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A numerical heat transfer model was developed to investigate the temperature of a triple junction solar cell and the thermal
characteristics of the airflow in a channel behind the solar cell assembly using nonuniform incident illumination. The effects
of nonuniformity parameters, emissivity of the two channel walls, and Reynolds number were studied. The maximum solar cell
temperature sharply increased in the presence of nonuniform light profiles, causing a drastic reduction in overall efficiency. This
resulted in two possible solutions for solar cells to operate in optimum efficiency level: (i) adding new receiver plate with higher
surface area or (ii) using forced cooling techniques to reduce the solar cell temperature. Thus, surface radiation exchanges inside
the duct and Re significantly reduced the maximum solar cell temperature, but a conventional plain channel cooling system was
inefficient for cooling the solar cell at medium concentrations when the system was subjected to a nonuniform light distribution.
Nonuniformity of the incident light and surface radiation in the duct had negligible effects on the collected thermal energy.

1. Introduction

Nonuniformity of the incident illumination in concentrated
photovoltaic (CPV) systems occurs as a result of using
concentrating optics that reflect or refract light flux on the
solar cell surface. The optimal optical system design would
concentrate radiation on the solar cell surface in a uniform
distribution. However, existing concentrators condense the
majority of the incident flux onto a limited area of the cell
surface, and most areas of the cell receive the remaining
small amount of radiation. This situation produces a highly
nonuniform irradiance distribution on the photovoltaic cells.
This nonuniformity has two main effects on the solar cell:
(i) electrical impacts, such as high ohmic drops and the
flow of an internal current, and (ii) thermal impacts, such
as increased temperatures in some regions of the cell that
cause hot spots and drastically reduce the overall efficiency
and power output.This reduction of power limits the viability
of photovoltaic cells as an alternative energy source.

Previous studies reported thermal behavior of the CPV
solar cells, such as Min et al. [1] and Cotal and Frost [2]

who developed a theoretical thermal model for predicting
the temperature of a multijunction solar cell based on passive
cooling systems. Vincenzi et al. [3] used a silicon wafer
with microchannels circulating water directly beneath the
cells as an active cooling system. Moshfegh and Sandberg
[4] performed both a numerical study and an experimental
study of the flow and heat transfer characteristics of natural
air convection behind solar cells. The results demonstrated
that surface radiation significantly affects the temperature
and conversion efficiency of the solar panel. Bhargava et
al. [5], Garg and Adhikari [6], and Hegazy [7] analyzed
the performance of hybrid photovoltaic/thermal (PV/T) air
heating collectors and reported the effects of different design
and controlling parameters on system performance. Al-Amri
and Mallick [8, 9] recently developed a numerical heat
transfermodel for predicting themaximum cell temperatures
of multijunction concentrating solar cell systems that were
actively cooled by water-forced and air-forced convection.
The maximum cell temperature was strongly dependent on
the inlet velocity and the channel width. Teo et al. [10]
experimentally investigated an active cooling system for
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photovoltaic modules. A parallel array of ducts with an
inlet/outlet manifold was attached to the back of the PV
panel. When an air-based active cooling mechanism was
employed, the temperature dropped effectively, leading to
a 12% to 14% increase in the efficiency of the solar cells.
Kumar et al. [11] presented a numerical heat transfer model
for a novel concentrating photovoltaic design for the active
solar panel initiative system (ASPIS). The incorporation of
microchannels is an innovative way to remove a large amount
of heat from a small cell surface that is associated with a high
concentration [12, 13]. Tuckerman and Pease [14] pioneered
the use of the microchannel heat sink for cooling planar
integrated circuits. Several additional studies [15–17] were
performed to analyze the heat transfer performance and the
pressure drop of flows in microchannels. Qu and Mudawar
[18] investigated the pressure drop and heat transfer perfor-
mance of a laminar flow in a microchannel both experimen-
tally andnumerically.Themicrochannelwas 213𝜇mwide and
713 𝜇m deep. The results of this study indicated that the flow
in this system is still governed by conventional equations for
the conservation of mass, momentum, and energy. Micheli
et al. [19] recently presented an overview of micro- and
nanotechnologies that are applicable to passive CPV cooling
and associated manufacturing technologies (e.g., monolithic
applications). The authors reported that carbon nanotubes
and high-conductive coating are the technologies that offer
the best CPV cooling performance.This technological review
was also critically assessed.

