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Abstract

This paper presents a method for the dynamic identification of structures
containing discrete nonlinear stiffnesses. The approach requires the structure
to be excited at a single resonant frequency, enabling measurements to be
made in regimes of large displacements where nonlinearities are more likely to
be significant. Measured resonant decay data is used to estimate the system
backbone curves. Linear natural frequencies and nonlinear parameters are
identified using these backbone curves assuming a form for the nonlinear
behaviour. Numerical and experimental examples, inspired by an aerospace
industry test case study, are considered to illustrate how the method can
be applied. Results from these models demonstrate that the method can
successfully deliver nonlinear models able to predict the response of the test
structure nonlinear dynamics.
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1. Introduction

With the continual drive for more efficient and lightweight structures,
increasingly nonlinear structural dynamics are being observed in industrial
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applications. This presents a problem when developing accurate dynamic
models of the structure as conventional parameter identification techniques
almost always involves measurement of the modal parameters of the struc-
ture. This relies on the fundamental assumption of linearity and superpo-
sition, see for example [1]. For nonlinear systems, a range of identification
techniques have been proposed, many of which are discussed in the overviews
by Worden and Tomlinson [2] and Kerschen et al. [3]. Approaches that have
been applied to multi-degree of freedom systems using forced response data
include the restoring force method [4, 5], reverse path approaches [6] and
NARMAX methods [7]. Bayesian fitting approaches are also being devel-
oped, although currently these mainly consider single degree-of-freedom sys-
tems [8, 9]. An alternative to forced response data is to measure the resonant
decay; this is done by forcing the system onto a resonance and then letting
the response decay as presented in [10]. Feldman also developed an estima-
tion method for single-degree of freedom systems [11] which has been applied
to multi-degree of freedom systems with non-proportional damping [12] and
a system with a localised nonlinearity [13].

To better understand the nonlinear dynamics of a structure, Rosenberg
[14] discussed the idea of the nonlinear normal mode (NNM) as an exten-
sion to linear modes for nonlinear systems. Such modes were defined as a
vibration-in-unison of the unforced, undamped system with all the degrees-
of-freedom passing through zero and reaching their extreme values in unison
with each other. Due to nonlinearities, NNMs often vary both as a function
of maximum amplitude of vibration and over each oscillation of a mode. No-
table early contributions to the development of NNMs includes Rand [15] and
Vakakis et al. [16]. In addition, Shaw and Pierre [17] considered the presence
of damping on such modes. Recently, NNMs have more typically be thought
of as a periodic response of the unforced, undamped system, allowing, for
example, responses in anti-phase such as whirling of a cable to be treated as
an NNM [18].

NNMs can be shown in the frequency-amplitude projection revealing the
backbones of the system. If these are considered in the linear modal domain,
then the interactions between the linear modes that make up the various
NNM solutions are revealed [19]. If the nonlinearities are smooth, analyti-
cal expressions have been derived for NNMs using perturbation techniques.
Using normal forms [20, 21], a state-space formulation for NNM responses
has been reported [22, 23]. More recently a normal form method that is
applied directly to the modal equations of motion, the second-order normal
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forms [24, 25], has been used to examine NNMs in terms of the interactions
between modes of the linearised structure [18, 19].

A methodology to extract the energy dependency of NNM modal curves
and their frequencies from decaying time series is presented in [26]. It uses
an extension of the force appropriation method [5] to nonlinear system and
wavelet transform to perform the time-frequency analysis. This methodol-
ogy to extract NNMs is later demonstrated experimentally in [27] using a
cantilever beam with a geometric nonlinearity. They report the use of the
conditioned reverse path method to identify the nonlinear behaviour of the
beam. Following this, the identified model is used to produce theoretical
NNMs which are compared to the experimentally measured NNMs.

Here we consider the use of experimentally measured resonant decay data,
along with modal expressions for the equations of motion, as a mean to iden-
tify the nonlinear parameters in a system. Unlike the approach demonstrated
in [26, 27], we use a methodology based on Moving Average filtering and zero-
crossing detection to estimate the instantaneous frequency and amplitude of
the decaying signal, thus extracting backbones curves in terms of amplitude-
frequency maps as discussed in [28]. We use these amplitude-frequency rela-
tionships to identify nonlinear terms directly from the backbone curves since
they can be more easily mapped onto stiffness nonlinearities. In this work,
resonant decay data is taken from a nonlinear structure, a wing-nonlinear
pylon inspired testpiece, and the experimental backbone curves of the test
structure are estimated. Analytical expressions for the backbone curves are
derived based on assumed nonlinear stiffness characteristics. These, together
with the resonant decay data, are used to find suitable values for the nonlinear
parameter in the model. The identification approach presented is applica-
ble to lightly damped structural systems with smooth stiffness nonlinearities
and resonant responses that are primarily dominated by their principal har-
monic. This paper is organised as follows. Section 2 introduces the approach
proposed in this work for the identification of structures containing elements
with nonlinear stiffness. A simulated multi–degree–of–freedom (MDOF) sys-
tem with two nonlinear elements is used in Section 3 to illustrate how the
nonlinear parameters can be identified from the system backbone curves. The
procedure is then applied to a nonlinear test structure in Section 4, closing
with some final comments and remarks in the conclusions.
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2. Identification of nonlinear parameters from experimental back-

bone curves

It is common for structures to be approximately linear at low vibration
levels, but exhibit nonlinear behaviour as excitation levels increase. For this
type of structure, the first task in system identification is to use conven-
tional modal testing techniques, such as those described in [1], to identify
the underlying linear system; that is, to estimate the linear mode shapes,
natural frequencies and damping ratios within the frequency bandwidth of
interest. Perhaps the fastest procedure consists of gently vibrating the test
structure using broadband random excitation to measure the system’s Fre-
quency Response Functions (FRF), and from them, to determine the modal
model of the underlying linear system. Following this linear identification,
the contribution of the nonlinear elements can be investigated.

A useful tool capable of offering an understanding of the behaviour of
nonlinear systems is the backbone curve [19]. These curves define natu-
ral frequencies as a function of response amplitude for a system when no
damping or forcing is present. A technique for extracting backbones involves
estimating both the instantaneous amplitude and frequency of the nonlin-
ear system over its free vibration response. Note that as the system will
inevitably have damping, the response is only a good approximation to its
undamped backbone curve if the damping is reasonably light.

In this work we use the methodology presented in [28] to estimate the sys-
tem backbones. In brief, it consists of applying a force pattern to the struc-
ture at the relevant frequency of interest using harmonic excitation. Once
the structure is responding at the desired resonance condition, the input is
removed and the response of the structure is free to decay from the steady–
state resonant response. The resonance decay response is then mapped into
the linear modal space and the instantaneous frequency and amplitude en-
velope in terms of each linear modal coordinate calculated. As in [28], here
we use zero-crossings and peak amplitudes to calculate the instantaneous
frequency and amplitude envelop over time respectively.

