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Abstract

Until recent times, weather forecasts were deterministic in nature. For example,

a forecast might state “The temperature tomorrow will be 20◦C.” More recently,

however, increasing interest has been paid to the uncertainty associated with such

predictions. By quantifying the uncertainty of a forecast, for example with a proba-

bility distribution, users can make risk-based decisions. The uncertainty in weather

forecasts is typically based upon ‘ensemble forecasts’. Rather than issuing a sin-

gle forecast from a numerical weather prediction (NWP) model, ensemble forecasts

comprise multiple model runs that differ in either the model physics or initial con-

ditions. Ideally, ensemble forecasts would provide a representative sample of the

possible outcomes of the verifying observations. However, due to model biases and

inadequate specification of initial conditions, ensemble forecasts are often biased and

underdispersed. As a result, estimates of the most likely values of the verifying obser-

vations, and the associated forecast uncertainty, are often inaccurate. It is therefore

necessary to correct, or post-process ensemble forecasts, using statistical models

known as ‘ensemble post-processing methods’. To this end, this thesis is concerned

with the application of statistical methodology in the field of probabilistic weather

forecasting, and in particular ensemble post-processing. Using various datasets, we

extend existing work and propose the novel use of statistical methodology to tackle

several aspects of ensemble post-processing.

Our novel contributions to the field are the following. In chapter 3 we present a

comparison study for several post-processing methods, with a focus on probabilistic

forecasts for extreme events. We find that the benefits of ensemble post-processing

are larger for forecasts of extreme events, compared with forecasts of common events.

We show that allowing flexible corrections to the biases in ensemble location is im-

portant for the forecasting of extreme events. In chapter 4 we tackle the compli-

cated problem of post-processing ensemble forecasts without making distributional

assumptions, to produce recalibrated ensemble forecasts without the intermediate

step of specifying a probability forecast distribution. We propose a latent variable

model, and make a novel application of measurement error models. We show in three

case studies that our distribution-free method is competitive with a popular alter-

native that makes distributional assumptions. We suggest that our distribution-free

method could serve as a useful baseline on which forecasters should seek to im-

2



prove. In chapter 5 we address the subject of parameter uncertainty in ensemble

post-processing. As in all parametric statistical models, the parameter estimates are

subject to uncertainty. We approximate the distribution of model parameters by

bootstrap resampling, and demonstrate improvements in forecast skill by incorpo-

rating this additional source of uncertainty in to out-of-sample probability forecasts.

In chapter 6 we use model diagnostic tools to determine how specific post-processing

models may be improved. We subsequently introduce bias correction schemes that

move beyond the standard linear schemes employed in the literature and in practice,

particularly in the case of correcting ensemble underdispersion. Finally, we illustrate

the complicated problem of assessing the skill of ensemble forecasts whose members

are dependent, or correlated. We show that dependent ensemble members can result

in surprising conclusions when employing standard measures of forecast skill.
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1 Introduction

Weather conditions have had wide-ranging effects on humanity, seemingly since the

beginning of time. Most obviously, the weather is a crucial factor in determining crop

yields, and adverse periods of weather can lead to humanitarian crises. In modern

society, weather conditions have both social and economic impacts. For example,

in recent years the United Kingdom has witnessed several instances of wide-spread

flooding. These events have impacted upon the livelihoods of those affected, as well

as posing new challenges to the insurance industry. Other businesses and industries

that are sensitive to weather conditions include supermarkets, construction, ship-

ping, aviation and tourism. Indeed, in recent times the economic significance of the

weather has led to the development of financial instruments that can be purchased

by businesses to hedge against, and thus limit their financial exposure to, adverse

weather conditions.

With the above comments in mind, it is clearly desirable to be able to provide

accurate forecasts of future weather conditions. The possibility of mathematical

approaches to weather forecasting was recognised as long ago as 1922, in the founding

work of Lewis Richardson, ‘Weather prediction by numerical process’. Since then,

the advent of computers and supercomputers has given rise to weather forecasts

over the entire planet, for many weather variables, for forecast lead times up to and

beyond two weeks. Weather forecasts are primarily based on numerical models of

the atmosphere, which are derived from the field of fluid dynamics.

Until the last decade, weather forecasts were almost always deterministic in nature.

For example, a forecaster might state ‘The temperature at 12pm tomorrow will be

20◦C’. However, despite years of research and the computational power available

to the forecasters of today, weather forecasts are still subject to errors, and so we

can not treat such deterministic forecasts as exact predictions that can be wholly

relied upon. The uncertainty in weather forecasting has provided an opportunity

for statisticians to determine systematic errors in weather forecasts that can be

corrected, as well as to quantify the uncertainty in such forecasts. In other words,

recent developments have led to the field of probability weather forecasts, rather than

deterministic weather forecasts. By quantifying the uncertainty in the deterministic

forecasts that are typically issued, users of probability forecasts can also estimate
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1. Introduction

the likelihood of the occurrence of weather events. For example, local councils may

wish to estimate the joint likelihood of temperatures falling below 0◦C and heavy

rainfall, which would lead to the formation of ice. Such estimates can then be used

to make risk-based decisions — in the given example, councils may choose to deploy

road gritting services if the probability forecast of ice formation exceeds a certain

threshold.

The uncertainty in weather forecasts of the future atmospheric state is based upon

so-called ‘ensemble forecasts’. An ensemble forecast is a collection of deterministic

forecasts that differ in either the numerical model used to issue the forecasts or the

initial atmospheric conditions that are supplied to the model. As the constituent

members of an ensemble forecast will typically differ in their forecast values, an

ensemble forecast provides a means of estimating the probability of certain weather

events. For example, if six of nine ensemble members forecast the temperature, T ,

to fall below 0◦C, then we could assign a probability forecast Pr(T ≤ 0) = 2/3.

Furthermore, the width of the ensemble forecast (i.e. the difference in the largest

and smallest member), could be used as an 80% prediction interval — that is, an

interval within which we would expect temperature observations to fall 80% of the

time in the long-run.

Unfortunately, however, ensemble forecasts do not provide reliable representations of

the forecaster’s uncertainty in the future, unknown observations. This is due to per-

sistent errors in the numerical models used for the ensemble member forecasts, and

uncertainty in how to select initial conditions with which to initialise the numerical

models. For example, operational ensemble forecasts are often underdispersed, and

so issuing probability forecasts of an event by the proportion of ensemble members

that predict its occurrence leads to inaccurate probability forecasts — in the above

example, the event {T ≤ 0}, which was assigned probability 2/3, will typically not

occur on two thirds of occasions. Similarly, the prediction intervals of operational

ensemble forecasts are often too narrow, and so the verifying observations lie outside

the intervals more often than one would like. This has led to the development of the

field of so-called ‘ensemble post-processing’, which is the subject of this thesis. En-

semble post-processing methods can be thought of in two classes. Firstly, ensemble

forecasts may be corrected, for example by the removal of systematic errors in the en-

semble location and spread. The output from the post-processing method is another

ensemble forecast, which (we should hope) has more desirable properties than the

initial, so-called ‘raw’ ensemble forecast. Alternatively, and more commonly used in

practice, is to use information contained in ensemble forecasts to issue probability

forecasts, usually in the form of probability distributions. For example, a popular

post-processing method that we use frequently throughout this thesis is to model

the verifying observation as a Gaussian-distributed random variable, where the ex-
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1. Introduction

pectation and variance of the Gaussian distribution are modelled as linear functions

of the sample mean and sample variance of the ensemble forecast. Well-known prop-

erties of the Gaussian distribution can then be used to issue probability forecasts

and prediction intervals, as well as deterministic forecasts. For example, the expec-

tation of the Gaussian probability forecast distributions has frequently been shown

to be a more accurate deterministic forecast than either the individual ensemble

members or the ensemble mean, while the interval bounded by the 100×α/2% and

100 × (1 − α/2)% quantiles, where α is a constant in the interval (0, 1) provides a

100× (1−α)% prediction interval. Ensemble post-processing methods are typically

statistical models, and provide an opportunity for novel applications of statistical

methods. In this thesis we present work that tackles several problems in the field of

ensemble post-processing using statistical methodology.

The remainder of this thesis is organised as follows. In chapter 2 we give a broad ex-

position of the background material that we make use of in later chapters. The chap-

ter begins with an overview of ensemble forecasting, including early development and

current operational practice. We then give a detailed introduction and discussion

of ensemble post-processing methods, many of which we make use of in our new

work. The chapter concludes with an overview and discussion of the various meth-

ods that we use for the verification of both deterministic and probability forecasts,

and a description of the datasets that we use in exemplifying our new methodology.

In chapter 3 we present an investigation into ensemble post-processing methods for

extreme events. We illustrate that allowing additional flexibility in the statistical

models used for ensemble post-processing produces significant improvements to the

skill of probability forecasts of the form Pr(y ≤ q), where y is the verifying observa-

tion, and q is an extreme threshold of interest. This work has been published in the

literature [Williams et al., 2014]. In chapter 4 we introduce a novel post-processing

method that leads to recalibrated ensemble forecasts, rather than probability fore-

casts. Our new method makes fewer assumptions than are usually required, and

serves as a more useful baseline than the simple frequency-based approaches de-

scribed above. We recommend that new ensemble post-processing methods should

seek to improve upon our baseline method. In chapter 5 we address the issue of

uncertainty in the parameter estimates of the statistical models used for ensemble

post-processing, a topic that was hitherto largely neglected in the literature. The

results presented have also been published [Siegert et al., 2015a]. We show that prob-

ability forecasts issued by ensemble post-processing methods are more reliable when

they account for parameter uncertainty, and we propose a method of doing so that

is easy to implement. Finally, in chapter 6, we introduce two ideas that we think

worthy of further research. We illustrate how diagnostic plots, which are widely

used in statistical modelling but are infrequently discussed in the post-processing

literature, can be used to improve the specification of the statistical models issued

15
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by ensemble post-processing methods. We then discuss the effect of dependencies

between ensemble members, expressed through their correlation, on the conclusions

that we may draw from commonly employed verification measures of forecast skill.

Chapter 6 concludes with a summary of our findings presented during the thesis,

and suggests directions for future research.
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2 Ensemble weather forecasting

and ensemble post-processing

2.1 Introduction

In this chapter we provide details of much of the material that forms the basis

for our novel work presented in chapters 3–6. The chapter is organised as follows.

In section 2.2 we provide a brief overview of numerical weather prediction, and

give an outline of the methodology that is used in operational ensemble weather

forecasting. In section 2.3 we discuss the notion of calibration for both probability

and ensemble forecasts, in particular, what is meant by ‘reliability’, ‘resolution’

and ‘forecast uncertainty’. In section 2.4 we provide an extensive review of many

ensemble post-processing methods, several of which we make use during this thesis.

We also give details of the routines that are used for estimating the parameters in

the statistical models that are specified by ensemble post-processing methods. In

section 2.5 we provide details of the graphical and quantitative methods that we use

for the verification of out-of-sample forecasts in our new work, for both probability

and ensemble forecasts. Finally, in section 2.6 we describe the datasets that are used

to illustrate our new contributions in chapters 3–6.

2.2 Numerical weather prediction and ensemble

weather forecasting

2.2.1 Introduction

In this section we provide a brief overview of the main components of an ensem-

ble forecasting system. We begin with a discussion of numerical weather prediction

(NWP) models, and explain the main sources of error that result from the many dif-

ficulties in constructing accurate models of the atmospheric state. In section 2.2.3 we

introduce the practice of ensemble forecasting, which provides a means of acknowl-
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2. Ensemble weather forecasting and ensemble post-processing

edging and accounting for the aforementioned errors in the deterministic forecasts

that are issued by NWP model forecasts. We recommend the text Kalnay [2003] for

a far more detailed and complete exposition of the material that is presented in these

two subsections. We conclude this section with a discussion of two interpretations

of ensemble forecasts that are commonly employed by forecasters.

2.2.2 Numerical weather prediction

The twentieth century saw the rapid development of machines that were able to

automate mathematical operations, which grew in to the computers and super-

computers of today. These technological advances gave rise to the possibility of

completing tasks that required large numbers of calculations for the first time. Not

least among these was the ability to use numerical models of the atmosphere to

issue meteorological forecasts. Prior to such an automated approach, the first at-

tempts at weather forecasting (Richardson 1922, see Richardson [2007]) involved

the laborious process of making calculations by hand and interpolating observations

gathered at weather stations to an appropriate grid. While much of the fundamental

process established by Richardson (and others) remains to this day, powerful com-

putation allows high resolution forecasts to be automatically generated for multiple

meteorological variables, forecast lead times and for increasingly fine grids in three

dimensional space.

Modern-day operational weather forecasts are based on numerical weather predic-

tion (NWP) models, which are an approximation to the physics of the atmosphere.

The models are derived from the field of fluid dynamics, and take the form of a high-

dimensional system of coupled partial differential equations (PDEs). These PDEs

represent the evolution in time and the spatial dependence of the many meteorolog-

ical variables comprised within the model, including the complicated relationships

governing inter-variable interactions. Initially based on a small set of equations that

approximated the most important properties of the dynamics of the atmosphere,

known as the ‘full equations of motion’, years of research has seen NWP models

develop in to high-dimensional systems that are used operationally for forecast lead

times of two weeks and beyond. The models provide approximations to large-scale,

slowly-varying features, such as the Atlantic jet stream, as well as to small-scale,

localised phenomena such as cloud formations and associated localised precipitation.

Historically, a deterministic weather forecast was issued as the output of a single

run of an NWP model. However, due to the many difficulties in numerical weather

prediction, these forecasts are imperfect. In the remainder of this subsection we

discuss three of the most difficult areas of numerical weather prediction, each of

which lead to errors in the deterministic forecasts that are issued.
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2. Ensemble weather forecasting and ensemble post-processing

As is the case for all dynamical systems, NWP models are initial value problems,

in the sense that their evolution through time is dependent on the initial value

supplied. When making a single, deterministic weather forecast, therefore, it is

important that the initial condition supplied to the model is the best available

estimate of the atmospheric state at that time. This estimate is known as the

analysis, and is produced using one of a variety of methods from the field of data

assimilation. Errors in the analysis forecast will therefore lead to errors in the

resulting deterministic forecast, even in the idealised setting of a ‘perfect’ NWP

model. In his founding work in the 1960s [Lorenz, 1963, 1965], Lorenz studied the

temporal evolution of models that were perceived as realistic approximations to the

atmosphere at the time. In a series of numerical experiments, Lorenz found that two

runs of an idealised model started from initial conditions that differ only very slightly

will, after sufficient time, appear to evolve independently of one another, as they

might had the two model runs been started from very different initial conditions.

This problem became known as the ‘butterfly effect’, which considered the effect

of small disturbances (or perturbations) in the initial conditions on the long-run

evolution of dynamical models. In terms of the predictability of the atmosphere,

Lorenz suggested that even a perfect NWP model would lose all predictive skill for

forecast lead times longer than approximately two weeks, due to errors in the initial

conditions which, even if known perfectly, are subject to round-off when used as

inputs to computer models. Analogously, small differences in the analyses issued by

weather centres could result in markedly different forecasts, even with the use of a

common NWP model. There is yet to be a unified approach to producing analyses

and, therefore, model initial conditions are likely to differ across operational centres.

Furthermore, Lorenz found that the predictability of nonlinear dynamical systems

with instabilities, such as the atmosphere, is dependent on the state of the system

itself — the system is more stable in certain states than in others and, therefore,

the skill of NWP forecasts is likely to vary, depending on the atmospheric stability

at the time.

Secondly, constructing accurate representations of the atmospheric physics is a

highly complicated task, and one that even after many years of research is still

problematic. Large-scale features are generally well understood and are therefore

predictable, while small-scale phenomena remain problematic. In addition, under-

standing the complicated interactions between the various features of the planet,

for example the differences in the behaviour of the atmosphere over the oceans and

over land, and then casting these interactions in a viable mathematical form is a

complicated research problem. Furthermore, NWP models must be ‘tuned’ to the

observed atmosphere by adjusting the many parameters that control their evolution

as specified by the aforementioned coupled system of PDEs.
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Finally, approximating the solution of the NWP model, that is, the system of PDEs

that describe the atmospheric physics and structure, is a highly complicated task.

Due to the size and complexity of the system of PDEs, closed-form solutions are

not available. It is therefore necessary to discretise the model and use numerical

methods to approximate the model solution. It is necessary to discretise the model

over a fixed grid, the structure of which forms a research problem in its own right.

Popular choices of grid coordinates include Cartesian, Spherical and Gaussian. The

model resolution refers to the density of grid points, with finer grids corresponding

to models with higher resolution. The temporal evolution is also discretised, such

that the model state is estimated at discrete, rather than continuous time steps.

With the model suitably discretised, numerical methods, known as finite difference

schemes, can be applied to estimate the model state at each gridpoint and time step.

The choice of numerical scheme has considerable implications, not only in terms of

the accuracy of the model solution, but also computational cost. The development

of improved numerical methods is also an important field of research in its own right,

and further discussion of this topic is beyond the scope of this thesis.

As mentioned above, NWP models typically provide accurate representations of

large-scale features, while forecasters are less confident in their ability to represent

localised events. The difficulty in predicting small-scale features is largely due to

the fact that they occur within areas smaller than the ‘grid boxes’ that are enclosed

by the grids on which NWP models are based. Inaccuracies in initial conditions and

imperfect model physics, as well as the difficulties in approximating the solution of

the model itself, all contribute to the inaccuracies that are observed in operational

weather forecasts.

2.2.3 From deterministic forecasts to ensemble forecasts

In the previous subsection we highlighted several sources of uncertainty in the fore-

casts issued by NWP models:

• The sensitivity of the NWP model to the initial conditions, and consequently

the effect of analysis error on the model evolution.

• Uncertainty in the physical parameterisations and the parameter values used.

• The loss of accuracy in the model solution due to the discretisation of the

model over space and time.

• The stability of the atmospheric system itself — Lorenz showed that the pre-

dictability of unstable dynamical systems can vary.
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Considering these fundamental problems of weather prediction in combination, there-

fore, forecasters are rightly uncertain as to the accuracy of the deterministic forecasts

that are issued by NWP models. It is therefore natural to turn to a framework that

enables a forecaster to both issue a deterministic forecast and to provide an as-

sessment of their confidence in that forecast or, or in other words, to quantify their

forecast uncertainty. The framework for quantifying forecast uncertainty is therefore

probabilistic in nature. A more detailed discussion of forecast uncertainty is pro-

vided in section 2.3. In this subsection we provide an overview of ensemble weather

forecasting, which is the framework upon which forecast uncertainty is based.

As described in chapter 1, an ensemble forecast is a collection of deterministic fore-

casts that, in general, differ in their forecast values. We define an ensemble forecast

for a general forecast occasion as x = (x1, x2, . . . , xM), where M denotes the num-

ber of ensemble members, or the ensemble size. We now provide a brief overview of

the history of ensemble forecasting, and describe the methods that are commonly

employed in their generation.

Epstein [1969] proposed the idea of a so-called ‘stochastic-dynamic’ framework for

weather forecasting. Epstein’s idea was to develop a partial differential equation that

approximated the evolution of a probability density function (PDF) for the future,

verifying observation, based on NWP model forecasts. The idea was to sample the

possible initial conditions, and to approximate this PDF with the resulting model

runs. The approach involved a very large number of model runs, which proved

computationally infeasible. Even after some simplifying assumptions to estimate

the first two moments rather than the entire PDF, Epstein’s approach was not

applicable in settings beyond those of low-dimensional, ‘toy’ models.

Hoffman and Kalnay [1983] experimented with so-called ‘lagged average forecasting’,

which generates ensemble forecasts whose members are deterministic forecasts of

the same verifying observation, but initialised at different times. While the method

obviates the need to generate perturbations to the initial conditions, it is necessary to

weight the ensemble members according to their age, to accommodate the idea that

their forecast skill will decrease with increasing lead time. Obtaining the ensemble

member weights requires estimating the temporal evolution of the covariance matrix

of forecast errors, and difficulties in doing so have resulted in limited applications

of the method. There are also limitations on the size of ensembles that can be

generated from lagged average forecasting, as large ensemble forecasts would require

the inclusion of forecasts at prohibitively long lead times.

Leith [1974] introduced the ‘Monte Carlo’ approach to ensemble forecasting. The

idea is to generate ensemble forecasts by perturbing the analysis, and using these

perturbed analyses as initial conditions for the NWP model forecasts. The pertur-
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bations are sampled at random from a multivariate distribution that is based upon

the dependence structure of historical forecast errors and scaled such that their am-

plitude is equal to the estimated analysis error. The dependence structure is derived

in the data assimilation cycle, and must reflect the statistical horizontal and verti-

cal structure of the forecast errors. Among other findings, Leith showed that the

ensemble mean of Monte Carlo ensemble forecasts is in general a more skilful deter-

ministic forecast than the ‘control forecast’, the NWP model forecast initialised at

the analysis.

An alternative but related approach to Monte Carlo ensemble forecasting is to choose

perturbations that are not sampled at random, but instead include information that

is pertinent to the current predictability of the atmosphere. This approach recognises

Lorenz’s finding that the stability of the atmosphere, and therefore its predictabil-

ity, is subject to variation. In this approach, the amplitudes of the perturbations

depend on the estimated analysis errors at that time, which vary in keeping with the

predictability of the atmosphere. Larger perturbations are chosen for more difficult

forecasts, and smaller perturbations are used when atmospheric conditions are more

stable. This is in contrast to the approach of Monte Carlo forecasting, for which

initial conditions are chosen at random and so do not contain information about the

current predictability of the atmosphere.

So-called ‘bred vectors’ are commonly used to generate perturbations that contain

current information for the atmospheric stability. After first initialising ensemble

members with randomly sampled initial conditions, as in the Monte Carlo approach,

the evolution of the ensemble members is updated by adding regular (for example,

every six hours) perturbations that depend on the forecast errors of the NWP model

at that time. Bred vectors are commonly employed in operational centres [Kalnay,

2003, chapter 6]. It is reported (see section 6.6.2 of Kalnay [2003]) that experiments

conducted at the National Centre for Environmental Prediction (NCEP) demon-

strated that the second type of perturbation grew much faster than the perturba-

tions that were chosen for Monte Carlo ensembles, resulting in ensemble forecasts

that exhibited greater spread.

Two further approaches to producing ensemble forecasts are to use multiple data

assimilation systems [Houtekamer et al., 1996] and to combine forecasts from mul-

tiple operational centres [Hou et al., 2001]. In the former system, random noise

is added to the observations to reflect uncertainty in the analyses, and the NWP

model parameterisations are also perturbed. The idea behind the system is that

perturbing the NWP model will increase the extent to which the main contributory

sources of uncertainty described in the previous subsection are sampled. In the sec-

ond approach, the authors suggest that the forecast uncertainty will be well sampled

by combining the analyses and state of the art NWP models from multiple weather
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centres, whose NWP models and data assimilation processes are likely to differ.

2.2.4 Interpretations of ensemble forecasts

As mentioned in section 2.2.3, ensemble forecasts have been used successfully to im-

prove the skill of deterministic forecasts and to estimate the associated forecast un-

certainty. Other desirable applications include estimating the probability of binary

events, such as the probability that the temperature will exceed a given threshold

on a given day or, in a multivariate setting, that precipitation will exceed a certain

threshold and the temperature will fall below 0◦C, resulting in the likely formation

of ice. As described in the previous chapter, a related application is the estimation

of prediction intervals for the verifying observations.

With a variety of possible applications, therefore, there is evidently a need for clarity

over how exactly to interpret the ensemble forecasts. For example, if a forecaster

wishes to derive probability forecasts from ensemble forecasts produced using the

lagged average forecasting scheme mentioned in section 2.2.3, it appears unnatural

to assign equal importance, or weight, to the ensemble members, given we know

that the forecasts differ in age and, consequently, that some members are likely

to be more skilful than others. On the other hand, assigning equal weight to all

members appears more acceptable in the Monte Carlo setting, where perturbations

to the analysis at the forecast initialisation time are simulated randomly. Equally,

the forecaster may need to think carefully when handling ensemble forecasts whose

members differ due to perturbations in the NWP model and/or the initial condi-

tions. We may expect those ensemble members issued with perturbed NWP model

parameterisations to produce less skilful deterministic forecasts than the control

forecast, given that the parameters of the NWP model are likely to be ‘tuned’ based

on the control forecast.

From a practical perspective, it is often necessary for the forecaster to make a

simplifying assumption when drawing inferences from ensemble forecasts or, in other

words, to decide upon an interpretation of the ensemble members. One commonly

employed interpretation is that the ensemble members represent an independent and

identically distributed (IID) sample from an underlying probability distribution. For

the remainder of this thesis we refer to this distribution as the ensemble distribution.

Analogously, the verifying observation for an individual forecast occasion can be

viewed as an IID draw from an underlying distribution, hereafter referred to as

the observation distribution. As mentioned in the introductory chapter, a desirable

property of an ensemble forecasting system is that the ensemble distribution, of

which the ensemble forecast can be interpreted as representing a sample, and the

observation distribution are equal.
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The members of ensemble forecasts that we know, or choose to interpret as IID

draws from an underlying distribution are said to be exchangeable. Furthermore,

ensemble forecasts whose members are dependent, but can be viewed as a single draw

from a symmetric multivariate distribution are also exchangeable. For example, an

assumption of exchangeability is reasonable if a single NWP model is used and initial

conditions are generated in a consistent manner, such as by random perturbations

to the analysis. This leads to the following definition.

Definition 2.2.1 The members of an ensemble forecast x = (x1, x2, . . . , xM) are

exchangeable if the statistical properties of x are invariant to any relabelling of

its constituent members. In other words, the members of an ensemble forecast are

exchangeable if the forecaster is able to treat all ensemble members as statistically

indistinguishable.

A second interpretation of an ensemble forecast is that its empirical distribution

function (EDF) represents a probability forecast distribution for the verifying ob-

servation, y. In this case the probability forecast distribution of y, conditional on

the ensemble forecast x, is

F (y | x) = 1

M

M∑
m=1

I(xm ≤ y), (2.1)

where F (y) denotes the cumulative distribution function (CDF) for y, and I(·)
is the indicator function that takes the value 1 if its argument is true, and 0 if

its argument is false. Equation (2.1) assumes equal weighting between ensemble

members. Alternatively, the distribution for y could be constructed using weighted

ensemble members such that

F (y | x) =
M∑
m=1

wmI(xm ≤ y)

where
M∑
m=1

wm = 1,

and an appropriate statistical framework is needed to estimate the weights wm,

for m = 1, 2, . . . ,M . In section 2.5 we discuss how different interpretations of the

ensemble members can affect how the skill of ensemble forecasts is assessed.
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2.3 Forecast calibration and forecast uncertainty

2.3.1 Calibration for probability forecasts

As we describe in the next section (2.4), forecasters often use ensemble forecasts as

a basis for issuing probability forecasts of the future, unknown atmospheric state.

Depending on the nature of the predictand (the meteorological variable for which

probability forecasts are issued), forecasters may issue continuous probability fore-

cast distributions, discrete (either binary or categorical) distributions or, in a few

special cases, a discrete-continuous mixture distribution. Probabilistic forecasters

are particularly interested in two distinct properties of their forecasts, namely the

forecast reliability, or calibration, and the forecast resolution. Forecast reliability

refers to the ability of a probabilistic forecasting system to issue ‘accurate’ proba-

bility forecasts, in the sense that the value or event that materialises occurs with

the relative frequency expected by the probabilistic forecasting system. Forecast

resolution, meanwhile, is a measure of the information content of a forecast. The

resolution can be viewed as the variability of the verifying observations, conditional

on the probability forecasts. Forecasts with high resolution provide useful informa-

tion to the forecast user, and so the conditional variability of the observations is

large. On the other hand, forecasts with no resolution are unable to distinguish

between the possible outcomes of the observations, and so there is no (conditional)

variability in the observations. The notions of reliability and resolution are perhaps

best exemplified with a discussion of probability forecasts of binary events, which

now follows.

Let q denote a threshold of interest, and y the verifying observation, where y is

unknown when the forecast is issued. Suppose the forecaster issues forecasts of the

binary event z = I(y ≤ q), which take the form p = Pr(y ≤ q) = Pr(z = 1). A

probabilistic forecasting system for z is reliable if, among those occasions on which

the event z = 1 is forecast to occur with probability p, the event does occur with

relative frequency p, and this is true for all p. The forecast resolution of this system

is a measure of its ability to distinguish between the outcomes z = 0 and z = 1.

Observe that the constant forecast p = z̄ is reliable — the long-run proportion of

events that satisfy z = 1 is equal to the probability forecast p — but the forecast

has no resolution — it does not tell the user anything that cannot be inferred from

historical observations. In section 2.5.5 we provide expressions for two measures

that are commonly employed to assess the reliability and resolution of probability

forecasts of binary events.

A further property of probabilistic forecasts that is of interest is known as the ‘sharp-

ness’, which provides a measure of the dispersion of the probability forecasts. The
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sharpness of forecasts for binary predictands, z, is often measured as the variance

of the Bernoulli distribution with probability p = Pr(z = 1), given by p(1 − p).

Similarly, the sharpness of forecasts for continuous predictands is often measured as

the variance of the continuous forecast distribution. Forecasters prefer probability

forecasts that are both reliable and sharp. In this thesis we refer to the guiding

principle of Gneiting et al. [2007] and other papers by the same authors, who state

that forecasts should be as sharp as possible, subject to reliability. Specifically, in a

discussion of desirable properties of probability forecast distributions for continuous

predictands, Gneiting et al. state: “The more concentrated the forecast PDF, the

sharper the forecast, and the sharper the better, subject to calibration.”

In this thesis we also make use of ‘prediction intervals’, which provide an insight in

to both the sharpness and calibration of probability forecasts for continuous, rather

than binary, observations. For a given probability forecast distribution, we define

the α% prediction interval as the interval within which the verifying observation

lies with probability α. For example, for a Gaussian forecast distribution a 90%

prediction interval for the verifying observation could be calculated as the interval

(q.05, q.95), where the notation qβ refers to the β-quantile of the forecast distribution.

The ‘coverage’ of prediction intervals refers to the actual relative frequency of obser-

vations that fall in such intervals. Prediction intervals for which the expected and

observed coverage are not equal are indicative of probability forecast distributions

that are not reliable. In keeping with the foregoing remarks concerning forecast reli-

ability and sharpness, we would like prediction intervals to be as narrow as possible,

subject to having accurate coverage.

We also make frequent use of the term ‘forecast uncertainty’ in the remainder of

this thesis, the precise meaning of which depends on the context of the probabilistic

forecast. For example, forecast uncertainty for a continuous predictand usually

refers to the spread, or dispersion, of the probability forecast distribution, and can

be viewed as a measure of uncertainty in deterministic forecasts that might also be

inferred from the forecast distribution, such as its expectation or median. Forecasters

are ‘more uncertain’ when issuing forecasts from probability distributions whose

dispersion is large, compared with distributions whose dispersion is small. There are

natural relationships between such forecasts and prediction intervals — prediction

intervals are narrower for forecasts in which we are confident, or less uncertain.

2.3.2 Calibration for ensemble forecasts

Forecasters sometimes prefer to issue ensemble forecasts, rather than probability

forecasts, and so it is also important to establish the notion of calibration for en-

sembles. As described in section 2.2.4, ensemble forecasts can be interpreted as
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either a probability forecast for the verifying observation (via their EDF), or as a

collection of IID realisations from an underlying ‘ensemble distribution’. In the for-

mer case the comments given in the previous subsection apply. On the other hand,

we view ensemble forecasts whose members are IID samples as being calibrated with

the verifying observations if the observations also appear as IID realisations of the

corresponding ensemble distributions.

Calibrated ensemble forecasts x = (x1, x2, . . . , xM) for continuous predictands, whose

members are IID random draws, have the following appealing properties. The ex-

pectation of the ensemble mean, x̄, is equal to the expectation of the observation, y,

that is E(x̄) = E(y). Secondly, the range of the ensemble forecast, max(x)−min(x),

forms a 100× (M − 1)/(M + 1)% prediction interval with the correct long-run ob-

served coverage.

Historically, and (we understand) still in some operational settings, the empirical

distribution functions (EDFs) are used as probability forecast distributions for the

verifying observations. For example, the EDF of an ensemble forecast might be used

to issue a probability forecast for a binary predictand by calculating the frequency of

ensemble members that predict the event to occur. As we discuss in section 2.4.2.1,

however, probability forecasts derived from such frequency-based approaches have

undesirable properties, even if the ensemble forecast is calibrated with the verifying

observation in the sense described above.

2.4 An overview of ensemble post-processing

methods

2.4.1 Introduction

While considerable effort has been devoted to the production of NWP models that

accurately describe the physics of the atmosphere, as well as to the development of

perturbations to the analysis that accurately represent the forecaster’s uncertainty

of the atmospheric state at the model initialisation time, it remains the case that

the evolution of the atmosphere is insufficiently resolved, and that the growth of the

perturbations does not accurately reflect the state-dependent predictability of the

atmosphere. Often the growth rates of the perturbations are slower than the growth

rates resulting from the instabilities of the true atmospheric flow, and therefore

many operational ensemble forecasts are underdispersed [Hamill and Colucci, 1997,

1998].

As mentioned in chapter 1, therefore, forecasters typically can not rely on ensemble
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forecasts as a basis for stating their beliefs about their uncertainty in the future

verifying observations. Persistent errors, or biases, in the location (the forecast

values of the deterministic ensemble members) and the spread of ensemble forecasts

mean that, for example, the proportion of ensemble members that forecast the

occurrence of an event, such as the binary event {y ≤ q}, where y is an observation

and q a threshold of interest, is not a reliable estimate of the probability of the event

occurring. Typically the event will occur with relative frequency that is not equal

to the proportion of ensemble members that predict it to do so or, in other words,

ensemble forecasts are typically not well calibrated with the verifying observations.

Similarly, prediction intervals, usually defined as the range of the ensemble forecasts

(see section 2.3.2), are frequently too narrow — observations typically fall outside

of the range of the ensemble forecasts more often than indicated by the nominal

coverage of the prediction intervals.