The problem of nonuniform illumination patterns has
been studied extensively. However, most of these studies
focused on the effects of nonuniformity on electrical perfor-
mance [12]. Few studies investigated the thermal impacts of
nonuniformity in radiation profiles. Franklin and Conventry
[20] demonstrated both numerically and experimentally that
a silicon solar cell under nonuniform focused illumination
experiences a drop in both open-circuit voltage and effi-
ciency compared to a cell under uniform illumination. In
addition, the results indicated that the temperature profile
closely resembles a Gaussian distribution. Coventry et al.
[21] measured the thermal and electrical output from a
concentrating PV/thermal collector at 25–30 suns. While
the overall concentration ratio was approximately 30x, the
illumination flux intensity across the width of the solar
cell was far from even. Domenech-Garret [22] investigated
the effects of a combination of nonuniform illumination
and nonuniform temperature on a silicon solar cell. He
used Gaussian and inverse Gaussian profiles to describe the
temperature in the cell, which simulated a general cell cooling
device. Chemisana and Rosell [23] studied the effects of
Gaussian and anti-Gaussian temperature profiles on the cell’s
electrical parameters under different types of concentrated
illumination both numerically and experimentally. The elec-
tric conversion efficiency increases under a Gaussian temper-
ature profile and decreases when the cell is subjected to an
inverse Gaussian temperature curve. The authors concluded
that the temperature profile could be tailored to maximize
efficiency for determined radiation conditions.

The studies presented above failed to adequately address
the effects of nonuniformity of the incident flux on

the temperature profiles of CPV systems. Thus, further
studies of heat transfer characteristics under nonuniformflux
are necessary to understand the effect of this nonuniformity
on the overall efficiency of the solar cell. The objective of this
investigation was to extend the work of Al-Amri and Mallick
[8] by assessing the effect of nonuniform incident light on
the temperature distribution of a concentrated triple junction
solar cell.

A heat transfer model was developed to simulate the
temperature distribution on the concentrated solar cells
under a nonuniform incident light. The results of this study
are important for determining the overall efficiency of a
CPV system and for promoting the development of a cooling
system and new concentrators.

2. Mathematical Formulations

The geometry of the physical problem and the coordinate
system considered in this study are presented in Figure 1.The
components consist of a triple junctionGalnP/GaAs/Ge solar
cell, a Cu-Ag-Hg front contact to the solar cell, a 2mm glass
cover, a 1.5mm thick aluminum back plate, and a 0.5mm
adhesive material used to attach the solar cell to the cover
glass and the rear aluminum plate.The cooling air is forced to
flow within the ducts behind the back plate, whose external
wall is assumed to be adiabatic. The two walls of the duct are
assumed to be gray, opaque, and diffuse surfaces. The inlet
and exit channel areas are assumed to be black at the ambient
temperature (𝑇

∞
= 27

∘C) and the exit bulk temperature
(𝑇
𝑒
), respectively. The efficiency of the triple junction solar

cell (𝜂) is 0.38 and the reflectivity is assumed to be zero for
all solar cell components except for the front contact metal
which is assumed to be 0.85. Table 1 shows the dimensions
and the thermophysical properties of the components used
in the model.

The illumination distribution incident on the cell surface
in a concentrator system consisting of reflective troughs is
highly non-uniform and takes the shape of a Gaussian profile
[12]. Thus, the illumination intensity formula adopted in the
current model is

𝐼 (𝑧) =
2𝐶

104SD√2𝜋
𝑒
−(2(𝑧−𝑧0)

2
)/SD2

, (1)

where 𝑧
0
is the position of the maximum illumination on the

cell surface and SD is the standard deviation, whichmeasures
how far incident illumination is spread out.