As long as the level of vibration in the steady–state is large enough to
activate the structural nonlinearities, the estimated backbone curves can be
used to find various nonlinear parameters able to model the system dynamics.
We recall that other methods such as those presented in [11] and [27] could
be used to estimate backbone curves provided that the frequency-amplitude
dependency in terms of modal coordinates are given.
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To develop the nonlinear model it is necessary to hypothesise a nonlinear
stiffness function that captures the form of the nonlinearity. Hints on this
might be drawn from the form of the estimated backbone curves or from static
test data if available. Using this, the linear modal model can be extended
by adding to each modal equation a trial nonlinear function that takes into
account the modal interaction already revealed by the experimental backbone
curves. As shown later with an example (see Section 3.2), this extended
modal model can be reduced to a first order approximation in which only the
dominant harmonic is kept. Here, we use the Harmonic Balance method to
produce an analytic expression of the backbone curves based on the assumed
nonlinear functions.

Test structure

Underlying  
linear system

ID

Resonance 
decay data

Experimental 
backbone 

curves 

Analytical 
expression of 

backbones 

Nonlinear 
curve-fitting

Nonlinear 
function 

hypothesis

Fitted model 
validation

Nonlinear 
ID

No

Yes

Figure 1: Diagram of the proposed procedure for the identification of nonlinear systems
from backbone curves.

The approach proceeds by curve-fitting the analytical expressions of the
backbones to the corresponding experimental curves for each resonance. This
fitting allows for the nonlinear parameters present in the assumed model to be
estimated. Ultimately, the performance of the fitted model can be assessed by
predicting the system response at different levels of excitation and comparing
the simulation results to the experimentally measured backbone curves. The
diagram presented in Figure 1 summarises the procedure used here for the
identification of the nonlinear system. The following sections illustrate the
application of the proposed procedure on an aerospace inspired wing–pylon
structure, firstly numerically and then experimentally.
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3. Example of a nonlinear MDOF system

The example model studied here is a wing–pylon inspired structure. It
consists of a continuous beam, the wing. Two masses, representing the stores,
are suspended underneath beam and connected to it using nonlinear rota-
tional springs that represent the pylons (as illustrated in Figure 2). The uni-
form beam is supported by two linear springs, of stiffness k=100N/m,attached
to the ends of the beam. The forces generated by the nonlinear pylon springs
are assumed to take the form

fsi = ksθi + k2θi|θi|+ k3θ
3
i (1)

where ks=195Nm/rad; k2=−1×105Nm/rad2; k3=1.36×109Nm/rad3 and θi is
the angle that the i-th mass support arm rotates with respect to the beam.

θ

Figure 2: Example of a wing with stores on pylons connected through nonlinear rotational
springs

Note that along with a positive cubic term producing hardening stiffness,
we also consider a negative θi|θi| nonlinear term, referred to as a quadratic
term from now on, to produce a combined initial softening and then hard-
ening stiffness as θ increases. The choice of θi|θi| rather than θ2i preserves
the stiffness symmetry for positive and negative angles of rotation. The
motivation for including this term is that it allows the backbone curve to
have a non-infinite gradient on zero amplitude of response (see Appendix A)
as is observed later in the experimental study. The equation of motion for
the example structure is derived using the Lagrange method. The vertical
deflection of the beam, y, is modelled such that

y(t, z) =
5
∑

n=0

qn(t)
( z

L

)n

; −L ≤ z ≤ L (2)

This allows for two rigid-body modes and four flexural vibration modes. We
consider an aluminium beam that is 1m long, 220mm wide and 5mm thick
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with a density of 2700kg/m3 and a Young’s modulus of 70GPa. The store
masses are 1.38Kg each and are located 200mm from the ends of the beam
and suspended 100mm beneath it. Two lumped masses of 0.51Kg are also
included on the beam to account for the mass of the pylon attachments.

Lagrangian mechanics was used to derive the mass and stiffness matrices
for the equation of motion of the dynamical system, which can be written

Mq̈ +Cq̇+Kq+ k3

2
∑

i=1

ρTi (ρiq)
3 + k2

2
∑

i=1

ρTi |ρiq|(ρiq) = F (3)

The matrices of mass M, damping C and stiffness K, as well as the force
vector F, are presented in the Appendix B. We note that C is computed as-
suming a modal damping ratio of 0.5% for each linear mode. In this equation
q = {q0, q1, q2, q3, q4, q5, θ1, θ2}

T and ρ is a location vector of the nonlin-
earities defined here as ρ1 ={0, 0, 0, 0, 0, 0, 1, 0} for the nonlinear spring on
the left and ρ2 ={0, 0, 0, 0, 0, 0, 0, 1} for the other nonlinear spring. The
linear pylon rotation stiffness terms, ks, are included in the stiffness matrix
K.

The equations of motion for the system shown in Figure 2 can be trans-
formed into linear modal space using the matrix of linear mode shapes Φ.
Thus, the system dynamics can be expressed in term of the linear modal coor-
dinates u(t) as in Equation (4), where the diagonal modal matrices for mass,
damping and stiffness are: Ms = ΦTMΦ; Cs = ΦTCΦ and Ks = ΦTKΦ,
giving

Msü+Csu̇+Ksu+ k3

2
∑

i=1

ΦTρTi (ρiΦu)
3 + k2

2
∑

i=1

ΦTρTi |ρiΦu|(ρiΦu) = ΦTF

(4)
Here, u = {ur1, ur2, u1, u2, u3, u4, u5, u6}

T , where ur1 and ur2 are the two
rigid body modes and uj is the j-th flexural vibration mode.

This study will be focused on the first four flexural modes of the underly-
ing linear system named φ1 to φ4. Their natural frequencies and mode shapes
are presented in Table 1 and shown in Figure 3. The complete matrix of mode
shapes, that includes the rigid body modes, is presented in the Appendix C.
We note that the modeshapes have been normalised with respect to the mass
matrix M.
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φ1 φ2 φ3 φ4

q0 0.269 0.000 -0.688 0.000
q1 -0.000 0.298 0.000 1.919
q2 -0.862 -0.000 2.187 -0.000
q3 0.000 -0.426 -0.000 -5.177
q4 0.190 0.000 -0.458 -0.000
q5 -0.000 0.165 0.000 1.785
θ1 3.609 -5.475 6.546 5.453
θ2 -3.609 -5.475 -6.546 5.453

ξi(%) 0.5 0.5 0.5 0.5

fn(Hz) 14.90 17.94 32.00 64.91

Table 1: Mode shapes, damping ratios and natural frequencies of the first four flexural
modes of the underlying linear system for the nonlinear example
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Figure 3: Schematics for the first four flexural mode shapes of the underlying linear
dynamics of the example structure.