Despite their deficiencies, however, ensemble forecasts often contain useful informa-

tion that can be exploited to issue recalibrated forecasts of the future atmospheric

state, either as probability forecasts or ensemble forecasts. For example, from as

early as Leith [1974], the ensemble mean has frequently proven to be a more skilful

deterministic forecast than the control forecast. Furthermore, the ensemble spread,

which is usually measured by its sample variance, is often a useful predictor of the

error in the ensemble mean forecast, despite the underdispersion typically observed;

see, amongst many others Hamill and Colucci [1997, 1998]; Raftery et al. [2005];

Gneiting et al. [2005]. In other words, referring to our discussion in section 2.3.2,

the ensemble variance is often a useful predictor of the forecast uncertainty. Ensem-

ble forecasts with this property are said to exhibit ‘spread-skill relationships’. En-

semble forecasts with large spread are often associated with ensemble means whose

deterministic forecasting errors are larger than ensemble forecasts with small spread.

Such spread-skill relationships are exploited frequently throughout this thesis.

As mentioned in chapter 1, ensemble post-processing methods often take the form of

parametric statistical models that seek to quantify relationships (such as the bias)

between the ensemble forecasts and observations, and specify probability forecast

distributions for the future (unknown) verifying observations. However, an ensemble

post-processing method could be as simple as, for example, removing a constant bias

from each member. In this thesis we class any method that exploits relationships

between the ensemble forecasts and observations to produce recalibrated forecasts as

a post-processing method, whether in the form of probability forecast distributions

or recalibrated ensemble forecasts. For example, in chapters 3 and 5, we investigate

post-processing methods that construct continuous probability forecast distributions

in the standard parametric statistical modelling framework, while in chapter 4 we

introduce a new post-processing method that recalibrates ensemble forecasts only.
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As is generally the case in statistical modelling, the majority of ensemble post-

processing methods require the estimation of model parameters. These estimates are

obtained from samples of historical ensemble forecasts and their verifying observa-

tions, which we refer to as ‘training samples’ throughout this thesis. The parameter

estimation procedure is usually performed by optimising an objective function that

is calculated over the training sample, as in chapters 3, 5 and 6, using numerical

algorithms to find the optimal set of parameter estimates. Alternatively, parameter

estimates are sometimes calculated directly using techniques such as the method of

moments, as in chapter 4. So-called ‘rolling’ training samples are often employed

to estimate model parameters for the next forecast occasion — that is, a training

sample of the N previous ensemble forecasts and verifying observations is used to

estimate the parameters for the next ‘out-of-sample’ forecast.

Having obtained parameter estimates from a training sample of ensemble forecasts

and observations, the chosen ensemble post-processing method can be used to is-

sue either probability forecasts or post-processed ensemble forecasts (depending on

the post-processing method) of the future, unknown atmospheric state or, in other

words, to issue out-of-sample forecasts. We make clear this distinction by denoting

out-of-sample forecasts and observations with the subscript t, and within-sample

forecasts and observations (that are used for parameter estimation) with the sub-

script i. The size of training samples is denoted by N , and the size of the dataset

of out-of-sample forecasts is denoted by T . If a rolling training sample is used for

parameter estimation, the parameter estimates will change with forecast occcasion

t, where t = 1, 2, . . . , T indexes the out-of-sample forecasts in the test dataset. In

certain studies, however, such as that presented in chapter 3, the same parameter

estimates are used for each out-of-sample forecast. We make clear the distinction in

our notation for the particular study at hand.

The remainder of this section is organised as follows. In section 2.4.2 we describe

some simple methods for issuing probability forecasts for the binary event {yt ≤ q},
where q denotes a threshold of interest, that are related to the frequency-based

approaches mentioned previously. In sections 2.4.3 and 2.4.4 we review several post-

processing methods that were used in the publication Williams et al. [2014]. These

post-processing methods, or adaptations thereof, have been successfully applied to

a variety of problems in the forecasting of various meteorological variables, and are

frequently used in chapters 3–6. We give an overview of the methods only, and

defer more technical material such as the objective functions used for parameter

estimation until they are required in chapter 3. In section 2.4.5 we outline some

post-processing methods that tackle meteorological variables of renowned difficulty,

such as wind direction and precipitation, and describe an extension to the logistic

regression model described in section 2.4.4.3. We also outline some post-processing
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methods that yield forecasts of multivariate quantities. We have not made use of

many of the methods in section 2.4.5, either because we were not aware of them,

they were not published until the later stages of the study, or they were not relevant

due to being targeted at specific variables that were not under consideration. In

section 2.4.6 we describe the approach of ensemble copula coupling (ECC), which is

an increasingly popular method for producing post-processed ensemble forecasts of

multivariate predictands, such as for spatial fields. Finally, in section 2.4.7 we give

details of the procedures used in our work for the estimation of model parameters.

We describe two popular objective functions and the numerical algorithms that are

used to find the optimal parameter estimates.

2.4.2 Ad-hoc post-processing methods

2.4.2.1 Frequency-based probability forecasts

In this section we describe some simple frequency-based approaches for estimating

probability forecasts of binary events. The climatology serves as the simplest prob-

ability forecast of the form p = Pr(yt ≤ q), where q is a threshold of interest to the

user. The probability p is estimated from the empirical distribution function of the

observed climatology as

Pr(yt ≤ q) = Fclim(q) =
1

N

N∑
i=1

I(yi ≤ q), (2.2)

where yi, i = 1, 2, . . . , N denote N historical observations. The climatology forecast

is reliable in the sense described in section 2.3.1, but has no resolution — the same

forecast is always issued, and so does not provide any useful information to the user

beyond that that can be inferred from the historical observations.

Until the growth in popularity of more sophisticated methods, probability forecasts

of the form Pr(yt ≤ q) were derived from ensembles using simple frequency-based

calculations. These approaches are based on the assumption that the ensemble mem-

bers are sampled from the ‘true’ probability density function (PDF) of the future

verifying observation yt. In this case, the proportion of ensemble members predict-

ing the event {yt ≤ q} is a consistent and unbiased estimator of the probability of

the event occurring. In the simplest case, the proportion of members of the ensem-

ble forecast xt = (x1,t, x2,t, . . . , xM,t) predicting the event {yt ≤ q} can be used to

estimate Pr(yt ≤ q)

Pr(yt ≤ q) =
1

M

M∑
m=1

I(xm,t ≤ q). (2.3)
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This probability forecast suffers from the implications that probability forecasts of

0 (1) are issued when the threshold q is smaller (larger) than all ensemble members.

An alternative estimator is

Pr(yt ≤ q) = Rank(q)t/(M + 1), (2.4)

where Rank(q)t =
∑M

m=1 I(xm,t ≤ q) + 1 is the rank of the threshold q when pooled

together with the members of the ensemble forecast xt. Again, however, this esti-

mator implies a probability of 1 when all ensemble members are smaller than q, i.e.

when Rank(q)t =M + 1.

Direct model output (DMO) is a further frequency-based estimator, that avoids

probability forecasts of 0 or 1. Probability forecasts are given by

Pr(yt ≤ q) =
Rank(q)t − 1/3

M + 1 + 1/3
. (2.5)

Unlike the other frequency-based approaches described previously (equations (2.3)

and (2.4)), the probability forecasts returned by equation (2.5) do not attain either

the undesirable values of 0 or 1. The probability forecasts can range from 2/(3M+4)

(when Rank(q)t = 1) to (3M + 2)/(3M + 4) (when Rank(q)t = M + 1). The

adjustments −1/3 to the numerator and 1/3 to the denominator of equation (2.5)

are one of several possible corrections to frequency-based approaches, such as those

given in equations (2.3) and (2.4). Wilks [2006b, page 41] provides several other

possibilities. We have chosen to show the DMO forecasts as they were used in the

article by Wilks [2006a] and in our own work presented in chapter 3.

Note that the four methods of issuing probability forecasts Pr(yt ≤ q) described in

this section should not be viewed as ensemble post-processing methods, since the

forecasts are simply a function of the members of the ensemble forecast xt — the

ensemble is not post-processed, and the probability forecasts are independent of any

historical ensemble forecasts.

2.4.2.2 Rank histogram recalibration

As highlighted in section 2.4.1, in practice ensemble forecasts suffer from biases

in both their location and dispersion. This was discussed by Hamill and Colucci

[1997] in an application to probability forecasts of precipitation. Hamill and Colucci

[1997, 1998] proposed an ensemble post-processing method that we refer to as rank

histogram recalibration (RHR), that attempts to account for the biases in ensemble

location and dispersion. Unlike the frequency-based approaches described above,

the RHR method makes use of historical training samples of ensemble forecasts
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and observations as follows. Firstly, constant biases are removed from the ensemble

forecasts xi, i = 1, 2, . . . , N , to form bias-corrected ensembles x̂i, where

x̂im = xim +
1

M ×N

N∑
i=1

M∑
m=1

(yi − xim) , for i = 1, 2, . . . , N and m = 1, 2, . . . ,M,

(2.6)

so that the unconditional (over the entire training sample) sample mean of the

bias-corrected ensemble members is equal to the sample mean of the observations

yi, i = 1, 2, . . . , N . Then define a vector of weights,

wj =
1

N

N∑
i=1

I (Rank(yi) = j) for j = 1, 2, . . . ,M + 1 (2.7)

where Rank(yi) = 1+
∑M

m=1 I(x̂im ≤ yi) is the rank of the observation when pooled

together with the members of the (de-biased) ensemble forecast x̂i. The weights are

therefore given by the relative frequency of the M + 1 possible ranks that can be

taken by the N observations yi over the training sample. This enables out-of-sample

probability forecasts to be issued, as we now describe.

Firstly, any constant bias is removed from the out-of-sample ensemble forecast xt,

using the same bias correction as was performed for the ensemble forecasts in the

training sample. We then define the order statistics for the corrected ensemble fore-

cast x̂t, denoted x̂
(m)
t for m = 1, 2, . . . ,M , such that x̂

(1)
t < x̂

(2)
t < . . . < x̂

(M)
t . The

probability forecast distribution issued by the rank histogram recalibration method

is then constructed as follows. The distribution is assumed uniform between con-

secutive order statistics of the ensemble forecast, with each uniform distribution

weighted by the relevant weight defined above. For example, the distribution be-

tween ensemble members x̂
(1)
t and x̂

(2)
t is assumed uniform, and is weighted by w2,

and the uniform distribution between ensemble members x̂
(M−1)
t and x̂

(M)
t is weighted

by wM . The probability distribution for values that are unbounded by the ensemble

forecast must be specified by the forecaster. In an application to probability forecasts

of quantitative precipitation, Hamill and Colucci [1997] assumed that observations

yt were uniformly distributed between 0 and the smallest ensemble member, x̂
(1)
t ,

but fitted a Gamma distribution to the right hand tail, that is used for probability

forecasts of values that lie above the largest ensemble member, x̂
(M)
t . On the other

hand, Wilks [2006a] fitted a Gaussian distribution to both tails of the RHR fore-

cast distribution, with expectation and variance given by the ensemble mean and

variance, respectively. Probability forecasts for observations in the lower and upper

tails of the forecast distribution are weighted by w1 and wM+1, respectively. As

described earlier, many operational ensemble forecasts are underdispersed, and so a

relatively large proportion of observations fall in the tails of the probability forecast

distributions. We denote by gRHR(·) the parametric family of probability distribu-
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tions that is chosen for the tails of the RHR forecast distribution, with cumulative

distribution function GRHR(·). As with Wilks [2006a], this probability distribution

is typically dependent on the ensemble forecast x̂t. The RHR forecast distribution is

therefore a weighted, disjoint mixture of uniform distributions, and the distributions

that are chosen by the forecaster for quantities in the lower and upper tails that are

unbounded by the ensemble forecast.

With the above comments in mind, probability forecasts of the binary event {yt ≤ q},
for a threshold of interest q are given by

Pr(yt ≤ q) =


∑k

j=1wj + wk+1
q−x̂(k)t

x̂
(k+1)
t −x̂(k)t

if x̂
(1)
t < q ≤ x̂

(M)
t ,

w1
GRHR(q)

GRHR(x̂
(1)
t )

if q ≤ x̂
(1)
t ,∑M

j=1wj + wM+1
GRHR(q)−GRHR(x̂

(M)
t )

1−GRHR(x̂
(M)
t )

if q > x̂
(M)
t .

(2.8)

2.4.3 Ensemble dressing methods

We now introduce a class of post-processing methods that ‘dress’ the members of

ensemble forecasts, in an attempt to correct the biases in dispersion that are often

observed. The dressing can be in the form of adding to each member either ad-

ditional ensemble members [Roulston and Smith, 2003] or continuous probability

distributions, referred to as dressing kernels [Wang and Bishop, 2005; Raftery et al.,

2005].

2.4.3.1 Best member dressing

Roulston and Smith [2003] proposed dressing each member of an ensemble forecast

with an additional ‘daughter ensemble’, to form a so-called ‘hybrid ensemble’. The

post-processing method was based on the idea that residual uncertainty remains

in operational ensemble forecasts, and that ‘dressing’ the ensemble members with

additional samples will aid in reflecting uncertainty that is not present in the raw en-

semble forecast. The dressing procedure involves sampling from a historical archive

of forecast errors of the ‘best member’, defined as the ensemble member with the

smallest error in forecasting the verifying observation, in a D-dimensional space.

For example, the multi-dimensional space could refer to spatially gridded forecasts

of a single variable, multiple variables at a single location, or a combination of these.

Additional ensemble members are added to the raw ensemble forecast by repeatedly

sampling from the historical archive of best member errors. The method therefore

allows the construction of ensemble forecasts with additional members, the size of

which can be predetermined. The method therefore provides a means of comparing
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ensemble forecasting systems of different size, as hybrid ensemble forecasts of the

same size can be constructed for each of the competing systems. There is, however,

a finite limit on the size of the hybrid ensemble forecasts that can be attained by

resampling, due to the finite size of the archive of best member errors.

Wang and Bishop [2005] developed the so-called best member dressing (BMD) post-

processing method, which builds on the ideas of Roulston and Smith [2003]. Rather

than adding additional samples to the ensemble forecasts, however, the BMDmethod

dresses each member with a Gaussian distribution, or kernel, centred at the ensem-

ble member. This post-processing method therefore results in the construction of

continuous probability forecast distributions, rather than ensemble forecasts as in

Roulston and Smith [2003]. Wang and Bishop derived an analytic expression for the

variance of the Gaussian-distributed dressing kernels, denoted σBMD2
, which math-

ematically constrains the variance of the BMD forecast distribution to be equal to

that of the expected squared distance between the observations and ensemble mem-

bers in the training sample. In other words, if ensemble members were randomly

sampled from the BMD forecast distributions, the average squared distances be-

tween the ensemble members and the observations should be equal to the average

squared distances between the ensemble members, if the observations arise from

the BMD probability forecast distribution. The dressing kernel variance, σBMD2
,

is calculated from a training sample. The ensemble members are first corrected

for seasonal biases, by subtracting the seasonally averaged error of the ensemble

mean at each location and forecast lead time from all members of the corresponding

raw ensemble forecast, in a similar vein to equation (2.6). For the 1-dimensional

(univariate) case the dressing kernel variance is then given by

σBMD2

=
1

N

N∑
i=1

{
(x̂i − yi)

2 − (1 + 1/M)s2i
}
, (2.9)

where x̂i = M−1
∑M

m=1 x̂im and s2i = (M − 1)−1
∑M

m=1(x̂im − x̂i)
2 are the ensemble

mean and variance of the ith (bias corrected) ensemble forecast. In the 1-dimensional

case, the dressing kernel variance is equal to the difference of the average variance

of the forecast errors of the ensemble mean and a slightly inflated average ensemble

variance.

The out-of-sample probability forecast distribution for the observation yt conditional

on bias-corrected ensemble member x̂m,t is then yt | x̂m,t ∼ N(x̂m,t, σ
BMD2

), and the

forecast PDF for observation yt is

fBMD(yt | x̂t) =
1

M × σBMD

M∑
m=1

ϕ

(
yt − x̂m,t
σBMD

)
, (2.10)
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where ϕ(·) denotes the PDF of the standard Gaussian distribution. Probability

forecasts of the binary event {yt ≤ q} are given by

Pr(yt ≤ q) =
1

M

M∑
m=1

Φ

(
q − x̂m,t
σBMD

)
, (2.11)

where Φ(·) denotes the CDF of the standard Gaussian distribution.

The method of Wang and Bishop [2005] can also be used to produce multivari-

ate dressing kernels for forecasts of multivariate predictands, such as temperature

forecasts over spatial fields. However, the method can only correct the ensemble

dispersion for variables in which the ensemble forecasts are underdispersed — as

the method adds uncertainty to each ensemble member, it cannot be used to cor-

rect the dispersion of ensemble forecasts that are overdispersed. In this case, it is

necessary to adjust the dispersion of the ensemble members through a rescaling of

the ensemble forecasts. A scheme that facilitates such a correction is introduced in

chapter 3.

Wang and Bishop found the skill of the approach of Roulston and Smith [2003] to

be dependent on the multi-dimensional space used to identify the ‘best ensemble

member’, and that the dispersion of the hybrid ensembles remained an inaccurate

measure of the forecast uncertainty. By contrast, the authors found that their BMD

method yielded forecasts that were reliable under the second moment, that is, the

forecast variance was well calibrated with the squared errors of the ensemble mean

forecast. However, the authors noted that their method was unlikely to be adequate

for variables such as precipitation and windspeed, for which non-Gaussian dressing

kernels are likely to be preferable.

2.4.3.2 Bayesian model averaging

Raftery et al. [2005] made the first application of Bayesian Model Averaging (BMA),

a popular method in the economics literature, to probability forecasts of meteorolog-

ical variables. Each of the M (possibly bias corrected) ensemble members is dressed

with a kernel that reflects the uncertainty about the forecasts of that member, in an

analogous manner to the BMD method described in section 2.4.3.1. The key differ-

ence is that the BMA dressing kernel variance is estimated as a model parameter,

rather than being calculated explicitly from the training sample with equation (2.9).

The dressing kernel variance is estimated by optimisation of an objective function

that is calculated over the training sample, for which we give details in chapter 3.

Furthermore, in the full specification [Raftery et al., 2005], each ensemble member

is weighted and has its own dressing kernel variance, with the weights determined
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by the forecast skill of the individual members over the training sample. As with

the rank histogram recalibration method the weights are constrained to sum to 1.

We denote by gBMA
m and GBMA

m the PDF and CDF of the dressing kernel associated

with themth ensemble member, respectively. In the full model specification [Raftery

et al., 2005] probability forecasts of the binary event {yt ≤ q} are given by

Pr(yt ≤ q) =
M∑
m=1

wmG
BMA
m (q | x̂m,t). (2.12)

If individual, or groups of ensemble members can be distinguished, for example as

in multi-model ensembles, then it seems appropriate to use member-dependent (or

group-dependent) kernels and weights as in equation (2.12). On the other hand, if

the ensemble members are exchangeable then it is appropriate to use a simplified

forecast distribution in which all ensemble members are assigned equal weight, and

where each dressing kernel has the same variance. In this case probability forecasts

are given by

Pr(yt ≤ q) =
1

M

M∑
m=1

GBMA
m (q | x̂m,t). (2.13)

The choice of distribution for the dressing kernels, GBMA
m (·), is dependent on the

meteorological variable to be forecast. Raftery et al. [2005] successfully applied

Gaussian-distributed kernels centred on the ensemble members,

yt | x̂m,t ∼ N(x̂m,t, σ
BMA2

m ), for m = 1, 2, . . . ,M, (2.14)

with separate dressing kernel variances σBMA2

m estimated for each ensemble member.

As noted above, a simplifying assumption appropriate for exchangeable ensembles is

σBMA2

m = σBMA2
for all m = 1, 2, . . . ,M . This model is also more parsimoneous, and

is subject to less sampling error than the full specification. In this case, probability

forecasts of the binary event {yt ≤ q} take the same form as the corresponding BMD

forecasts,

Pr(yt ≤ q) =
1

M

M∑
m=1

Φ

(
q − x̂m,t
σBMA

)
. (2.15)

In section 2.4.5 we outline some alternative formulations of the BMA method that

have been developed for meteorological variables whose distribution cannot be rea-

sonably approximated by a mixture of Gaussian distributions. Such flexibility has

seen the BMA method become perhaps the most popular method in the post-

processing literature.
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2.4.4 Regression methods

We now describe a second class of ensemble post-processing methods, that can be

broadly classified as regression models. Unlike dressing methods, which add uncer-

tainty to the raw ensemble forecast while preserving the location of the individual

ensemble members, these regression methods construct forecast distributions using

summary statistics of the ensemble forecasts as model covariates. In a sense regres-

sion methods therefore use less information about the raw ensemble forecast than

dressing methods, as in general the relative location of the ensemble members is less

influential on the probability forecast distributions for the verifying observations.

2.4.4.1 Model output statistics

Model output statistics (MOS) is a simple post-processing method that is more

commonly used for post-processing ensemble forecasts on longer time-scales, such as

for seasonal and climate forecasts [Tippett et al., 2005; Glahn et al., 2009], although

less so in the post-processing of short-range weather forecasts as considered in this

thesis. The method is simply a linear regression model of the form

y = a+ bx̄+ ϵ, (2.16)

where ϵ is a Gaussian-distributed random variable with expectation 0 and constant

variance c2. As for all regression models, the model parameters (here a, b and c)

are estimated from training samples. Further details of the parameter estimates are

discussed later in section 5.2.1. Out-of-sample probability forecasts for the binary

event {yt ≤ q} are given by

Pr(yt ≤ q) = Φ

(
yt − µt
c

)
, (2.17)

where again Φ(·) denotes the CDF of the Gaussian distribution, and µt = a + bx̄t

is the expectation of the MOS probability forecast distribution for the verifying

observation yt.

2.4.4.2 Nonhomogeneous Gaussian Regression

Gneiting et al. [2005] introduced the post-processing method known as Nonhomoge-

neous Gaussian regression (NGR), which is appropriate when forecasting variables

whose distribution, conditional on the ensemble forecasts, can be reasonably mod-

elled by a Gaussian distribution. The NGR method extends the MOS forecasts
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discussed previously to account for the possible existence of spread-skill relation-

ships between the spread of the ensemble forecasts and the magnitude of the errors

of the NGR forecast mean.

For the out-of-sample forecast at time t, the expectation and variance of the Gaussian

probability forecast distribution issued by the NGR post-processing method are

given by linear functions of the ensemble mean and variance x̄t and s
2
t , respectively.

In the full model specification proposed by Gneiting et al. [2005] the expectation,

µt, is a weighted sum of the members of xt,

µNGR
t = a+

M∑
m=1

wmxm,t, (2.18)

where the weights w1, w2, . . . , wM reflect the deterministic forecast skill of the en-

semble members in the training sample used for parameter estimation, and the

parameter a is a constant offset. It is appropriate to assign equal weight to each

ensemble member in the case of exchangeable ensembles, in which case the NGR

forecast mean reduces to

µNGR
t = a+ bx̄t (2.19)

where the parameters a and b are estimated from the training sample. As is also true

for the MOS post-processing method described previously, the expectation of the

NGR forecast distribution, µNGR
t , is therefore a bias-corrected deterministic forecast,

where the bias correction is assumed to be a linear function of the ensemble mean,

rather than simply an additive constant as for the RHR, BMD and BMA post-

processing methods (see equation (2.6)).

Similarly, at time t the NGR forecast variance is given by

σNGR2

t = c+ ds2t , (2.20)

where s2t = (M − 1)−1
∑M

m=1(xm,t − x̄t)
2 is the sample variance of the ensemble

forecast xt. As with the parameters a and b, estimates for c and d are obtained by

optimisation of an objective function over a training sample, details of which are

provided in chapter 3. Forecast probabilities of the binary event {yt ≤ q} are thus

given by

Pr(yt ≤ q) = Φ

(
q − µNGR

t

σNGR
t

)
. (2.21)

The forecast uncertainty, as represented by the NGR forecast variance σNGR2

t , is not

fixed to a constant value as is the case in the more simplistic MOS post-processing

method. Rather, the NGR method exploits spread-skill relationships between the

uncertainty inherent in the ensemble forecasts and the predictability of the verifying
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observations, and also provides a correction to the biases in forecast dispersion that

are often found in operational settings. If spread-skill relationships do not exist

we may reasonably expect the parameter d to tend to 0, and thus to recover the

MOS forecast distributions in which the errors of the forecast mean, µNGR
t (equa-

tion (2.19)), are normally distributed with constant variance.

Gneiting et al. [2005] used the NGR post-processing method to issue probability

forecasts of sea level pressure. The authors reported that the NGR forecasts were

better calibrated with the verifying observations than the forecast derived from the

raw ensemble forecasts. For example, the coverage of prediction intervals was more

accurate. The authors reported that the estimate of the parameter d was negligibly

small on several of the forecast occasions considered. This questions the necessity

of the NGR model for that particular dataset — perhaps the simple MOS model

would have been adequate. However, if spread-skill relationships do exist, we may

reasonably expect the NGR forecasts to be more skilful than those given by the

MOS post-processing method.

Coelho et al. [2004] also used the ensemble variance as a measure of forecast un-

certainty in a Bayesian model for December ENSO forecasts. Prior distributions

for the observations were given by a linear regression, where the observation for the

previous July was used as a predictor variable, that is

yDec,t ∼ N(a0 + b0yJul,t, σ
2
0t), (2.22)

where yDec and yJul denote the December and July observations, respectively, and

the subscript t indexes the T observations in the dataset. The prior variance, σ2
0t,

is given by

σ2
0t = σ0

1 + 1

T
+

(
yDec,t − ȳDec

)2
Ts2yDec

 , (2.23)

where ȳDec and s2yDec
denote the sample mean and variance of the T observations

yDec in the dataset. In a second stage, the likelihood is obtained by regressing

the ensemble means x̄Dec on the corresponding observations yDec, where the model

variance is equal to the ensemble variance rescaled by a constant parameter, denoted

γ. That is,

x̄Dec ∼ N(a1 + b1yDec, γs
2

Dec), (2.24)

where x̄Dec and s2Dec are the ensemble mean and variance of the ensemble forecasts

for the December observations. As the authors had only a small dataset available,

the parameters for the prior and likelihood distributions given above were calculated

for the T observations using cross-validation, that is, each of the T forecasts and

observations was left out, and the remaining T − 1 forecasts and observations were
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used for parameter estimation. Applying Bayes Theorem, analytic results then show

that the precision of the posterior distribution for the observation yDec,t, 1/σ
2

Dec,t,

is given by
1

σ2

Dec,t
=

1

σ2
0t

+
b21

γs2Dec,t
, (2.25)

the sum of the precisions of the prior distribution and the ensemble forecasting

system for observation yDec,t. Similarly, the mean of the posterior distribution,

µDec,t, is given by

µDec,t
σ2

Dec,t
=
µ0t

σ2
0t

+
b21

γs2Dec,t

(
x̄Dec,t − a1

b1

)
, (2.26)

where µ0t is the expectation of the prior distribution for observation yDec,t. The

representation of forecast uncertainty using sums of precisions differs from that of

the NGR model (see equation (2.20)). Inverting the expression for the precision

leads to an estimate of the forecast variance, which is not a linear function of the

ensemble variance. It would be interesting to compare the skill of the two methods

in larger scale studies.

2.4.4.3 Logistic regression

Logistic regression (LR) is an alternative model for probability forecasts of binary

events. Out-of-sample forecasts are given by

Pr(yt ≤ q) =
eηt

1 + eηt
, (2.27)

where ηt is the so-called linear predictor, a function that is linear in the model

covariates. The method was successfully applied to the post-processing of ensemble

forecasts in to probability forecasts in Hamill et al. [2004], who proposed the linear

predictor

ηt = a+ bx̄t + cs2t , (2.28)

where the parameters a, b and c are estimated from a training sample. Hamill et al.

found that including the ensemble variance did not improve the skill of probabilistic

forecasts of precipitation, although Wilks [2006a] found the opposite for the Lorenz

1996 system [Lorenz, 1996].

The expression given in equation (2.27) is derived from the logit link function, that

specifies the linear predictor η as a function of the probability forecast p = Pr(y ≤ q),

for a general predictor η and observation q. The Logit link function is

log{p/(1− p)} = η, (2.29)
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and ensures that the forecast probabilities given by equation (2.27) are bounded by

the interval (0, 1), which would not be the case, for example, if using the identity

link function p = η. Another popular choice of link function is the probit link,

Φ−1(p) = η, where Φ(·) is the CDF of the standard normal distribution.

As with other post-processing methods, such as NGR, BMA and BMD, for which

probability forecasts are issued with the respective CDFs, the probability forecasts

issued by equation (2.27) result from evaluating the CDF of the logistic distribution

at the threshold q. For the logit link function, the logistic CDF is given by

F (q) =
1

1 + e−(q−µLR
t )/σLR

t

, −∞ < q <∞, (2.30)

where µLR
t and σLR2

t denote the expectation and variance of the logistic distribution

at forecast time t. The subscript t indicates the possible dependence of µLR
t and

σLR2

t on statistics of the ensemble forecast xt.

Unfortunately, unlike other post-processing methods, such as NGR, the LR model

does not provide an intuitive way for the user to exploit possible spread-skill rela-

tionships. This results from the fact that inclusion of the ensemble variance in the

linear predictor ηt serves to alter the location, rather than the dispersion, of the

logistic distribution. To see this, first observe that the form of equation (2.30) for

F (q) is recovered by multiplying the numerator and denominator of equation (2.27)

by e−ηt and making the substitution

ηt = (q − µLR
t )/σLR

t .

For a fixed threshold q, therefore, changes in the linear predictor ηt correspond to

changes in the quantity (q−µLR
t )/σLR

t . Inclusion of the ensemble variance, s2t , in the

linear predictor does therefore not directly affect the standard deviation of the Lo-

gistic distribution, σLR
t , unlike the NGR model (see equation (2.20)). The inclusion

of covariates in the linear predictor ηt does not have an intuitive interpretation in

terms of adjusting the location, µLR
t , and variance, σLR2

t , of the Logistic distribution.

In section 2.4.5 we describe an extension to the logistic regression model [Messner

et al., 2014] that allows for a more intuitive use of model covariates in the context

of ensemble post-processing.

Unlike the statistical models that are employed for continuous predictands, it is nec-

essary to estimate separate LR model parameters for each threshold, q, of interest.

This requirement introduces the undesirable possibility of inconsistent probability

forecasts, that is, for two thresholds qa and qb with qa < qb, logistic regression param-

eters may imply Pr(y ≤ qa) > Pr(y ≤ qb). The need to estimate separate parameters

for each threshold of interest is somewhat burdensome.
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2.4.5 Miscellaneous post-processing methods

Several variants of the post-processing methods described above have been developed

with specific applications in mind. For probability forecasts of wind speed, Tho-

rarinsdottir and Gneiting [2010] applied the truncated normal distribution with lo-

cation and scale parameters governed by the ensemble mean and variance, in an anal-

ogous manner to the standard NGR post-processing method (see section 2.4.4.2).

Friederichs and Thorarinsdottir [2012] applied the generalised extreme value (GEV)

distribution to issue probability forecasts of daily maximum wind speeds, and Lerch

and Thorarinsdottir [2013] proposed a regime-switching approach that used either

of the two aforementioned models, depending on the value of the median of the

ensemble forecast. The three methods all improve considerably on probability fore-

casts derived from the raw ensemble forecasts, such as the frequency of members

forecasting the occurrence of an event. The regime-switching model [Lerch and

Thorarinsdottir, 2013] appears to improve slightly on the single model approaches.

An alternative BMA approach was implemented for probabilistic forecasts of wind

direction [Bao et al., 2010], where the dressing kernels take the form of the von Mises

distribution. The post-processing of bivariate wind vectors has been studied by

Pinson [2012] and Schuhen et al. [2012] in the context of bivariate Nonhomogeneous

regression, and with a bivariate extension to BMA [Sloughter et al., 2013].

Due to its local (small scale) nature and highly skewed distribution, precipitation

is a notoriously difficult variable to forecast, both deterministically and probabilis-

tically. As described in section 2.4.2.2, the rank histogram recalibration method

[Hamill and Colucci, 1997, 1998] improved the calibration of ensemble forecasts of

precipitation using ideas based on the rank histogram. More recently, a variant of

the BMA method [Sloughter et al., 2007] has yielded promising results. The dis-

tribution is a discrete-continuous mixture, with a point probability mass at 0 and

a continuous probability distribution over the positive real axis. The probability

Pr(y = 0) is estimated using logistic regression, and the remaining (strictly posi-

tive) forecast distribution is a mixture of M Gamma-distributed dressing kernels

centred at the ensemble members. Alternatively, Wilks [2009] introduced an exten-

sion of logistic regression (see section 2.4.4.3), termed ELR, that overcomes the need

to estimate separate parameters for multiple thresholds of interest. By including a

monotonically increasing function of the threshold q, say ω(q) in the linear predictor

(see equation (2.28)), fully continuous distributions are specified over the possible

range of q. The extension therefore circumvents the need to fit the LR model for

each threshold of interest. The difficulty lies in specifying an appropriate function

ω(·), although the cube root of the threshold value (ω(q) = q1/3) is said to be ap-

propriate for precipitation forecasts. In addition, Messner et al. [2014] introduced a
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further extension of Logistic regression that enables the user to separately adjust the

location and variance of the Logistic forecast distribution, by specifying nonlinear,

rather than linear predictors, with terms that correspond to the location µLR and

variance σLR2
. This method is termed heteroscedastic extended logistic regression

(HELR), and is appropriate for forecasts of binary predictands of many meteorolog-

ical variables. Finally, Scheuerer [2014] proposed a regression-based post-processing

method, modelling the distribution of precipitation observations conditionally on

the ensemble forecast by exploiting the properties of the 3-parameter (location,

scale and shape) GEV distribution. The forecast distribution is left-censored at 0,

meaning that all probability mass on the negative real axis is shifted to a point mass

at 0. Scheuerer concluded that the GEV-based method improved slightly on ELR,

although we note that the method was not compared to HELR.