The intensity of incident light 𝐼(𝑧) can be written in the
nondimensional form as follows:

𝐼 (𝑍) =
𝐼 (𝑧)

𝐼avg
, (2)

where 𝐼avg is the average incident illumination across the
entire cell surface.

The physical problem depicted in Figure 1 is governed
by equations of energy conservation in both the multiwalls
(solar cell assembly) and the fluid inside the duct and by
equations of continuity, momentum in the fluid region, and
radiation constraint along each of the two duct surfaces as
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Figure 1: Schematic of the geometry of the employed system.

Table 1: Thermophysical properties assumed in the simulation.

Component Material Length (mm) Thickness (mm) Thermal conductivity
W/m⋅K Absorptivity

Solar cell
GuInp 10 0.1 73 0.04
GuAs 10 0.2 65 0.40
Ge 10 0.2 60 0.50

Front contact Cu + Ag + Hg 2 0.025 300 0.15
Glass cover Low-iron glass 10 2 12 0.04
Adhesive 10 0.5 50 0.02
Back plate Aluminium 10 1.5 238

a result of surface radiation exchange between the two walls
of the channel. Using typical boundary layer assumptions and
neglecting the axial conduction of heat in both the solid and
the fluid regions, the corresponding equations governing the
conjugate laminar mixed flow and the heat transfer in the
entry region of the two parallel plates can be expressed in the
following dimensionless forms.

Continuity Equation. Consider

𝜕𝑉

𝜕𝑌
+
𝜕𝑈

𝜕𝑍
= 0. (3)

Momentum Equation. Consider

𝑉
𝜕𝑈

𝜕𝑌
+ 𝑈

𝜕𝑈

𝜕𝑍
= −

𝑑𝑃

𝑑𝑍
+
𝐺
∗

𝑟

Re
(𝜃 − 𝜃

∞
) +

𝜕
2

𝑈

𝜕𝑌2
. (4)

Energy Equation for the Fluid. Consider

𝑉
𝜕𝜃
𝑓

𝜕𝑌
+ 𝑈

𝜕𝜃
𝑓

𝜕𝑍
=

1

Pr
𝜕
2

𝜃
𝑓

𝜕𝑌2
. (5)

Energy Equation for Each Solid Material in Solar Cell Assem-
bly. Consider

𝜕
2

𝜃
𝑠

𝜕𝑌2
= 0. (6)

The integral formof the continuity equation (1) can bewritten
in the following form [24]:

𝐹 = ∫

1

0

𝑈𝑑𝑌 = 1. (7)

The radiation constraint equations can be derived by applying
the first law of thermodynamic per unit area of the surface on
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Figure 2: Energy fluxes in solar cell assembly.

the channel plate element [25] which yields the following two
equations.

Surface 1 (𝑌 = 0). Consider

𝑁rad𝜃
4

∞
[
1

2
− (

𝑍Re
2

) (1 + 𝑍
2Re2)

−1/2

]

+ 𝑁rad𝜃
4

𝑒
[
1

2
− (

(𝐿 − 𝑍)Re
2

) (1 + (𝐿 − 𝑍)
2Re2)

−1/2

]

+ ∫

𝐿

0

{
1 − 𝜀
2

𝜀
2

(
𝜕𝜃
𝑓

𝜕𝑌

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑌=1−
−
𝜕𝜃
𝑠

𝜕𝑌

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑌=1+
) + 𝑁rad𝜃

4

𝑤2
(𝑍)}

∗
1

2
[1 + Re2(𝑍 − 𝑍

󸀠

)
2

]

(−3/2)

Re 𝑑𝑍󸀠

=
1 − 𝜀
1

𝜀
1

[−
𝜕𝜃
𝑓

𝜕𝑌

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑌=0+
]

+ 𝑁rad𝜃
4

𝑤1

(𝑍) −
𝜕𝜃
𝑓

𝜕𝑌

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑌=0+

Where: 𝑁rad = 𝜎𝑞
3

avg
𝑏
4

𝑘4
𝑓

.