3.1. Simulated response of the dynamic model

To study the system dynamics, a vertical excitation is applied one-third of
the way along the beam. Stepped sine responses at different levels of excita-
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tion are simulated numerically for the system in Equation (3) over a range of
frequencies around the linear natural frequencies presented in Table 1. These
responses are mapped into the linear modal space and presented in Figure 4.
Therein, Ui represents the spectral component of the i-th flexural vibration
mode at the dominant frequency in the steady–state. Furthermore, using the
procedure discussed in [28], and briefly introduced in Section 2, time-domain
resonant decay simulations are carried out at each of the four resonances of
interest. The resulting decays are used to estimate the backbone curves that
characterise the response of the nonlinear structure. Due to the nonlinear-
ity present in the structure, each resonance, while dominated by the linear
mode close to the resonance, contains contributions from other modes. The
backbone curves capture these linear modal contributions as a function of
instantaneous frequency during the resonant decay. For both the analyti-
cal expression and the measured backbone curve, we calculate the resonant
frequencies, so disregard contributions from higher modes in a consistent
manner. The purpose of the numerical study is to assess the accuracy of
the proposed identification procedure in which the correct solution is known.
While the backbones could be computed directly for this numerical example,
in general the nonlinearity is unknown and the backbone curves would be
estimated from the system responses. Hence for consistency with Section 4,
here we proceed as if the nonlinearity was unknown.

Figure 4 also presents the backbone curves estimated using resonant de-
cay data (in dot-dashed red line). The first observation is that the backbone
curves closely follow the peaks of the stepped responses and exhibit the same
trend in terms of modal contributions at each resonance frequency. This in-
dicates that the estimated backbone curves capture the nonlinear frequency–
amplitude dependency of the structural response. Notice the non-infinite
gradient of the backbone curves at zero amplitude and the initial soften-
ing which are produced by the quadratic stiffness term, with the subsequent
hardening due to the influence of the cubic term of the nonlinear springs.
This behaviour is also observed in the forced responses.

The first resonant response shows a significant contribution from the first
mode to the system response. In addition, a contribution from the third
linear mode is observed, but the contributions from the other linear modes
is insignificant. In a similar way, the system response at the third resonance
reveals a comparable behaviour with significant contribution from the third
mode, a minor contribution from the first mode and negligible contributions
from the other modes. This indicates a nonlinear coupling between modes 1
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Figure 4: Backbone curves overlying the stepped sine responses of the example model
around the four frequencies of interest. Here Ui is the spectral component of the i-th
flexural vibration mode at each frequency in the steady–state.

and 3 that is evidenced in both the stepped sine responses and the estimated
backbone curves.

A similar discussion can be made when considering the system response
over the second and fourth resonance frequency bandwidths in Figure 4. The
figure shows a weak nonlinear coupling between modes 2 and 4 without sig-
nificant contribution from the other modes. However in addition to this, the
plot for the second resonance shows a sustained contribution of mode 1 over
the whole range of frequencies considered. This near constant action, rather
than implying a significant modal coupling due to the nonlinearity, suggests
that the second resonance was not isolated exactly using the single excitation
point. The use of modal appropriation techniques, such as those described in
[5], might be required to more exactly isolate the second resonance if cleaner
stepped sine responses are needed. However, this approach falls beyond the
scope of the present work.
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3.2. Fitting a model from the backbone curves

Since we are interested in identifying the nonlinear stiffnesses using back-
bone curve measurements, we consider how the system in (4) behaves at res-
onance. Hence, considering only the first four flexural modes and following
the observations above, we consider here the interaction between the sym-
metric flexural modes 1⇋3 and between the antisymmetric flexural modes
2⇋4. In doing this, we are able to reduce the nonlinear terms such that, for
instance, row 3 and 5 of Equation (4) contain nonlinear terms with contri-
bution from the flexural modes 1 and 3 only, assuming that the response for
flexural modes 2 and 4 are insignificant when the resonant backbone curves
dominated by flexural modes 1 or 3 are being considered.

To derive expressions for the backbone curves at the resonances in Table 1,
we write a reduced modal equation from (4) and assume the system to be
harmonically excited and vibrating at a resonance condition to get

ü1 + 2ξ1ωn1
u̇1 + ω2

n1
u1 + fnl1(u1, u3) = f1

ü2 + 2ξ2ωn2
u̇1 + ω2

n2
u2 + fnl2(u2, u4) = f2

ü3 + 2ξ3ωn3
u̇1 + ω2

n3
u3 + fnl3(u1, u3) = f3

ü4 + 2ξ4ωn4
u̇1 + ω2

n4
u4 + fnl4(u2, u4) = f4

(5)

Here, ωni
is the i-th natural frequency of the underlying linear system, ξi

the damping ratio and fnli is a nonlinear function of the interacting modal
coordinates at the i-th resonance.

The Harmonic Balance (HB) method is used to find a first-order ap-
proximation of the above set of equations in which the higher harmonics
terms are neglected. It assumes that the response of the system to a si-
nusoidal excitation is a sinusoid at the same frequency. The HB technique
proceeds by substituting the excitations fi = Ai sin(ωt) and trial solutions
ui = Ui sin(ωt + ψi) ∀i ∈ [1, 4], into Equation (5). Here Ai is the ampli-
tude of the harmonic excitation and Ui represents the spectral component of
the i-th mode at the dominant frequency in the steady–state. Thus, after a
lengthy but straightforward calculation, the fundamental components can be
extracted and simplified leading to an analytical expression of the backbone
curves, such that

− ω2Ui + ω2
ni
Ui + f̃nli = 0 (6)

where f̃nli is the harmonic component within the i-th nonlinear function fnli .
Assuming the nonlinearity to be polynomial of the form fnli = ai(cjUj +
ckUk)|(cjUj + ckUk)|+ bi(cjUj + ckUk)

3+di(cjUj + ckUk)
5, where ai, bi, ci and
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di are arbitrary parameters of the i-th nonlinear function and the interacting
modes j and k, and using harmonic balance, f̃nli may be written in the
general form

f̃nl1 =
8
3π
a1(V13)|V13|+

3
4
b1(V13)

3 + 5
8
d1(V13)

5,

f̃nl2 =
8
3π
a2(V24)|V24|+

3
4
b2(V24)

3 + 5
8
d2(V24)

5,

f̃nl3 =
8
3π
a3(V13)|V13|+

3
4
b3(V13)

3 + 5
8
d3(V13)

5,

f̃nl4 =
8
3π
a4(V24)|V24|+

3
4
b4(V24)

3 + 5
8
d4(V24)

5.

(7)

where V13 = (c1U1 + c3U3), V24 = (c2U2 + c4U4), and the first, second and
third terms on the right hand side of these equations correspond to the
quadratic, cubic and quintic nonlinearities respectively. We note that higher-
order polynomials might be needed to fit more general nonlinearities.