Stephenson et al. [2005] proposed a post-processing method known as Forecast As-

similation (FA) which, unlike the methods described previously, adopts the Bayesian

philosophy. The authors suggest that, just as data assimilation is used to map

information from the observed atmosphere to the NWP model initial conditions,

so-called forecast assimilation should be used to infer the observations and the asso-

ciated uncertainty from the available ensemble forecasts. Probability forecasts are

constructed through the application of Bayes’ theorem. In Stephenson et al. [2005]

the probability forecasts are restricted to either univariate or multivariate Gaussian

distributions. Due to its Bayesian nature, it is necessary to issue prior distributions

for the parameters of interest. Stephenson et al. [2005] accomplish this by using

separate datasets for the estimation of priors and, subsequently, the recalibration of

operational forecasts. The so-called ‘forecast operator’ is used to link the ensemble

forecasts to the verifying observations, and in Stephenson et al. [2005] is analogous

to a standard linear regression approach, such as the MOS method (section 2.4.4.1).

Indeed, if the same dataset is used for the estimation of prior distributions and

forecast recalibration, Stephenson et al. [2005] state that forecast assimilation and

MOS are equivalent. The probability forecast distributions produced by the FA

post-processing method are therefore a function of both the prior specification of

the model parameters, which are associated with the data assimilation process, and

the parameters of the forecast operator, which is analogous to the regression-type

approaches to ensemble post-processing described in this section.

In addition to the post-processing methods for bivariate wind vectors mentioned

previously, several parametric approaches have been proposed that facilitate the

post-processing of ensemble forecasts of multivariate quantities. The multivariate

quantity may represent a spatial field of a single variable [Berrocal et al., 2007,

2008; Scheuerer and Büermann, 2014], or a field of multiple meteorological vari-

ables [Möller et al., 2013]. The methods proposed by Berrocal et al. [2007, 2008]
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and Scheuerer and Büermann [2014] combined well-known geostatistical methods

with state-of-the-art post-processing methods, such as BMA, to produce probabilis-

tic forecast distributions of the multivariate quantities. On the other hand, Möller

et al. [2013] uses a Gaussian copula to combine the marginal distributions of univari-

ate meteorological variables, estimated with BMA, in to a multivariate distribution

function. The Gaussian copula approach requires only the estimation of a covariance

matrix that provides an estimate of the correlation between the various variables

of interest. In the published literature, inclusion of a multivariate structure has

proved beneficial to measurements of forecast skill of both univariate and multivari-

ate quantities. Put simply, this is seemingly because more information contained

within the NWP-based ensemble forecasts is utilised in the post-processing stage,

and so we should expect improved probability forecasts of multivariate quantities.

An approach for producing ensemble forecasts, rather than probability forecasts, of

multivariate predictands is described next.

2.4.6 Ensemble copula coupling

Rather than producing multivariate probability forecasts with post-processing meth-

ods such as those described at the end of the previous subsection, the user may

instead require multivariate ensemble forecasts. This is likely to be necessary for

forecasts of high-dimensional variables, for which multivariate probability forecasts

require specification of the (often complicated) dependence structure of the marginal

variables. For example, even in the relatively simple case of multivariate Gaussian

forecast distributions, it is necessary to state the high-dimensional multivariate co-

variance matrix, which is impractical for forecasts of predictands such as gridded

temperature over a large area.

One might reasonably hope that a ‘good’ ensemble forecasting system will contain

useful information about the dependencies between the many weather variables, as

well as the spatial and temporal structure of the future atmospheric state. If this is

indeed the case, then it follows that we should exploit the dependence structure of

the ensemble forecasts in order to improve our forecasts of multivariate predictands.

In this thesis we are concerned with forecasts over spatial fields, for which we provide

examples in chapters 4 and 5.

Before constructing ensemble forecasts of multivariate variables, in our case for spa-

tial fields, it is necessary to first obtain post-processed ensemble forecasts, rather

than probability forecasts, for each of the R marginal variables. Fortunately this is

readily achieved by drawing samples of the required ensemble size from the proba-

bility forecast distributions that are constructed by ensemble post-processing meth-

ods, such as those introduced in this section. That is, a standard ensemble post-

44



2. Ensemble weather forecasting and ensemble post-processing

processing method is applied to the raw ensemble forecasts, in order to produce

recalibrated probability forecast distributions from which recalibrated, M -member

ensemble forecasts are sampled. The question is then how to sample the ensemble

members? Schefzik et al. [2013] proposed the three following sampling schemes.

1. Random sampling — at each margin, ensemble forecasts x̃ = (x̃1,r, x̃2,r, . . . , x̃M,r)

for r = 1, 2, . . . , R are sampled as independent and identically distributed

(IID) draws from the probability forecast distribution issued by the ensemble

post-processing method at location r. This is achieved by setting

x̃m,r = F−1
r (um) for m = 1, 2, . . . ,M, (2.31)

where F−1
r (·) is the inverse of the CDF of the probability forecast distribution

at location r, and the um are each IID realisations of a uniform-distributed

random variable on the interval [0, 1].

2. Quantile sampling — ensemble members x̃m,r are chosen as equidistant quan-

tiles of the probability forecast distribution at location r, that is

x̃m,r = F−1
r

(
m

M + 1

)
for m = 1, 2, . . . ,M. (2.32)

As we shall see later in this chapter (section 2.5.4), this choice of ensemble

members is close to optimal in the sense of optimising a commonly used mea-

sure of forecast skill.

3. Transformational sampling — Firstly, a probability distribution is fitted to

the initial, raw ensemble forecasts, and the quantile values of each member are

calculated. For example, a Gaussian distribution with mean x̄ and variance

s2, where x̄ and s2 denote the ensemble mean and variance, could be fitted

to the raw ensemble forecasts. The CDF values for each ensemble member,

qm = Φ((xm − x̄)/s) are then calculated for all m = 1, 2, . . . ,M . The post-

processed ensemble forecast is then given by:

x̃m,r = F−1
r (qm). (2.33)

The idea of exploiting the dependence structure of ensemble forecasts was proposed

by Flowerdew [2012], in an article that concerned spatial forecasts of precipitation.

The author pointed out that, in post-processing the ensemble forecasts at each loca-

tion, the dependence structure between forecast locations is lost. If the raw ensemble

forecasts do indeed contain useful information about the dependence structure of

the verifying, multivariate observations, then we might reasonably expect to improve

the skill of the post-processed multivariate ensemble forecasts by incorporating the
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dependence in to our recalibrated, post-processed forecasts. To quote Flowerdew

[2012]: “The key to preserving spatial, temporal and inter-variable structure is how

this set of values is distributed between ensemble members. One can always con-

struct ensemble members by sampling from the calibrated PDF, but this alone would

produce spatially noisy fields lacking the correct correlations. Instead, the values

are assigned to ensemble members in the same order as the values from the raw

ensemble: the member with the locally highest rainfall remains locally highest, but

with a calibrated rainfall magnitude.”

The methodology known as ensemble copula coupling (ECC), introduced by Schefzik

et al. [2013] is in essence a generalisation of the ideas proposed by Flowerdew [2012].

The ECC methodology uses the empirical copula of the raw, multivariate ensemble

forecasts to combine the dependence structure of the raw forecasts with recalibrated

ensemble members that are sampled from probability distributions as described

above. The dependence structure of the raw ensemble forecasts at multiple loca-

tions is represented by the rank correlation structure, or empirical copula, which

can be viewed as an empirical representation of the multivariate copulas discussed

in the previous subsection. The ECC method proceeds as follows. Firstly, the em-

pirical copula of the raw, multivariate ensemble forecasts is calculated. Given an

M -member ensemble forecast of an R-dimensional field, calculation of the empirical

copula simply involves calculating the rank order of the M ensemble members for

each of the R marginal variables. For each marginal variable, therefore, the rank

order is a permutation of the integers {1, 2, . . . ,M}. We denote the permutations

by πr, for r = 1, 2, . . . , R,

πr = (rank x1,r, rank x2,r, . . . , rank xM,r), (2.34)

where rank xm,r =
∑M

l=1 I(xl,r ≤ xm,r) is the rank of the ensemble member xm,r

among the M members of the ensemble forecast xr. The R-dimensional ensemble

members, x̂1, x̂2, . . . , x̂M are then obtained by applying the permutation πr to the

ensemble forecasts sampled at each of the R margins. That is

x̂r = πr(x̃r), for r = 1, 2, . . . , R, (2.35)

where the x̃r are ensemble forecasts sampled from probability forecast distributions,

as described above. By reordering the post-processed ensemble members to the order

observed in the raw ensemble forecasts, the rank dependence structure of the raw,

multivariate ensemble forecast is recovered, while the marginal ensemble forecasts

should be better calibrated with the verifying observations, in keeping with the

foregoing quote from Flowerdew [2012].

Schefzik et al. [2013] illustrated the use of the ECC methodology with an example
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of spatial forecasts of near-surface temperature and air pressure over a spatial field

defined by three German airports. It was shown that by retaining the rank de-

pendence structure of the raw ensemble forecasts, the skill of multivariate forecasts

was improved compared to ensemble forecasts that were only recalibrated at the

margins.

2.4.7 Parameter estimation

In this section we give a brief overview of two objective functions that are used for

parameter estimation in many of the examples used throughout this thesis. We also

review the method of moments, which we use in chapter 4. We provide an outline

only, and defer details for specific post-processing methods until the relevant sections

in the subsequent chapters. As mentioned earlier in this chapter, the objective

functions are calculated over training samples of N historical ensemble forecasts and

verifying observations. The section concludes with a description of two numerical

optimisation routines that are used to find the ‘optimal parameter estimates’, which

are those estimates that minimise the objective function over the training sample.

2.4.7.1 Parameter estimation by objective function minimisation

We make frequent use of the well known likelihood framework for parameter es-

timation. Let ψ denote the vector of parameters that are to be estimated in the

statistical model, and denote the estimate of ψ by ψ̂. For example, the parameter

vector for the NGR method (see section 2.4.4.2) is ψ = (a, b, c, d)′, and its estimate

is ψ̂ = (â, b̂, ĉ, d̂)′. The likelihood function for the statistical model under considera-

tion is a function of ψ, conditional on the training sample, in our case the ensemble

forecasts and observations (xi, yi), i = 1, 2, . . . , N . In this thesis we work with the

negative logarithm of the likelihood (negative log-likelihood, NLL). The logarithmic

likelihood is often easier to work with for reasons of algebraic simplicity, and we

negate it so that the parameter estimate ψ̂ is found by minimising the objective

function. The general form of the NLL is

NLL(ψ̂ | data ) = −
N∑
i=1

log f(yi | xi, ψ̂), (2.36)

where f(·) denotes the PDF of the forecast distribution for the observations, which

as before is conditional on the corresponding ensemble forecasts and parameter vec-

tor. The optimal parameter estimates are those that minimise equation (2.36), and

are referred to as the ‘likelihood parameter estimates’ hereafter. Likelihood param-

eter estimates have several appealing properties. Not least, under correct model
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assumptions, the parameter estimates are asymptotically distributed as multivari-

ate Gaussian random variables, with mean vector ψ (the ‘true’ parameter vector),

and covariance matrix that can be calculated explicitly from the likelihood function.

The terms in the covariance matrix are typically inversely proportional to the train-

ing sample size, N , meaning that parameter uncertainty decreases asymptotically

as the size of the training sample increases.

In chapter 3 we make particular use of parameter estimates obtained by minimising

an alternative objective function, namely the continuous ranked probability score

(CRPS, Matheson and Winkler [1976]). The CRPS is discussed in the context

of verifying the skill of probability forecasts in section 2.5.3, for which it is more

commonly employed. The general form for the CRPS, calculated over a training

sample is

CRPS(ψ̂ | data ) =
1

N

N∑
i=1

∫ ∞

−∞

{
F (u | xi, ψ̂)− I(yi ≤ u)

}2

du. (2.37)

Here u is a dummy variable, and F (u | xi, ψ̂) is the cumulative distribution function

(CDF) issued by the statistical post-processing model under consideration, which

is conditional on ensemble forecast xi and the parameter estimate ψ̂. The integral

given in equation (2.37) can be written in a closed form for several probability

distributions used in the ensemble post-processing literature, examples of which are

given in chapter 3. The parameter estimates ψ̂ that minimise equation (2.37) are

hereafter referred to as the ‘CRPS parameter estimates’.

The CRPS was first used as an objective function for parameter estimation for the

NGR model [Gneiting et al., 2005]. The authors state that the resulting probabil-

ity forecast distributions are more skilful and sharper than those issued with NLL

parameter estimates. In chapter 3 we provide a more comprehensive comparison of

the skill of probability forecasts using the NLL and CRPS parameter estimates for

several post-processing methods.

2.4.7.2 Parameter estimation by the method of moments

In chapter 4 we use the method of moments to obtain parameter estimates of a

newly developed ensemble post-processing method. The method of moments de-

rives parameter estimates by equating the expectations of summary statistics of the

training data with their realised values, where the expectations are defined according

to the assumed model for the observations, conditional on the ensemble forecasts.

The parameter estimates are found by solving the resulting system of equations.

It is therefore necessary to derive at least as many equations as unknown param-
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eters, and to ensure that the system gives a unique solution. As suggested by its

name, the method of moments requires only assumptions about the moments of the

forecasts and observations, rather than distributional assumptions, as are required

when optimising an objective function such as the NLL or CRPS. Therefore, the

method of moments is, in a sense, less restrictive than other parameter estimation

routines. However, the properties of moment-based estimators are less appealing —

for example, the uncertainty in moment-based estimators is generally larger than

their likelihood-based counterparts [Gillard, 2014].

2.4.7.3 Numerical optimisation routines

In general, closed-form expressions do not exist for parameter estimates in the likeli-

hood and minimum CRPS estimation frameworks, and we must resort to numerical

optimisation routines. These routines seek to find the minimum of the multidi-

mensional objective function surface that is enclosed by the space described by the

possible parameter values, known as parameter space. The parameter estimates are

then the set of parameters that minimise the objective function surface. Numer-

ical optimisation forms a research field in its own right, and a detailed discussion

is beyond the scope of this thesis. In subsequent chapters we make frequent use of

two algorithms: the Nelder-Mead [Nelder and Mead, 1965] and Broyden-Fletcher-

Goldfarb-Shanno (BFGS), published simultaneously by the aforementioned authors

in 1984, which are outlined below. We typically use the Nelder-Mead algorithm to

find initial parameter estimates, and then initialise the BFGS algorithm with these

estimates to obtain the final parameter estimates. We use the in-built implementa-

tions available in the R language [R Core Team, 2015].

The Nelder-Mead algorithm is a ‘simplex’ algorithm, that does not rely on derivatives

of the objective function and so is often suitable for finding the minima of non-

differentiable functions. Briefly, a simplex of D + 1 ‘test points’ in RD is formed,

where D is the dimensionality of the parameter space. The algorithm identifies the

worst test point, the point at which the objective function attains the largest value

among the D + 1 test points. This worst point is reflected through the centroid

of the test points, the idea being that smaller values of the objective function will

exist in the area of parameter space occupied by the other test points. Depending

on the value of the objective function at the reflected point, the simplex is either

expanded or contracted in the direction of ‘steepest descent’ of the objective function

surface. The process is iterated until the algorithm can identify no smaller values

of the objective function, at which time the algorithm stops and reports the best

test point as the parameter estimates. The Nelder-Mead algorithm is susceptible

to finding local, rather than global minima, and so care is needed to ensure that
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the parameter estimates are not influenced by the starting values supplied to the

algorithm, which are typically chosen by the user.

The BFGS algorithm is a quasi-Newton method that relies on derivatives of the

objective function. The derivatives can either be supplied in closed form by the

user, or are otherwise estimated by the numerical routine. The derivative of the

objective function is necessarily 0 at the minima, with the exception of minima that

lie on the boundary of the parameter space. The BFGS algorithm therefore seeks

points in parameter space that correspond to roots of the derivative of the objective

function. The method requires an approximation to the Hessian matrix, the square

matrix of second partial derivatives of the objective function with respect to the

parameters, which is then evaluated at the parameter estimates ψ̂. Having obtained

this estimate, say B, using a Taylor series expansion of the scalar-valued objective

function O : RD → R leads to the following equation:

B(k)∆ψ = −∇O(ψ(k)).

Solving this equation for ∆ψ yields the new ‘search direction’ for the optimal pa-

rameters. Here the superscript refers to the kth iterate of the algorithm, and ∇
denotes the vector of partial derivatives. The value ψ̂(k) is updated according to

ψ̂(k+1) ∝ ψ̂(k) +∆ψ.

The update ∆ψ is in fact scaled by a constant, the technical details of which are

omitted here. The algorithm is deemed to have converged when the magnitude of

the vector of derivatives, say ∥∇ψ(k)∥, is smaller than some pre-defined tolerance.

2.5 Forecast verification

2.5.1 Introduction

In this section we give details for a variety of techniques and methods that we use

for the assessment of ensemble and probability forecasts throughout chapters 3–6 of

this thesis. Rigorous assessments of forecast skill are important, not just to rank

competing forecasts, but to aid in determining deficiencies in current post-processing

methods that can subsequently be improved upon. Graphical tools can aid in the

diagnosis of the strengths and weaknesses of the statistical post-processing models,

and can suggest potential areas for improvement. Scoring rules, on the other hand,

provide quantitative measures of a forecast’s performance, usually in the form of

a single number that summarises the skill of the forecast. Scoring rules reward
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forecasts for both their reliability and resolution (see section 2.3) or, equivalently,

penalise forecasts that are not well-calibrated. Different scores penalise certain char-

acteristics of a forecast more heavily than others, as we discuss in section 2.5.3.2.

In this thesis we use two classes of scoring rules: proper scoring rules [Gneiting and

Raftery, 2007], which are appropriate for the evaluation of probability forecasts, such

as those outlined in sections 2.4.3.2, 2.4.4.2 and 2.4.5, and fair scores [Ferro, 2014],

which are appropriate for the evaluation of ensemble forecasts that are interpreted

as IID samples from underlying ensemble distributions.

In this thesis we consider out-of-sample forecasts — that is, probability and/or en-

semble forecasts that are not contained within the training sample used for parame-

ter estimation (see section 2.4.7). As with the examples provided in section 2.4, we

make clear this distinction in our notation, by calculating verification scores for ver-

ifying observations yt, where t = 1, 2, . . . , T indexes the forecasts and observations

contained in a test dataset of size T .

2.5.2 Graphical assessments of forecast skill

2.5.2.1 Diagnostic plots using model residuals

Assessing the calibration of statistical models by inspection of the residuals is a

widely used exploratory technique in applied statistics. Let rt denote the residual

on forecast occasion t,

rt = ŷt − yt, (2.38)

where ŷt is the predicted (deterministic) forecast of yt given by the ensemble post-

processing method — for example, in section 2.4.4.2 we explained that the expec-

tation of the NGR forecast distribution, say µt, can be used as a deterministic

forecast (see equation (2.19)). Plotting model residuals against covariates serves as

a useful aid both in checking the validity of model assumptions and, if appropriate,

identifying possible model improvements.

It is often useful to supplement the scatter plots described below with a line of best

fit, or ‘scatter plot smoother’. These lines approximate the empirical expectation of

the dependent variable, such as the residuals, throughout the plotted range of the

independent variable, and thus provide a basis for suggesting model improvements.

We achieve this by using the Loess method as implemented in the R language [R Core

Team, 2015]. The Loess method estimates a line of best fit using local polynomial

regression. At each point in the scatter plot, the Loess line is estimated using a

local neighbourhood of points, where the size of the neighbourhood is controlled by

the user and influences the amount of smoothing that is performed. The influence
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of each point in the neighbourhood is governed by a weight function. In our usage

in this thesis, the weights are inversely proportional to the cubed distance of the

points in the neighbourhood from the point at which the line is to be estimated.

We now provide some examples of how such scatter plots might be used, although

the appropriate choice of plot should be determined by the situation at hand. Scatter

plots of the residuals, r, as a function of the post-processed forecast mean should, if

the deterministic forecasts (the post-processed mean) are well calibrated, appear as

white noise distributed around the line r = 0. Systematic departures from the 0 line

are indicative of misspecification of the forecast mean, and may provide evidence

for alternative specifications of the mean of the probability forecast distributions.

Scatter plots of model residuals can also be used to assess the variance of probability

forecast distributions. Define the squared standardised residuals,

ssrt =
r2t
σ2
t

, (2.39)

where again σ2
t is the forecast variance. If the post-processing model is correctly

specified, the squared standardised residuals ssrt, t = 1, 2, . . . , T have expectation

1. Plots of ssrt against the forecast variance can therefore be used to assess the

calibration of the forecast variance — in this case, the Loess curve should follow the

line ssr = 1 throughout the range of the forecast variance.

The residuals can also be used to assess the distributional assumptions of ensem-

ble post-processing methods. Let srt = rt/σt denote the standardised residuals,

for t = 1, 2, . . . , T . If the probability forecast distributions are well-calibrated, the

standardised residuals should each have expectation 0 and unit variance, with dis-

tribution that is assumed by the statistical model. For example, for the Gaussian

forecasts issued by the NGR post-processing method, the standardised residuals

should appear as IID draws from the standard normal distribution N(0, 1). So-

called quantile-quantile (or Q-Q) plots are commonly employed to assess the distri-

butional assumptions. This is a plot of the pairs (qt/(T+1), sr
(t)) for t = 1, 2, . . . , T ,

where qt/(T+1) denote the T equidistant quantiles of the (standardised) probability

forecast distribution, and sr(t) denotes the order statistics of the standardised resid-

uals. Statistical models that are calibrated with the verifying observations yield

Q-Q plots that lie on the diagonal line that has intercept 0 and gradient 1.

2.5.2.2 Reliability diagrams

Reliability diagrams provide a graphical assessment of forecast calibration for prob-

ability forecasts of binary events, i.e. forecasts of the form Pr(y ≤ q), where y is
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the verifying observation and q is a threshold of interest. Such forecasts are the

subject of chapter 3. Reliability diagrams are also related to the reliability com-

ponent of the decomposition of the Brier score, discussed in section 2.5.5 below.

Firstly, probability forecasts are divided in to mutually exclusive bins that cover

the interval (0, 1), for example (0, 0.05], (0.05, 0.1], . . . , (0.95, 1). We denote by K

the number of bins, and Ik, k = 1, 2, . . . , K the indices of forecasts that fall in bin

k. Now let zt = I(yt ≤ q) denote the binary observation of the event {yt ≤ q}, for
t = 1, 2, . . . , T . The reliability diagram is a plot of z̄k =

1
NIk

∑
t∈Ik zt, the arithmetic

mean of the binary observations, against p̄k =
1
NIk

∑
t∈Ik pt, the arithmetic mean of

the probability forecasts in each bin, for all k = 1, 2, . . . , K, where NIk denotes the

number of forecasts in bin k.

Reliable probability forecasts therefore lie on the diagonal line (within sampling

variation). The shape of the reliability diagram can further inform the user as to

possible deficiencies in the calibration of the probability forecasts. For example,

reliability curves that consistently lie below or above the diagonal are indicative of

biased probability forecasts. S-shaped reliability curves are indicative of probability

forecasts that are either overconfident or underconfident, depending on the orien-

tation of the curve. For example, a curve that lies above the diagonal for small

forecast probabilities, but below for large forecast probabilities is indicative of an

overconfident forecasting system — events forecast to occur with small probability

realise more often than they should, while events forecast to occur with high proba-

bility realise less often than they should, if the probability forecasts Pr(y ≤ q) were

correctly calibrated.

2.5.2.3 Rank and PIT histograms

While the reliability diagrams described above are a useful diagnostic tool for prob-

ability forecasts of binary events, they do not assist in the diagnosis of the strengths

and deficiencies of continuous forecast distributions. In this section, therefore, we de-

scribe the rank and PIT histograms, that aid in assessing the calibration of ensemble

forecasts and continuous probability forecast distributions, respectively. The rank

and PIT histograms are typically calculated over the test dataset of out-of-sample

forecasts and observations.

The probability integral transform (PIT) evaluates the forecast CDF, denoted F , at

the verifying observation y. If y is indeed a draw from F , as in the idealised case,

then the PIT values Ft(yt), t = 1, 2, . . . , T follow a uniform distribution. To see this
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observe that

Pr(Ft(yt) ≤ u) = Pr(yt ≤ F−1
t (u))

= Ft(F
−1
t (u))

= u

where each Ft is taken to be uniquely invertible and monotonically increasing. Note

that if the CDF of yt is in fact Gt ̸= Ft, then the quantity Gt(F
−1
t (u)) provides a

measure of the discrepancy between Ft and Gt. Therefore, plotting a histogram of

PIT values calculated over all available forecast-observation pairs, referred to as the

PIT histogram, provides a graphical assessment of the departure of the distribution

of PIT values from uniformity, and is thus useful for assessing the assumption that

the observations, yt, t = 1, 2, . . . , T , have CDFs Ft. The interpretation of such

histograms is discussed below.

An analogous graphical tool is available for assessing ensemble forecasts. In sec-

tion 2.4.2.2 we discussed how the distribution of the rank of the observations when

pooled with the ensemble forecasts in the training sample can be used to produce

recalibrated out-of-sample probability forecasts [Hamill and Colucci, 1997, 1998].

Equation (2.7) gives the formula for calculating the relative frequency of the obser-

vation ranks, which can take values in the set {1, 2, . . . ,M + 1}, where M denotes

the ensemble size. As well as being used to recalibrate the raw ensemble forecasts, a

histogram plot of the values w1, w2, . . . , wM+1, where here the wm are calculated for

the post-processed ensemble forecasts and verifying observations in the test dataset,

provides a useful graphical assessment of the calibration of the ensemble forecasting

system [Anderson, 1996; Hamill and Colucci, 1997]. A calibrated ensemble forecast-

ing system yields uniform (or flat) rank histograms with bin heights of 1/(M + 1)

(within sampling variation).

The shapes of PIT and rank histograms can be informative guides to the strengths

and deficiencies of the calibration of probability and ensemble forecasts, respectively.

U-shaped histograms are indicative of forecast underdispersion — they imply that

a larger than expected proportion of observations fall in the tails of probability dis-

tributions (PIT histograms), or outside the range of the ensemble forecasts (rank

histograms). Similarly, inverted U-shaped histograms are indicative of overdispersed

forecasts. Sloped histograms are indicative of systematic forecast bias in either the

location of probability forecast distributions (PIT histograms) or the ensemble mem-

bers (rank histograms). This follows from the fact that biases in forecast location

result in observations falling more often in one tail of the distribution than the other.

For example, more than half of forecasts issued by a probabilistic forecasting system

whose median is on average larger than the observations will lead to more than half
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of the observations falling in the lower tail of the forecast distributions, and therefore

the resulting PIT histogram will exhibit a negative gradient.

While the uniformity of PIT and rank histograms is a necessary condition for cal-

ibrated forecasts, it is not sufficient. This was illustrated by Hamill [2001], who

provided examples of uncalibrated ensemble forecasts that still resulted in flat rank

histograms. The paper highlights the fact that conditional biases in forecast cali-

bration within individual strata of the historical forecast data can be overlooked by

histograms of the entire data, which essentially smooth the rank distribution over

all cases. Hamill suggested stratifying the data and calculating rank histograms for

each stratum, in order to assess the calibration of forecasts within separate strata.

The author suggested that the stratification could be performed, for example, by

conditioning on covariates such as the ensemble mean and variance.

Gneiting et al. [2008] provided a broad and informative discussion on the verification

of forecasts of multivariate predictands. The authors introduced the multivariate

rank histogram, which is an extension of the rank histogram (described above) for

assessing the calibration of ensemble forecasts of multivariate predictands. The

MRH maps D-dimensional ensemble members xt1, xt2, . . . , xtM ∈ RD and observa-

tions yt ∈ RD to ‘multivariate rank values’, MRt ∈ {1, 2, . . . ,M + 1}. The MRH

is then the histogram of multivariate rank values MRt for t = 1, 2, . . . , T . More

formally, the MRH is calculated as follows. To ease notation, let x0 temporarily

denote a general multivariate observation y. Firstly, for ensemble members xj and

xk ∈ RD, define

xj ≼ xk ⇔ xj,l ≤ xk,l ∀l = 1, 2, . . . , D. (2.40)

In words, I(xj ≼ xk) = 1 if and only if the vector xj lies below the vector xk in all

elements of the D-dimensional Euclidean space. The ‘pre-ranks’ of the observation

and the M ensemble members xm are calculated as

PRm =
M∑
k=0

I(xk ≼ xm) for m = 0, 1, . . . ,M. (2.41)

Finally, the multivariate rank is the rank of the pre-rank of the observation, PR0,

with any ties resolved at random. Following the notation of Gneiting et al. [2008],

if s< =
∑M

m=0 I(PRm < PR0) and s
= =

∑M
m=0 I(PRm = PR0), then the multivariate

rank is chosen randomly from the set {s< + 1, . . . , s< + s=}. If s= = 1 (in the

case of no ties in the pre-ranks of the observation and ensemble members), then

the multivariate rank is simply MR = s< + 1. The multivariate ranks take values

in the set {1, 2, . . . ,M + 1}. The multivariate rank histogram is the histogram of

the multivariate ranks MRt for t = 1, 2, . . . , T . Observe that in the special case of

D = 1, the multivariate rank histogram reduces to the rank histogram for univariate
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predictands.

Gneiting et al. [2008] stated that interpretations of the multivariate rank histogram

are the same as those for its univariate counterpart. Plainly the distribution of the

multivariate ranks MRt, t = 1, 2, . . . , T is uniform on the set {1, 2, . . . ,M +1} if the

multivariate observation and ensemble members are indeed IID realisations of the

same multivariate distribution. Ensemble members whose vector-valued forecasts

are consistently biased will yield pre-ranks that, on average, are smaller (if the

ensemble ‘underforecasts’ the observation) or larger (if the ensemble ‘overforecasts’

the observation) than the pre-rank of the observation, leading to skewed, or ‘sloped’

rank histograms. In our view, interpreting characteristics of ensemble dispersion

from multivariate rank histograms is less intuitive. However, intuition can be gleaned

by considering the hypothetical case in which the (assumed) multivariate ensemble

distribution is of the same statistical form as the observation distribution, but where

the covariance structure is scaled by a constant, say c. If c < 1, it follows that the

pre-rank of the observation will populate the outer values in the set {1, 2, . . . ,M+1}
more often than one would like, with the opposite being the case for c > 1. This

feature yields U-shaped (inverse U-shaped) multivariate rank histograms for c < 1

(c > 1), analagous to the shapes of univariate rank histograms for underdispersed

(overdispersed) ensemble forecasts.

Gneiting et al. [2008] recommended that the multivariate rank histogram should

only used for fairly low-dimensional predictands. Higher dimensions result in an

excessive number of pre-rank ties, as instances of one forecast lying below the other

in all D dimensions are rare. Indeed, in chapter 4 we use the multivariate rank

histogram for a 4-dimensional predictand, and find that tied pre-ranks occur often,

even in this low-dimensional setting.

2.5.2.4 Quantile regression

Quantile regression [Koenker, 2005] enables the estimation of specific quantiles of

a distribution as a function of model covariates, rather than just its expectation as

in standard regression models. While the PIT and rank histograms detailed above

provide diagnostics of forecast calibration over all forecast cases, we also consider the

idea of assessing distributions of verification measures, such as the PIT values, as a

function of important covariates. For example, in the idealised setting, the deciles of

the distribution of PIT values are exactly equal to 0.1, 0.2, . . . , 0.9, independently of

any covariates, and significant departures from the idealised deciles are indicative of

forecast misspecification, possibly as a result of an incorrect usage of the covariate

under consideration. Further details are given in chapter 6, in which we discuss

some preliminary results of using quantile regression.
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2.5.3 Scoring rules for probability forecasts

2.5.3.1 The notion of propriety

As before, let f and F denote the PDF and CDF of a forecast distribution on a

general forecast occasion, and let y denote the verifying observation. The probability

forecast distribution and verifying observation may be univariate or multivariate.

An important principle in the verification of probability forecasts is the notion of

propriety. Proper scoring rules [Gneiting and Raftery, 2007] reward forecasters who

are honest when issuing their probability forecast distributions. In other words, a

forecaster who is honest when issuing their probability forecast will not want to have

issued an alternative forecast if they subsequently learn that a proper scoring rule

is to be used for forecast verification. Proper scores are often used as a means of

ranking competing forecasts.

More formally, we define proper scoring rules as follows.

Definition 2.5.1 Let h(f, y) be a real-valued function of the forecast distribution, f ,

and verifying observation, y, and let q denote the probability distribution for y. The

scoring rule h(f, y) is proper with respect to any class of probability distributions,

Q, if

Eq{h(q, y)} ≤ Eq{h(f, y)} for all f and q ∈ Q, (2.42)

where in the above equation the expectations are calculated with respect to y. The

score h(f, y) is strictly proper if its expectation is uniquely optimised when f = q.

In this thesis we use proper scores that are negatively orientated, that is, smaller

values are preferred. This is in keeping with the notation of definition 2.5.1.

2.5.3.2 Examples of proper scores

Many proper scoring rules have been proposed in the literature. The choice of score

is influenced by the type of forecast under consideration — for example, whether the

forecast variable is binary or continuous, the variable’s dimensionality (univariate or

multivariate), as well as which properties of the forecast are of most interest to the

user. For example, certain scores penalise outlying observations more heavily than

others, while others penalise forecasts more severely for biases in their location. All

proper scores, however, reward forecasts for their reliability and resolution. Here

we highlight some commonly applied proper scores that we make use of throughout

subsequent chapters of this thesis.

The quadratic, or Brier score [Brier, 1950] is widely used for the assessment of
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probability forecasts of binary predictands. In this thesis we use the Brier score to

assess the skill of probability forecasts of the form pt = Pr(yt ≤ q), where yt denotes

a (usually continuous) observation, and q is a threshold of interest. The score is

given by

hBrier(pt, yt) = (pt − zt)
2 , (2.43)

where (as in section 2.5.2.2) zt = I(yt ≤ q) denotes the binary observation of the

event {yt ≤ q}. The limiting values of hBrier are hBrier(0, 0) = hBrier(1, 1) = 0

and hBrier(0, 1) = hBrier(1, 0) = 1, which are attained if the forecaster correctly

(incorrectly) issues forecasts of complete certainty about the event {yt ≤ q}. The

quadratic nature of the Brier score implies that the reward for confident, or sharp,

calibrated forecasts grows in a quadratic manner, while sharp, uncalibrated forecasts

— for example, small forecast probabilities for events that occur with high frequency

— are similarly penalised.