(8)

Surface 2 (𝑌 = 1). Consider

KR
𝑠1−𝑓

𝜕𝜃
𝑠

𝜕𝑌

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑌=1+
+ 𝑁rad𝜃

4

∞
[
1

2
− (

𝑍Re
2

)

× (1 + 𝑍
2Re2)

−1/2

]

+ 𝑁rad𝜃
4

𝑒
[
1

2
− (

(𝐿 − 𝑍)

2
Re)

×(1 + (𝐿 − 𝑍)
2Re2)

−1/2

]

+ ∫

𝐿

0

{
1 − 𝜀
1

𝜀
1

(−
𝜕𝜃

𝜕𝑌

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑌=0+
) + 𝑁rad𝜃

4

𝑤1
(𝑍)}

∗
1

2
[1 + Re2(𝑍 − 𝑍

󸀠

)
2

]

(−3/2)

Re 𝑑𝑍󸀠

=
1 − 𝜀
2

𝜀
2

[
𝜕𝜃
𝑓

𝜕𝑌

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑌=1−
−
𝜕𝜃
𝑠
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󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑌=1+
]

+ 𝑁rad𝜃
4

𝑤2

(𝑍) −
𝜕𝜃
𝑓

𝜕𝑌

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑌=1−
.

(9)

When surface radiation is absent (i.e., 𝜀 = 0), (7) and (8)
are reduced to

𝜕𝜃
𝑓

𝜕𝑌

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑌=0

= 0,

KR
𝑠1−𝑓

𝜕𝜃
𝑠

𝜕𝑌

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑌=1+
=
𝜕𝜃
𝑓

𝜕𝑌

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑌=1−
.

(10)

The conjugate convection field equations are subject to the
following dimensionless boundary conditions.

In the Fluid Region. For 𝑍 = 0 and 0 < 𝑌 < 1,

𝑈 = 1, 𝑉 = 𝑃 = 0, 𝜃 = 𝜃
∞
. (11a)
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Figure 3: Incident illumination profiles for 𝐶 = 100 at (a) different values of SD and (b) different values of 𝑧
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In the Solid Region (solar cell assembly). In the present model,
we assumed that some of the incident light is absorbed by
each surface of solar cell assembly layers based on the value
of absorptivity and converted into thermal and/or electrical
energy.Then, heat is diffused to the next layer by conduction.
Each layer of the solar cell is in the order of 100 to 200
microns; therefore, the skin depth of each layer is assumed
to be thin and the radiation effects are confined to the surface
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layer.The boundary conditions in this region can be deduced
by applying the continuity of temperature and heat flux at
the solid-solid interface. Taking a surface energy balance at
each solid-solid interface (see Figure 2) leads to the following
boundary condition equations.

For 𝑍 > 0 and 𝑌 = 𝑌
𝑠(𝑖)−(𝑖+1)

, 𝑖 = 1 and 2,

𝜕𝜃
𝑠

𝜕𝑌

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑌=𝑌−
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= KR
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. (11d)
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𝑐
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𝑐
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󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑌=𝑌+
𝑠
(𝑖)−(𝑖+1)

. (11g)

For 𝑌 = 𝑌
𝑠6-7

and 𝑍
𝑐
≤ 𝑍 ≤ (𝑍

𝑐
+ 𝐿
𝑐
),

𝜕𝜃

𝜕𝑌

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑌=𝑌−
𝑠6-7

= kR
𝑠7-6

𝜕𝜃

𝜕𝑌

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑌=𝑌+
𝑠6-7

+
𝛼
𝑠6
(1 − 𝛼

𝑠8
− 𝛼
𝑠7
) 𝐼 (𝑍)

kR
𝑠6−𝑓

.

(11h)

For 𝑍 > 0 and 𝑌 = 𝑌
𝑠7-8

,

𝜕𝜃

𝜕𝑌

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑌=𝑌−
𝑠7-8

= kR
𝑠8-7

𝜕𝜃

𝜕𝑌

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑌=𝑌+
𝑠7-8

+
𝛼
𝑠7
(1 − 𝛼

𝑠8
) 𝐼 (𝑍)

kR
𝑠7−𝑓

. (11i)
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Figure 7: Variations in solar cell temperature obtained using different values of Re, when SD = 0.001, 𝜀 = 0.95, and 𝐶 = 100.