Equation (6) can directly be correlated with the backbone curves previ-
ously estimated from the decay responses of the system (Figure 4). Hence for
instance, using the sets of backbone curves corresponding to U1 and U3 over
the frequencies of the first and third resonances, the unknown coefficients a1,
a3, b1, b3, c1, c3, d1 and d3 can be estimated by simultaneously curve–fitting
both the first and third equations of the assumed model to these data. Simi-
larly, the second and fourth equations of the selected set can be curve–fitted
to the backbone curves corresponding to U2 and U4 for the second and fourth
resonances. Since the backbone curves are defined as a function of ω-Ui, the
curve-fitting can be setup in such a way that the natural frequencies ωni

of
the identified underlying linear system can either be used or be left as un-
known parameters to be fitted. A statistical measure of goodness of fit could
be used to make a decision on the setting that delivers the more accurate
solution.

Considering three models, cubic only, cubic+quintic and quadratic+cubic,
Table 2 presents the resulting coefficients of the best fitting cases, using non-
linear least squares fitting, for the first couple of interacting modes 1 and
3. In addition, the true values of the coefficients are given. In a similar
way, the goodness of fit can be assessed in Figure 5, where the output of the
best fitting case for the three trial models have been plotted on top of the
measured backbone curves. It is worth noting that only the nonlinear model
which includes the quadratic term is able to capture the softening behaviour
at small displacements. Furthermore, note that the coefficients of the best
fitting case of the latest nonlinear model are very close to the true values.
To assess the impact of these differences, the fitted models are tested regard-
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Nonlinear True Cubic Cubic+ Quadratic
model coefficients quintic +cubic

C
o
eff

s.
o
f
b
es
t
fi
tt
in
g
ca
se a1 (×107) −3.09 − − −3.19

a3 (×107) −5.61 − − −5.68
b1 (×1012) 2.75 1.84 1.54 2.83
b3 (×1012) 5.00 3.09 2.76 5.05

c1 0.551 0.594 0.558 0.562
c3 1.00 1.00 1.00 1.00

d1 (×1020) − − 3.71 −
d3 (×1020) − − 6.65 −

f̂1 (Hz) 14.90 14.76 14.82 14.9(fixed)

f̂3 (Hz) 32.00 31.87 31.89 32.0(fixed)

Table 2: Coefficients that fits the backbone curves in terms of U1 and U3 for the first and
third resonances using Equation (6).

ing their ability to predict the actual system response given by Equation (3)
in the next section. In addition, we note that better solutions were found
when the system’s natural frequencies were treated as free parameters for
the cases of the cubic and cubic+quintic nonlinear functions. However for
the quadratic+cubic case, using the natural frequencies identified via linear
techniques resulted in the better fit. The best fit in each case is shown in
Figure 5.

Nonlinear True Cubic Cubic+ Quadratic
model coefficients quintic +cubic

C
o
eff

s.
o
f
b
es
t
fi
tt
in
g
ca
se a2 (×107) 3.26 − − 3.06

a4 (×107) −3.24 − − −3.04
b2 (×1012) −2.41 −1.81 −1.47 −2.38
b4 (×1012) 2.40 1.82 1.46 2.37

c2 −1.004 −0.992 −1.009 −1.007
c4 1.00 1.00 1.00 1.00

d2 (×1020) − − −1.56 −
d4 (×1020) − − 1.54 −

f̂2 (Hz) 17.94 17.72 17.78 17.94(fixed)

f̂4 (Hz) 64.91 64.85 64.87 64.91(fixed)

Table 3: Coefficients that fits the backbone curves in terms of U2 and U4 for the second
and fourth resonances using Equation (6).
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Figure 5: Best fitting case of the trial nonlinear models on top of the systems backbone
curves for the first and third resonances.
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Figure 6: Best fitting case of the trial nonlinear models on top of the systems backbone
curves for the second and fourth resonances.

Similarly, the backbone curves in terms of the modal amplitudes U2 and
U4 corresponding to the second and fourth resonance frequencies were curve–
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fitted to the second and fourth equations of the set in Equation (6), in ac-
cordance with the trial solution assumed. Table 3 presents the resulting
coefficients of the best fitting cases for each trial solution. As before, the
output of the best fitting cases for the three trial nonlinear models have been
plotted on top of the backbone curves in Figure 6. Once again the coefficients
of the nonlinear model that considers quadratic+cubic terms are very close
to the true values.

3.3. Assessment of the fitted models

In order to verify the ability of the fitted nonlinear models in predict-
ing the response of the actual system, sine stepped simulations have been
conducted using the model given in Equation (4).

The top panels in Figure 7 presents the simulations around the first and
third resonances of the fitted model that considers only cubic terms. In
this and subsequent figures, the responses of the fitted models are plotted in
solid black lines whereas the responses of the true model in Equation (4) are
plotted in grey lines. The measured backbone curves have also been included
to allow for further assessments. The fitted model is able to predict the
system response, with best accurate within the mid-range of displacements.
Since the cubic fitting could not model the initial softening behaviour, the
prediction at small displacements is inaccurate and the resonance is missed.
The bottom panel presents the simulations around the second and fourth
resonance frequencies of the best fitting case for cubic nonlinearity. Here,
it is much more evident that the assumed model is not able to reproduce
the initial softening behaviour at low amplitudes. There is also a significant
difference between the predicted and true responses for the highest level of
forcing around the second resonance. This will be discussed in more detail
shortly.

Figure 8 presents the response of the fitted model that considers the
correct form of the nonlinearities with contributions of quadratic and cubic
terms. This fitted model is able to predict accurately the responses of the
example structure, with the best accuracy at small and medium level of
displacements. Some differences can still be observed at large amplitudes for
the first and third resonances. This is probably due to the fact that higher-
order harmonics, which are ignored in the fitting process, affect the system
response more significantly at these larger displacements. Nevertheless, the
prediction is acceptable and arguably reflects the actual system behaviour
within the range of amplitudes and frequencies presented. We note that
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Figure 7: Sine stepped simulations of the fitted model that considers cubic nonlinearities
only on top of the actual system response.

the use of more advances techniques such as the second–order normal forms
method [25] that can accommodate the effects of higher harmonics may be
of interest for improving this issue.