In section 2.4.7.1 we introduced the continuous ranked probability score (CRPS, see

equation (2.37)) in the context of parameter estimation. However, the CRPS is more

commonly used as a proper scoring rule for assessing the skill of probability forecasts

for (usually continuous) predictands. As can be seen from equation (2.37) and (2.44)

(below), the CRPS has the appealing interpretation as the integral of the Brier score

over all possible thresholds q. For an out-of-sample probability distribution of the

observation yt, with CDF Ft we have

hCRPS(Ft, yt) =

∫ ∞

−∞
{Ft(q)− I(yt ≤ q)}2 dq. (2.44)

Just as the Brier score is a measure of distance of the probability forecast of {yt ≤ q}
from the verifying binary observation, it is easy to infer from equation (2.44) that

the CRPS is, in a sense, a measure of the disparity between the forecast CDF Ft

and the CDF that would be issued if the forecaster had perfect knowledge about

the observation yt, namely the indicator function I(yt ≤ q). Like the Brier score,

the CRPS favours forecasts that are sharp by penalising the disparity between the

CDFs of the forecast distribution and the ‘truth’ in a quadratic manner. Indeed,

it is straightforward to show that the CRPS reduces to the Brier score for binary

predictands (see section 3.3.3.3).

Gneiting and Raftery [2007] showed that the CRPS can alternatively be written

with the following, appealing construction:

hCRPS(Ft, yt) = EFt(|yt − xt| −
1

2
|xt − x′t|), (2.45)

where xt and x
′
t are independent copies of a random variable with distribution func-

tion Ft, and | ·| denotes the Euclidean norm. In the above equation the expectations
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are calculated with respect to xt and x
′
t. Equation (2.45) shows that the CRPS is

measured in the same units as the verifying observation yt. Due to the nature of

equations (2.44) and (2.45), closed forms for the CRPS do not generally exist, al-

though expressions have been derived for several families of probability distributions.

We defer giving closed forms of the CRPS for specific distributions until the relevant

later sections.

The ignorance, or logarithmic score [Good, 1952] provides an alternative measure of

forecast skill.

hign(ft, yt) = − log ft(yt), (2.46)

where often the logarithm is taken to the base 2. The ignorance score is a so-called

‘local score’, as it is determined completely by the value of the forecast PDF at the

observation. The ignorance score issues harsh penalties to outlying, unlikely obser-

vations, due to the rapid growth rate of the logarithmic function as the probability

density function (PDF) ft(yt) tends to 0.

Finally we introduce the energy score, which is used for assessing probability fore-

casts of multivariate variables, such as spatial fields of near-surface temperature.

The propriety of this score was proven in Székely [2003], and is discussed in the

context of weather forecasting by Gneiting and Raftery [2007]. Here the cumulative

distribution functions Ft are multivariate, as are the verifying observations yt. In

its most general form, the energy score is defined as

hES(Ft, yt) = EFt

(
∥yt − xt∥β −

1

2
∥xt − x′t∥β

)
, (2.47)

where β ∈ (0, 2), ∥ · ∥ denotes the Euclidean norm, xt and x
′
t are independent copies

of random variables with distribution function Ft, and the expectations are taken

with respect to xt and x′t. We follow Gneiting and Raftery [2007] and set β = 1.

Observe that in the univariate case (with β = 1) the energy score reduces to the

continuous ranked probability score — equation (2.47) reduces to (2.45).

2.5.4 Assessing ensemble forecasts with fair scoring rules

In section 2.5.3 we defined proper scoring rules for the assessment of probability

forecasts, and stated (see definition 2.5.1) that their use encourages forecasters to be

honest when stating their beliefs. Unfortunately, the situation is more complicated

when assessing the skill of ensemble forecasts, due to their nature as finite samples.

Unlike probability distributions, it is possible to attain improved score values by

hedging an ensemble forecast. For example, let x = (x1, x2, . . . , xM) denote a M -

member ensemble forecast with verifying observation y, and suppose we interpret the
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EDF of x as a probability forecast distribution for y. The CRPS for this distribution,

which we denote by Ey, is given by

CRPS(Ey, y) =
1

M

M∑
m=1

|y − xm| −
1

2M2

M∑
m=1

M∑
n=1

|xm − xn| . (2.48)

Bröcker [2012] showed that resetting the ensemble members xm to the quantile values

x̂m = F−1((2m− 1)/(2M)) for m = 1, 2, . . . ,M

minimises the expectation of equation (2.48), where the function F (·) denotes the

CDF of y. In other words, the value of the CRPS given by equation (2.48) could

be improved by resetting the ensemble members to the above quantiles, even if the

ensemble forecast was calibrated in the sense described in section 2.3.2. In practice

F is unknown but, nonetheless, this result demonstrates the idea that ensemble

forecasts can be ‘hedged’ to improve a score, even if the properties of the adjusted

ensemble forecast appear less desirable. It is appropriate to evaluate ensemble fore-

casts whose EDFs are interpreted as probability distributions for the observations

using proper scoring rules.

Ferro [2014] introduced so-called ‘fair scores’, which are appropriate for ensemble

forecasts that we know, or choose to interpret, as IID random samples from an

underlying ensemble distribution. Given that an ensemble forecast is an IID sample,

the expectations of fair scores are optimised when the ensemble and observation

distributions are equal. More formally, fair scores are defined as follows.

Definition 2.5.2 Let y denote an observation with distribution q. Given that the

members of an ensemble forecast x = (x1, x2, . . . , xM) are independent and identi-

cally distributed realisations of an underlying ensemble distribution, p, the scoring

rule hfair(x, y) is fair with respect to a class of distributions, Q if

Eq,q{hfair(x, y)} ≤ Ep,q{hfair(x, y)} for all p and q ∈ Q, (2.49)

where the expectations in the above equation are calculated with respect to both the

ensemble forecast x and observation y. The scoring rule is strictly fair if its expec-

tation is uniquely optimised when p = q.

Ferro [2014] showed that if ensemble forecasts are verified with proper, rather than

fair scores, for example by treating the proportion of ensemble members that fore-

cast the occurrence of an event as a probability forecast, then the optimal value of

the proper score corresponds to ensemble distributions p ̸= q, where q denotes the

distribution for the observation, y. By definition 2.5.2, however, the optimal value

of fair scores corresponds to p = q. Ferro showed that proper scores fail to account
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for the bias inherent in using finite-member ensemble forecasts to infer probability

forecasts, a bias that is removed by fair scores. For example, consider the CRPS

for an ensemble forecast whose EDF is interpreted as a probability forecast distri-

bution for y, given in equation (2.48). The second term on the right hand side of

equation (2.48) is a biased estimator of the expectation E(|x− x′|), where x and x′

are IID random variables distributed according to the ensemble distribution, since

we count M instances of the dependent case (when xm = xn). In order to assess

the ensemble forecast under the interpretation that the ensemble members are an

IID sample from the ensemble distribution, this bias should be removed. The fair

analog of the CRPS (FCRPS) is

FCRPS(x, y) =
1

M

M∑
m=1

|y − xm| −
1

2M(M − 1)

M∑
m=1

M∑
n=1

|xm − xn| , (2.50)

where the denominator M(M − 1) of the second term removes the aforementioned

bias. Fair scores should therefore be used for ensemble forecasts that we know,

or choose to interpret as IID samples from an ensemble distribution [Ferro, 2014].

However, unlike proper scores for probability forecasts, it is possible to attain im-

proved fair scores by choosing non-random ensemble members. This is because the

expectation of the fair score with respect to q, the probability distribution for the

verifying observation, y, is a function of the ensemble forecast x only, and so it is

possible to explicitly calculate the ensemble members that optimise the fair score,

in the same manner as the example provided by Bröcker [2012]. Therefore, fair

scores do not elicit IID samples — rather, they are applicable for ensembles whose

members are interpreted as IID samples.

Ferro [2014] also discussed fair scores for ensemble forecasts whose members are

exchangeable, but not independent. In general, the existence of fair scores for such

ensembles depends on the nature of the member dependence. Even if fair scores

do exist, situations in which the member dependence is known exactly are rare,

and so the dependence structure must be estimated. In this thesis, therefore, we

interpret ensemble forecasts as either probability forecast distributions for y (using

their EDF) or as IID samples from an underlying ensemble distribution, in keeping

with the discussion in section 2.2.4.

2.5.5 The decomposition of proper scoring rules

In section 2.3 we introduced the notion of calibration for both probability and en-

semble forecasts. As noted in that section, two desirable properties of probability

forecasts are reliability and resolution, where reliability pertains to the ‘accuracy’

of the probability forecasts, and resolution refers to the ability of the probabilistic
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forecasting system to provide useful information to the forecast user. An appealing

result [Bröcker, 2009] is that proper scores can be decomposed in to components that

quantify the reliability and resolution of a probabilistic forecasting system. In this

subsection, we provide an empirical estimate of the decomposition of the Brier score,

which was given by Murphy [1973]. The decomposition provides the forecaster with

a measure of the reliability and resolution of the probabilistic forecasting system for

forecasts of binary events {y ≤ q}, where y is the verifying observation and q is a

threshold of interest. Hersbach [2000] provided a decomposition for the continuous

ranked probability score, although we do not consider its use in this thesis.

To calculate the decomposition of the Brier score we proceed as follows. As for

reliability diagrams (see section 2.5.2.2), we divide the interval (0, 1) in to K equally

spaced bins. In this thesis we choose K = 20, so that the bins are given by the

intervals (0, 0.05], (0.05, 0.1], . . . , (0.95, 1). Again let Ik denote the set of indices t

of forecasts in bin k, for k = 1, 2, . . . , K. We calculate the arithmetic mean of the

probability forecasts in each bin, that is

p̄k =
1

NIk

∑
t∈Ik

zt,

for all k, where NIk denotes the cardinality of the set of indices Ik. Let z̄k, k =

1, 2, . . . , K, denote the mean of the verifying binary observations in bin k, that is

z̄k =
1

NIk

∑
t∈Ik

zt,

where (as for the reliability diagrams) zt = I(yt ≤ q). Also let z̄ = T−1
∑T

t=1 zt de-

note the mean of the binary observations. The reliability, resolution and uncertainty

components of the Brier score decomposition given by Murphy [1973] are

REL =
K∑
k=1

NIk

T
(p̄k − z̄k)

2 , (2.51)

RES =
K∑
k=1

NIk

T
(z̄k − z̄)2 , (2.52)

UNC = z̄(1− z̄). (2.53)

Equation (2.51) provides a measure of the reliability of a probabilistic forecasting

system in issuing probability forecasts of binary observations. The reliability com-

ponent is related to the reliability diagram (see section 2.5.2.2) — it is a weighted

average of the squared distance of the reliability curve from the diagonal line, where

the weights correspond to the relative frequency of probability forecasts in each of

the K bins. Equation (2.52) provides a measure of the forecast resolution — the
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2. Ensemble weather forecasting and ensemble post-processing

equation can be viewed as the sample variance of the quantities z̄k for k = 1, 2, . . . , K

centred on the mean of the binary observations, z̄. This is in keeping with the ex-

planation provided in section 2.3, where we commented that the forecast resolution

pertains to the variability of the observations, conditional on the forecast distri-

butions. The verifying observations for a probabilistic forecasting system with no

resolution would satisfy z̄k = z̄ for all k, in which case equation (2.52) returns a

resolution score of 0. With these comments in mind, it follows that small reliability

and large resolution scores are preferred.

For the pooled forecasts — that is, where each of the T forecasts is reassigned to the

probability p̄k of the bin within which it falls, the Brier score [Brier, 1950] is given

by

Brier = REL− RES + UNC. (2.54)

To see this, observe that

REL− RES + UNC =
K∑
k=1

NIk

T

{
(p̄k − z̄k)

2 − (z̄k − z̄)2
}
+ z̄(1− z̄)

=
K∑
k=1

NIk

T

{
p̄2k − 2p̄kz̄k + 2z̄kz̄ − z̄2

}
+ z̄(1− z̄)

=
K∑
k=1

NIk

T

{
p̄2k − 2p̄kz̄k

}
+ z̄, (2.55)

where equation (2.55) follows from the result

K∑
k=1

NIk

T
z̄k = z̄.

Now let rt temporarily denote the pooled forecast on forecast occasion t, that is

rt = p̄k, depending on which of the K bins the original forecast, pt, falls. Now

observe that
∑

t∈Ik r
2
t = NIk p̄

2
k, since r

2
t = p̄2k for all t ∈ Ik, for all k. It therefore

follows that
1

T

T∑
t=1

r2t =
K∑
k=1

NIk

T
p̄2k.

Similarly we have ∑
t∈Ik

rtzt =
∑
t∈Ik

p̄kzt

= p̄k
∑
t∈Ik

zt

= NIk p̄kz̄k,
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since
∑

t∈Ik zt = NIk z̄k (by definition of z̄k). It therefore follows that

1

T

T∑
t=1

rtzt =
K∑
k=1

NIk

T
p̄kz̄k.

Finally, since the observations zt take the values either 0 or 1, we have that

z̄ =
1

T

T∑
t=1

zt

=
1

T

T∑
t=1

z2t .

Substituting these results in to equation (2.55) gives

REL− RES + UNC =
1

T

T∑
t=1

(rt − zt)
2 , (2.56)

which is the Brier score (see equation (2.43)) for the pooled probability forecasts,

as claimed.

2.6 Data

2.6.1 The Lorenz 1996 system

The Lorenz 1996 system [Lorenz, 1996], hereafter referred to as L’96, acts as a surro-

gate, or ‘toy model’ of the atmosphere. Studies that utilise the L’96 system include

Lorenz [1996]; Roulston and Smith [2003]; Wilks [2005, 2006a]; Williams et al. [2014].

The system comprises both slow and fast moving variables, representing large scale

atmospheric features such as the Atlantic jet stream, and small scale phenomena,

such as localised precipitation events, that are often inadequately resolved by NWP

models. The governing equations of the system are

dXj

dt
= Xj−1(Xj+1 −Xj−2)−Xj + F − HC

B

K∑
k=1

Yj,k, (2.57)

for j = 1, 2, . . . , J and

dYj,k
dt

= CBYj,k+1(Yj,k−1 − Yj,k+2)− CYj,k +
HC

B
Xj, (2.58)

for j = 1, 2, . . . , J and k = 1, 2, . . . , K. In this thesis we set J = 8 and K = 32,

to give a system of eight slow-moving X variables and 256 fast-moving Y variables.
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2. Ensemble weather forecasting and ensemble post-processing

As in Wilks [2006a] and Williams et al. [2014], we set the constant parameters to

be H = 1, B = 10 and C = 10, and the ‘forcing parameter’ to be F = 20. The

boundary conditions are cyclical, so that X−1 = XJ−1 and Y−1 = YK−1. Observe

that the state of each Xj is determined in part by the summation of theK associated

Y variables, and similarly the state of the Y variables is affected by the associated

Xj.

We use the L’96 system to simulate data to which we apply ensemble post-processing

methods. We use the variableX1 as the predictand for which we make forecasts — in

the following text, therefore, the observations y are realisations of the variable X1 of

the ‘true’ system governed by equations (2.57) and (2.58). To simulate an imperfect

NWP model for the Xj, j = 1, 2, . . . , 8, we replace the final term in equation (2.57)

by a quartic polynomial in Xj, denoted U(Xj) as follows:

U(Xj) = 0.262− 1.262Xj + 0.004608X2
j + 0.007496X3

j − 0.0003226X4
j . (2.59)

In other words, we pretend that the dynamics of the Y variables given in equa-

tion (2.58) are unknown, and estimate their effect on the evolution of the Xj vari-

ables by U(Xj). The imperfect NWP model is therefore given by

dX∗
j

dt
= X∗

j−1(X
∗
j+1 −X∗

j−2)−X∗
j + F + U(X∗

j ), (2.60)

for j = 1, 2, . . . , J , where the notation X∗
j denotes the approximation of Xj by X

∗
j .

The function U(Xj) was determined by regressing a quartic polynomial in Xj on

the true state of the system. Both the true system (equations (2.57) and (2.58)) and

the imperfect NWP model (equation (2.60)) are integrated forwards in time using

a simple forward Euler scheme, with a time step of 10−4 time units.

In order to represent an ensemble forecasting system, initial conditions for each

X∗
j were randomly sampled from a Gaussian distribution centred at the ‘true’

Xj, N(Xj, 0.1
2). Ensemble forecasts were then constructed by integrating each

of these initial conditions forwards in time, using the imperfect model given by

equation (2.60). The standard deviation of the initial conditions yields ensemble

forecasts that retain a mixture of forecast skill while providing reasonable spread at

the lead times considered in subsequent chapters of this thesis. Because the initial

conditions are IID random draws, the resulting ensemble forecasts can be justifiably

interpreted as IID draws from underlying ensemble distributions.

Ensemble forecasts of varying size were produced, as will be reported when appro-

priate. Forecasts and observations were stored at lead times denoted t = 1, 2, . . . , 5,

where each lead time corresponds to 0.2 time units of the system’s evolution, or 2000

iterates of the forward Euler scheme. Two separate datasets of ensemble forecasts
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Figure 2.1 Observations y as a function of the ensemble mean x̄ for forecast lead times
1, 3 and 5. A nonparametric estimate to the observations is shown in red.
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Figure 2.2 Plots of the squared residuals r2 as a function of the ensemble variance s2 for
forecast lead times 1, 3 and 5. A nonparametric estimate to the expectation of the squared
residuals is shown in red.

and observations were produced. A training dataset of size N = 500 000 is used for

parameter estimation in Williams et al. [2014] and in other examples provided later

in this thesis. The forecasts and observations are initialised every 0.5 time units,

and are therefore temporally correlated in keeping with real world scenarios. The

second dataset, which was used for forecast verification in Williams et al. [2014], is

of size T = 190 000, where each of the T forecasts and observations are initialised

at time points separated by 50 time units, and are therefore effectively independent

of other forecasts and observations in the dataset.

Figure 2.1 shows the observations as a function of the ensemble mean, for various

forecast lead times, while figure 2.2 shows the corresponding plots of the squared

residuals, r2 = (x̄ − y)2, as a function of the ensemble variance, s2. We show only

a random sample of the data from the second of the described datasets — it was

necessary to sample from the dataset due to its size. We also show a nonparamet-

ric estimate to the expectation of the dependent variable (either the observations

or residuals), using the Loess function implemented in the R language that was

described in section 2.5.2.1.

Figure 2.1 shows that the ensemble mean is a ‘good’ predictor of the verifying ob-
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servations at all lead times shown, although the relationship is not exact — the

observations do not lie on the diagonal line, particularly for lead time 5. More inter-

estingly, figure 2.2 indicates a fairly weak, but nonetheless significant relationship

between the ensemble variance and the squared residuals, particularly for lead times

3 and 5 — the sample correlation coefficients for lead times 1, 3 and 5 are 0.165, 0.328

and 0.287. Figure 2.2 indicates the presence of a spread-skill relationship that might

be exploited in modelling the variance of probability forecast distributions as a func-

tion of the ensemble variance.

2.6.2 The GEFS reforecast project

We also use hindcast data from the GEFS reforecasts project hosted by the Earth

Systems Research Laboratory at the National Oceanic and Atmospheric Associa-

tion, USA (http://www.esrl.noaa.gov/psd/forecasts/reforecast2/). A de-

tailed description of the dataset is provided in Hamill et al. [2013]. In brief, the

project comprises retrospective forecasts, or hindcasts, from 1 December 1984 –

present, using an ensemble forecasting system that is similar to the operational

Global Ensemble Prediction System (GEFS) operated by the National Centre for

Environmental Prediction (NCEP). We use the 0 hour control forecast for the veri-

fying observations, which corresponds to the reanalyses (the retrospective analyses)

at the verification time. Ensemble forecasts of eleven members are available on a

global grid. In our investigations (see chapters 4 and 5), however, we do not use the

‘control forecast’, the forecast that is initialised at the reanalysis. The remaining

ten members are generated by five pairs of Bred vectors (see section 2.2.2 for a brief

description). In this thesis we consider two datasets that were both taken from

the available archive. In chapter 4 we consider ensemble forecasts over a 17 × 18

grid that approximately covers the United Kingdom. Forecasts were collected for

the period 1 December 2011 – 14 December 2014 inclusive. In chapter 5, we use a

longer time series of forecasts and observations at a single gridpoint, located near

to New York City, USA (40 degrees North, 70 degrees West).

As for the Lorenz 1996 system described in the previous subsection, diagnostic plots

(not shown) indicate a strong linear relationship between the ensemble mean and

verifying observations. For the dataset of forecasts and observations located to

New York, the sample correlation coefficient between the squared residuals and the

ensemble variance is 0.176. While this does not indicate a ‘strong’ relationship, our

investigations (see later chapters) demonstrated the value of including the ensemble

variance as a covariate in the statistical models used for ensemble post-processing.
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3 A comparison of post-processing

methods for extreme events

3.1 Introduction

In this chapter we present an extensive comparison study of the probabilistic fore-

casting skill of several ensemble post-processing methods. Our interest is in prob-

ability forecasts of the form Pr(y ≤ q), where y is a verifying observation, and q

is a threshold of interest. We pay particular interest to extreme thresholds, for

which occurrences of the binary event {y ≤ q} are rare. As highlighted in the pre-

vious chapter (see section 2.4), considerable and valuable efforts have been made

towards the development of ensemble post-processing methods that issue calibrated

probability forecasts, for a variety of meteorological variables. However, a surpris-

ingly small amount of the literature has evaluated the probabilistic forecasting skill

of these methods in issuing probability forecasts of rare, or extreme events. Such

events are often those of most interest to forecast users and the general public —

for example, it is well known that meteorological extremes such as heat waves and

flooding have profound humanitarian and economic repercussions. Therefore, the

ability to produce calibrated probability forecasts of extreme events is presumably

of interest to a broad cross-section of users. The study presented in this chapter has

been published in the literature [Williams et al., 2014].

Our new work was motivated by the article of Wilks [2006a], which provided a

comparison of the probabilistic forecasting skill of several ensemble post-processing

methods in the Lorenz 1996 system (see section 2.6.1 and Lorenz [1996]). Wilks con-

cluded that Logistic Regression (LR), nonhomogeneous Gaussian regression (NGR),

Bayesian model averaging (BMA) and best member dressing (BMD) were the most

promising post-processing methods. In this chapter we also use data from the Lorenz

1996 system. We introduce extensions to the probability forecast distributions that

are specified by the BMA and BMD post-processing methods, by introducing so-

called ‘ensemble adjustment schemes’ that provide more advanced corrections to the

biases in location and dispersion of the ensemble forecasts than were permitted in

the founding papers for those methods (see [Wang and Bishop, 2005] and Raftery
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et al. [2005]). We investigate the extent to which our more sophisticated bias cor-

rections for the BMA and BMD statistical models improve the skill of probability

forecasts, for both common and rare events. We also investigate the effect of other

features of the ensemble post-processing methods on forecast skill, such as the choice

of objective function, and the size of training sample, that are used for estimating

the model parameters.

The remainder of this chapter is organised as follows. In section 3.2 we review

the article by Wilks [2006a]. In section 3.3 we introduce our hierarchy of so-called

‘ensemble adjustment schemes’, that facilitate bias corrections to the location and

dispersion of ensemble forecasts, and use these adjustment schemes to extend the

statistical models specified by the BMA and BMD ensemble post-processing meth-

ods. We show how these model extensions allow for an extension of the comparison

study of Wilks [2006a]. We also give details of the objective functions (see sec-

tion 2.4.7) that are used for parameter estimation for the BMA, BMD, NGR and

LR models, and provide related comments for the method of rank histogram recali-

bration (RHR, Hamill and Colucci [1997, 1998]). Section 3.4 provides details of the

setup of our comparison study, and the verification measures that are used to assess

the skill of probability forecasts. We present our results in section 3.5, and finish

the chapter with our conclusions and a discussion in section 3.6.

3.2 A review of Wilks [2006a]

In this section we provide an overview of the article by Wilks [2006a]. Wilks used

the Lorenz 1996 system (see section 2.6.1) as a surrogate, or ‘toy’ model of the at-

mosphere. The slow-varying X variables (see section 2.6.1 for further details) were

used as the ‘true state’, for which probability forecasts of the form Pr(y ≤ q), where

y is the verifying observation and q is a threshold of interest, were issued using one

of several ensemble post-processing methods. As we also describe in section 2.6.1,

ensemble forecasts for the ‘true state’ were issued using an approximation to the

system of slow-varying X variables, that was representative of an imperfect numer-

ical weather prediction (NWP) model. The thresholds used in the study were the

lower decile, the lower tercile, the median, the upper tercile and the upper decile

of the climatology of the X variables in the Lorenz 1996 system. Wilks compared

the skill of eight post-processing methods (listed below). He also investigated the

effect of the training sample size, N , and the ensemble size, M , on the resulting

out-of-sample probability forecasts, for forecast lead times of 1, 2, . . . , 5. The time

units of the lead times were the evolution of the Lorenz system through 1/h iterates

of the numerical scheme used to approximate the evolution of the system, where h

denotes the step size (see section 2.6.1 for details). Two separate datasets were used
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for the estimation of model parameters and forecast verification, in a similar vein

to the description of the data used in this thesis (see section 2.6.1). The ensemble

post-processing methods under consideration were

• Direct model output (DMO, see section 2.4.2.1)

• Rank histogram recalibration (RHR, see section 2.4.2.2)

• Multiple implementations of deterministic MOS equations (MIDME Erickson

[1996])

• Best member dressing (BMD, see section 2.4.3.1)

• Bayesian model averaging (BMA, see section 2.4.3.2)

• Forecast assimilation (FA, see section 2.4.5)

• Logistic regression (LR, see section 2.4.4.3)

• Nonhomogeneous Gaussian regression (NGR, see section 2.4.4.2).

The approach of multiple implementations of deterministic model output statistics

equations involves applying corrections derived for deterministic forecasts to each

ensemble member, resulting in supposedly recalibrated ensemble forecasts. However,

as explained by Wilks [2006a, section 2.1.3], this approach reduces, rather than

increases, the ensemble dispersion as forecast lead times increase, and in the limit

places all mass at the climatological mean. This behaviour is the opposite of what

should be expected in a coherent ensemble forecasting system, namely that the

ensemble dispersion increases with forecast lead time in keeping with the increasing

forecast uncertainty.

Wilks implemented the post-processing methods as specified by the authors in their

founding papers. The setup of the ensemble forecasting system involved a ‘control

member’, with the remaining ensemble members considered as exchangeable. For

the BMA and BMD forecasts, therefore, Wilks estimated two weights — a weight

w1 for the control forecast, and w2 that was appropriate for weighting the remaining

M−1 ensemble members. Parameter estimation was carried out on a single training

sample of size N . The data in the training sample exhibited temporal correlation,

similar to that of the first dataset described in section 2.6.1 that we use for parameter

estimation in our own study. Out-of-sample probability forecasts were then issued

for a second, test dataset, for which the data were temporally uncorrelated.

When necessary, the parameters of the statistical models specified by the ensem-

ble post-processing methods were estimated using the objective function that was

recommended by the method’s authors. In particular, parameters for the logistic
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regression (LR) and Bayesian model averaging (BMA) models were estimated by

maximisation of the log-likelihood function (equivalent to minimising the negative

log-likelihood function given in section 2.4.7), and the NGR model parameters were

estimated with the continuous ranked probability score (CRPS, see equation (2.37)

on page 48), as suggested in the founding article by [Gneiting et al., 2005]. The vari-

ance of the Gaussian-distributed dressing kernels that form the mixture components

of the best member dressing (BMD) probability forecast distributions were estimated

explicitly from the ensemble forecasts and observations in the training sample, using

equation (2.9) [Wang and Bishop, 2005]. Therefore, the BMD statistical model did

not require the use of an objective function in the study by Wilks [2006a]. Similarly,

the rank histogram recalibration model (RHR, see section 2.4.2.2) did not require

the use of an objective function. The weights wm, for m = 1, 2, . . . ,M + 1, that

are used in the equations for probability forecasts of the form Pr(y ≤ q) (see equa-

tion (2.8) on page 33) were calculated as the proportion of observations that fall

in the M + 1 rank histogram bins, where the rank histogram was calculated over

the training sample (see the description in section 2.4.2.2 for details). The other

post-processing methods considered in Wilks [2006a] were, to use the author’s own

words, ‘early, ad-hoc approaches’, that did not require the use of parameter esti-

mation. Wilks used the DMO forecasts (see section 2.4.2.1) as a baseline against

which the skill of probability forecasts given by the other post-processing methods

was compared.

The skill of the probability forecasts issued by the various statistical models was

assessed using the rank probability skill score (RPSS), which is proportional to the

sum of the Brier scores (see section 2.5.3.2) evaluated at the five thresholds under

consideration. The RPSS therefore provides an assessment of the overall skill of a

probabilistic forecasting system. To gain further understanding of the performance

of the post-processing methods at individual thresholds, the Brier scores and their

decomposition (see section 2.5.5), and reliability diagrams (see section 2.5.2.2) were

also used.

The key findings of the paper were the following. Under all considered measures of

forecast skill, the more ‘sophisticated’ post-processing methods (LR, NGR, BMA,

BMD and FA) improved upon the ‘ad-hoc’ methods (DMO, MIDME, and RHR),

although RHR was competitive for short forecast lead times and large training sam-

ples. The relative skill of the ‘sophisticated’ methods was found to be dependent on

the forecast lead time, the training sample size, and the threshold q for which the

probability forecasts Pr(y ≤ q) were issued. For short forecast lead times, the NGR

forecasts were most skilful, although the BMA and BMD methods also exhibited

significant improvements in forecast skill compared with the DMO forecasts (sec-

tion 2.4.2.1). In contrast, the LR forecasts were the most skilful for longer forecast
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lead times and large training samples. However, the skill of the LR forecasts was

found to degrade rapidly with training sample size, to the extent that the DMO

forecasts (which do not make use of training data) were equally skilful for the small-

est training sample size considered, N = 50. The skill of the LR forecasts was

also found to degrade with threshold extremity — the forecast skill at the most

extreme thresholds considered, the upper and lower deciles, was poor relative to the

skill of forecasts for more common events. This feature is exacerbated for smaller

training samples, and was said by Wilks [2006a] to be due to poor parameter esti-

mates. Overall, the BMA forecasts were found to be slightly less skilful than their

BMD counterparts, particularly for the probability forecasts at the upper and lower

deciles, and to a lesser extent for the upper and lower terciles. The reliability dia-

grams indicated that the BMA forecasts are overdispersed, i.e. the BMA probability

forecast distributions overcompensated for the underdispersion in the raw ensem-

ble forecasts. At the longer forecast lead times considered, only the LR and NGR

post-processing methods were found to produce more skilful probability forecasts

than the DMO method. This was achieved by restricting the probability forecasts

to a narrow range around the corresponding climatalogical frequencies, so that the

forecasts were reliable, although had little skill in terms of forecast resolution.

3.3 Extending the study of Wilks [2006a]

3.3.1 The aims of our study

The study [Wilks, 2006a] provided an extensive comparison of the skill of probability

forecasts issued by several popular ensemble post-processing methods. The primary

focus of the study was to suggest the methods that are most promising for proba-

bilistic forecasting and, aside from some fairly general comments, detailed reasoning

as to the relative performance of the post-processing methods was not provided. We

now turn to a description of our comparison study, which builds on that of Wilks

[2006a].

Firstly, as mentioned in section 3.1, in this chapter we primarily focus on the BMA,

BMD and NGR post-processing methods. Attempts to extend the rank histogram

recalibration (RHR) method proved unsuccessful, as we describe in section 3.3.3.4.

Unlike Wilks [2006a], we did not consider the method of forecast assimilation (FA,

Stephenson et al. [2005]). As described in section 2.4.5, this Bayesian approach to

ensemble post-processing requires a preliminary step of specifying prior distributions

for the model parameters from training data, a step that is associated with the data

assimilation process. In this chapter, and indeed for the remainder of this thesis, we
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use ensemble forecasts whose members can justifiably be considered exchangeable

(see definition 2.2.1 in section 2.2.4).

Wilks implemented the post-processing methods as specified by their authors in

the literature. As can be seen from the description of various methods provided in

section 2.4, the statistical post-processing models that are used to issue probability

forecasts differ in several of their ‘features’ — the family of probability distributions

(such as Gaussian distributions) that are used, in how predictor variables (typically

ensemble statistics such as the ensemble mean and variance) are related to properties

of these distributions (such as their expectations and variances), and in how the

parameters describing these relationships are estimated. A key aim of this chapter is

to establish those features of the statistical post-processing models that are the most

influential factors on probabilistic forecasting skill. We pay particular attention to

the effect of different specifications of the expectation and variance of the probability

forecast distributions on the skill of the out-of-sample probability forecasts. More

specifically, we achieve this insight by proposing alternative specifications for the

expectations and variances of the BMA, BMD and NGR statistical models. In the

following subsection, we introduce a hierarchy of so-called ‘ensemble adjustment

schemes’, that enable the user to specify the expectation and variance of the BMA

and BMD forecast distributions in an analogous manner to the linear functions of

the ensemble mean and variance that are used for the expectation and variance of

the NGR forecast distributions (see equations (2.19) and (2.20) on page 38). This

is achieved by allowing the bias in ensemble location to be corrected with a linear

function of the ensemble mean, and the bias in ensemble dispersion to be corrected

by rescaling the ensemble forecast, where the degree of rescaling is proportional to

the ensemble variance.

Furthermore, we also compare the probabilistic forecasting skill of ensemble post-

processing methods for parameter estimates that are obtained by minimising the

negative log-likelihood (NLL) and the continuous ranked probability score (CRPS).

Previously, with the exception of NGR [Gneiting et al., 2005], parameter estimation

for those post-processing methods for which it is necessary has been conducted in

the likelihood framework.

A second key aim of this chapter is to report on the skill of ensemble post-processing

methods in issuing probability forecasts Pr(y ≤ q) for extreme, as well as common

thresholds q, for which occurrences of the binary event {y ≤ q} are rare. In doing

so, we can determine whether certain features of the statistical models used for

ensemble post-processing are particularly important for issuing skilful probability

forecasts of rare events.

