection and the

resulting age patterns in seroprevalence and incidence of clinical

disease.

In conclusion, our results demonstrate that whether or not

a ‘twice infected - protected’ hypothesis is a realistic and

appropriate description of the full system cannot be determined

from the observed epidemiology of dengue and its four serotypes

alone. However, allowing more than two infections has a

significant impact on the overall force of infection of dengue

and could be a more parsimonious explanation for the observed

epidemiology than inducing high transmission rates. Crucially

also, the fact that low values of R0 are perfectly compatible with

high seroconversion rates is an important consideration for

possible future vaccine strategies. On the other hand, though, if

third and fourth infections do have a significant contribution to

the overall level of dengue transmission, any control strategies

based on drug treatment of clinical cases alone can only be

expected to have a minor effect. More data on the possibility and

transmissibility of tertiary and subsequent infections is therefore

of major importance.
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