A notable difference can only be seen in the bottom-left panel of Figures 7
and 8 corresponding to the second resonance; where despite of the fact the
response of fitted model follows the backbone curve, it underestimate the
response of the actual system at larger amplitudes. This mismatch is a
consequence of only considering the interaction of the antisymmetric flexural
modes 2 and 4 when modelling the system at its second resonance. In doing
this the effects of having two close modes (the first and the second modes),
as can be observed in a linear system, are disregarded. Here for instance, the

16



14.5 15 15.5 16 16.5 17
0

0.2

0.4

0.6

0.8

1

1.2

1.4
x 10

−4

Frequency (Hz)

M
o
d
a
l
a
m
p
li
t
u
d
e

 

 
True U1
True U3
Model p r ed ict ion
Backb ones

31.6 31.8 32 32.2 32.4 32.6 32.8 33
0

0.5

1

1.5

2

2.5

3

3.5
x 10

−5

Frequency (Hz)

M
o
d
a
l
a
m
p
li
t
u
d
e

First resonance Third resonance

17.6 17.8 18 18.2 18.4 18.6
0

0.5

1

1.5

2

2.5

3

3.5
x 10

−5

Frequency (Hz)

M
o
d
a
l
a
m
p
li
t
u
d
e

 

 
True U2
True U4
Model p r ed ict ion
Backb ones

64.6 64.8 65 65.2 65.4 65.6 65.8
0

1

2

3

4

5

6
x 10

−5

Frequency (Hz)

M
o
d
a
l
a
m
p
li
t
u
d
e

Second resonance Fourth resonance

Figure 8: Sine stepped simulation of the fitted model that considers quadratic and cubic
nonlinearities on top of the actual system response.

linear influence from the first linear mode onto the system’s response at the
second resonance was neglected in the set of equations (5). This interaction
was also exhibited when estimating the backbone curves for the decay data
from the second resonance; where the backbone curve measurement contained
multiple non-harmonic frequencies. That is, the measured response contained
a component of U1, that was dominated by its own first resonant frequency,
alongside the responses in U2 and U4, that were dominated by the excited
second resonance frequency. The inclusion of this type of phenomena still
remains an open research topic that falls outside the scope of this paper.
Nevertheless, to assess the impact of this omission in the ability of the fitted
model to predict the response of the example structure, we compare time-
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Figure 9: Vertical displacements of the beam at z = 0.25m (top panels), rotation of
one pylon (middle panels) and modal displacements (lower panels) when simulating the
response to a sine sweep (left-hand panels) and random (right-hand panels) excitation of
the fitted model that considers quadratic and cubic nonlinearities on top of the responses
of the true model of the example structure.

domain simulations of both models: the true model in Equation (3) and the
fitted model that considers the nonlinear function with quadratic and cubic
terms.

The left-hand side panels in Figure 9 present the responses to a sine sweep
excitation covering the first three resonance frequencies (10Hz to 35Hz). The
x-axis at the top of each panel displays the instantaneous excitation frequency
along the simulation. The top panels correspond to the vertical displacement
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at a quarter span, the middle panel shows the rotation of one of the stores
and the lower panels present the results in terms of modal displacements.
The zoomed windows present a close up of the responses that nearby the
first, second and third resonance frequencies. It can be observed that the
prediction of the fitted model is very accurate around the first and third
resonances where the all the fundamental interactions where accounted for.
However, in the vicinity of the second resonance frequency the fitted model
cannot reproduce precisely the true response of the system. It is thought
that this discrepancy is due to the exclusion of the linear influence of the
first mode around the second resonance. Although not shown, the response
near the fourth resonance is very good. The modal displacements shown in
the lower panels of Figure 9 can be compared with those shown in Figure 8.
We note that the excitation was large enough to produce modal displacements
in the nonlinear regime.

Responses to random excitation are shown in the right-hand side panels
of Figure 9. The results show that the fitted model is able to predict the
response of the true structural model with reasonable accuracy. Some differ-
ences can be seen after 3s in the simulation. This is due to the fact that the
structural response reached displacements where the fitted model starts to
losing validity, here the first mode response approaches a level corresponding
to the highest amplitude response in Figure 8.

4. Experimental example

We now consider applying the same method to experimental data where
the true dynamic behaviour is unknown. As with the structure used in the
numerical study in the previous section, the test structure approximately
represents the configuration of an aircraft wing having two underwing stores
(e.g., engines) with nonlinear pylon connections. The model consists of a
rectangular aluminium plate hung by elastic chords and two lumped masses
suspended underneath via pylon plates, as shown in Figure 10.

The nonlinear connection is built by fixing the pylon plates onto the wing
using two bespoke clamps. This connecting element features internal curve
surfaces that produces nonlinear behaviour through shortening the effective
length of the pylon as it deflects. This wing structure was previously tested
in [29] using the Resonance Decay Method approach. The model is excited
by an electrodynamic shaker (LDS V201) and instrumented with 9 piezo-
electric accelerometers (PCB 33M07) and two force sensors (PCB 208C03)
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to measure the shakers driving force. Additionally, a laser Doppler vibrome-
ter (PDV-100) is used to measure the velocity in the horizontal direction for
one of the stores. Laser readings are used only to verify the processed data
after numerically integrating the acquired acceleration signals. The vibration
tests were controlled and recorded using LMS SCADAS Lab.

A number of tests were performed to gain insights into the overall struc-
tural behaviour of the wing model. These were also beneficial in determining
the frequency of vibration and mode shapes that could be significantly influ-
enced by the nonlinearities. Several dynamic tests were also conducted at

a) b)

Figure 10: Test structure representing the configuration of an aircraft wing having two
underwing stores supported by pylons. a) General view of the experimental setup. b)
Close up of the nonlinear connection.
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Figure 11: Set of FRFs for either pylon ends at different levels of vibration using random
excitation. Note the softening effect exhibited by the resonance peaks in the zoomed boxes.
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Mode 1

Mode 2

Mode 3

Mode 4

Figure 12: First four mode shapes of the underlying linear system of the test model.

different applied vibration levels. The driving force employed to vibrate the
model were burst random signals with bandwidth of 256Hz on both shakers.
Figure 11 presents FRFs measured at the end of either pylon for different
increasing levels of excitation. In their estimation, 25 averages were used. It
can be seen that the FRFs do not overlay each other for several modes indi-
cating the presence of nonlinearities. Note that the zoomed plot within the
figure reveals a clear softening effect. The frequency shift is mainly exhibited
by the first two resonances located around 15Hz and 18Hz respectively. Also,
we note that the maximum broadband random excitation using the shakers
in Figure 10 can not produce motion on the stores large enough to reveal the
full nonlinear behaviour, only the initial softening can be observed. Later
stepped sine excitation is used to reveal hardening at higher amplitudes.

Classical modal testing [1] was used to obtain the shapes corresponding
to the first four vibration modes, see Figure 12. The first and second modes
describe the stores moving in anti–phase and in phase respectively. Whereas
the third and fourth correspond to modes that are dominated by the first and
second bending modes of the wing respectively, with reduced vibration of the
stores. Therefore, the nonlinear behaviour is expected to mainly affect the
structure when vibrating in either of the first two modes. So here, we discuss
the dynamics associated with the first and second resonance frequencies and
their interaction with other associated modes.