To motivate the idea of extending the BMA and BMD statistical models by allowing
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alternative forms for their expectation and variance (as mentioned above), it helps

to first consider the expectation of the probability forecast distributions issued by

those methods, and the expectation of the NGR forecast distributions. For NGR,

the expectation, µNGR on a general forecast occasion is a linear function of the

ensemble mean (see equation (2.19)), that is

µNGR = a+ bx̄,

where x̄ = M−1
∑M

m=1 xm is the sample mean of the M -member ensemble forecast

x = (x1, x2, . . . , xM). On the other hand, for the exchangeable ensemble members

considered in this thesis the expectation of the corresponding BMA forecast dis-

tribution is simply the mean of the (possibly de-biased) ensemble forecasts, that

is

µBMA = x̄.

This follows immediately from the specification of the BMA forecast distribution

for exchangeable ensemble members, which is an equally weighted mixture of M

Gaussian-distributed dressing kernels, each with expectation xm, form = 1, 2, . . . ,M ,

and where we recall that the weights are constrained to sum to 1 (see section 2.4.3.2).

If ensemble members xm, for m = 1, 2, . . . ,M are indeed first corrected for a con-

stant bias, say a, then the expectation of the BMA forecast distribution is simply

µBMA = a+ x̄. The same is also true for the expectation of the probability forecast

distributions issued by the flavour of the BMD post-processing method considered

in this work [Wang and Bishop, 2005]. Clearly, therefore, the NGR forecast dis-

tributions have more flexibility in the specification of their expectation than the

corresponding BMA and BMD forecast distributions. The NGR post-processing

method assumes that a linear function of the ensemble mean is appropriate for

modelling the verifying observations, whereas the BMA and BMD methods assume

that the (possibly de-biased) ensemble mean is an adequate predictor of the obser-

vations or, in other words, that the bias in ensemble location is independent of the

forecast values (as summarised by the ensemble mean).

Similar comments apply for the variance of the BMA, BMD and NGR probability

forecast distributions. Recall from equation (2.20) that the variance of a general

NGR forecast distribution is

σNGR2

= c+ ds2,

where s2 = (M−1)−1
∑M

m=1(xm−x̄)2 is the sample variance of the ensemble forecast

x. It can easily be shown that the variance of the corresponding BMA forecast

distribution is given by

σBMA2

= ckernel + (M − 1)s2/M, (3.1)
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where ckernel denotes the variance of the Gaussian-distributed dressing kernels. The

same expression also holds for the variance of BMD forecast distributions. Therefore,

analogous comments to the above for the expectation of the BMA and BMD forecast

distributions apply for the variance — the NGR method allows for greater flexibility

in the specification of its forecast variance than the BMA and BMD post-processing

methods, in the implementations specified by Raftery et al. [2005] and Wang and

Bishop [2005], respectively.

As mentioned earlier in this subsection, two objective functions (the negative log-

likelihood (NLL) and the continuous ranked probability score (CRPS)) have been

used in the literature for estimating the parameters of the statistical post-processing

models. Gneiting et al. [2005] claimed that the CRPS is preferable for NGR fore-

casts, while other authors have only considered likelihood-based parameter estima-

tion. In this work, therefore, we estimate the parameters of BMA, BMD and NGR

models using both the NLL and CRPS objective functions, and report on any differ-

ences in the skill of the resulting probability forecasts. The specific forms of the NLL

and CRPS functions for the three models, as well as comments on logistic regression

(LR) and rank histogram recalibration (RHR) models, are provided in section 3.3.3.

3.3.2 A hierarchy of models for ensemble post-processing

methods

We now introduce our hierarchy of ‘ensemble adjustment schemes’. As mentioned in

the previous subsection, these schemes allow us to specify more flexible parametric

functions for the expectation and variance of the BMA and BMD probability forecast

distributions, and thus facilitate a fair and coherent comparison with NGR forecast

distributions. Each ensemble adjustment scheme specifies a bias correction for the

ensemble forecast — a constant correction for the CC scheme, a linear correction

(as a linear function of the ensemble mean) for the LC scheme, and a linear correc-

tion with the additional possibility of ensemble rescaling (the LCR scheme). These

schemes are parametric, and the parameters must be estimated by optimisation of

an objective function. In the following, we define the ensemble adjustment schemes

for an ensemble forecast xi = (xi1, xi2, . . . , xiM). Specifically, the three adjustment

schemes are defined as follows.

Constant correction (CC) This scheme removes constant bias from the ensem-

ble members xim, for m = 1, 2, . . . ,M to give ensemble members x̂im = a + xim,

where a is a constant parameter that is to be estimated. This ensemble adjustment

scheme implicitly assumes that the bias of ensemble members is constant regardless
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of their forecast values. For CC, therefore, the expectation and variance of the ith

BMA and BMD forecast distributions are a+ x̄i and c
kernel + (M − 1)s2i /M , respec-

tively. The CC ensemble adjustment scheme is incorporated in to the BMA/BMD

post-processing models by substituting the adjusted ensemble members x̂im given

above in to equations (2.10) and (2.11) for the PDF (CDF) of the BMD forecast

distributions, and similarly for the BMA forecast distributions. This results in a re-

vised statistical model — the parameter a that is used for the bias correction must

then be estimated by optimising an objective function.

Linear correction (LC) This ensemble adjustment scheme incorporates a bias

correction to the ensemble members that is linear in the ensemble mean, that is

x̂im = a+ bx̄i + xim − x̄i,

where here both a and b are parameters that are to be estimated. The bias correction

of the ensemble members therefore differs according to the value of the ensemble

mean. Under the LC scheme the forecast mean and variance of the ith BMA and

BMD mixture distributions are a+ bx̄i and c
kernel + (M − 1)s2i /M , respectively.

Linear correction with rescaling (LCR) This scheme incorporates the LC

linear bias correction, in addition to a rescaling of the ensemble members by replacing

xim by

x̂im = a+ bx̄i +
√
d(xim − x̄i),

where a, b and d are again parameters that are to be estimated. The LCR scheme

not only allows for bias corrections that depend linearly on the ensemble mean,

but for the idea that the skill of the BMA and BMD probability forecasts may be

improved if the ensemble forecasts are rescaled. The rescaling is achieved through

the final term in the above expression for x̂im — ensemble members are moved either

further from (if d > 1) or nearer to (if d < 1) the ensemble mean. The expectation

and variance of the ith BMA and BMD forecast distributions are then a + bx̄i and

ckernel + d · (M − 1)s2i /M , respectively.

Some brief notes on the three ensemble adjustment schemes now follow. To our

knowledge, the CC scheme is typical of operational practice. However, the bias

correction is usually accomplished by subtracting the mean error of the ensemble

members over the training period from each ensemble member, rather than esti-

mating the model parameter, a, by means of an objective function. For BMA,

the dressing kernel variance is subsequently estimated by optimising the likelihood

function over the training sample of historical ensemble forecasts and verifying ob-

servations, and is calculated explicitly using equation (2.9) [Wang and Bishop, 2005]
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Expectation (µNGR
i ) Variance (σNGR2

i )
CC a+ x̄i c+ (M − 1)s2i /M
LC a+ bx̄i c+ (M − 1)s2i /M
LCR a+ bx̄i c+ d · (M − 1)s2i /M

Table 3.1 The parametric form of the expectation and variance, µNGR
i and σNGR2

i , of the
ith NGR forecast distribution under the CC, LC and LCR ensemble adjustment schemes.

for BMD. We write the LC ensemble adjustment scheme as x̂im = a+ bx̄i+xim− x̄i

rather than the alternative x̂im = a + bxim. The second expression yields the same

mean for the adjusted ensemble, a+ bx̄i, but has ensemble variance ŝ2i = b2s2i . Our

implementation of the LC scheme enables the forecaster to correct for bias in the

ensemble location while leaving the ensemble variance unchanged. Finally, the LCR

ensemble adjustment scheme enables the forecaster to exploit possible spread-skill

relationships (see section 2.4.1) between the ensemble variance and the magnitude

of the forecast errors of the ensemble mean, in the same vein as the NGR forecast

variance discussed in the previous subsection, and given in equation (2.20). As we

described for the CC adjustment scheme, the LC and LCR schemes are incorporated

in to the BMA/BMD statistical models by using the adjusted ensemble members

x̂im in place of the raw ensemble members xim in the original formulations of those

methods described in sections 2.4.3.1 and 2.4.3.2. The parameters of these new mod-

els — a and b for LC, and a, b and c for LCR, must then be estimated by optimising

an objective function.

In section 3.5 we compare the skill of probability forecasts given by the BMA and

BMD forecast distributions for the CC, LC and LCR schemes. We also consider the

equivalent hierarchy of NGR models, that is models in which the expectation and

variance of the corresponding NGR forecast distributions, µNGR
i and σNGR2

i , take the

same form as the BMA and BMD forecast distributions as specified by the CC, LC

and LCR schemes. In doing so, we are able to make a fair and coherent comparison

of the NGR, BMA and BMD post-processing methods across the three ensemble

adjustment schemes. Table 3.1 shows the form of µNGR
i and σNGR2

i for the NGR

statistical model under the three ensemble adjustment schemes.

Note that in the above NGR models we have multiplied the ensemble variance, s2i ,

by the constant (M − 1)/M , in order to conduct a fully fair comparison with the

BMA and BMD forecast distributions, by ensuring the same parametric form for the

forecast variance. For the LCR scheme, the constant (M −1)/M is simply absorbed

in to the parameter d. In addition, we consider a fourth parameterisation of the

NGR model, denoted NGR0, in which c is set to 0, such that σNGR2

i = (M −1)s2i /M

for CC and LC, and d · (M − 1)s2i /M for LCR. This allows us to investigate the

importance of including a constant parameter, c, in the forecast variance.
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Sadly, it is not possible to make such a coherent comparison of probability fore-

casts using the logistic regression (LR) post-processing method. As described in

section 2.4.4.3, unlike the NGR, BMA and BMD forecast distributions, changes in

the linear predictor, ηi, do not result in intuitive changes to the location and vari-

ance of the Logistic distribution. It was therefore decided to only consider the two

LR models with ηi = a + bx̄i and ηi = a + bx̄i + ds2i , as in Hamill et al. [2004] and

Wilks [2006a]. In section 3.5 we report the skill of the resulting probability forecasts

under the labels of LC and LCR, respectively, and do not show any results for LR

under the CC scheme.

In theory, our ensemble adjustment schemes can also be applied to the rank his-

togram recalibration method. Rank histograms are calculated for the adjusted en-

semble forecasts x̂i, where the x̂im denote the members of the adjusted ensemble

forecasts under either the CC, LC, or LCR adjustment scheme. Out-of-sample

probability forecasts of the form Pr(yt ≤ q) are then issued using equation (2.8), by

substituting the adjusted ensemble forecast, x̂t in place of the raw forecast, xt. For

a given ensemble adjustment scheme, the expectation of the resulting probability

forecast distributions is as given above. However, the forecast variance is not equal

to that of the BMA, BMD and NGR distributions. Rather, the forecast variance of

the rank histogram distributions is a function of the weights wm,m = 1, 2, . . . ,M+1,

the distances between the (ordered) members of x̂, as well as the choice of proba-

bility distribution that is used for extrapolation of quantities that are not bounded

by the ensemble forecast. It therefore seems infeasible to obtain an equivalent para-

metric form for the RHR forecast variance as those specified for the BMA, BMD

and NGR methods using the model hierarchy described earlier in this subsection.

In any case, it turns out that parameter estimation for the RHR method is highly

problematic (see section 3.3.3.4), and so this method is not pursued in our study.

As mentioned earlier in this subsection, in section 3.5 we compare the skill of prob-

ability forecasts issued by the NGR, BMA, and BMD forecasts for the hierarchy of

models that specify the form of the expectation and variance of the forecast dis-

tributions of those methods, as well as forecasts issued by the LR method. The

probability forecasts are ‘out-of-sample’. Firstly, parameter estimates are obtained

from training samples of a pre-specified size (see the next subsection). For example,

the BMA and BMD post-processing methods under the LC ensemble adjustment

scheme require estimates of the parameters a, b and ckernel, denoted â, b̂ and ĉkernel.

Probability forecast distributions for the out-of-sample, verifying observations, say

yt, where the subscript t indexes the forecasts and observations in the test dataset,

are then issued by substituting the parameter estimates in to the BMA/BMD sta-

tistical models along with the (out-of-sample) ensemble forecast, xt.
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3.3.3 Parameter estimation

As discussed in section 3.3.1, two objective functions (the likelihood and CRPS) have

been employed for the post-processing methods that require parameter estimation.

In order to establish whether the objective function is an influential factor on the

forecast skill, we shall compare the skill of the various post-processing methods

using both choices. We now proceed by giving the negative log-likelihood (NLL)

and CRPS functions for the various post-processing methods under consideration.

The objective functions are calculated from training samples of N forecasts and

verifying observations. The parameter estimates are those that minimise the (multi-

dimensional) objective function surface, and are obtained using the Nelder-Mead and

BFGS algorithms described in section 2.4.7.

3.3.3.1 Parameter estimation for NGR

In the following, ϕ and Φ denote the PDF and CDF of a standardised Gaussian ran-

dom variable. The NLL and CRPS functions for the NGR post-processing method

are

NLLNGR =
N∑
i=1

(
log 2π

2
+ log σi +

1

2
z2i

)
, (3.2)

and

CRPSNGR =
1

N

N∑
i=1

σi

[
zi{2Φ(zi)− 1}+ 2ϕ(zi)−

1√
π

]
, (3.3)

where zi = (yi − µi)/σi is a standardised observation which, if the NGR model is

correctly specified, follows a standard Gaussian distribution. As described earlier,

the form of µi and σi depends on the scheme (CC, LC, LCR or NGR0) that is of

interest (see table 3.1).

3.3.3.2 Parameter estimation for BMA and BMD

Recall that, for exchangeable ensemble members (such as those considered in this

study), the BMA and BMD forecast distributions on the ith forecast occasion are

equally weighted mixtures of Gaussian distributions centred on the ensemble mem-

bers, x̂im, where each component, or dressing kernel, has variance ckernel. As de-

scribed in section 3.3.2, the ensemble members x̂im are parametric functions of the

original, ‘raw’ ensemble forecasts, where the parametric form depends on the choice

of the ensemble adjustment scheme. The NLL and CRPS functions given below

therefore depend on ckernel, as well as one, two or three additional parameters for

the CC, LC and LCR adjustment schemes, respectively. The NLL for the mixture
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distributions is

NLLBMA,BMD = −
N∑
i=1

log

{
1

M ×
√
ckernel

M∑
m=1

ϕ

(
yi − x̂im√
ckernel

)}
. (3.4)

The CRPS for a mixture of Gaussian random variables is given in closed form by

Grimit et al. [2006], and in the case of exchangeable ensemble members reduces to

the following.

CRPSBMA,BMD =
1

N

N∑
i=1

crps

[
1

M ×
√
ckernel

M∑
m=1

ϕ(
yi − x̂im√
ckernel

)

]
, (3.5)

where

crps

{
1

M ×
√
ckernel

M∑
m=1

ϕ

(
yi − x̂im√
ckernel

)}

=
1

M

M∑
m=1

A(y − x̂im, c
kernel)− 1

2M2

M∑
m=1

M∑
k=1

A(x̂im − x̂ik, 2c
kernel) (3.6)

and the function A(µ, σ2) = 2σϕ(µ/σ)+µ{2Φ(µ/σ)−1} gives the expectation of the

absolute value of a Gaussian-distributed random variable with mean µ and variance

σ2. Equation (3.5) can be derived by considering the kernel representation of the

CRPS (see equation (2.45) on page 58).

For BMA, the dressing kernel variance ckernel is estimated as a parameter in addi-

tion to those of the ensemble adjustment scheme by optimising either the NLL or

CRPS objective function. For BMD, however, it is calculated explicitly using equa-

tion (2.9), while the remaining model parameters, that adjust the ensemble forecasts

according to the choice of ensemble adjustment scheme, are estimated with the ob-

jective function. For each iteration of the objective function for BMD, therefore, the

ensemble adjustment parameters are updated, and ckernel is subsequently calculated

using equation (2.9), which depends on the adjusted ensemble forecasts and obser-

vations. The parameter estimates are those that are obtained when the numerical

algorithm is deemed to have converged.

3.3.3.3 Parameter estimation for LR

Recall from section 2.4.4.3 that separate parameters must be estimated for the LR

model for each threshold, q, of interest. For a fixed threshold q, the NLL function
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for logistic regression is given by

NLLLR = −
N∑
i=1

{I(yi ≤ q)ηi − log (1 + eηi)} , (3.7)

where ηi is the linear predictor on the ith forecast occasion. As discussed in sec-

tion 3.3.2, in this chapter we consider two linear predictors, ηi = a + bx̄i and

ηi = a+ bx̄i + ds2i .

It is easily shown that the CRPS for Logistic regression reduces to the Brier score

over the training data, that is

CRPSLR =
1

N

N∑
i=1

{pi − I(yi ≤ q)}2 , (3.8)

where pi = eηi/(1 + eηi) is the probability forecast Pr(yi ≤ q). To see this, let zi

temporarily denote the binary event I(yi ≤ q). The distribution of zi is zi ∼ Ber(pi),

where Ber(pi) indicates a Bernoulli distribution with parameter pi, such that Pr(zi =

1) = pi. The CDF of zi, say F (u) = Pr(zi ≤ u), is

F (u) =


0 u < 0

1− pi 0 ≤ u < 1

1 u ≥ 1,

where u is a dummy variable that can take any value on the real line. The verifying

binary observation, zi, represents the ‘perfect forecast’ for which all probability mass

is placed on u = 0 (if yi > q) and on u = 1 (if yi ≤ q). Finally, recall the integral

representation of the CRPS (equation (2.44), see page 58). For binary predictands

the integral can be written as

crps(yi, q) =

∫ ∞

−∞
{F (u)− I(zi ≤ u)}2 du,

which here reduces to

crps(yi, q) =

∫ 1

0

{F (u)− I(zi ≤ u)}2 du,

where F (u) is as given above. Evaluation of this integral gives

crpsLR(yi, q) =

p2i zi = 1

(1− pi)
2 zi = 0,

which is equal to the Brier score for probability forecasts of the binary event zi.
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Unfortunately, in practice we found that parameter estimation by minimising the

CRPS was numerically unstable for the LR model — the parameter estimates were

sensitive to small changes in their starting values, and often the numerical algo-

rithms did not converge. The resulting out-of-sample probability forecasts given by

the CRPS parameter estimates were significantly less skilful than their NLL coun-

terparts, and were often less skilful than the baseline DMO forecasts. In section 3.5,

therefore, we do not show or comment on the skill of LR probability forecasts with

CRPS parameter estimation.

3.3.3.4 Parameter estimation for RHR

The rank histogram recalibration (RHR) post-processing method, as specified in the

founding papers of Hamill and Colucci [1997, 1998], do not require the use of an

objective function for parameter estimation (see the discussion in section 2.4.2.2).

The user merely needs to calculate the weights, wm for m = 1, 2, . . . ,M + 1, that

are given by the proportion of observations that lie in the M + 1 rank histogram

bins over the training sample. In this work, however, we investigated applying our

hierarchy of ensemble adjustment schemes, so as to improve the corrections to the

biases in location and/or dispersion of the ensemble forecasts. In doing so, therefore,

it is necessary to estimate the parameters of the ensemble adjustment schemes by

minimisation of either the NLL or CRPS objective function. In both cases this

has proven to be problematic, as we now explain. Recall from section 2.4.2.2 and

equation (2.8) that probability forecasts of the form Pr(yi ≤ q) are given by either a

continuous probability distribution, if the threshold q is unbounded by the ensemble

forecast, xi, or by a weighted mixture of non-overlapping uniform distributions, if q is

bounded by the ensemble. Clearly, therefore, adjustments to the ensemble forecasts

in the training dataset, such as those that result from the CC, LC and LCR schemes,

will result in changes to the weights wm. Specifically, for an (adjusted) ensemble

forecast, x̂i = (x̂i1, x̂i2, . . . , x̂iM), the contribution of the ith forecast and observation

to the negative log-likelihood is

NLLRHR
i =



− log

{
w1

GRHR(x̂
(1)
i )

· gRHR(yi)

}
if yi < x̂

(1)
i ,

− log

{
wm+1

x̂
(m+1)
i −x̂(m)

i

}
if x̂

(m)
i < yi < x̂

(m+1)
i ,

− log

{
wM+1

1−GRHR(x̂
(M)
i )

· gRHR(yi)

}
if yi > x̂

(M)
i ,

where gRHR(·) and GRHR(·) denote the PDF and CDF of the distribution used for

extrapolation of unbounded quantities, and x̂
(m)
i , x̂

(m+1)
i denote consecutive order

statistics of the adjusted ensemble x̂.
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Similarly, referring to equations (2.44) (page 58) for the CRPS and (2.7) (page 32)

for the weights, we see that the CRPS is a function of the weights w1, w2, . . . , wM+1,

the distances between ensemble members, as well as the tails of the rank histogram

distribution. For each iteration of the objective function, the chosen ensemble ad-

justment scheme results in a change to the location of the ensemble members which,

in turn, results in a change to the weights wm, for m = 1, 2, . . . ,M + 1. As the

weights take discrete, rather than continuous values, it is intuitive to think that the

effect of the ensemble adjustment scheme on the objective function surface is not

continuous. In addition, the tails of the rank histogram distribution, which must

be used to extrapolate probability forecasts for quantities that lie below (above) the

smallest (largest) ensemble member, pose further numerical difficulties. For exam-

ple, the contribution to the CRPS of the lower tail of the RHR forecast distribution

is

CRPSLower

=


w1

GRHR(x̂
(1)
i )

∫ x̂(1)i

−∞

{
GRHR(u)

}2
du if yi > x̂

(1)
i

w1

GRHR(x̂
(1)
i )

[∫ yi
−∞

{
GRHR(u)

}2
du+

∫ x̂(1)i

yi

{
GRHR(u)− 1

}2
du

]
if yi < x̂

(1)
i .

Similar expressions hold for the contribution to the CRPS of the upper tail of the

forecast distribution. In general such integrals do not have closed forms, and so we

must resort to numerical approximations. This is problematic for the calculation of

the CRPS, both in terms of accuracy and computational expense.

We found parameter estimates for the RHR post-processing method obtained by

minimising both the NLL and CRPS to be highly unstable — small changes in the

starting values result in large changes to the final parameter estimates. In many

cases the numerical algorithm did not converge, despite the maximum permitted

number of iterations being increased significantly above the defaults implemented

in the ‘optim’ function implemented in the R language [R Core Team, 2015]. This

was the case for both small and large training samples. Experiments were conducted

using Gaussian-distributed tails, for which numerical integration was necessary in

calculating the CRPS, and an alternative assumption of exponentially-distributed

tails that were chosen so as the integrand of the lower and upper tails could be

evaluated in a closed form. The problems of numerical instability persisted for the

second case. The numerical method known as ‘simulated annealing’, which is widely

used for optimisation problems in which the objective function surface is ‘rough’,

was used in place of the Nelder-Mead algorithm without success.

Our results suggest that the mixture of non-overlapping uniform distributions is not

conducive to stable parameter estimation. Contour plots of the objective function

surface show that the surface is ‘rough’, that is, the surface does not vary in a
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continuous manner as a function of the parameter values, and there are several local

minima. After considerable experimentation it was decided to cease investigating

the rank histogram recalibration method as a viable post-processing method, since

we believe that the parameters of any reasonable method should be stable and

converge without difficulty in the majority of cases. Parameter estimates that are

highly unstable are indicative of misspecified statistical models, particularly in the

light of the relatively stable convergence of the parameter estimates for the other

post-processing methods discussed previously. The probability forecasts obtained

using the parameter estimates given by the optimisation of the NLL or CRPS were

significantly less skilful than either those derived with the standard RHR method

[Hamill and Colucci, 1997; Wilks, 2006a], and indeed the baseline DMO probability

forecasts.

3.4 Ensemble post-processing in the Lorenz 1996

system

3.4.1 Training and verification data

The skill of probability forecasts that are issued by the BMA, BMD and NGR

statistical models under our ensemble adjustment schemes and choice of objective

function are assessed using data from the Lorenz 1996 system, which is described

in section 2.6.1. The parameters of the various models were estimated using the

first dataset, in which the ensemble forecasts and observations exhibit temporal

correlation. Parameters are estimated from training samples of size N = 100, 300

and 1000. The training samples are nested, such that the training samples of size 100

are also the first 100 ensemble forecasts and observations of the training samples

of size 300 which, in turn, are the first 300 ensemble forecasts and observations

of the training samples of size 1000. In order to suppress the effects of sampling

variation on our results, we performed parameter estimation for each model under

consideration on 500 training samples of the desired size. The training samples

were disjoint, so that each of the 500 parameter estimates for a given model can be

assumed independent. We used an ensemble size ofM = 24, in keeping with the size

of the Met Office Global and Regional Ensemble Prediction System (MOGREPS)

of the UK Met Office.

Having obtained parameter estimates for the various statistical models of interest,

out-of-sample probability forecasts were calculated for observations yt, t = 1, 2, . . . , T ,

for each of the 500 parameter estimates, using the second dataset described in sec-

tion 2.6.1 for which ensemble forecast-observation pairs are temporally uncorrelated.
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The size of the test dataset was T = 190 000, and so the probabilistic forecasting

skill of each model was assessed using 500 × 190 000 = 9.5 × 107 independent fore-

casts and observations. This setup enables us to report on the skill of the various

probability forecasts for both common and rare events, without being inhibited by

a lack of data. In particular, such large test datasets are valuable for assessing the

skill of probability forecasts Pr(yt ≤ q), for extreme thresholds q, as (by definition)

occurrences of the binary event {yt ≤ q} are rare. Furthermore, the stationary na-

ture of the data-generating process (the Lorenz 1996 system) means that we need

not concern ourselves with seasonal effects that can be encountered in ‘real-world’

scenarios, such as those highlighted later in this thesis (see chapter 5). In this study

we calculate probability forecasts for thresholds given by the 1% and 2% quantiles

of the climatology of the Lorenz 1996 system, as well as the lower turcile and the

median quantiles as considered by Wilks [2006a].

3.4.2 Forecast verification

We assess the skill of the various post-processing methods in issuing forecasts of

the binary event {yt ≤ q}, where yt is an out-of-sample verifying observation, using

the Brier score and its decomposition (see sections 2.5.3.2 and 2.5.5), and reliability

diagrams (see section 2.5.2.2), for the thresholds q given above. Care must be taken

when comparing the Brier scores of probability forecasts at different thresholds. A

climatology forecast, say α, for the probability forecast Pr(yt ≤ qα), where qα is the

α-quantile of the climatological distribution, achieves a Brier score, say BClim, with

expectation

E(BClim) = α · (α− 1)2 + (1− α) · α2

= α(1− α). (3.9)

Therefore, a climatology forecast of the median q1/2 has an expected Brier score of

1/4, whereas a climatology forecast for the extreme threshold q1/100, the 1% quantile

of the climatology, has an expected Brier score of 99/10 000. Provided that the Brier

score has finite variance, therefore, its expectation tends to 0 as the threshold q tends

to extreme values. As a consequence, Brier scores of forecasts of different thresholds

should not be compared. Rather, the improvements in skill of a forecast over a

baseline forecast, such as climatology or DMO (see section 2.4.2.1), should be used

as a measure to compare forecast skill at different thresholds.

The size of the test dataset used for forecast verification in this study, given by

T = 190 000, combined with the 500 independent instances of each post-processing

method, was chosen so as the scores reported in the following section can be trusted
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to at least the degree of accuracy shown. In other words, the standard errors of the

scores are small enough to allow us to report the scores to at least the number of

significant figures shown.

3.5 Results

3.5.1 Brier scores

We first present the Brier scores for the out-of-sample probability forecasts that are

issued by the NGR, BMA and BMD ensemble post-processing methods under the

CC, LC and LCR ensemble adjustment schemes at various thresholds q, forecast lead

times t and training sample sizes N . As described in section 3.3.2, we also show

probability forecasts for logistic regression (LR) model, for two linear predictors,

under the labels of LC and LCR. Tables 3.2, 3.3 and 3.4 show the Brier scores

for the CC, LC and LCR schemes for forecast lead times 1, 3 and 5, for thresholds

q taken as the 50%, 2% and 1% quantiles of the climatology of the Lorenz 1996

data respectively. Model parameters were estimated by minimising the negative

log-likelihood (NLL), using the largest training samples of size N = 1000. To

ease reading, the scores have been scaled by a factor of 104 at the 50% threshold

(table 3.2), and by a factor of 105 for the 2% and 1% thresholds (tables 3.3 and 3.4).

The DMO scores are shown so as to provide a measure against which the ensemble

post-processing methods can be compared. The DMO forecasts do not change with

the CC, LC and LCR ensemble adjustment schemes, as they are a function of the

raw, out-of-sample ensemble forecasts only.

The Brier scores indicate that ensemble post-processing is most beneficial at longer

forecast lead times and for forecasts of rare, extreme events. The improvements of

the ensemble post-processing methods over the DMO forecasts, particularly under

the LC and LCR schemes, are significantly larger at longer lead times and, most

interestingly, at the more extreme 2% and 1% thresholds. Here the Brier scores

indicate that the DMO forecasts are only slightly more skilful than the climatology

forecasts or, in other words, the raw ensemble forecasts contain little skill. How-

ever, the ensemble post-processing methods considered (especially NGR, BMA and

BMD) yield Brier scores that improve significantly over those of the DMO forecasts,

particularly under the LC and LCR schemes.

It is also interesting to compare the skill of forecasts under the three ensemble

adjustment schemes. Beginning with the 50% threshold, the scores suggest that

the constant correction (CC) adjustment scheme is sufficient for bias correction —

there is little to be gained with the linear bias correction (LC) scheme, and, indeed,
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DMO BMA BMD NGR LR

Lead time 1
CC 138 114 114 114
LC 138 114 114 114 118
LCR 138 114 114 114 120

Lead time 3
CC 458 411 412 411
LC 458 411 412 411 422
LCR 458 405 406 403 417

Lead time 5
CC 951 883 885 882
LC 951 884 887 882 908
LCR 951 885 885 876 910

Table 3.2 Brier scores for the CC, LC and LCR schemes at forecast lead times 1, 3 and 5,
evaluated at the 50% threshold. The climatology forecast score is 2500.

DMO BMA BMD NGR LR

Lead time 1
CC 288 208 208 208
LC 288 215 215 214 243
LCR 288 214 214 214 279

Lead time 3
CC 894 796 800 796
LC 894 596 604 596 619
LCR 894 595 591 603 644

Lead time 5
CC 1562 1474 1498 1471
LC 1562 1191 1204 1199 1237
LCR 1562 1195 1195 1228 1249

Table 3.3 Brier scores for the CC, LC and LCR schemes at forecast lead times 1, 3 and 5,
evaluated at the 2% threshold. The climatology forecast score is 1960.

DMO BMA BMD NGR LR

Lead time 1
CC 198 124 124 124
LC 198 127 127 127 166
LCR 198 127 127 127 214

Lead time 3
CC 566 496 502 497
LC 566 343 349 342 369
LCR 566 339 337 342 403

Lead time 5
CC 987 958 982 959
LC 987 700 711 707 742
LCR 987 700 700 730 758

Table 3.4 Brier scores for the CC, LC and LCR schemes at forecast lead times 1, 3 and 5,
evaluated at the 1% threshold. The climatology forecast score is 990.
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in some instances the Brier scores slightly deteriorate. Furthermore, rescaling the

ensemble forecasts with the LCR scheme yields only small improvements at lead

times 3 and 5. Similar comments hold for forecast lead time 1 at the 2% and 1%

thresholds. By contrast, however, at these more extreme thresholds the LC scheme

yields significant improvements in the Brier scores for the longer forecast lead times,

clearly demonstrating the benefits of bias corrections that depend on the ensemble

mean for probability forecasts at such thresholds. Again the Brier scores indicate

that there is little to be gained with the LCR scheme, and indeed the forecast skill

deteriorates in some instances, most notably for the NGR forecasts at lead time 5.

The BMA, BMD and NGR post-processing methods yield largely similar Brier scores

across the three ensemble adjustment schemes, and it is not possible to determine

one method as the most skilful. Unlike BMA, the BMD forecasts appear to improve

slightly under the LCR scheme, particularly at longer forecast lead times. The Brier

scores indicate that both LR models yield probability forecasts that are markedly

less skilful than BMA, BMD and NGR, particularly at the more extreme thresholds.

This presumably derives from the fact that realisations of the binary event {y ≤ q}
are rare for extreme thresholds, and hence there are a lack of events with which

to estimate the model parameters. Inclusion of the ensemble variance in the linear

predictor (η = a+ bx̄+ cs2, the LCR scheme) yields forecasts whose Brier scores are

slightly worse than those of the simpler alternative, η = a+ bx̄.

Brier scores for post-processing methods whose model parameters are estimated

with the CRPS objective function (not shown) are both qualitatively and quanti-

tatively similar. Furthermore, the Brier scores for the smaller training sample sizes

are qualitatively similar. In general the improvements in forecast skill with train-

ing sample size appear small, with the exception of LR, for which the forecast skill

deteriorates markedly for smaller training samples, particularly at rare thresholds.

This is illustrated in figure 3.1 above. Brier scores for the NGR0 scheme described

in section 3.3.2 (not shown), corresponding to the modelling constraint c = 0, are

significantly worse than the standard case in which c is estimated as a model pa-

rameter. At common thresholds the Brier scores for the NGR0 forecasts are worse

than those of the LR forecasts, and are comparable at rare thresholds. We do not

comment on the skill of NGR0 probability forecasts hereafter.