For 𝑍 > 0 and 𝑌 = 𝑌
𝑠8
,

𝜕𝜃

𝜕𝑌

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑌=𝑌𝑠8

=
𝛼
𝑠8
𝐼 (𝑍)

kR
𝑠8−𝑓

, (11j)

where kR
𝑠(𝑖+1)−𝑖

= 𝑘
𝑠𝑖+1
/𝑘
𝑠𝑖
and kR

𝑠𝑖−𝑓
= 𝑘
𝑠𝑖
/𝑘
𝑓
.

3. Method of Solution

The conjugate convection field equations (i.e., continuity,
momentum, and energy), the two radiation constraint equa-
tions, and the corresponding boundary conditions are trans-
formed into finite difference equations. The conjugate con-
vection field equations are initially solved using a numerical

marching technique. The two radiation constraint equations
are then solved iteratively to update the wall temperatures
using the Gauss-Seidel technique. These updated wall tem-
peratures are used to resolve the conjugate convection field
equations. The process is then repeated until convergence
is achieved. The details of the solution procedure and the
validation of the numerical code can be found inAl-Amri and
Mallick [9].

4. Results and Discussion

Figures 3(a) and 3(b) show the incident illumination profiles
obtained using (1) for the concentration ratio 𝐶 = 100 at
three selected standard deviation values (SD = 0.0005, 0.001,
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and 0.002) and three selected values for the position of the
maximum illumination on the cell surface (𝑧

0
= 2, 5, 8mm),

respectively.These profiles were used as input data in the code
to study the effects of these parameters on the temperature
distribution of the solar cell and the fluid bulk temperature. In
addition, the effect of the emissivity of the two duct walls and
the Reynolds number in the presence of nonuniform incident
light was investigated.

4.1. Effect of a Nonuniform Light Profile on the Solar Cell
Temperature. Figure 4 shows the variations of solar cell
temperature with 𝑧

0
= 5mm and with the axial distance

from the channel entrance for both uniform and nonuniform
incident light at SD = 0.0005, 0.001, and 0.002. For a
uniform distribution, the results demonstrate that the solar

cell temperature first increases sharply near the entrance and
then gradually increases until reaching its maximum value
at the channel exit. In addition, there is a sudden increase
in cell temperature at 𝑧 = 4mm and a sudden decrease
at 𝑧 = 6mm. These changes occur due to the fact that no
current is generated in this portion of the solar cell and all
of the light is converted to heat due to the presence of the
Cu-Ag-Hg front contact. However, this increment is small
(≈7∘C) and has minor effects on the overall efficiency. For a
nonuniform distribution, the temperature of the first quarter
of the solar cell remains constant at ambient temperature,
then rapidly increases, and reaches its maximum value at
the center of the cell. The temperature then drops sharply
and gradually in the fourth quarter of the solar cell where
the temperatures are higher than those observed in the first
quarter. The profile of the temperature becomes thinner and
the maximum temperature increases as the SD decreases, as
shown in Figure 4. In addition, the maximum temperature of
the solar cell is much higher when using a nonuniform light
distribution than when using a uniform light distribution.
In this example, the maximum temperature obtained using a
uniform light distributionwas 240∘C,which indicates that the
solar cell can be operated with a reasonable efficiency as the
modern multijunction solar cells can adequately be operated
at this level of temperature [25, 26]. In contrast, the results
obtained using a nonuniform light distribution indicate that
the cell efficiency will be drastically reduced due to the high
temperature of some portions of the cell surface.