The first four mode shapes of the underlying linear system are presented
in Table 4. The first seven rows correspond to the accelerometers located on
the wing plate from left to right, and the last two rows, to the accelerometers
located in the stores as shown in Figure 10. This matrix is used to operate
a linear transformation on the decay records and thus obtain the structural
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φ1 φ2 φ3 φ4

z1 -0.231 0.093 1.304 1.486
z2 -0.014 0.079 0.098 -0.196
z3 0.114 0.035 -0.628 -0.577
z4 0.160 -0.009 -0.927 -0.003
z5 0.105 -0.077 -0.621 0.587
z6 -0.016 -0.069 0.063 0.218
z7 -0.218 -0.042 1.185 -1.398
x1 -1.114 -0.783 -0.170 -0.023
x2 1.007 -0.983 0.183 -0.023

ξi(%) 0.68 0.64 0.35 0.25

fn(Hz) 14.91 18.09 32.01 77.69

Table 4: Mode shapes, damping ratios and natural frequencies of the underlying linear
system for the test structure. The first seven rows correspond to vertical displacements
along the wing plate (equally spaced) whereas the last two rows correspond to the radial
displacement of the stores.

response in terms of the modal coordinates of the underlying linear system.
The mode shapes reveal that the structure is not perfectly symmetric, which
is probably due to differences in the linear stiffness characteristics of the
pylons and subtle differences in their support conditions.

Following the procedure described in section 2 for the experimental es-
timation of backbone curves, sinusoidal excitation in force–control mode is
applied to the test specimen at the desired near-resonant frequency using
just a single shaker. The forcing frequency is gradually tuned until the
amplitude of the response rises in magnitude and is large enough to acti-
vate the nonlinearity. When the system response reaches the state–steady
condition, the shaker is turned off and the resonance decay recorded. The
structural displacements are then calculated via double integration of the
acceleration signals. These signals are mapped into the linear modal space
using the matrix of mode shapes. Subsequently, the procedure for estimat-
ing the backbone curves is applied independently to each decaying response
of the system expressed in terms of the linear modal coordinates. Because
of the light damping, the number of oscillations over the decaying response
is large enough to allow a good measure of the backbone curves. Note that
since the shaker is still attached to the test specimen during the decay, its dy-
namics might have an impact on the resulting backbone curves. This effect,
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which depends on the shaker characteristics and its attaching point to the
structure, is being investigated and will be addressed in forthcoming work.

Figure 13a presents the resulting backbone curves estimated in terms of
the modal amplitudes U1, U2, U3 and U4 from decaying signals corresponding
to the first resonance frequency. The dominant backbone curve corresponds
to the first modal amplitude U1 (black solid line), as the structure was har-
monically excited around the first resonant frequency. This curve clearly
exhibits the initial softening behaviour already revealed by the random exci-
tation tests, but also shows a stronger hardening behaviour at larger ampli-
tudes as might be expected from the nonlinear connection shown in Figure
10b. Furthermore, it can be seen that when the structural response is large
and the influence of the nonlinearity is much more significant, the modal
contribution from U2 and U3 to the backbone curves start to increase. As
before, this observation could be exploited by extending the modal equations
to include coupled terms for nonlinear system identification purposes.

With the aim of verifying this modal interaction, Figure 13c presents the
resulting backbone curves estimated from the decay response corresponding
with the third resonance frequency. These results show a strong contribution
to the structural responses in terms of the third modal coordinate U3 (grey
solid line) with some interaction from U1 and U2.

Similarly, the second and fourth resonance decays were recorded, mapped
into the linear modal space and used to estimate the respective set of back-
bone curves. These are plotted in Figures 13b and 13d. The backbones for
the second resonance exhibit some interaction from U2, U3 and U4. With
regards to the fourth resonance, it was not possible to excite the test struc-
ture sufficiently to obtain large store deflections even when the shaker was
at its maximum capacity. No hardening behaviour is visible in these decay
data. Hence, this paper will discuss only results based on the first and third
interacting resonances.

4.1. Fitting a model from the backbone curves

Adopting the same approach as applied to the numerical system, we con-
tinue to assume that the system is symmetric. This assumption appears
reasonable when inspecting the linear modeshapes in Figure 12, see also Ta-
ble 4 where one can see that the error between symmetric locations is of
the region of 5% for the first mode. In addition, this assumption allows the
number of unknown terms to be kept low. As with the previous numerical
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Figure 13: Backbone curves estimated from experimental data in terms of the modal
coordinates U1 to U4

study, and due to the symmetry assumption, we consider the interaction be-
tween the symmetric modes 1⇋3 and the antisymmetric modes 2⇋4. The
adequacy of this assumption will be discussed later when the ability of the
fitted models to predict the system response are assessed. However we note
that the first resonance, in contrast to the numerical system, exhibits some
second linear modal content indicating a degree of asymmetry in the system.
To account for this behaviour, we include in the fitting process the backbones
curves in terms of the second linear modal coordinate as well as the equation
corresponding to the second resonance. With this modification and consid-
ering two of the trial nonlinear functions used before, a cubic function and a
cubic and quadratic function, the backbone curves are curve–fitted. This is
done in terms of U1, U2 and U3 over the range of frequencies corresponding
to the first, second and third resonances simultaneously. Table 5 presents
the results based on a nonlinear least squares optimisation procedure to find
the best set of parameters for fitting the experimentally obtained backbone
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curves with the selected set of equations. The backbone curves based on the
fitted parameters are plotted alongside the experimental backbone curves
in Figure 14. Here, unlike the numerical study, we do not know the cor-

Nonlinear Coefficients of the best fitting case

model a
1
(×

1
0
5
)

a
2
(×

1
0
5
)

a
3
(×

1
0
5
)

b 1
(×

1
0
1
0
)

b 2
(×

1
0
1
0
)

b 3
(×

1
0
1
0
)

c 1 c 2 c 3

Cubic - - - 0.88 -4.76 0.19 1.00 -0.78 1.37
Quadratic+cubic 6.77 −1.20 0.49 0.63 -0.11 0.05 1.00 -2.58 1.99

Table 5: Coefficients that fit the experimental backbone curves in terms of U1, U2 and U3

to the first, second and third resonances using Equation (6).
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Figure 14: Best fitting case of the trial models on top of the experimental backbone curves.

rect parameter values. However it can be seen that neither of these nonlinear
functions reproduces the rapid slope change of the initial softening behaviour
exhibited in the measured backbone curves. A higher order polynomial that
includes quadratic, cubic, quartic and quintic terms is used instead as a trial
nonlinear function. This led to analytical expression for the backbone curves
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given by

−ω2U1 + ω2
n1
U1 +

8
3π
a1V |V |+ 3

4
b1V

3 + 32
15π
d1V

3|V |+ 5
8
e1V

5 = 0,
−ω2U2 + ω2

n2
U2 +

8
3π
a2V |V |+ 3

4
b2V

3 + 32
15π
d2V

3|V |+ 5
8
e2V

5 = 0,
−ω2U3 + ω2

n3
U3 +

8
3π
a3V |V |+ 3

4
b3V

3 + 32
15π
d3V

3|V |+ 5
8
e3V

5 = 0,
where V = (c1U1 + c2U3 + c3U3).

(8)

The coefficients that best fit the experimental backbone curves to this set
of equations are presented in Table 6 and the fitted model output plotted
in Figure 14. It can be seen that this nonlinear function performs bet-
ter in reproducing the experimentally observed features than the cubic or
quadratic+cubic ones.