Figure 3.1 shows the Brier scores as a function of forecast lead time for the 50%,

2% and 1% thresholds, and for training samples of size 1000, 300 and 100. As we

expect, the Brier scores deteriorate with forecast lead time in all cases. The BMA,

BMD and NGR post-processing methods are relatively insensitive to the size of

training sample, whereas the Brier scores of the LR forecasts deteriorate markedly

for small training samples as well as threshold extremity. The figure again illustrates

the benefits of ensemble post-processing for the most difficult forecasts of extreme
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Figure 3.1 Brier scores as a function of lead time for the DMO (dashed), BMA (crosses),
BMD (circles), NGR (solid) and LR (dotted) forecasts under the LC scheme at the 50%,
2% and 1% thresholds with parameter estimation performed with training samples of size
N = 1000, 300 and 100.

thresholds and longer forecast lead times — the improvements over the DMO Brier

scores are large relative to the 50% threshold and small forecast lead times.

3.5.2 Forecast reliability and resolution

We now turn to a discussion of the reliability of probability forecasts issued by the

various post-processing models under the CC, LC and LCR ensemble adjustment

schemes. Tables 3.5, 3.6 and 3.7 show the reliability component of the decomposi-

tion of the Brier scores (see equation (2.51) on page 62) at the 50%, 2% and 1%

thresholds, respectively, for forecast lead times 1, 3 and 5. Figures 3.2, 3.3 and 3.4

show reliability diagrams at the 50% and 1% thresholds for forecast lead times 1, 3

and 5, respectively. It should be kept in mind that the reliability diagrams at ex-
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Figure 3.2 Reliability diagrams at lead time 1 for BMA, BMD and NGR with adjustment
schemes CC (dashed), LC (dotted) and LCR (solid) for common and extreme thresholds,
q. Also LR with η = a+ bx (solid) and η = a+ bx+ ds2 (dashed).

treme thresholds are largely comprised of small forecast probabilities, and so the

majority of forecasts fall in the lower portion of the reliability curves.

As with the Brier scores, forecast reliability is affected by the threshold of interest,

the forecast lead time, and the choice of ensemble adjustment scheme (CC, LC,

or LCR). The LR forecasts are consistently less reliable than the BMA, BMD and

NGR forecasts, particularly at extreme thresholds, and so we omit them from our

discussion hereafter. For forecast lead time 1, there seems little to be gained in using

the LC scheme in place of the CC scheme, for either the extreme or common thresh-

olds considered in this study (see figure 3.2, and the three aforementioned tables).

Indeed, at the 2% and 1% thresholds, the LC scheme has the effect of overcompen-

sating the bias in probability forecasts that is observed for the lower and mid-range

of probabilities under the CC scheme, which explains the deterioration in the reli-

ability scores shown in tables 3.6 and 3.7. Under the LC scheme, the probability

forecasts at the 1% threshold are biased throughout the range of probabilities —

the probability forecasts consistently underestimate the realised proportion of event

occurrences. Similarly, the LCR scheme makes no significant improvement to the

forecast reliability at forecast lead time 1 for any of the thresholds considered.

For longer forecast lead times (figures 3.3 and 3.4), however, the parametric form

of the expectation of the probability forecast distributions has a notable effect on

forecast reliability at the 2% and 1% thresholds, but not at the 50% threshold. At

the 50% threshold, the LC scheme again yields probability forecasts whose reliability

is no better, and in some cases worse than those of the CC scheme, particularly for

forecasts issued by the BMD post-processing method. For the 2% and 1% thresholds,

however, the LC scheme significantly improves the forecast reliability, by correcting
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DMO BMA BMD NGR LR

Lead time 1
CC 1348 20.9 21.5 16.8
LC 1348 17.8 18.3 16.0 258.0
LCR 1348 20.8 19.9 18.4 270.0

Lead time 3
CC 2499 182 234 191
LC 2499 196 257 206 538
LCR 2499 86.9 81.9 92.5 440

Lead time 5
CC 4394 368 391 416
LC 4394 384 590 477 1080
LCR 4394 334 335 524 1060

Table 3.5 The reliability component of the Brier score decomposition for forecast lead
times 1, 3 and 5 at the 50% threshold.

DMO BMA BMD NGR LR

Lead time 1
CC 1378 67 67 65
LC 1378 140 140 140 213
LCR 1378 140 140 140 230

Lead time 3
CC 1710 2000 2100 2000
LC 1710 81 150 73 237
LCR 1710 73 51 130 257

Lead time 5
CC 2859 2800 3000 2700
LC 2859 110 210 150 198
LCR 2859 120 110 370 382

Table 3.6 The reliability component of the Brier score decomposition for forecast lead
times 1, 3 and 5 at the 2% threshold.

DMO BMA BMD NGR LR

Lead time 1
CC 1353 59 59 60
LC 1353 100 100 99 191
LCR 1353 100 100 96 257

Lead time 3
CC 1070 1600 1700 1600
LC 1070 100 160 91 269
LCR 1070 64 54 73 306

Lead time 5
CC 2071 2600 2800 2500
LC 2071 91 170 130 385
LCR 2071 100 100 320 526

Table 3.7 The reliability component of the Brier score decomposition for forecast lead
times 1, 3 and 5 at the 1% threshold.
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Figure 3.3 As for figure 3.2 but for forecast lead time 3.
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Figure 3.4 As for figure 3.3 but for forecast lead time 5.
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for much of the systematic bias in the probability forecasts that is observed for the

CC scheme. At these thresholds, the CC probability forecasts are consistently too

large — the proportion of realisations of the binary events {yt ≤ q} is significantly

less than the corresponding forecast probabilities, particularly for the small prob-

abilities that are most common for these rare events. In other words, the NGR,

BMA and BMD probability forecast distributions with expectations and variances

given by the CC ensemble adjustment scheme on average place too much probability

density below the 1% threshold, a feature that is (to a large extent) corrected by

the alternative specification of the expectations of the forecast distributions under

the LC scheme.

For longer lead times, the effects of specifying the forecast variance as a linear

function of the ensemble variance (by using the LCR adjustment scheme), in addition

to the linear correction to the bias in ensemble location (the LC scheme) for forecasts

of rare events depend on both the lead time and post-processing method. At lead

time 3, the LCR adjustment scheme improves the reliability of the BMA, BMD and

NGR forecasts compared to the LC scheme, although the tendancy of the forecasts

to be underconfident (corresponding to overdispersed forecast distributions) remains

for LCR. The underconfidence of both the LC and LCR forecasts is indicated by

the S-shaped reliability diagrams in the lower panel of figure 3.3. By contrast,

however, at lead time 5 the LCR adjustment scheme improves only marginally on

the LC scheme and, in the case of the NGR post-processing method, results in

a deterioration in the forecast skill. The LCR scheme is, however, beneficial for

forecasts given by the BMD post-processing method, which appear similar in skill

to the BMA forecasts at the 2% and 1% thresholds for forecast lead time 5. This

feature is explained by comparing the parameter estimates of the two competing

post-processing models (not shown). Under the LC scheme, the parameter estimates

â and b̂, that determine the ensemble bias corrections, are very similar. However,

the estimated dressing kernel variance, ĉkernel, is on average somewhat larger for

the BMD method. Under the LCR scheme, however, the four parameter estimates,

â, b̂, ĉkernel and d̂ are very similar, and so the BMA and BMD probability forecast

distributions are also very similar.

Under the LCR scheme, the NGR forecasts appear less reliable than the BMA

and BMD forecasts at extreme thresholds and for longer forecast lead times. The

parameter estimates of d (not shown), which correspond to the rescaling of the

ensemble forecasts, are somewhat larger than their BMA and BMD counterparts,

and on average the variance of the NGR forecast distributions is larger. In cases

where some of the ensemble members are below the extreme threshold, the restriction

of the NGRmethod to Gaussian forecast distributions may necessitate larger forecast

variances to achieve a non-negligible probability forecast, whereas the more flexible
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mixture distributions of the BMA and BMD methods achieve this as a matter of

course, without needing to artificially inflate the forecast variance.

Perhaps surprisingly, with the exception of the BMD method, the forecasts at ex-

treme thresholds under the LC adjustment scheme appear slightly more reliable at

the theoretically more difficult forecast lead time 5 (figure 3.4) than at lead time

3 (figure 3.3). This is also in keeping with the reliability scores given in table 3.7.

While the reliability diagrams at lead time 5 (figure 3.4) again indicate underconfi-

dence in the BMA, BMD and NGR forecasts, particularly for small forecast proba-

bilities, the effect is slightly less pronounced than at the shorter lead time. However,

the improvements in forecast reliability when using the LCR scheme at lead time

3 (as discussed above) results in forecasts that are slightly more reliable than the

most reliable forecasts at lead time 5, as we might reasonably expect.

In contrast to the forecast reliability, there is little to be learned from the resolution

components of the Brier score decomposition (see equation (2.52) on page 62, not

shown). As we expect, the forecast resolution decreases with forecast lead time.

The DMO forecasts, which are based on the verification data only, exhibit consid-

erably higher resolution than those of the post-processing methods. However, this

increased resolution is at the expense of forecast reliability — plainly the calibra-

tion of the DMO probability forecasts is considerably worse than the corresponding

post-processed forecasts. Unlike the reliability scores discussed above, the resolu-

tion scores for the NGR, BMA and BMD probability forecasts are insensitive to the

choice of ensemble adjustment scheme. The scores are also similar across the various

ensemble post-processing methods, with the exception of LR. The LR forecasts gen-

erally exhibit similar resolution to the BMA, BMD and NGR forecasts at the 50%

threshold, but considerably worse resolution for forecasts at the extreme thresholds

considered here. At lead time 5, the resolution scores at the extreme thresholds are

less than half those for lead time 3, which provides an explanation for the compara-

ble forecast reliability between the two lead times as discussed above. The forecasts

improve only slightly in resolution compared with the climatalogical forecast at lead

time 5 and, as discussed in section 2.4.2.1, the climatology is a reliable forecast.

The forecast reliability and resolution for post-processing methods with parameters

estimated by CRPS optimisation (not shown) are qualitatively and quantitatively

similar. The reliability scores suggest that CRPS parameter estimation yields fore-

casts that are slightly more reliable at longer lead times (t > 3), while likelihood-

based parameter estimates might be preferable at shorter lead times. In general,

though, it is not clear from our results that one objective function is preferable over

the other.

The qualitative dependence of the threshold and forecast lead time on forecast re-
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liability is thought to be a result of the difficulty inherent in predicting extreme

events, and also possible deficiencies in the assumed relationships governing the

forecast mean and variance. In this study all training data are equally weighted,

meaning that the majority of the forecasts and observations contained in the train-

ing samples used for parameter estimation pertain to common, rather than extreme

values. Furthermore, it may well be the case that the assumed linear relationships

that link the ensemble means and variances with the expectations and variances of

the NGR, BMA and BMD probability forecast distributions are inadequate, either

in general (for certain lead times) or for extreme events. This point is discussed

further in chapter 6 of this thesis.

3.6 Discussion and conclusions

In this chapter we have investigated how certain ‘features’ of ensemble post-processing

methods affect the skill of probability forecasts of the form Pr(y ≤ q), in particular

the parametric functions that are used to model the expectations and variances of

the probability forecast distributions and the objective function that is used for pa-

rameter estimation. Using data from the Lorenz 1996 system, our study has demon-

strated that allowing flexible parametric forms for the expectation and variance of

probability forecast distributions significantly improves the skill of probability fore-

casts for rare, or extreme events. In particular, correcting biases in ensemble location

with a linear function of the ensemble mean was shown to be the most influential

factor on the skill of such probability forecasts. Our study has also facilitated a

fair comparison of several popular post-processing methods, in particular Bayesian

model averaging, best member dressing and nonhomogeneous Gaussian regression.

We have found that these ensemble post-processing methods yield probability fore-

cast distributions that are similar in skill, when their expectations and variances are

of the same parametric form.

Our results indicate that the choice of ensemble adjustment scheme is the most

important feature of ensemble post-processing for probability forecasts of rare events.

While the constant correction (CC) scheme is sufficient for the shortest forecast lead

times, we have found that the use of the ensemble mean in the bias correction (the LC

scheme) results in significant improvements to forecast skill for longer forecast lead

times. In general, the LCR scheme did not improve the skill of forecasts of extreme

events, with the exception of the BMD method, which performed similarly to BMA

under LCR, but worse under LC. Indeed, in several instances the forecasts under

the LCR scheme were less reliable than those under the LC scheme. In contrast, for

probability forecasts at common thresholds, the constant correction (CC) scheme

was sufficient. Indeed, forecasts under the LC and LCR schemes were often less
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skilful. It may well be the case, however, that the LC scheme would prove useful for

forecasts of common events with lead times beyond those considered in this study.

The logistic regression (LR) forecasts were significantly less skilful than those of

BMA, BMD and NGR, particularly at extreme thresholds. Furthermore, the skill of

the LR forecasts degrades notably for small training samples, and therefore the LR

method is not at all competitive with the small training samples that are likely to

be encountered in real world scenarios. King and Zeng [2001] proposed an adapted

logistic regression model for the probabilistic forecasting of rare events. We did not

consider this method, as such an investigation was not in keeping with the primary

purpose of the work, namely to extend pre-existing ensemble post-processing meth-

ods and to investigate the effect of the choice of ensemble adjustment scheme on

the skill of forecasts derived from the continuous probability forecast distributions.

Nonetheless, the work of King and Zeng [2001] may prove useful for scenarios in

which only binary observations are available.

There is some evidence that the mixture forecast distributions of the BMA and BMD

post-processing methods yield more reliable probability forecasts of rare events, com-

pared with the more restrictive Gaussian distributions issued by the NGR method.

Intuitively, it seems plausible that ensemble forecasts located near to extreme val-

ues may exhibit larger spread and skewness than ensemble forecasts located at more

common values, due to the unpredictable nature of extreme atmospheric conditions.

If this is indeed the case, the more flexible form of the mixture distributions over

the NGR distributions would seem to be advantageous. Further comparisons of the

relative skill of these three post-processing methods for probabilistic forecasting of

rare events are encouraged, particularly for ‘real-world’ forecasting scenarios.

We found that the choice of objective function (NLL or CRPS) was not influential

on the skill of probability forecasts, for either common or rare events. It may be

worth verifying this finding with meteorological data, and alternative suggestions for

objective functions would be welcome. If such findings persist, however, we suggest

using likelihood-based parameter estimates, due to their appealing properties (see

section 2.4.7) and relative lack of computational cost. We found CRPS parameter

estimation to be approximately 100 times slower than NLL estimation for the BMA

and BMD post-processing methods.
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4 A distribution-free ensemble

post-processing method

4.1 Introduction

The majority of ensemble post-processing methods reviewed in chapter 2 require

the forecaster to specify a family of parametric distributions with which to model

the distribution of the verifying observations, conditional on the corresponding en-

semble forecasts. The parameter values are typically chosen as those that minimise

an objective function, such as the negative log-likelihood (NLL) or continuous rank

probability score (CRPS). Such objective functions depend on the form of the cho-

sen family of distributions through its distribution function. The results presented

in chapter 3 and Williams et al. [2014] suggest that seemingly significant differences

in the choice of the family of distributions do not result in significant differences in

forecast skill, at least in the Lorenz 1996 system. For example, the mixture distri-

butions given by the Bayesian model averaging (BMA) and Best member dressing

(BMD) post-processing methods can differ significantly from the Gaussian NGR

distributions in terms of skewness and possible multimodality, but display similar

forecast skill. Indeed, the most significant differences in forecast skill were attributed

to the choice of ensemble adjustment scheme (see section 3.3.2), which enable the

forecaster to specify the form of the first and second moments, or expectation and

variance, of the probability forecast distributions.

With the above comments and the results presented in chapter 3 in mind, one might

think that the only problems worth addressing are the recalibration of the moments

of the probability forecast distributions, such as their expectation and variance.

Indeed, these were the subject of interest in section 3.3, in which we introduced

three ‘ensemble adjustment schemes’ that facilitated more flexible specifications for

the expectation and variance of the probability forecast distributions than had been

previously considered. An interesting question, therefore, is to what extent does

specifying a parametric family of distributions improve forecast skill, compared with

forecasts that do not make distributional assumptions? To answer this question, it is

necessary to formulate an ensemble post-processing method that allows for modelling
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of the moments in an analogous manner to that of the aforementioned ensemble

adjustment schemes, but that allows for estimation of the model parameters, that

are used for correcting the bias in ensemble location and dispersion, in a distribution-

free setting.

A forecast user may also wish to avoid distributional assumptions if they require

post-processed ensemble forecasts, rather than probability forecasts. As mentioned

in section 2.4.6, this may be necessary for forecasts over high-dimensional multivari-

ate domains, such as spatial fields. In order to issue probability forecasts of such

multivariate quantities, it is necessary to apply a post-processing method to each

of the marginal variables of interest — for example, at each gridpoint in the case

of gridded forecasts. It is further necessary to issue the high-dimensional and often

complicated dependence structure of the marginal variables, which is likely to prove

difficult to work with for forecast users. On the other hand, ensemble forecasts of

multivariate variables simply require the forecaster to issue (post-processed) ensem-

ble forecasts at each location. As is the case with the ECC methodology [Schefzik

et al., 2013], incorporating the dependence structure of the marginal variables forms

part of the post-processing method, and there is no need to issue any information

about this structure as part of the forecast. As described in section 2.4.6 and in

Schefzik et al. [2013], ensemble forecasts for each marginal variable are typically sam-

pled from probability distributions that result from the application of an ensemble

post-processing method. Schefzik et al. [2013] suggest that sampling equidistant

quantiles qm/(M+1),m = 1, 2, . . . ,M , from the probability distributions is preferable,

although the forecaster may also wish to sample ensemble members as independent

and identically distributed draws from the distributions. However, the forecaster

may prefer to avoid the necessary steps of specifying a family of distributions and

choosing an ensemble sampling scheme, and to recalibrate ensemble forecasts di-

rectly. This is an appealing benefit of the distribution-free post-processing method

introduced in this chapter — the dependence structure of the multivariate ensemble

forecasts is inherently preserved, and we simply post-process the ensemble forecasts

for each of the marginal variables.

As mentioned previously, in this chapter we introduce an ensemble post-processing

method that obviates the need for distributional assumptions. The method leads

immediately to recalibrated ensemble forecasts, and thus also circumvents the need

for a choice of ensemble sampling scheme, such as those discussed in section 2.4.6.

Our distribution-free method allows for the correction of biases in the ensemble

location and dispersion using linear functions of the ensemble mean and variance,

in an analogous manner to the NGR method (see equations (2.19) and (2.20) on

page 38) and the LCR ensemble adjustment scheme introduced in chapter 3. The

post-processing method therefore requires the estimation of four parameters.
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A key challenge is in the estimation of the parameters used in correcting the bias

of the ensemble location and dispersion. We use the method of moments (see sec-

tion 2.4.7.2) which, unlike the NLL and CRPS objective functions, depends only on

the moments of summary statistics of the data, and does not require the specifica-

tion of a family of distributions. The method of moments merely requires that the

moments exist, an assumption that is satisfied in the examples used here. Com-

parisons of forecast skill between our moment-based, distribution-free methods and

standard post-processing methods, such as NGR, will therefore shed light on the

extent to which distributional assumptions are beneficial, or otherwise.

Our distribution-free ensemble post-processing method is introduced by using the

idea of a latent variable model, in which the observations and ensemble forecasts

are linked through an underlying ensemble distribution, previously motivated in

section 2.2.4. The latent variables are the expectation, ξ, and variance, θ2, of the

ensemble distributions. We propose two slightly different approaches to parameter

estimation, that depend on the interpretation of the ensemble forecasts. Firstly,

the ensemble members are viewed as known constants, and therefore the ensemble

means and variances are also viewed as being known exactly. This approach is in

keeping with the majority of the post-processing literature, and indeed regression

problems in general. Secondly, we view the ensemble forecasts as independent and

identically distributed (IID) realisations from the ensemble distributions, and thus

the ensemble means and variances are estimates of the unobserved latent variables

ξ and θ2. This approach gives rise to the use of a measurement error model, the

application of which is novel in this field.

The remainder of this chapter is organised as follows. In section 4.2 we explain our

novel statistical approach to distribution-free ensemble post-processing. In this sec-

tion we detail our underlying latent variable model, explain our use of measurement

error models in the context of IID ensemble members, derive parameter estimates

under both interpretations and discuss the issue of out-of-sample forecasting. Re-

sults are presented in section 4.3 with a simulation experiment, the Lorenz 1996

system and gridded forecasts of 2 metre temperature. Concluding remarks and a

discussion are given in section 4.4.
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4.2 Distribution-free ensemble post-processing:

methodology

4.2.1 The model

As mentioned in the previous section, our distribution-free ensemble post-processing

method is based on a statistical model that relates the ensemble forecasts and veri-

fying observations through latent variables that are either assumed to be observed

exactly, or with additional noise. We make clear the distinction between the two

cases below. For now, we denote by ξi and θ
2
i the expectation and variance of the ith

‘ensemble distribution’ (see the discussion in section 2.2.4), from which the members

of the ensemble forecast xi = (xi1, xi2, . . . , xiM) are assumed to be sampled. The

ensemble members could be either known constants, for example if sampled as quan-

tiles of the ensemble distribution, or random variables, if the members are sampled

at random — we return to this point later in this section. We again denote the ith

verifying observation by yi. We assume that yi depends on the latent variables ξi

and θ2i through the relations

E(yi | ξi, θi) = a+ bξi (4.1)

var(yi | ξi, θi) = c+ dθ2i . (4.2)

The constants a, b, c and d are parameters that are to be estimated from a training

sample of historical ensemble forecasts xi and observations yi, where i = 1, 2, . . . , N

and N is the training sample size.

Equivalently, equations (4.1) and (4.2) can be thought of as a regression model of

the form

yi = a+ bξi + ϵi, (4.3)

where ϵi is a realisation of a random variable whose distribution is a member of

the family of ensemble distributions, with conditional expectation E(ϵi | ξi, θi) = 0

and conditional variance var(ϵi | ξi, θi) = σ2
ϵ,i = c + dθ2i . In the regression literature

ϵi is commonly referred to as the ‘error in the equation’. Unlike most regression

problems, in which the variance σ2
ϵ,i is assumed constant (and so independent of ξi

and θ2i ) for all i, we stress the distinction that our model is nonhomogeneous with

variance that depends linearly on the variance of the ensemble distribution, θ2i .

The statistical model described above allows for biases in ensemble location and

dispersion that are linear functions of the expectation, ξ, and variance, θ2, of the

ensemble distributions, respectively. These assumptions are analogous to those of

the NGR post-processing model (see equations (2.19) and (2.20)), and the LCR en-
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semble adjustment scheme (see section 3.3) introduced in chapter 3. Using training

samples of observations and ensemble forecasts, our task is to estimate the param-

eters a, b, c and d without making distributional assumptions, and subsequently to

use these estimates to post-process out-of-sample ensemble forecasts.

4.2.2 The effect of noisy covariates

In section 2.2.4 we discussed two common interpretations of ensemble members,

with a focus on the context of forecast verification. However, the possible interpre-

tations of ensemble members has received almost no attention in the context of the

statistical models used for ensemble post-processing. Typically, as is usually the

case with regression models, the ensemble statistics, such as the mean and variance,

which are used as covariates in the statistical post-processing models, are viewed

as known, with the observations viewed as random variables. ‘Known’ model co-

variates are justified if the members of ensemble forecasts are interpreted as known

constants, which (as described in section 2.3.2) is appropriate when interpreting

the empirical distribution function (EDF) of the ensemble forecasts as probability

distributions for the verifying observations, y. For example, the ensemble members

might be the equidistant quantiles of the ensemble distribution. On the other hand,

if the members of ensemble forecasts are interpreted as realisations of independent

and identically distributed (IID) random variables, then the aforementioned sample

statistics that are used as model covariates are also random variables. It therefore

seems natural that, under this interpretation, the effects of random, rather than

known model covariates are accommodated in the statistical models specified by

ensemble post-processing methods. To our knowledge, the only instance in which

an assumption of IID ensemble members has been included in the statistical model

used for ensemble post-processing is in the derivation of the analytic expression used

for the dressing kernel variance of the ‘best member dressing’ (BMD) method with

Gaussian-distributed dressing kernels (Wang and Bishop [2005], see equation (2.9)).

In this chapter, therefore, we consider both ‘known’ and ‘random’ model covariates.

Both interpretations of ensemble forecasts can be accommodated by the latent vari-

able model introduced in the previous subsection. In the case of known covariates,

we simply assume that the sample mean and variance of the ensemble forecast xi,

given by x̄i = M−1
∑M

m=1 xim and s2i = (M − 1)−1
∑M

m=1(xim − x̄i)
2, respectively,

are exactly equal to the expectation and variance of the corresponding ensemble

distribution, so that

x̄i = ξi (4.4)

s2i = θ2i , (4.5)
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for all i. On the other hand, interpreting the members of the ensemble forecast xi as

a collection of M realisations of IID random variables distributed according to the

ensemble distribution results in covariates x̄i and s2i that are ‘noisy’, or imprecise

estimates of the ‘true’, unobserved latent variables ξi and θ2i . Measurement error

models are commonly employed to tackle the problems of mismeasured covariates

in statistical modelling. In the following two subsections we derive parameter esti-

mates for our distribution-free ensemble post-processing method, using the method

of moments, both with and without the assumption of mismeasured covariates. Be-

fore doing so, however, it helps to introduce some notation that we use frequently

throughout the remainder of this section.

In what follows, we make frequent use of the properties of conditional expectation

— in particular, the result E(A) = E{E(A | B)} for random variables A and B.

We also make frequent use of the sample variance and covariance statistics between

vectors r = (r1, r2, . . . , rN) and t = (t1, t2, . . . , tN), denoted S
2
r and Sr,t, respectively.

Specifically,

S2
r =

1

N − 1

N∑
i=1

(ri − r̄)2

Sr,t =
1

N − 1

N∑
i=1

(ri − r̄)(ti − t̄),

where r̄ = N−1
∑N

i=1 ri and t̄ = N−1
∑N

i=1 ti are the sample means of the vectors r

and t.

4.2.3 Parameter estimation for known covariates

In what follows, we assume that the ‘error in the equation’, ϵi, is independent of the

latent variable ξi for all i. Then

cov(ξi, ϵi) = 0.

We now turn to a derivation of our parameter estimates. We first consider the

situation in which we assume complete knowledge of ξi and θ2i , for all i. Denote

by ξ = (ξ1, ξ2, . . . , ξN) and θ = (θ1, θ2, . . . , θN) the vector of realised values of the

latent variables ξ and θ, and y = (y1, y2, . . . , yN), the vector of verifying observations

yi. To derive estimates for the model parameters a, b, c and d using the method of

moments, we require at least four equations, referred to as ‘moment equations’, that

are written in terms of the parameters a, b, c and d, and can be solved to give a

unique solution for the estimators â, b̂, ĉ and d̂.
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We consider the following sample statistics calculated over the training data:

ȳ =
1

N

N∑
i=1

yi,

the sample mean of the observations, y,

ξ =
1

N

N∑
i=1

ξi,

the sample mean of the realised values of the latent variable ξ,

S2
ξ =

1

N − 1

N∑
i=1

(
ξi − ξ

)2
,

the sample variance of ξ and

Sξ,y =
1

N − 1

N∑
i=1

(
ξi − ξ)(yi − y

)
,

the sample covariance between the vectors ξ and y. Referring to equation (4.1) for

the expectation of observation yi, conditional on ξi and θi, and conditioning on the

realised values ξ and θ, we obtain the following relations:

E(ȳ | ξ, θ) = E(a+ bξ + ϵ | ξ, θ)

= a+ bξ (4.6)

E(Sξ,y | ξ, θ) = E(Sξ,a+bξ+ϵ | ξ, θ)

= bS2
ξ , (4.7)

where here we have used the notation ϵ = (ϵ1, ϵ2, . . . , ϵN) to denote the vector

of random variables ϵi. Equation (4.6) follows from the modelling assumption

E(ϵi | ξi, θi) = 0, for all i. Therefore, rearranging equations (4.6) and (4.7), and

replacing the expectations of the summary statistics with their realised values yields

the following parameter estimates for a and b:

â = ȳ − b̂ξ (4.8)

b̂ =
Sξ,y
S2
ξ

. (4.9)

Observe that these parameter estimates are equivalent to those that are obtained

with the method of ordinary least squares when regressing the vector of observations

y on the covariates ξ. Furthermore, if the observations yi are (conditionally on ξi

and θi) assumed to be normally distributed, then the parameter estimates are also
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those that are obtained from minimisation of the negative log-likelihood (NLL).

In order to estimate the parameters c and d we use the following summary statistics:

S2
y =

1

N − 1

N∑
i=1

(yi − ȳ)2 ,

the sample variance of the realised observations y,

θ2 =
1

N

N∑
i=1

θ2i ,

the sample mean of the realised values θ2,

S2
θ2 =

1

N − 1

N∑
i=1

(
θ2i − θ2

)2
,

the sample variance of θ2,

y2 =
1

N

N∑
i=1

y2i ,

the sample mean of the squared observations, y2,

Sθ2,y2 =
1

N − 1

N∑
i=1

(θ2i − θ2)(y2i − y2),

the sample covariance between the vectors θ2 and y2,

Sξ,θ2 =
1

N − 1

N∑
i=1

(ξi − ξ)(θ2i − θ2),

the sample covariance between the vectors ξ and θ2,

ξ2 =
1

N

N∑
i=1

ξ2i ,

the sample mean of the squared realisations of ξ, and

Sξ2,θ2 =
1

N − 1

N∑
i=1

(ξ2i − ξ2)(θ2i − θ2),

the sample covariance between the vectors ξ2 and θ2. Then, conditioning on ξ and

θ and using the regression model yi = a + bξi + ϵi (see equation (4.3)), we obtain

104



4. A distribution-free ensemble post-processing method

the following relations for the expectations of the summary statistics.

E(S2
y | ξ, θ) = E(S2

a+bξ+ϵ | ξ, θ)

= E(S2
bξ | ξ, θ) + E(S2

ϵ | ξ, θ)

= b2S2
ξ + c+ dθ2, (4.10)

where the result E(S2
ϵ | ξ, θ) = c + dθ2 follows immediately from the equation for

the (conditional) variance of ϵi given in equation (4.2), var(ϵi | ξi, θi) = c+ dθ2i . We

also have

E(Sθ2,y2 | ξ, θ) = E(Sθ2,(a+bξ+ϵ)2 | ξ, θ)

= E(Sθ2,(2abξ+2aϵ+2bξϵ+b2ξ2+ϵ2) | ξ, θ). (4.11)

Now observe that

E(Sθ2,2aϵ | ξ, θ) = E

{
1

N − 1

N∑
i=1

(θ2i − θ2)(2aϵi − 2aϵ)

∣∣∣∣∣ ξ, θ
}

=
2a

N − 1

N∑
i=1

(
θ2i − θ2

)
× E (ϵi − ϵ | ξ, θ)

= 0,

where the final line follows from the (conditional) expectation of the ϵi, E(ϵi | ξ, θ) =
0. Similar calculations yield E(Sθ2,2bξϵ | ξ, θ) = 0. Thirdly, we have

E(Sθ2,ϵ2 | ξ, θ) =
1

N − 1

N∑
i=1

(
θ2i − θ2

)
× E

(
ϵ2i − ϵ2

∣∣∣∣∣ ξ, θ
)

=
1

N − 1

N∑
i=1

(
θ2i − θ2

)
×
{
(c+ dθ2i )− (c+ dθ2)

}
=

d

N − 1

N∑
i=1

(
θ2i − θ2

)2
= dS2

θ2 .

Substituting these three results in to equation (4.11) yields

E(Sθ2,y2 | ξ, θ) = 2abSξ,θ2 + b2Sξ2,θ2 + dS2
θ2 . (4.12)

Rearranging equations (4.10) and (4.12), and replacing the expectations of the sum-

mary statistics with their observed values, we obtain method of moments estimates
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for c and d:

ĉ = S2
y − d̂θ2 − b̂2S2

ξ (4.13)

d̂ =
Sθ2,y2 − 2âb̂Sξ,θ2 − b̂2Sξ2,θ2

S2
θ2

. (4.14)

Equations (4.8), (4.9), (4.13) and (4.14) give parameter estimates for the hypothet-

ical case in which ξi and θi are known exactly, for all i = 1, 2, . . . , N . In practice, ξi

and θ2i are estimated with the sample mean and variance of the ensemble forecast xi,

namely x̄i and s
2
i . Therefore, in the case of ‘known’ covariates, when the ensemble

members are interpreted as constants and so we assume x̄i = ξi and s
2
i = θ2i , for all

i, estimates for the model parameters are obtained by substituting x̄i and s
2
i for ξi

and θ2i :

âKnown = ȳ − b̂Knownx (4.15)

b̂Known =
Sx,y
S2
x

(4.16)

ĉKnown = S2
y − d̂Knowns2 − b̂2KnownS

2
x (4.17)

d̂Known =
Ss2,y2 − 2âKnownb̂KnownSx,s2 − b̂2KnownSx2,s2

S2
s2

, (4.18)

where in the above equations the summary statistics are defined in the obvious

way, by substituting x̄ and s2 in place of ξ and θ2 (see the earlier overview of this

notation).

4.2.4 Parameter estimation for mismeasured covariates

In this subsection we explain how so-called measurement error models have an intu-

itive interpretation in the context of ensemble post-processing, when the members

of ensemble forecasts are interpreted as IID draws from underlying ensemble dis-

tributions. We refer the reader to Buonaccorsi [2010, chapters 4–6] for a detailed

exposition of the material used to motivate this work. In particular, we make use

of the idea of replication. It is intuitive to view the M members of an ensemble

forecast, xi, as each representing a replicate, mismeasured estimate of the latent

variable ξi. In this case, the ensemble mean x̄i is an unbiased estimator of ξi. Fur-

thermore, the sample variance, s2i , is an unbiased estimator for the latent variable

θ2i . The idea of replication is used for estimating the parameters a, b, c and d of

the statistical model given by equations (4.1) and (4.2) for model covariates that

are subject to measurement error. In section 4.2.4.1 we describe our measurement

error model, and note the assumptions that are used in the derivations of parameter
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estimates that follow in section 4.2.4.2.

4.2.4.1 A measurement error model for ensemble post-processing

We denote by uξ,i and uθ2,i the error in estimating the latent variables ξi and θ2i

with the ensemble mean x̄i and ensemble variance s2i , respectively. We assume a

so-called ‘additive measurement error model’, such that the expectations of uξ,i and

uθ2,i, conditional on ξi and θi, are E(uξ,i | ξi, θi) = E(uθ2,i | ξi, θi) = 0 for all i.