The effects of the position of maximum incident light on
the solar cell temperature distribution are shown in Figure 5.
A hot spot formed on the portion of the cell surface that was
exposed to a large amount of light. This hot spot is slightly
hotter when 𝑧

0
= 5mm (i.e., at the center of the solar cell)

due to the presence of the front contact metal in this region.
Figures 6(a)–6(d) show the effect of the emissivity of the two
duct walls on the temperature profile of the solar cell for both
uniform and nonuniform incident light when 𝑧

0
= 2, 5, and

8mm and when 𝜀 = 0 (i.e., pure forced convection), 0.5, and
0.95. The results presented in these figures demonstrate that
the maximum solar cell temperature decreases significantly
as surface emissivity increases. However, the presence of
surface radiation inside the channel does not change the
shape of the temperature distribution for the nonuniform
light profile. In this example, as emissivity increased from
𝜀 = 0 to 0.95, the maximum solar cell temperature was
reduced by approximately 35% when using nonuniform
illumination and 20% when using uniform illumination.The
large contribution of surface radiation to the nonuniform
light profile is due to the increase in the effective temperature
differential for surface radiation between the two duct walls.
Nevertheless, the maximum temperature of the solar cell
when using nonuniform light was still higher than that
obtained using a uniform light distribution. For the uniform
light profile, surface radiation exchange between the two duct
walls and between the heated duct wall and the inlet and exit
areas of the channel leads to a reduction of maximum cell
temperature from305∘C to 240∘C,which enables the solar cell
to operate with a reasonable efficiency.
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Figure 10: Variations in fluid bulk temperature obtained using different values of 𝜀, when SD = 0.001, Re = 500, and 𝐶 = 100.

The results presented in Figures 7(a)–7(c) illustrate the
variations in solar cell temperature that occur with changes
in axial distance from the channel entrance when using
uniform and nonuniform light distributions, three selected
values of Reynolds number (500, 1000, and 2000), and a
given value of 𝜀 = 0.95. The cell temperature decreases with
increasing Re, but the profile maintains its general shape.The
percent reductions of maximum solar cell temperature that
occurred as Reynolds number increased by 300% from 500
to 2000 were 20.7%, 13.4%, and 13.7% for 𝑧

0
= 2, 5, and

8mm, respectively.This value was approximately 22.5%when
a uniform light distribution was employed. These results
indicate that, for nonuniform light profiles, increasing flow
rate is more useful when the maximum incident light is
located near the channel entrance because the difference
between the wall temperature and the fluid temperature is
high in this region, which enhances convective heat transfer.

4.2. Effect of a Nonuniform Light Profile on the Fluid Bulk
Temperature. Figures 8 and 9 show the variation of fluid
bulk temperature with increasing axial distance from the
channel entrance under different incident light profiles. The
results presented in these two figures demonstrate that the
incident light distribution strongly influences the fluid bulk
temperature profile inside the channel. However, the effect
of the incident light profile on the fluid bulk temperature
at the channel exit is insignificant. Figures 10(a), 10(b), and
10(c) show the effect of the emissivity of the two duct walls
on the fluid bulk temperature when 𝑧

0
= 2, 5, and 8mm,

respectively. Surface radiation increased the temperature of
the fluid closer to the entrance than pure convection (i.e.,
𝜀 = 0) due to radiative heat exchanges between the heated
and the adiabatic walls, which redistribute the temperature
profiles of the walls and hence the convective heat transferred
to the flowing fluid. The effect of emissivity on the fluid bulk
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Figure 11: Variations in fluid bulk temperature obtained using different values of Re, when SD = 0.001, 𝜀 = 0.95, and 𝐶 = 100.

temperature at the channel exit is insignificant, as shown in
Figures 10(a)–10(c).

The effects of Re on the fluid bulk temperature are shown
in Figures 11(a)–11(d) for uniform and nonuniform light
flux. The results demonstrate that the fluid bulk temperature
decreases with increasing Re. In this example, the fluid bulk
temperature decreases by approximately 43% as Re increases
by 300% for given values of controlling parameters. However,
the collected thermal energy increases with increasing Re, as
a result of increasing flow rate.