Nonlinear Coefficients of the best fitting case
model i ai bi ci di ei

(×106) (×1010) (×1014) (×1017)

Quadratic+ 1 −2.04 4.31 1.00 −1.64 2.31
cubic+quartic+ 2 −3.18 6.72 1.16 −2.56 3.59

quintic 3 −2.26 4.77 0.71 −1.82 2.55

Table 6: Coefficients that fit the experimental backbone curves in terms of U1, U2 and U3

to the first, second and third resonances of the test structure using Equation (8).

4.2. Forced responses using the fitted models

Now we simulate the response of the fitted models with the purpose of as-
sessing their ability to predict the response of the test structure. Sine stepped
simulations at the increasing levels of excitations are computed at a range
of frequencies around the first, second and third resonances. The responses
of the fitted models are plotted in solid black lines and the experimental
backbone are included in dashed red line to facilitate a direct comparison.

Figure 15 presents the simulation results of the fitted model that consid-
ers only cubic terms in the nonlinear functions. The peaks in the responses
of the fitted model follow both experimental backbone curves U1 and U3 for
both the first and third resonances. However, the fitted model fails to predict
the contributions in terms of U2 to the first resonance. Similarly, the peaks
in the responses of the fitted model follow the experimental backbone curves
U2 for the second resonance but fail to predict the contribution in terms of
U3. This is due to the fact that we consider a symmetric model to fit the

26



14 14.5 15 15.5 16 16.5
0

1

2

3

4

x 10
−4

Frequency (Hz)

M
o
d
a
l
A
m
p
li
t
u
d
e

 

 
Model p r ed ict ion U1
Model p r ed ict ion U2
Model p r ed ict ion U3
Exp er imental backb ones

31.8 31.9 32 32.1 32.2 32.3
0

0.5

1

1.5

2

2.5
x 10

−4

Frequency (Hz)

M
o
d
a
l
A
m
p
li
t
u
d
e

First resonance Third resonance

17.8 18 18.2 18.4 18.6 18.8 19
0

0.5

1

1.5

2

2.5
x 10

−4

Frequency (Hz)

M
o
d
a
l
A
m
p
li
t
u
d
e

Second resonance

Figure 15: Sine stepped simulations of the fitted model that considers cubic nonlinearities
only on top of the experimental backbone curves of the test structure.

backbone curves and so the interaction between symmetric and antisymmet-
ric modes are not captured. In addition, since the cubic function could not fit
the initial softening behaviour, the prediction at small displacements is not
accurate. Figure 16 presents the stepped sine simulation of the fitted model
that includes nonlinear functions with quadratic, cubic, quadric and quintic
terms. Unlike the other two cases considered, the fitted model can reproduce
the test structure’s responses all over the range of displacements including
being able to mimic the observed softening behaviour at small displacements.
Note that the peaks of the stepped sine response coincide with the experi-
mental backbone curves showing accuracy of the fitted model’s prediction,
but do not predict the contributions in terms of U2 to the first resonance nor
U3 to the second resonance.
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Figure 16: Sine stepped simulations of the fitted model that considers quadratic, cubic,
quartic and quintic nonlinearities on top of the experimental backbone curves of the test
structure.

5. Conclusions

This paper presents a method for the dynamic identification of structures
containing discrete nonlinear stiffnesses based on experimental data. In con-
trast to methods that use random excitation for nonlinear system identifica-
tion, the approach discussed here requires the structure to be excited at just
a single resonant frequency, at any one time, enabling measurements to be
made in larger displacement regimes where nonlinearities are more likely to
be observed.

We have discussed the use of measured resonant decay data to estimate
the system backbone curves. This data alongside modal equations of mo-
tion, that include nonlinear modal interaction terms, enables identification
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of both linear frequencies and nonlinear parameters. Numerical and experi-
mental examples inspired by an aerospace industry test case were considered
to illustrate how the method can be applied. Results from these models
demonstrate that the method can deliver nonlinear models able to predict
the response of the test structure to a range of excitation within frequencies
and amplitudes.

In the analytical example, which contains two discrete nonlinear elements
with quadratic and cubic terms, we successfully identified the more significant
nonlinear modal interaction terms between the first and third linear modes
and between the second and fourth modes. In both cases the forced response
using the fitted models accurately capture the interaction between the modes
in question within the range of amplitudes and frequencies used in the fitting
process. In addition, the fitted model accurately replicates the response due
to stepped-sine excitation over the first, third and fourth resonances of the full
system. However there are some discrepancies around the second resonance,
which we believe is due to additional linear interactions with the first mode
at this resonance, something that is currently unaccounted for in the fitting
approach.

Experimental tests were conducted on a similar structure to the numerical
one. Here we concentrated on the dynamics of the first mode and its interac-
tion with the second and third. A symmetric model was fitted using the first,
second and third resonant responses. Here as the form of the nonlinearity
was unknown, several models were considered. It was found that to capture
the curvature of the backbone curves at low as well as high response levels,
polynomial terms up to fifth-order were needed. Also, results showed that
the use of an asymmetric nonlinear model might be needed to accommodate
the interaction of symmetric and antisymmetric modes. Nonetheless, this
implies an increasing number of unknown variables to be fitted that might
lead to a number of practical issues in the nonlinear curve–fitting process.

We also note that analytical expressions of the backbone curves based on
assumed nonlinear characteristics are required in this approach. The success
of this identification method depends upon the ability of the chosen nonlinear
functions to reproduce the nonlinear characteristics revealed by the system’s
backbones. In this work we used polynomials in increasing order as the
trial nonlinear functions. However, a more systematic way to choose suitable
nonlinear functions remains an open research topic.
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Appendix A. Justification of the quadratic term

Consider the case of an undamped and unforced SDOF system with a
quadratic nonlinearity of the form u|u|, or u2sign(u), such that

ü+ ω2
nu+ ku2sign(u) = 0 (A.1)

We assume a periodic solution at resonance of the form u(t) = U cos(ωt) and
substitute it into the equation of motion to obtain

−ω2U cos(ωt)+ω2
nU cos(ωt)+

1

2
kU2 (1 + cos (2ωt)) sign (cos (ωt)) = 0 (A.2)

Note that the periodic function sign(cos(u)) can be decomposed into the
sum of simpler oscillating functions in terms of the Fourier series to reveal
the contribution of each harmonic. Thus, it can be written that

sign(cos(ωt)) =
∑

∞

i=1,3,5,···Ai cos(iωt)

= A1 cos(ωt) + A3 cos(3ωt) + · · ·
(A.3)

We will consider only the first two terms of this series as the higher-order ele-
ments can not be turned into resonant terms when multiplied by (1 + cos(2ωt)).
Following algebra manipulation the last term of Equation (A.2) can be ex-
pressed as

(1 + cos(2ωt))sign (cos (ωt))

= (1 + cos (2ωt)) (A1 cos(ωt) + A3 cos(3ωt) + · · · )

=A1 cos(ωt) +
A1

2
(cos(ωt) + cos(3ωt)) + A3

2
(cos(ωt) + cos(5ωt))