This additive model satisfies the unbiasedness of the sample statistics x̄i and s
2
i as

estimators of the expectation ξi and variance θ2i of the ith ensemble distribution,

under the interpretation that the members of the ensemble forecast xi are IID draws

from that distribution. The (mismeasured) model covariates, x̄i and s
2
i , can thus be

written as

x̄i = ξi + uξ,i (4.19)

s2i = θ2i + uθ2,i, (4.20)

for all i. We further denote the variances of the measurement error variables by σ2
uξ,i

and σ2
uθ2,i

. An important topic in the field of measurement error models, as we shall

see below, is the estimation of these variances.

We assume mutual, unconditional independence between the ‘error in the equation’,

ϵi, and the measurement error variables, uξ,i and uθ2,i, for all i. We further as-

sume unconditional independence of the measurement error variables uξ,i and uθ2,i.

A corollary of these two assumptions is that the measurement error variables uξ,i

and uθ2,i are (conditional on ξi and θ2i ) independent of the verifying observations

yi, and the squared observations y2i . Finally, we assume unconditional tempo-

ral independence between the measurement error variables. That is, we assume

f(uξ,i, uξ,j) = f(uξ,i)× f(uξ,j) for all i ̸= j, where f(·) denotes the probability den-

sity function (PDF) of its argument, and similarly for uθ2,i and uθ2,j. We refer to

these assumptions in the derivations of the parameter estimates in the calculations

that follow in the next section.

The interpretation of ensemble forecasts xi whose members are IID realisations of a

random variable distributed according to the ith ensemble distribution, with expec-

tation ξi and variance θ2i , is appealing, as it enables us to estimate the measurement

error variances σ2
uξ,i

and σ2
uθ2,i

. Under the aforementioned interpretation of the en-

semble members as IID samples from the ith ensemble distribution, with variance

var(xim) = θ2i for all m = 1, 2, . . . ,M , it follows immediately from equation (4.19)
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that the (conditional) variance of x̄i is

var(x̄i | ξi, θi) = σ2
uξ,i

= θ2i /M.

In our measurement error model, the latent variable θ2i is unobserved. We therefore

estimate σ2
uξ,i

by replacing θ2i with its sample estimate, s2i , to give the estimate

σ̂2
uξ,i

= s2i /M. (4.21)

Estimating the variances σ2
uθ2,i

of the measurement error variables uθ2,i, is less

straightforward. We turn to the method of jackknife resampling [Efron and Gong,

1983], which again exploits the interpretation of ensemble members as IID ran-

dom variables. The jackknife method can be used to estimate the variance of any

estimator in the following way. For a M -member ensemble forecast xi, with expec-

tation E(xim) = ξi and var(xim) = θ2i , for m = 1, 2, . . . ,M , let xi,−m denote the

(M − 1)-member ensemble that excludes member xim. The jackknife estimate of

σ2
uθ2,i

= var(s2i ), where s
2
i denotes the sample variance of ensemble forecast xi, is

given by

σ̂2
uθ2,i

=
1

M

M∑
m=1

(
s2i,−m − s2i

)2
, (4.22)

where

s2i,−m =
1

M − 2

M∑
l=1;l ̸=m

(xil − x̄i,−m)
2

and

x̄i,−m =
1

M − 1

M∑
k=1;k ̸=m

xik

are the sample variance and sample mean of xi,−m.

Under the interpretation of IID ensemble members, the estimator σ̂2
uξ,i

= s2i /M

(equation (4.21)) is unbiased for σ2
uξ,i

. This follows from the fact that s2i is an

unbiased estimator of θ2i . Efron [1981] stated that the jackknife estimates of variance

are biased upwards. We found this result to be in keeping with a small simulation

experiment that we conducted with randomly generated data (not shown). We

also experimented with estimating measurement error variances σ̂2
uθ2,i

by bootstrap

resampling. We found there to be little difference in the jackknife and bootstrap

estimates, although the bootstrap comes at additional computational cost.
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4.2.4.2 Parameter estimation with mismeasured covariates

Referring to the assumptions given in the previous section, and the estimates for

the variances of the measurement error variables uξ,i and uθ2,i (see equations (4.21)

and (4.22)), we can now use the method of moments to find estimates for the model

parameters a, b, c and d that account for mismeasured estimates of the latent vari-

ables ξi (by x̄i) and θ2i (by s2i ). Using conditional expectations and referring to

equation (4.1) for the expectation of observation yi, conditional on ξi and θi, we

have

E(ȳ) = E{E(ȳ | ξ, θ)}

= E{E(a+ bξ + ϵ | ξ, θ)}

= E(a+ bξ)

= a+ b · 1

N

N∑
i=1

E (ξi) . (4.23)

To derive a moment equation, therefore, we need an estimate of E(ξ). Unlike the

so-called ‘known’ estimates derived in the previous subsection, we do not observe

the ξi, and so must use the estimate x̄i. This gives

E(x) = E{E(x | ξ, θ)}

=
1

N

N∑
i=1

E {E(x̄i | ξ, θ)}

=
1

N

N∑
i=1

E(ξi), (4.24)

where equation (4.24) follows from the additive measurement error model (E(x̄i |
ξi, θi) = E(ξi + uξ,i | ξi, θi) = ξi), for all i. Substituting equation (4.24) in to

equation (4.23) yields the first moment equation,

E(ȳ) = a+ bE(x). (4.25)

To derive a second moment equation we have

E(Sx̄,y) = E{E(Sx̄,y | ξ, θ)}

= E{E(Sξ+uξ,a+bξ+ϵ | ξ, θ)}

= bE(S2
ξ ), (4.26)

where equation (4.26) follows from the (conditional on ξi and θi) independence of

the ϵi with ξi and uξ,i, and uξ,i with ξi, for all i. It remains to find an expression for
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E(S2
ξ ), where now the ξi are unknown and are estimated with x̄i. We have

E(S2
x̄) = E{E(S2

ξ+uξ
| ξ, θ)}

= E{E(S2
ξ + S2

uξ
| ξ, θ)}

= E
(
S2
ξ

)
+

1

N

N∑
i=1

E

(
θ2i
M

)
, (4.27)

where the second term in equation (4.27) follows since the expectation E(S2
uξ

| ξ, θ)
is an unbiased estimate of the expectation of measurement error variances, σ2

uξ
=

θ2i /M . Finally, we need an expression for E(θ2). We have

E(s2) = E{E(s2 | ξ, θ)}

= E{E(θ2 + uθ2 | ξ, θ)}

= E(θ2)

=
1

N

N∑
i=1

E
(
θ2i
)
, (4.28)

where the third line in the above working follows from the conditional expectation

E(uθ2,i | ξ, θ) = 0. Substituting equations (4.27) and (4.28) in to equation (4.26)

yields a second moment equation:

E(Sx̄,y) = b
{
E(S2

x̄)− E(s2)/M
}
. (4.29)

The above working leads to estimates for the model parameters a and b that account

for measurement error. Replacing the expectations of the summary statistics given

in equations (4.25) and (4.29) with their observed values, we arrive at

âME = ȳ − b̂MEx (4.30)

b̂ME =
Sx̄,y

S2
x̄ − s2/M

. (4.31)

Observe that the estimates for the parameters a and b derived using the measure-

ment error model (equations (4.30) and (4.31)) differ from the analogous parameter

estimates under the interpretation of known covariates (equations (4.15) and (4.16))

in the denominator of the expression for b̂. Using the measurement error model, we

correct for the bias in estimating the variance of the latent variable ξ by S2
x, and

instead use the unbiased estimate S2
x − s2/M . Note, however, that this does not

imply unbiasedness in the parameter estimate b̂ME (equation (4.31)). This point is

discussed further in section 4.2.5.

To derive estimates for the parameters c and d we need two further moment equa-
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tions. We have

E(S2
y) = E{E(S2

a+bξ+ϵ | ξ, θ)}

= b2E
(
S2
ξ

)
+ c+ d · 1

N

N∑
i=1

E
(
θ2i
)
, (4.32)

where equation (4.32) follows immediately from the earlier result for E(S2
y | ξ, θ)

(when deriving the ‘known’ parameter estimates), given in equation (4.10). Rear-

ranging equation (4.26) in terms of E(S2
ξ ), and substituting equation (4.28) (for

E(s2) = E(θ2)) in to equation (4.32) gives a third moment equation:

E(S2
y) = bE(Sx̄,y) + c+ dE(s2). (4.33)

To derive a fourth moment equation we proceed as follows. Firstly, we have

E(Ss2,y2) = E{E(Ss2,y2 | ξ, θ)}

= 2abE(Sξ,θ2) + b2E(Sξ2,θ2) + dE(S2
θ2), (4.34)

where equation (4.34) follows immediately from equation (4.12) for E(Sθ2,y2 | ξ, θ),
which was used in the derivation of the ‘known’ estimates, and the (conditional)

independence of the measurement errors uθ2,i with the squared observations, y2i , as

noted at the beginning of this section. It remains to find estimates for the terms on

the right hand side of equation (4.34). We have

E(Sx̄2,s2) = E{E(S(ξ+uξ)2,θ2+uθ2
| ξ, θ)}

= E{E(Sξ2+2ξuξ+u
2
ξ ,θ

2+uθ2
| ξ, θ)}

= E(Sξ2,θ2) + E(S2
θ2)/M. (4.35)

The first term in equation (4.35) follows from the assumed (conditional) indepen-

dence of uξ,i with uθ2,i for all i. The second term follows from the result

E(Su2ξ ,θ2 | ξ, θ) =
1

N − 1

N∑
i=1

(
θ2i − θ2

)
× E

(
u2ξ,i − u2ξ

)
=

1

N − 1

N∑
i=1

(
θ2i − θ2

)2
/M

= S2
θ2/M,

since E(u2ξ,i | ξ, θ) = σ2
uξ,i

= θ2i /M . Equation (4.35) can therefore be rearranged for

E(Sξ2,θ2), the first of the terms needed on the right hand side of equation (4.34).
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Secondly we have

E(Sx̄,s2) = E{E(Sξ+uξ,θ2+uθ2 | ξ, θ)}

= E(Sξ,θ2), (4.36)

where equation (4.36) follows from the assumed conditional independence of the

measurement error variables, and the assumption that their conditional expectations

are 0. Finally we have

E(S2
s2) = E{E(S2

θ2+uθ2
| ξ, θ)}

= E(E{S2
θ2 + S2

uθ2
| ξ, θ})

= E
(
S2
θ2

)
+

1

N

N∑
i=1

E(σ2
uθ2,i

). (4.37)

The second term in equation (4.37) follows from expanding S2
uθ2

, whereupon a short

calculation shows that the expectation of this summary statistic, conditional on ξ

and θ, is equal to the mean of the measurement error variances σ2
uθ2,i

. Rearranging

equations (4.35), (4.36) and (4.37), and substituting in to equation (4.34), we arrive

at

E(Ss2,y2) = b2E(Sx̄2,s2) + 2abE(Sx̄,s2) + (d− b2/M)

[
E(S2

s2)−N−1

N∑
i=1

E(σ2
uθ2,i

)

]
.

(4.38)

We use the jackknife estimates σ̂uθ2,i (equation (4.22)) in place of E(σ2
uθ2,i

) to give

the fourth moment equation:

E(Ss2,y2) ≈ b2E(Sx̄2,s2) + 2abE(Sx̄,s2) + (d− b2/M)

[
E(S2

s2)−N−1

N∑
i=1

σ̂2
uθ2,i

]
.

(4.39)

The expectation on the left hand side of equation (4.39) is an approximation due to

the bias of the jackknife estimates σ̂2
uθ2,i

.

Equations (4.33) and (4.39) can be solved to give estimates for the parameters c and

d that account for measurement error as follows:

ĉME = S2
y − d̂MEs2 − b̂MESx̄,y (4.40)

d̂ME =
b̂2ME +M

(
Ss2,y2 − b̂2MESx̄2,s2 − 2âME b̂MESx̄,s2

)
M
(
S2
s2 −N−1

∑N
i=1 σ̂

2
uθ2,i

) . (4.41)
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4.2.4.3 Parameter estimate constraints

Due to the negative terms in the expressions for the ‘known’ and ‘measurement

error’ parameter estimates for c and d, the parameter estimates themselves are not

restricted to strictly positive values. Negative values of the estimates ĉ or d̂ have

the undesirable implication that the forecast variance given by equation (4.2) may

itself be negative. We therefore constrain the parameter estimates to be bounded

below by 0 by imposing the following constraints. Firstly, for the ‘known’ parameter

estimates, if d̂Known < 0 we set

d̂Known = 0 (4.42)

ĉKnown = S2
y − b̂2KnownS

2
x̄, (4.43)

where equation (4.43) is simply equation (4.17) with the substitution d̂Known =

0. The estimate ĉKnown given by equation (4.43) is positive provided that S2
y >

(Sx̄,y)
2/S2

x̄ — this follows from the expression for b̂Known. We have not obtained

any negative estimates ĉKnown from equation (4.43) in the three studies presented in

section 4.3. However, if that occurs, we suggest that the user reverts to the more

simplistic case of constant (rather than nonhomogeneous) variances in the forecast

errors, and uses the unbiased estimator of the variance of the squared residuals for

ĉ2Known:

ĉKnown =

√√√√ 1

N − 2

N∑
i=1

(
yi − âKnown − b̂Knownx̄i

)2
. (4.44)

Equation (4.44) is the parameter estimate that would be obtained if we fitted a

distribution-free post-processing method with the assumption of constant forecast

variance, such as in the model output statistics (MOS) method described in sec-

tion 2.4.4.1.

Similarly, if ĉKnown < 0 we set

ĉKnown = 0 (4.45)

d̂Known =
S2
y − b̂2KnownS

2
x̄

s2
, (4.46)

where equation (4.46) follows from rearranging equation (4.17) with the constraint

ĉKnown = 0. Again, we have not obtained negative parameter estimates for d̂Known

using equation (4.46). We suggest that negative estimates using equation (4.46)

indicate misspecification of the forecast variance, and users should revert to the

constant variance case using equation (4.44) and setting d̂Known = 0.
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Similarly for the measurement error parameters, if d̂ME < 0 we set

d̂ME = 0 (4.47)

ĉME = S2
y − b̂MESx̄,y, (4.48)

where equation (4.48) follows directly from equation (4.40) with the constraint

d̂ME = 0. In an analogous manner to the ‘known’ parameter estimates, if equa-

tion (4.48) gives rise to negative estimates, the alternative estimate for ĉME under

the assumption of constant error variance should be used

ĉME =

√√√√ 1

N − 2

N∑
i=1

(
yi − âME − b̂MEx̄i

)2
− b̂2MEs

2/M, (4.49)

where the final term in the above equation removes the bias in estimating c2 by the

mean of the squared residuals that is induced by the measurement error in the co-

variates x̄i. Buonaccorsi [2010, page 86] suggests that, if the term under the square

root is negative, the estimate ĉME should be set to 0, in which case the problem

becomes one of deterministic prediction. This seems a somewhat unsatisfactory so-

lution in the context of ensemble post-processing, since our post-processing method

would yield post-processed deterministic, rather than ensemble forecasts. We have

not witnessed any negative estimates from equation (4.48) in practice, and suggest

that, if they do occur, more thought should be given to the specification of the

post-processing model.

Finally, if ĉME < 0 we set

ĉME = 0 (4.50)

d̂ME =
S2
y − b̂MESx̄,y

s2
, (4.51)

where equation (4.51) follows from rearranging equation (4.40) with the constraint

ĉME = 0. As with the ‘known’ estimates, if equation (4.51) gives rise to negative

values, we suggest setting d̂ME to 0 and using equation (4.49) to estimate ĉME. We

stress, however, that we have not witnessed any negative estimates in the three case

studies provided in this chapter, and suggest that, if they do occur, further thought

should be given to the model specification.

4.2.5 The sampling properties of parameter estimates

The importance of accounting for measurement error is best motivated by consider-

ing the effect of treating error-prone variables as known constants, as is typically the
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case in ensemble post-processing and regression problems in general. For example,

consider the estimates âKnown and b̂Known for a and b, given in equations (4.15) and

(4.16). In the presence of measurement error, we see immediately that the statistic

S2
x = S2

ξ+uξ
> S2

ξ is a biased estimate of var(ξ), the (unconditional) variance of the

latent variable ξ. Consequently, substituting S2
x for S2

ξ in equation (4.9) in the pres-

ence of measurement error will bias the estimate of b towards 0. Similar comments

apply to the effect of ignoring measurement error in the estimation of θ2 by s2.

Clearly, therefore, neglecting measurement error by using equations (4.15)–(4.18)

may lead to biased parameter estimates.

Measurement error models are typically applied to more standard regression prob-

lems, in which the variance of the ‘error in the equation’, σ2
ϵ,i, is constant for all i.

In this case, accounting for measurement error by using the estimates given in equa-

tions (4.30) and (4.31) reduces the bias of the ‘known’ parameter estimates âKnown

and b̂Known (see equations (4.15) and (4.16)). However, the ‘random’, or ‘measure-

ment error’ parameter estimates âME and b̂ME are not unbiased, although they are

consistent — that is, they tend to the true values of a and b as the training sample

size N tends to ∞.

To our knowledge, parameter estimation by the method of moments has not been

applied to our nonhomogeneous regression model, either with or without accounting

for measurement error. The sampling properties of the estimates ĉKnown, d̂Known, ĉME

and d̂ME are unknown. From their derivations (see equations (4.17), (4.18), (4.40)

and (4.41)), it is clear that the direction of bias is complex. For example, considering

the ‘known’ parameter estimates, the estimate d̂Known is a function of both âKnown

and b̂Known, b̂
2
Known, as well as the product âKnownb̂Known. Similar comments apply

to the ‘random’ parameters, for which the sampling properties also depend on the

properties of the jackknife estimates σ̂uθ2,i given in equation (4.22). The complicated

(and possibly intractable) analyses of the sampling properties of parameter estimates

is beyond the scope of this chapter, the focus of which is to post-process ensemble

weather forecasts in the absence of distributional assumptions for the verifying ob-

servations. We do, however, consider the sampling properties of the parameter

estimates in a simulation study, presented in section 4.3.1.

4.2.6 Ensemble post-processing and related issues

4.2.6.1 Distribution-free ensemble post-processing

Having obtained parameter estimates â, b̂, ĉ and d̂ using either equations (4.15)–

(4.18) or (4.30)–(4.41), the ensemble forecast xt = (xt,1, xt,2, . . . , xt,M), with ensem-
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ble mean x̄t and variance s2t , where the subscript t indexes the ensemble forecast in

the out-of-sample test dataset, is post-processed by

x̂t,m = â+ b̂x̄t +

√
ĉ+ d̂s2t ·

xt,m − x̄t
st

, for m = 1, 2, . . . ,M. (4.52)

The post-processed ensemble forecast, x̂t, has ensemble mean ¯̂xt = â + b̂x̄t and

ensemble variance ŝ2t = ĉ+ d̂s2t . Standardising the ensemble forecasts such that the

members have 0 expectation and unit variance in equation (4.52) allows the ensemble

forecast to be rescaled (using the term

√
ĉ+ d̂s2t ), and shifted in order to account for

bias, using the term â + b̂x̄t. Observe, therefore, that equation (4.52) is in keeping

with the LCR scheme introduced in section 3.3.2, where here the parameter d in the

LCR scheme is replaced with the linear function c+ ds2t . If the assumed model (see

equations (4.1) and (4.2)) is correct, therefore, we should expect the post-processed

ensemble forecasts to be more skilful than the initial, ‘raw’ ensemble forecasts.

4.2.6.2 A note on out-of-sample forecasting

If the forecast user only wishes to learn about the ‘true’ values of the model pa-

rameters, then the measurement error estimates are theoretically preferable due to

their reduced bias. Perhaps surprisingly, however, the issue of which parameter

estimates should be used in equation (4.52) to post-process ensemble forecasts is

much less straightforward. At first sight, it might appear that the measurement

error estimates should be used, given that we expect their bias to be less than that

of the known parameter estimates. On the other hand, the known estimates are

those that are optimal for the ‘mismeasured’, or ‘noisy’ model covariates, in the

sense that they solve the moment equations for the noisy covariates. Given that the

covariates x̄t and s
2
t in the test dataset are also subject to measurement error, the

known parameter estimates may actually yield better predictions.

This problem is addressed in Buonaccorsi [2010, section 4.8], although only in the

context of point predictions or, in the parlance of weather forecasting, deterministic

forecasts, using standard linear regression models. For deterministic forecasts, it is

concluded that the known parameter estimates should be used, provided that the

out-of-sample predictor variables, here x̄t, are of the same structural form as the

covariates in the training sample that is used for parameter estimation. However,

the measurement error estimates are preferable, at least for deterministic forecasts, if

the out-of-sample covariates are structurally different to those in the training sample

[Buonaccorsi, 2010, section 4.8]. An example of such a change could be an increase

in the number of ensemble members after parameter estimation, which would result

in a change to the variance of the measurement error associated with x̄t. In this
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case, the variances of the measurement error variables, σ2
uξ,i

reduce, and tend to 0

in the limit as the ensemble size, M , tends to ∞. In the limiting case, therefore,

the ensemble mean x̄t tends to ξt, where the subscript t denotes an out-of-sample

ensemble forecast, and so the measurement error parameter estimates, which are

less biased than the ‘known’ parameter estimates, should be used for prediction.

Perhaps a more likely scenario is that of changing atmospheric conditions, for which

the distribution of the latent variable ξ may differ for the out-of-sample forecast,

compared with the training sample used for parameter estimation.

In the same vein as the discussion given in section 4.2.5 for the sampling properties

of the estimates for the parameters c and d, the effect of the choice of the ‘known’

or ‘random’ parameter estimates on the post-processing of ensemble forecasts, using

equation (4.52), is unclear. It seems plausible to suggest that the ‘known’ parameter

estimates may in general be preferable, since we should expect the measurement

error properties of both the latent variables ξ and θ2 in the out-of-sample forecasts

to be of the same structural form as those in the training sample. Once again,

however, changes in the properties of the out-of-sample forecasts compared with

those of the training sample may result in a preference for the ‘random’ parameter

estimates. In this study we compare the skill of ensemble forecasts post-processed

using equation (4.52), using both the ‘known’ and ‘random’ parameter estimates.

4.2.6.3 Preserving the ensemble rank structure for multivariate

forecasts

In section 2.4.6 we described the method of ensemble copula coupling (ECC, Schefzik

et al. [2013]), which utilises information contained in the rank dependence structure

of the ‘raw’ ensemble forecasts to improve forecast skill over multivariate domains,

such as spatial fields. The method requires post-processed ensemble forecasts to be

sampled from probability forecast distributions, and the members reordered so as

to preserve the rank structure of the initial, ‘raw’ ensemble forecasts. An appealing

property of our distribution-free post-processing method (see equation (4.52)) is that

the ensemble rank structure is preserved and, therefore, the skill of the method in

issuing ensemble forecasts of spatial fields can be directly compared with that of the

ECC method.

4.2.7 A note on ensemble member dependence

In section 4.2.6.1 we stated that the mean and variance of the post-processed ensem-

ble forecast x̂t are x̂t =M−1
∑M

m=1 x̂m,t = â+b̂x̄t and ŝ
2
t = (M−1)−1

∑M
m=1

(
x̂m,t − x̂t

)2
=

ĉ+ d̂s2t , respectively. However, while these sample results are correct, we point out

117



4. A distribution-free ensemble post-processing method

that our post-processing method given by equation (4.52) induces dependence be-

tween members of the recalibrated ensemble x̂t through the use of x̄t and s
2
t . There-

fore, post-processing ensemble forecasts using equation (4.52) yields post-processed

ensemble forecasts x̂t whose members are dependent, even in the case of IID mem-

bers of the ‘raw’ ensemble forecast xt.

In chapter 6 we provide a more detailed discussion of the implications of ensemble

member dependencies on the commonly employed verification measures. In partic-

ular, we show that verification measures such as the continuous ranked probability

score are affected by the strength of inter-member dependencies, which are a func-

tion of the parameter estimates and covariates used in the ensemble post-processing.

As discussed in section 2.2.4, however, when performing forecast verification to as-

sess forecast skill it is necessary to interpret the ensemble members as either IID

realisations of an underlying distribution, or as the empirical distribution function

of the verifying observation. In this chapter we comment on both interpretations.

4.2.8 Forecast verification

In the following section we present results for three case studies in which the skill

of ensemble forecasts post-processed with our distribution-free method (see equa-

tion (4.52)) are compared with those sampled from Gaussian NGR probability fore-

cast distributions. We make frequent use of rank histograms, described in sec-

tion 2.5.2.3, that provide a graphical assessment of the calibration of the post-

processed ensemble forecasts. We also assess the skill of the post-processed ensem-

ble forecasts using the empirical version of the continuous ranked probability score

(CRPS, see equation (2.48) on page 60), that is appropriate when the EDFs of the

ensemble forecasts are interpreted as probability forecast distributions for the verify-

ing observations, and the fair CRPS (FCRPS, see equation (2.50) on page 61), that

is appropriate when interpreting ensemble members as IID draws from underlying

ensemble distributions. The energy score (see equation (2.47) on page 59) is used

in section 4.3.3 for assessing ensemble forecasts over spatial fields. Finally, the skill

of post-processed deterministic forecasts is also assessed by the mean squared error

(MSE), where the deterministic forecasts are given by the post-processed ensemble

mean

x̂t =
1

M

M∑
m=1

x̂m,t,

where x̂t denotes the post-processed ensemble forecast.

118



4. A distribution-free ensemble post-processing method

4.3 Case studies

4.3.1 A simulation experiment

In this subsection we present results of a simulation experiment for which the mo-

ments of the ensemble forecasts and observations satisfy the relationships given by

equations (4.1) and (4.2) exactly. Furthermore, we simulate observations that are

normally distributed, conditional on the ensemble mean and variance, such that the

statistical model assumed by the NGR post-processing method (see equations (2.19)

and (2.20) in page 38) is also satisfied. As well as quantifying the skill of our

distribution-free ensemble post-processing methods in out-of-sample forecasts, this

experiment allows us to study the sampling properties of the moment-based pa-

rameter estimates. We also compare our distribution-free approach to the popular

NGR post-processing method, where the NGR parameters minimise the negative

log-likelihood (NLL). The experiment proceeds as follows.

1. Fix a training sample size, N , an ensemble size, M , and the ‘true’ values of

the model parameters a, b, c and d.

2. Simulate N random variables ξi and θ
2
i for i = 1, 2, . . . , N . These represent the

‘true’ expectation and variance of the N underlying ‘ensemble distributions’.

3. For each pair (ξi, θ
2
i ), simulate M ensemble members, xim, as IID random

draws with distribution N(ξi, θ
2
i ).

4. For all i, calculate the ensemble mean x̄i and variance s2i .

5. For all i, simulate observations yi as IID random draws with distribution N(a+

bξi, c+ dθ2i ).

6. Calculate the ‘known’ and ‘random’ parameter estimates.

7. Simulate random variables ξ0, θ
2
0, and an ensemble x0, as described above.

Calculate the statistics x̄0 and s20.

8. Use the parameter estimates and equation (4.52) to post-process the ensemble

x0. Calculate verification measures for the post-processing ensemble forecast

x̂0 and verifying observation y0.

9. Repeat the above steps a sufficient number of times in order to achieve the

desired accuracy of results.

In the following results, we use the parameter values a = −2, b = 5/4, c = 1/2

and d = 3/2, and an ensemble size of M = 10. We show results for samples of
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size N = 50, but also comment on larger training samples. Results are calculated

from 106 simulations, in order to ensure that the effects of sampling variability

are negligible. The values ξi were simulated as N IID draws with distribution

N(1/2, 4), and the values of θ2i were taken as the absolute values of IID realisations

with the same distribution. The qualitative features of the results were found to be

consistent, regardless of the marginal distributions of the random variables ξ and

θ2 — we experimented with exponential and uniform distributions for the ξi, and

Chi-squared distributions for θ2i .

We compare the skill of ensemble forecasts that are post-processed with either

the ‘known’ or ‘measurement error’ parameter estimates using our distribution-free

method (see equation (4.52)) with ensemble forecasts sampled from NGR probabil-

ity forecast distributions. Recall that the NGR forecast distributions for verifying

observation yt, conditional on ensemble forecast xt, is

yt | xt ∼ N(a+ bx̄t, c+ ds2t ),

where in practice we substitute parameter estimates â, b̂, ĉ and d̂ for a, b, c and d. In

this simulation experiment and the study presented in the following subsection, we

consider ensemble forecasts that are sampled from the NGR forecast distributions

as equidistant quantiles qm/(M+1) for m = 1, 2, . . . ,M , and as IID random draws.

As well as constructing NGR forecast distributions (and subsequently sampling M -

member ensemble forecasts) using likelihood parameter estimates, we also consider

NGR forecasts with parameter estimates given by the ‘known’ and ‘measurement

error’ method of moments approach. We therefore compare the forecasting skill of

five ensemble forecasting systems — two ensemble forecasts post-processed with our

distribution-free method, and three ensemble forecasts that are sampled from NGR

probability distributions, that differ in the parameter estimates for a, b, c and d.

4.3.1.1 Sampling properties of parameter estimates

It is illuminating to first consider the sampling properties of the parameter estimates

obtained in this simulation experiment. In figure 4.1 we examine the sampling

distributions of the ‘known’ and ‘random’ parameter estimates obtained using the

method of moments, as well as the NLL parameter estimates for the NGR model,

using box and whisker plots. Parameter estimates were obtained from training

samples of size N = 50. Firstly, considering the estimates â and b̂, we see that

the ‘known’ and NGR NLL estimates exhibit some bias, which is largely corrected

by the measurement error model, in keeping with theoretical expectations (see the

discussion in section 4.2.5).
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The box and whisker plots indicate that the estimation of c and d using the method

of moments is more problematic. For the estimation of c, the ‘random’ parameter es-

timates derived using the measurement error model are less biased than the ‘known’

parameter estimates — the bias of the ‘random’ parameter estimates is comparable

with that of the NLL parameter estimates obtained using the NGR post-processing

method, although the ‘random’ estimates are more variable. Both of the moment-

based parameter estimates are more biased and variable than the corresponding NLL

estimates for d. Unfortunately, as shown by the box and whisker plots, a significant

proportion of the moment-based parameter estimates for c and d have been set to 0,

in accordance with the parameter constraints provided at the end of section 4.2.4.2.

Indeed, from further investigations (not shown) we see that in most instances one

or other of the estimates has been set to 0, meaning that the initial estimate was

negative. This is a result of the remaining estimation bias discussed in section 4.2.5.

However, we stress that the problematic estimation of the parameters c and d is not

restricted to the method of moments. Both the Nelder-Mead and BFGS algorithms

(see section 2.4.7.3) often fail to converge when estimating the equivalent NGRmodel

parameters by NLL minimisation. In order to ensure the numerical convergence of

the NLL parameter estimates, it is necessary to set c = γ2 and d = δ2, and to find the

estimates γ̂ and δ̂. In turn, NLL parameter estimates for c and d are then given by

ĉNGR = γ̂2 and d̂NGR = δ̂2. Similar comments were made in the founding paper for

the NGR post-processing method [Gneiting et al., 2005]. Without this constraint,

even in the case of numerical convergence of the BFGS algorithm, we observe some

estimates ĉNGR and d̂NGR that are negative, giving rise to the undesirable occurrence

of a negative forecast variance. Similar comments apply to the other examples given

in sections 4.3.2 and 4.3.3 that follow.

For larger training samples, the equivalent box and whisker plots (not shown) indi-

cate reduced variability in the parameter estimates, as we should expect, and the

above comments concerning the distribution-free, moment-based models still apply.

We find that the Nelder-Mead and BFGS algorithms converge without applying the

constraints c = γ2 and d = δ2. However, such large training samples are unavailable

in most practical settings.

4.3.1.2 Out-of-sample forecasting results

Figure 4.2 shows rank histograms for the post-processing methods under consid-

eration. Again, parameter estimation is performed using training samples of size

N = 50. Perhaps surprisingly, all of the rank histograms are non-uniform, despite

the idealised underlying model for the NGR post-processing method. The shape of

the rank histogram for the NGR forecasts with NLL parameter estimates (NGR-
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â

Known Random NGR−NLL

1.
0

1.
1

1.
2

1.
3

1.
4

1.
5

b̂

Known Random NGR−NLL

0
1

2
3

4
5

6
7 ĉ
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Figure 4.1 Box and whisker plots for the parameter estimates â, b̂, ĉ and d̂ for the ‘known’
method (left), the measurement error method (middle) and the likelihood-based NGR
estimates (right).
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Figure 4.2 Rank histograms for the distribution-free post-processed ensemble forecasts (top
row), and ensemble forecasts sampled as equidistant quantiles from NGR distributions
using the known, measurement error, and NLL parameter estimates (bottom row). The
training sample size is N = 50. The horizontal lines indicate the bin heights of uniform
histograms.

NLL) is thought to be due to the effects of uncertainty in the parameter estimates,

which is studied in detail in chapter 5. In this chapter, we simply focus on deter-

mining which of the ensemble forecasts yield the most uniform rank histograms, in

addition to the other scores discussed below. To that end, the post-processed en-

semble forecasts using equation (4.52), with the ‘known’ parameter estimates (equa-

tions (4.15)–(4.18)) yields the most uniform rank histogram. The rank histogram

for the ‘random’ parameters derived with the measurement error model is qualita-

tively similar, except that the overpopulation of the outermost bins is exacerbated.

For NGR, the likelihood-based parameter estimates (NLL) clearly improve the cal-

ibration of the post-processed ensemble forecasts, compared with those of ensemble

forecasts sampled from NGR distributions specified with either of the moment-based

parameter estimates. The rank histogram for the ensemble forecasts sampled from

the NGR-NLL distributions is similar to that of the distribution-free post-processing

method with the ‘random’ parameter estimates. Ensemble forecasts sampled as IID

random values from the NGR forecast distributions yield almost identical rank his-

tograms (not shown) to the approach of sampling equidistant quantiles.