5. Conclusions

The effects of nonuniformity of the incident light on the
temperature and fluid bulk temperature of a triple junction
solar cell were studied. Nonuniformity was simulated using a
Gaussian distribution.The results indicated that nonuniform

illumination significantly alters the temperature distribution
of the solar cell, causing hot spots in some regions of the
solar cell. Although increasing the emissivity of the two duct
walls and increasing Re can reduce the maximum solar cell
temperature by as much as 35% and 20%, respectively, solar
cell temperatures in the region exposed to the most incident
light are high enough to cause degradation in solar cell
efficiency at medium concentrations.Thus, secondary optical
concentrators are required to redistribute the incident light
on the cell surface into a uniform shape. Alternatively, an
innovative cooling system, such as the introduction of a sec-
ondary jet flow into a channel, should be used to redistribute
solar cell temperatures and reduce themaximum temperature
to an acceptable value. Surface emissivity and nonuniform
illumination affect the fluid bulk temperature distribution
inside the channel. However, the effect of these parameters
on fluid bulk temperature at the channel exit is insignificant.
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Nomenclature

𝑏: Channel width, m
𝐶: Concentration ratio
Gr∗: Modified Grashof number,

𝑔𝛽𝑞avg𝑏
4

/𝜐
2

𝐾
𝑓

𝐼: Intensity of incident light,
W/m2

𝑘: Thermal conductivity,
W/m ⋅ K

ℓ: Channel length, m
𝐿: Dimensionless plate length,

= ℓ/(𝑏 Re)
𝑝: Pressure of fluid at any cross

section, N/m2
𝑝
󸀠: Pressure defect at any cross

section, 𝑝 − 𝑝
𝑠
, N/m2

𝑝
𝑠
: Hydrostatic pressure, −𝜌

∞
𝑔𝑧,

N/m2
𝑝
∞
: Pressure of fluid at the

channel entrance, N/m2
𝑃: Dimensionless pressure at any

cross section,
= (𝑝
󸀠

− 𝑝
∞
)/(𝜌
∞
𝑢
2

∞
)

𝑁rad: Radiation number, 𝜎𝑞3avg𝑏
4

/𝑘
4

𝑓

𝑞avg: Average input heat flux,
= (1 − 𝜂)𝐼avg, W/m2

Re: Reynolds number, = 𝑢
𝑜
𝑏/𝜐

𝑡: Solar cell assembly thickness,
m

𝑇: Temperature at any point, K
𝑇
∞
: Inlet temperature, K

SD: Standard deviation
𝑢
∞
: Entrance axial velocity, m/s

𝑢: Longitudinal velocity
component at any point, m/s

𝑈: Dimensionless longitudinal
velocity, 𝑈 = 𝑢/𝑢

∞

V: Transverse velocity
component at any point, m/s

𝑉: Dimensionless transverse
velocity, 𝑉 = 𝑏 ∗ V/𝜐

𝑦: Horizontal coordinate, m
𝑌: Dimensionless horizontal

coordinate, 𝑦/𝑏
𝑧: Vertical coordinate, m
𝑧
0
: Position of the maximum

incident light, m
𝑍: Dimensionless vertical

coordinate, 𝑧/(𝑏 ∗ Re).

Greek Symbols

𝜐: Kinematic fluid viscosity
𝜌: Fluid density, kg/m3
𝜇: Dynamic fluid viscosity,

kg/𝑚 ⋅ 𝑠

𝛼: Absorptivity
𝜂: Efficiency of the solar cell

𝜃: Dimensionless temperature at
any point [=𝑘

𝑓
𝑇/𝑞avg𝑏]

𝜃
∞
: Dimensionless inlet
temperature at any point
[=𝑘
𝑓
𝑇
∞
/𝑞avg𝑏]

𝜀: Wall emissivity
𝜎: Stefan Boltzmann constant =

5.67 ∗ 10
−8

,W/m2k4.

Subscripts

𝑐: A Cu-Ag-Hg front contact
𝑒: Exit
𝑓: Fluid
𝑠: Solid
𝑤: Wall of the channel
∞: Ambient or inlet
1: Duct wall at 𝑌 = 0

2: Duct wall at 𝑌 = 1.
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