+ A3 cos(3ωt) + · · ·
(A.4)

Considering only the resonant terms and using the values found for the
Fourier coefficients, A1 =

4
π
and A3 = − 4

3π
, this simplifies to

(1 + cos (2ωt)) sign (cos (ωt)) = 1
2
(3A1 + A3) cos(ωt) =

16
3π

cos(ωt) (A.5)

After substituting this result into Equation (A.2), we obtain an expression
that disregards the contribution of higher-harmonic terms

− ω2U cos(ωt) + ω2
nU cos(ωt) +

8

3π
kU2 cos(ωt) = 0 (A.6)
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This result shows that the quadratic nonlinearity of the form u|u| contributes
to the system response at the fundamental frequency and the backbone curve,
which may be written as

ω2 = ω2
n +

8

3π
kU (A.7)

In addition, taking the first derivative of ω2 with respect to U in Equa-
tion (A.7) and evaluating the resulting function when U → 0, allow us to
show that the quadratic term u|u| also produces a non-infinite gradient in
the backbone curve at zero amplitude of response.

∂ω2

∂U U=0

=
8

3π
k (A.8)

Note that in contrast to u|u|, if u2 is used such that ü + ω2
nu+ ku2 = 0,

the equivalent to (A.4) may be written as cos2(ωt) = 1
2
(1+ cos(2ωt)). Hence

here there is no contribution to the resonant response and so the resonant
expression for the backbone curve is unaffected by the u2 nonlinearity.

Appendix B. Matrices for the numerical example structure

Using the geometry and material characteristics defined before in Sec-
tion 3, the following Lagrange’s equations are defined to derive the equation
of motion of the undamped underlying linear system

d

dt

(

∂L

∂q̇

)

+
∂L

∂q
= 0 (B.1)

where the Lagrangian L = T − V ; q = {q0, q1, q2, q3, q4, q5, θ1, θ2}
T and

(˙) indicates the first derivative with respect to time. Here T is the total
kinetic energy of the system and V the potential energy of the system. For
the example structure in Figure 2, these can be expressed as follows

T =
1

2

∫ L

−L

mẏ2dz +
1

2
M
(

ẏ(t,−a)2 + ẏ(t, a)2
)

+
1

2
Mb2

(

(

θ̇1 +
∂y

∂z
(t,−a)

)2

+

(

θ̇2 +
∂y

∂z
(t, a)

)2
) (B.2)

V =
1

2
EI

∫ L

−L

(

∂2y

∂z2

)2

dz +
1

2
ks
(

y(t,−L)2 + y(t, L)2
)

+Mgb

(

2− cos

(

θ1 +
∂y

∂z
(t,−a)

)

− cos

(

θ2 +
∂y

∂z
(t, a)

))
(B.3)

35



where m is the mass per unit of length along the beam, L is the length of
the beam, M is the mass of the stores located a distance a from the beam’s
centre, g is the acceleration of gravity, EI is the flexural rigidity of the beam
and b is the perpendicular distance from the store to the principal beam’s
axis. All the other parameters are defined in Section 3.

After substituting equations (B.2) and (B.3) into the Lagrangian L and
calculating the derivatives indicated in (B.1), the following mass and stiffness
matrices can be computed for the example structure

M =

























6.750 0 2.351 0 1.084 0 0 0
0 2.472 0 1.215 0 0.679 0.030 0.030

2.351 0 1.259 0 0.726 0 −0.036 0.036
0 1.215 0 0.742 0 0.478 0.033 0.033

1.084 0 0.726 0 0.484 0 −0.026 0.026
0 0.679 0 0.478 0 0.344 0.020 0.020
0 0.030 −0.036 0.033 −0.026 0.020 0.015 0
0 0.030 0.036 0.033 0.026 0.020 0 0.015

























(Kg) (B.4)

K =

























0.020 0 0.020 0 0.020 0 0 0
0 0.021 0 0.021 0 0.021 0.0003 0.0003

0.020 0 1.048 0 2.075 0 −0.0003 0.0003
0 0.021 0 3.101 0 6.181 0.0003 0.0003

0.020 0 2.075 0 7.413 0 −0.0002 0.0002
0 0.021 0 6.181 0 14.687 0.000 0.000
0 0.0003 −0.0003 0.0003 −0.0002 0.0002 0.0196 0
0 0.0003 0.0003 0.0003 0.0002 0.0002 0 0.0196

























×104(N/m)

(B.5)

We assume damping ratios of 0.5% of the critical damping in all modes
and use the matrix of mode shapes presented in Appendix C to compute the
damping matrix C as

C =

























3.658 −0.000 1.355 −0.000 0.657 −0.000 −0.003 0.003
−0.000 2.283 0.000 1.148 0.000 0.656 0.029 0.029
1.355 0.000 6.000 0.000 5.605 0.000 −0.232 0.232
0.000 1.148 0.000 5.315 0.000 6.355 0.161 0.161
0.657 0.000 5.605 0.000 9.099 −0.000 −0.155 0.155
0.000 0.656 0.000 6.355 0.000 9.376 0.077 0.077

−0.003 0.029 −0.232 0.161 −0.155 0.077 0.165 0.001
0.003 0.029 0.232 0.161 0.155 0.077 0.001 0.165

























×10−1(Ns/m)

(B.6)
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Similarly, the force vector in Equation (2) can be computed as

F =

[

1
p

L

( p

L

)2 ( p

L

)3 ( p

L

)4 ( p

L

)5

0 0

]T

(B.7)

where p is the distance where the point force is applied, i.e., L/3.

In addition, the location vectors of the nonlinearities multiplied by the
matrix of mode shapes can be written as

ρ1Φ =
[

0.0 0.001 3.61 −5.48 6.55 5.45 −1.23 8.81
]

(B.8)

ρ2Φ =
[

0.0 0.001 −3.61 −5.48 −6.55 5.45 1.23 8.81
]

(B.9)

Appendix C. Mode shapes of the numerical example structure

The complete matrix of mode shapes for the example structure in Section 3
is as follows. Note that this matrix is normalised with respect to the mass
matrix such that ΦTMΦ = I; where I is the identity matrix.

Φ =

























0.387 0.000 0.266 0.000 −0.688 0.000 0.683 0.000
−0.000 −0.638 −0.000 0.298 0.000 1.919 0.000 3.807
−0.007 −0.000 −0.862 −0.000 2.187 −0.000 −4.542 0.000
0.000 0.006 0.000 −0.426 −0.000 −5.177 −0.000 −16.232
0.001 0.000 0.190 0.000 −0.458 −0.000 5.600 0.000

−0.000 −0.002 −0.000 0.165 0.000 1.785 0.000 14.389
−0.000 0.001 3.609 −5.475 6.546 5.453 −1.234 8.810
0.000 0.001 −3.609 −5.475 −6.546 5.453 1.234 8.810

























(C.1)
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