Figure 4.3 shows the rank histograms for parameter estimates obtained with training

samples of size N = 500. In this case, the rank histograms for the NGR method with

NLL parameter estimates and the distribution-free method with ‘random’ parameter
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Figure 4.3 As for figure 4.2, but with training samples of size N = 500.

estimates are most uniform, while in this case the ‘known’ parameter estimates

yield rank histograms that indicate overdispersed ensemble forecasts. Once again,

when using the moment-based parameter estimates, ensembles obtained using the

distribution-free post-processing method (equation (4.52)) yield more uniform rank

histograms than are obtained by sampling from the Gaussian NGR distributions.

In table 4.1 we show various scores to assess the skill of ensemble forecasts post-

processed with the distribution-free method (equation (4.52)) and sampled as equidis-

tant quantiles from Gaussian NGR probability distributions. We show results for

both the continuous ranked probability score (CRPS) for ensemble forecasts that

we interpret as the empirical distribution functions (EDFs) of the observations (see

equation (2.48)), and the fair CRPS (FCRPS) for ensemble forecasts that we in-

terpret as IID draws from ensemble distributions (see equation (2.50)). See the

discussion given in section 2.2.4 for further details. The ‘Coverage’ scores denote

the proportion of observations that are bounded by the lower and upper ensemble

members. For 10-member ensembles, the range of the ensemble members forms a

nominal 100× 9/11 ≈ 81.8% prediction interval for the corresponding observation.

Similar coverage scores to this value are indicative of well-calibrated ensemble fore-

casts. The scores were calculated as the mean of 106 independent simulations. The

associated standard errors are sufficiently small (of the order 10−4 or 10−5) to allow

us to report the scores to at least the degree of accuracy shown.

In order to ease reading, we have only shown the scores for ensemble forecasts sam-
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known Random NGR-Known NGR-Random NGR-NLL

N = 50

MSE 2.533 2.535 2.517
CRPS 0.917 0.918 0.900 0.904 0.888
FCRPS 0.832 0.836 0.827 0.834 0.813
Coverage 0.817 0.801 0.767 0.750 0.791

N = 500

MSE 2.432 2.433 2.430
CRPS 0.894 0.894 0.875 0.878 0.863
FCRPS 0.808 0.811 0.801 0.806 0.786
Coverage 0.835 0.820 0.788 0.771 0.823

Table 4.1 Results of the simulation study with parameters estimated from training samples
of size 50 and 500. Measures of the skill of deterministic forecasts (MSE) and ensemble
calibration (CRPS, FCRPS and Coverage), for the two distribution-free post-processing
methods (Known and Random), and ensemble forecasts sampled from NGR distribu-
tions using the moment-based parameter estimates (NGR-Known and NGR-Random) and
likelihood-based estimates (NGR-NLL).

pled as equidistant quantiles from the NGR probability forecast distributions. We

do not show the corresponding scores for ensemble forecasts that are sampled as

IID realisations of the probability distributions. However, we stress that such sam-

pling results in significantly worse scores than the approach of sampling equidistant

quantiles, as we expect (see section 2.5.3 and Bröcker [2012]). The IID sampling

scheme yields ensemble forecasts whose CRPS and FCRPS scores are significantly

worse than both the equidistant quantiles approach for NGR and the distribution-

free post-processing methods. This highlights the importance of the choice of the

scheme used for sampling ensemble forecasts from probability distributions, and the

possible implications of this choice on the conclusions that forecasters and users

make in regards to determining which of several post-processing methods is best.

For example, suppose that a forecaster was told to issue ensemble forecasts whose

members truly are IID draws from NGR probability distributions. In this case, un-

der both interpretations of ensemble forecasts (as the EDF of the observation and as

random samples), we would conclude from the results presented in this section that

the ensemble forecasts post-processed with the distribution-free method using the

method of moments parameter estimates are more skilful than ensemble forecasts

sampled from NGR probability distributions. However, if (as in this example) the

forecaster is free to choose their sampling scheme, they can ‘hedge’ by sampling the

equidistant quantiles of the NGR probability distributions. In this case, under both

interpretations, the scores then indicate that ensemble forecasts sampled from NGR

distributions are more skilful than the ensemble forecasts post-processed with the

distribution-free method.

We now turn to a comparison of the scores of the various post-processed ensem-

ble forecasts presented in table 4.1. The MSE scores indicate that using the NLL

parameter estimates from the NGR model yields deterministic forecasts that are

125



4. A distribution-free ensemble post-processing method

slightly more skilful than those given by the distribution-free, moment-based pa-

rameter estimates. Under both interpretations of the ensemble forecasts, the CRPS

and FCRPS scores also suggest that the NLL parameters yield more skilful recal-

ibrated ensemble forecasts when sampling equidistant quantiles from the resulting

Gaussian probability distributions, as discussed above. It is interesting, however,

to note that for the smaller training samples (N = 50), the coverage of ensemble

forecasts post-processed with the distribution-free method (denoted ‘known’ and

‘Random’), improves on that of the NGR ensemble forecasts, for both the moment-

based and NLL parameter estimates. For the larger training samples (N = 500),

the coverage scores indicate that the prediction intervals given by both the ensemble

forecasts post-processed with the distribution-free method, as well as ensemble fore-

casts sampled from NGR probability distributions with NLL parameter estimates,

are slightly too wide. However, the prediction intervals given by ensemble forecasts

sampled from NGR distributions with the method of moments parameter estimates

remain too narrow. At first sight there is an apparent contradiction in the CRPS

and coverage scores of the distribution-free forecasts, and the NGR forecasts using

method of moments parameter estimates — the coverage scores are preferable for

the distribution-free forecasts, while the CRPS values indicate that the NGR fore-

casts are preferable. This is explained by the choice of equidistant quantiles when

sampling from the NGR Gaussian distributions, which are almost optimal for the

CRPS [Bröcker, 2012], and the complicated effect on the CRPS that is observed

when inducing dependence between ensemble members with equation (4.52) in our

distribution-free model. This latter point was mentioned briefly in section 4.2.7,

and is illustrated more fully in section 6.2. These remarks also apply to the results

presented in the next subsection.

In conclusion, it is unclear from the results of this simulation study as to which of

the post-processing methods is most desirable. On the one hand, the distribution-

free, moment-based methods yield the most uniform rank histograms, at least for

small training samples that are likely to be encountered in practice. The scores

presented in table 4.1, however, suggest that sampling equidistant quantiles from

Gaussian NGR distributions yields more skilful ensemble forecasts as measured by

the CRPS and FCRPS, and deterministic forecasts as measured by the MSE. In

combination with the coverage scores for training samples of size N = 50, our re-

sults indicate that the NGR ensemble forecasts are sharper than the ‘known’ and

‘random’ ensembles given by the distribution-free, moment-based post-processing

method, but are less well calibrated. For NGR, the NLL parameter estimates cer-

tainly improve the skill of the ensemble forecasts, compared with those sampled from

NGR probability distributions specified by the method of moments estimates. The

NLL estimates also have more desirable properties, as discussed earlier — in general

the NLL parameter estimates are less variable than both the ‘known’ and ‘random’
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parameter estimates, are less biased than the ‘known’ estimates, with similar bias

to the ‘random’ estimates, at least under the constraints ĉNGR = γ2 and d̂NGR = δ2.

4.3.1.3 Other remarks

Earlier in this subsection, we stated that the form of the NGR rank histograms is

influenced by uncertainty in the parameter estimates. This effect is particularly ev-

ident for smaller training samples, as we discuss in chapter 5. Similarly, the method

of moments parameter estimates are also subject to uncertainty. In chapter 5 we

demonstrate the effect of uncertainty in the parameter estimates on the shape of

rank and PIT histograms. Furthermore, in section 4.2.7, we highlighted that the

distribution-free post-processing of ensemble forecasts using equation (4.52) (see

page 116) induces dependence between the ensemble members, even if the original,

raw ensemble forecasts are truly IID random samples. In chapter 6, we illustrate

how the form of ensemble member dependence can affect the shape of the associ-

ated rank histograms. These two artefacts, combined with the earlier discussion

of the effect of the scheme used to sample ensemble forecasts from NGR probabil-

ity distributions on the verification scores, highlights the complexity of verifying

post-processed ensemble forecasts, and the need to choose an interpretation for the

ensemble forecasts as either the EDF of the corresponding observation, or as IID

samples from an underlying ensemble distribution.

4.3.2 Distribution-free post-processing in the Lorenz 1996

system

In this subsection we present the results of a study using the Lorenz 1996 system,

described in section 2.6.1 and also used in chapter 3. Again using the first dataset

described in section 2.6.1, 500 sets of parameter estimates were obtained using train-

ing samples of size 100 and 1000, where the training samples were disjoint, and with

the samples of size 100 forming the first 100 instances of the larger training sam-

ples. Forecast verification was then performed using the test dataset that comprises

190 000 forecasts and observations that are effectively independent.

We first comment briefly on the sampling properties of the parameter estimates (not

shown). For all forecast lead times considered, the method of moments and NLL

parameter estimates for a and b are similar, although the NLL estimates are slightly

less variable. The differences between the ‘known’ and ‘random’ estimates, which

result from the measurement error model, are small. The qualitative features of

the likelihood-based (NLL) parameter estimates for c and d under the NGR model
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differ from the moment-based parameter estimates. The NLL parameter estimates

are less variable, and suggest a stronger spread-skill relationship (see section 2.4.1 for

a discussion) between the ensemble variance and the mean forecast errors — the NLL

parameter estimates d̂ for d are on average larger than their moment-based (‘known’

or ‘random’) counterparts. The ‘random’ estimates d̂ are on average slightly larger

than the ‘known’ estimates, and the opposite is the case for the estimates ĉ. As

with the simulation experiment we find that a significant proportion of the moment-

based estimates for c or d have been set to 0, meaning that the initial estimate was

negative.

We now turn to an assessment of the skill of out-of-sample forecasts. In table 4.2 we

present the MSE, CRPS, FCRPS and Coverage scores for the distribution-free and

NGR-based ensemble forecasts, for forecast lead times of 1, 3 and 5. Parameters were

estimated with training samples of size 100. Parameter estimation with larger train-

ing samples (not shown) results in small quantitative improvements to the scores,

although the qualitative features are unchanged. Again, ensemble forecasts for the

three NGR cases are sampled as equidistant quantiles from the Gaussian forecast

distributions, using either the ‘known’ or ‘random’ parameter estimates calculated

with the method of moments, or the likelihood-based parameter estimates (NLL).

In order to ease reading, we do not show the corresponding scores for ensemble fore-

casts that are sampled as IID random draws from the NGR forecast distributions.

However, as for the simulation study detailed in the previous subsection, we stress

that this sampling scheme results in ensemble forecasts whose CRPS and FCRPS

values are significantly worse than both the equidistant quantile approach used here,

and ensemble forecasts post-processed with the distribution-free method (see equa-

tion (4.52)). Once again, this highlights the importance of the choice of sampling

scheme on the conclusions that are drawn from this comparison — forecast users

would justifiably conclude that the distribution-free post-processing method yields

more skilful ensemble forecasts than those sampled from NGR forecast distributions,

if the forecaster was required to issue ensemble forecasts whose members were IID

draws from the NGR forecast distributions.

The MSE scores show that, in this example, the two moment-based parameter es-

timates yield deterministic forecasts that are similar in skill. However, the NLL

parameter estimates under the NGR model result in slight improvements to the

MSE scores for all lead times considered, in keeping with our findings in the simu-

lation experiment presented in the previous subsection.

At forecast lead times 3 and 5, the CRPS and FCRPS values suggest that the ‘known’

parameter estimates yield post-processed ensemble forecasts that are slightly more

skilful than those given by the ‘random’ parameter estimates derived with the mea-

surement error model, under both interpretations of ensemble forecasts (see the
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Distribution-free NGR
known Random known Random NLL

Lead time 1

MSE 0.070 0.070 0.069
CRPS 0.153 0.153 0.150 0.150 0.148
FCRPS 0.139 0.139 0.138 0.138 0.135
Coverage 0.822 0.814 0.773 0.763 0.807

Lead time 3

MSE 0.950 0.950 0.948
CRPS 0.539 0.539 0.528 0.530 0.513
FCRPS 0.490 0.492 0.486 0.489 0.466
Coverage 0.792 0.775 0.746 0.727 0.819

Lead time 5

MSE 4.936 4.936 4.897
CRPS 1.234 1.234 1.187 1.190 1.156
FCRPS 1.120 1.125 1.086 1.093 1.047
Coverage 0.833 0.806 0.799 0.770 0.842

Table 4.2 Measures of the skill of deterministic forecasts (MSE) and ensemble calibration
(CRPS, FCRPS and Coverage) for the distribution-free and NGR post-processing meth-
ods with moment-based parameter estimates (Known and Random), and likelihood-based
estimates (NLL), for post-processed ensemble forecasts in the Lorenz 1996 system.

earlier discussion in the previous subsection and section 2.2.4). As was the case for

the simulation study, at all lead times considered, sampling ensemble members as

equidistant quantiles of the NGR forecast distributions yields CRPS and FCRPS

scores that improve on those of the distribution-free post-processing method, par-

ticularly for those forecast distributions specified by the likelihood-based (NLL)

parameter estimates. However, the coverage scores indicate that the width of the

prediction intervals given by the distribution-free post-processed ensemble forecasts

is closer to the nominal value of 0.818 than the NGR-NLL forecasts at lead times

1 and 5, although the opposite is the case at lead time 3. Once again, we note the

significant miscalibration in the width of the prediction intervals given by ensemble

forecasts sampled from NGR probability distributions with the method of moments

parameter estimates, which are significantly too narrow.

In figures 4.4 and 4.5 we show the rank histograms for the raw ensemble forecasts and

the post-processing methods displayed in table 4.2, at forecast lead times 3 and 5.

All post-processing methods improve on the raw ensemble forecasts, which indicate

significant bias and underdispersion. However, the resulting rank histograms remain

non-uniform. As noted in the previous subsection, we suspect that the pattern of

outer bins that are overpopulated compared with the shape of the inner bins is

a result of parameter uncertainty, a topic addressed in chapter 5. Furthermore,

there is also evidence of remaining bias in the location of the ensemble forecasts,

indicated by comparing the upper and lower tails of the rank histograms. The rank

histograms for the ‘Random’ parameter estimates, obtained using the measurement

error model, display increased overpopulation of the outermost bins compared with

the ‘known’ parameter estimates. We suggest this is due to additional sources
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Figure 4.4 Rank histograms for the Raw ensemble forecasts, the two moment-based,
distribution-free post-processing methods (Known and Random), and ensemble forecasts
sampled from NGR distributions using the moment-based and likelihood (NLL) parameter
estimates. The forecast lead time is t = 3.

of uncertainty induced by the measurement error model, in particular the use of

the jackknife estimates (equation (4.22)). It is not clear from the rank histograms

that the NGR-NLL forecasts are the most skilful, particularly for the forecast lead

time 5. Interestingly, this is in contrast to the scores presented in table 4.2, which

suggest that the use of the NGR method over our distribution-free method is most

beneficial at lead time 5. This highlights the importance of using multiple measures

for the assessment of forecast skill. We refer the reader to the related discussion

at the end of the previous subsection, concerning the (possibly competing) factors

of parameter uncertainty, and the induced dependence between ensemble members.

Such artefacts aside, however, we suggest that a forecast user may well prefer the

NGR-NLL ensemble forecasts to those given by our distribution-free post-processing

method. It is worth keeping in mind that unlike the simulation experiment presented

in the previous subsection, the statistical model given by the NGR post-processing

method is now an approximation to the data-generating process. This should be

viewed as another positive reason to select the NGR post-processing method in this

case. However, we suggest that the improvements on our baseline distribution-free

post-processing method, which concerns only the recalibration of the first and second

moments of the ensemble forecasts, might not be as large as one would expect.
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Figure 4.5 As for figure 4.4, for forecast lead time t = 5.

4.3.3 Distribution-free post-processing for 2-metre

temperature forecasts

Finally, we compare the skill of our distribution-free post-processing method using

the method of moments parameter estimates, and ensemble forecasts sampled from

NGR probability distributions, in the post-processing of ensemble forecasts for 2-

metre temperature. We use the 17 × 18 grid of 10-member ensemble forecasts and

observations that approximately covers the United kingdom, described in section 2.6.

We investigate the post-processing of ensemble forecasts at 24 and 72 hour lead

times. Parameter estimates were obtained using rolling training samples of the

previous 45 forecasts and observations. The qualitative features of the results were

found to be similar for other training sample sizes (not shown). The effect of training

sample size on the quantitative values of verification scores is illustrated in chapter 5.

In table 4.3 we present univariate scores averaged over the 17×18 grid for the raw en-

semble forecasts, ensemble forecasts post-processed using the ‘known’ and ‘random’,

moment-based estimates using equation (4.52), and the ensemble forecasts sampled

as equidistant quantiles of Gaussian NGR forecasts using both the moment-based

and NLL parameter estimates. Once again we stress that, for the NGR method,

sampling ensemble forecasts as IID random draws from the Gaussian distributions

results in significantly worse CRPS and FCRPS scores, although differences in the

coverage scores and the associated rank histograms are negligible.
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Distribution-free NGR
Raw known Random known Random NLL

24 hour lead time

MSE 0.630 0.561 0.561 0.556
CRPS 0.443 0.395 0.395 0.384 0.384 0.374
FCRPS 0.425 0.361 0.361 0.354 0.355 0.343
Coverage 0.450 0.781 0.774 0.742 0.735 0.787

72 hour lead time

MSE 1.154 1.095 1.097 1.086
CRPS 0.574 0.557 0.558 0.547 0.549 0.536
FCRPS 0.535 0.509 0.511 0.505 0.508 0.492
Coverage 0.654 0.788 0.775 0.746 0.730 0.785

Table 4.3 Univariate scores for the raw ensemble forecasts, and ensemble forecasts recal-
ibrated with the distribution-free and likelihood-based NGR post-processing methods, at
forecast lead times of 24 and 72 hours. The scores are averaged over the 17× 18 grid that
approximately covers the UK.

The qualitative features of the scores are similar to those presented in both the sim-

ulation experiment and the study in the Lorenz 1996 system. The likelihood-based

parameter estimates for a and b result in improved deterministic forecasts, as mea-

sured by the MSE, compared to those of the distribution-free, moment-based meth-

ods. Similarly, the CRPS and FCRPS values indicate that the ensemble forecasts

sampled as equidistant quantiles from the likelihood-based NGR distributions yield

the most skilful ensemble forecasts, under both interpretations of ensemble forecasts

(the EDF of the verifying observations, and IID samples from underlying ensemble

distributions). For the distribution-free post-processing method (equation (4.52)),

the ‘known’ parameter estimates appear to yield very slight improvements in fore-

cast skill compared to the ‘Random’ estimates derived with the measurement error

model. In contrast to the CRPS and FCRPS scores, the coverage of the ensemble

forecasts sampled from the likelihood-based NGR forecasts, and the recalibrated

ensemble forecasts obtained from the ‘known’, distribution-free method is of simi-

lar accuracy — recall from section 4.3.1 that the nominal coverage of a 10-member

ensemble is 0.818.

We now turn to a comparison of the post-processing methods discussed in this

chapter in issuing ensemble forecasts over spatial fields. For this purpose we use a

2×2 subset of the grid described above, that encapsulates the city of London. While

assessing forecast skill over a larger spatial field may seem desirable, we are hampered

by difficulties in the verification of high-dimensional fields. Indeed, Gneiting et al.

[2008] state that the energy score and multivariate rank histogram used here are not

suitable for high-dimensional fields. Verification of multivariate forecasts on other

subsets of the 17× 18 grid (not shown) exhibited similar qualitative features.

In figure 4.6 we display the multivariate rank histograms (see section 2.5.2.3) for the

ensemble forecasts recalibrated with the distribution-free post-processing method
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using both the ‘known’ and ‘random’ parameter estimates, and sampled as equidis-

tant quantiles from Gaussian NGR distributions with NLL parameter estimates.

We also show the multivariate rank histogram for the NGR ensemble forecasts that

have been reordered to preserve the rank dependence structure of the raw fore-

casts using the method of ensemble copula coupling (ECC, Schefzik et al. [2013]),

described in section 2.4.6. We denote these forecasts by ‘NGR-ECC-Q’. As noted

in section 4.2.6.3, the distribution-free post-processing method preserves the rank

dependence structure of the raw ensemble forecasts, as our transformations (equa-

tion (4.52)) of the ‘raw’ ensemble forecasts are affine. We also show the associated

energy score for each multivariate rank histogram.

While interpretations of the multivariate rank histograms are less obvious than in

the univariate case (see the discussion given in section 2.5.2.3), it is clear that all

post-processing methods considered here result in significant improvements to the

calibration of the ‘raw’ multivariate ensemble forecasts over the 2× 2 grid described

above. It can be argued that the ensemble forecasts sampled from Gaussian NGR

forecast distributions, with the addition of the ECC method, yield the most uni-

form histograms, although the disparities between these and the histograms for the

distribution-free methods are very small relative to the improvement on the raw

forecasts. It is striking that the ECC method yields almost no improvement in

the energy score for the ensemble forecasts sampled from the NGR method, despite

clear improvements in the multivariate rank histogram. However, viewed in the con-

text of the relatively small improvement in the energy scores for the post-processed

ensemble forecasts, compared to the transformational improvement in the rank his-

tograms, the qualitative features of these scores are less surprising. Once again, this

example highlights the importance of using multiple measures of forecast skill.

Ensemble forecasts that are sampled as IID draws from NGR forecast distributions

yield almost identical multivariate rank histograms (not shown) to the approach

of sampling equidistant quantiles, both with and without reordering the ensemble

members with the ECC methodology. However, as for the earlier discussions in

relation to the CRPS and FCRPS, the energy scores for ensemble forecasts whose

members are IID are significantly worse than both the equidistant quantiles sam-

pling scheme, and the ensemble forecasts post-processed using our distribution-free

method. Again, therefore, if a forecaster was required to issue ensemble forecasts

whose members are truly IID, we may be less confident in concluding that sam-

pling from NGR forecast distributions is advantageous compared with our baseline,

distribution-free method.
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Figure 4.6 Multivariate rank histograms and energy scores (ES) for the raw ensemble
forecasts, the ‘known’ and ‘random’ forecasts post-processed with the distribution-free
post-processing method, and forecasts sampled as equidistant quantiles from NGR forecast
distributions with NLL parameter estimates, with and without ECC. Forecast lead times
are 24 hours (left) and 72 hours (right).
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4.4 Discussion and conclusions

In this chapter we have introduced a novel post-processing method that circumvents

the need for the specification of a parametric family of probability distributions to

model the verifying observations conditionally on the corresponding ensemble fore-

casts. Our distribution-free post-processing method is derived from specifying the

expectation and variance of the observations as linear functions of the ensemble

mean and variance, analogous to the statistical model specified by the popular NGR

post-processing method. Our post-processing method leads directly to recalibrated

ensemble forecasts, rather than probability forecasts. For situations in which the

user requires ensemble forecasts, therefore, our distribution-free method also circum-

vents the need to specify a means of sampling ensemble forecasts from probability

distributions, which is common practice in the literature.

Parameter estimation for our distribution-free post-processing method is achieved

with the method of moments, which does not require distributional assumptions.

While the method of moments has a long history in the literature, we are not

aware of any examples of its use in the estimation of parameters in the modelling of

nonhomogeneous forecast errors. Of course, the method of moments could equally

be used to estimate the parameters for the more simplistic model output statistics

method (MOS, see section 2.4), which would be valid for data that did not exhibit

spread-skill relationships between the ensemble forecasts and observations.

As well as treating the ensemble mean and variance as known, known covariates, as

is typically the case in the ensemble post-processing literature, we have made the

novel introduction to the field of a measurement error model that accommodates the

possibility of measurement error in the covariates. Such an approach is motivated

by the popular interpretation of ensemble forecasts whose members are realisations

of an underlying ensemble distribution.

We compared the skill of ensemble forecasts post-processed with our novel distribution-

free method with those sampled from probability distributions specified by the NGR

post-processing method. Perhaps surprisingly, we found that the improvement at-

tributable to the specification of the Gaussian probability distributions in the NGR

method results in only small improvement to forecast skill and, in some instances,

it can be argued that our distribution-free results in forecasts of equal skill. Indeed,

if a forecaster was instructed to issue ensemble forecasts whose members truly are

IID draws from the underlying NGR distributions, we may even prefer the ensemble

forecasts that result from our distribution-free post-processing method.

We suggest that our distribution-free post-processing method should be used as a

baseline upon which forecasters should seek to improve. In other words, specifying a
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family of probability distributions from which ensemble forecasts are sampled should

result in more skilful ensemble forecasts than are obtained from our distribution-free

method. Unlike the simplistic, frequency-based approaches that are often used as

baseline forecasts, our distribution-free method seeks to issue post-processed ensem-

bles whose mean and variance are well-calibrated with the corresponding moments

of the verifying observations. As mentioned below, the parameter estimates for

our distribution-free method could be improved. We feel the method is worthy of

further research, particularly given its suitability for producing post-processed en-

semble forecasts over spatial fields by preserving the rank dependence structure of

the ensemble forecasts. Furthermore, we suggest that users may wish to use our pa-

rameter estimates obtained with the method of moments as starting values for the

optimisation of objective functions, such as the negative log-likelihood, for situations

in which the use of probability forecast distributions is required and/or justified.

We found that the parameter estimates obtained with the so-called ‘known’ param-

eter estimates, which treat the ensemble mean and variance as known constants,

generally yielded post-processed ensemble forecasts that are slightly more skilful

than those of the measurement error model, which treats the ensemble mean and

variance as random variables. As explained in section 4.2.6, this is in keeping with

theoretical expectations, in that the out-of-sample covariates (the ensemble mean

and variance) are subject to the same errors as those of the training sample that are

used for parameter estimation. However, we believe that the alternative estimation

procedure using the measurement error model should not be disregarded. Firstly, if

the user is interested in the underlying data-generating process, rather than issuing

out-of-sample forecasts, the measurement error parameters are theoretically prefer-

able. Furthermore, theoretical results show that the measurement error model is

likely to be preferable in the event of changes to the forecasting system, such as the

addition or removal of ensemble members.

This chapter has also highlighted issues for parameter estimation. It is regrettable

that the estimation of the parameters c and d, that determine the rescaling of the

ensemble forecasts, is problematic when using the method of moments. Perhaps

further work to reduce the bias of these estimates, for example by using the Delta

method to obtain more accurate estimates of the terms ab and b2, would assist

in reducing the estimation bias for c and d. However, the method of moments

is seemingly limited for problems that require the estimation of more parameters,

such as the example provided in chapter 6 — the requirement to specify a system of

moment equations that provide a unique estimate for each of the model parameters is

likely to be problematic in models beyond linear functions of the ensemble mean and

variance. In this case, it would seem preferable to optimise an objective function,

although it may be possible to easily calculate a subset of parameter estimates using
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the method of moments that can be used as starting values.

Our distribution-free post-processing method is appropriate for the post-processing

of ensemble forecasts for weather variables that are unbounded. Analogous distribution-

free methods for bounded variables, such as precipitation and windspeed, are left

for future research. The ensemble rescaling used in this chapter may result in en-

semble members that do not satisfy the natural bounds of the weather variables

under consideration. For example, recalibrated ensemble forecasts of precipitation

may include negative values.

We suggest that measurement error models may have other uses in the context of

probabilistic weather forecasting. For example, such models could be used to quan-

tify the uncertainty in the verifying observations (or analyses) which, as in this work,

are typically treated as known values. This could be accomplished by collecting anal-

yses from multiple meteorological centres. In doing so, forecasters could quantify the

extent to which their uncertainty is due to the standard forecasting problems (NWP

model errors, misspecification of initial conditions, etc.), and to uncertainty in the

observations that arises from the data assimilation process. Forecasters could then

estimate the extent to which forecast uncertainty would be reduced if the analyses

were more precise estimates of the true atmospheric state.
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5 Parameter uncertainty in

ensemble post-processing

5.1 Introduction and motivation

As detailed in the overview provided in section 2.4, ensemble post-processing meth-

ods often take the form of statistical models that enable the user to make probability-

based statements of the unknown future atmospheric state. The models are based

on ensemble forecasts for the verifying observations, and often use their properties,

such as the ensemble mean and ensemble variance, as predictor variables. The sta-

tistical models usually require the specification of a parametric family of probability

distributions for the observations, which are viewed as random variables. In the ma-

jority of cases the parameter estimates are chosen as those that optimise an objective

function such as the negative log-likelihood (NLL) or continuous ranked probability

score (CRPS), which is calculated over a training sample of historical ensemble fore-

casts and observations. While the parameter estimates are typically treated as point

values, they are a function of the random observations, and are thus also subject to

uncertainty. In other words, for a given set of ensemble forecasts, xi, and verifying

observations, yi, i = 1, 2, . . . , N , where N denotes the training sample size, different

realisations of the (random) observations would yield different realisations of the

parameter estimates. In turn, different realisations of the parameter estimates yield

different probability forecasts for the out-of-sample observations. The distribution of

the parameter estimates is known as the ‘sampling distribution’, and adds a further

source of uncertainty to the probability forecasts. The fact that parameter uncer-

tainty affects the properties of statistical forecasts is well-known, but has hitherto

been largely neglected in the ensemble post-processing literature. In this chapter we

address the issue of parameter uncertainty in ensemble post-processing.

Typically in the ensemble post-processing literature, the parameter estimates that

are obtained by optimising an objective function are used to represent the ‘true’

model parameters. Out-of-sample probability forecast distributions for the un-

known, verifying observations are obtained by direct substitution of the point pa-

rameter estimates in to the chosen parametric family of probability distributions,
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along with the corresponding out-of-sample ensemble forecast. For example, the

NGR forecast distribution for a future observation, yt is

yt ∼ N(âNGR + b̂NGRx̄t, ĉNGR + d̂NGRs
2
t ),

where x̄t and s2t are the mean and variance of the M -member ensemble forecast

xt, and âNGR, b̂NGR, ĉNGR and d̂NGR are the point estimates obtained for the ‘true’

model parameters, calculated over a training sample of ensemble forecasts and ob-

servations. However, the sampling distribution of the parameter estimates adds an

additional source of uncertainty to the probability forecast distribution for yt. Even

if the family of probability distributions is correctly specified for the verifying ob-

servations, therefore, the common practice of neglecting uncertainty in the model

parameters will yield probability forecast distributions that, on average, underesti-

mate the uncertainty in the verifying observations.

More formally, the importance of accounting for parameter uncertainty is motivated

by the following discussion. As noted above, the probability forecast distributions

that are typically issued for the future verifying observations take the form f(yt |
xt, ψ̂(D)), where f(·) denotes the PDF of the chosen family of distributions, and

is conditional on both the ensemble forecast xt and the parameter estimates ψ̂(D).

The notation ψ̂(D) has been chosen to indicate the dependence of the parameter

estimates ψ̂ on the training sample,

D =


x1 y1

x2 y2
...

...

xN yN

 .

Since the observations yi in the training sample are random variables, it follows

that D and ψ̂(D) are also random. On the other hand, ensemble post-processing

methods that specify a parametric family of probability distributions assume that

the ‘true’ data generating process for the future, verifying observations is a member

of that family with ‘true’ model parameters ψ. We denote this ‘true’ PDF by

f(yt | xt, ψ). The goal of ensemble post-processing is to approximate this PDF.

Unlike the estimator ψ̂(D), however, the ‘true’ parameters ψ are fixed constants.

With the exception of the simple (and usually inadequate) model output statistics

(MOS) post-processing method (see section 2.4.4.1), analytic results for the sampling

distribution of the parameter estimates, and how to use such results to account for

parameter uncertainty in out-of-sample probability forecasts, are generally unknown.

In order to investigate the effect of uncertainty in the parameter estimates ψ̂(D)

for more complicated statistical models than MOS, a method is required to acco-
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modate the sampling distribution of the estimator in the post-processing statistical

models. In this chapter we propose to account for the parameter uncertainty in our

approximation of the true data generating process by integrating over the sampling

distribution of the parameter estimates. The estimates are viewed as so-called ‘nui-

sance parameters’ which are integrated out to yield an approximation to the data

generating process that accounts for the parameter uncertainty. In other words, by

integrating over the sampling distribution of the parameter estimates we obtain a

marginal probability distribution for the observations, and remove the additional

source of uncertainty that is due to the random nature of the parameter estimates.

Specifically, this integral is given by

f̂(yt | xt, ψ) =
∫
∆D

f(yt | xt, ψ̂(D)) dF (ψ̂(D)), (5.1)

where ∆D denotes the support of the cumulative distribution function (CDF) of the

parameter estimates, F (ψ̂(D)), and the notation f̂(yt | xt, ψ) is chosen to indicate

our approximation to the ‘true’ PDF f(yt | xt, ψ). Equivalently, the integral can be

viewed as the expectation of the probability forecast distribution f(yt | xt, ψ̂(D))

calculated with respect to the parameter estimates ψ̂(D), that is

Eψ̂(D){f(yt | xt, ψ̂(D)}.

The expectation is a weighted average of the probability forecast distributions spec-

ified by the ensemble post-processing methods for all possible realisations of the

parameter estimates, where the weights depend on the sampling distribution.

In practice, the CDF of the sampling distribution of the parameter estimates in en-

semble post-processing models, such as nonhomogeneous Gaussian regression (NGR)

and Bayesian model averaging (BMA) is generally unknown. The integral given in

equation (5.1) must therefore be approximated. To do so requires approximating

both the sampling distribution of the parameter estimates, and then using this ap-

proximation to approximate the integral. In this chapter we propose a means of

approximating and accounting for the sampling distribution of parameter estimates

that is applicable to a wide range of ensemble post-processing methods, and is easy

to implement. We first use a bootstrap resampling approach to approximate the

sampling distribution of the parameter estimates. Bootstrap resampling is a flexible

approach that is applicable to the regression-type models that are typically encoun-

tered in ensemble post-processing applications, such as those described in chapter 2.

If the statistical model is correctly specified, bootstrap resampling enables the user

to obtain a representative sample of parameter estimates from the sampling distri-

bution. See Davison and Hinkley [1997, chapter 6] for details on bootstrapping in

regression models. Secondly, the integral given in equation (5.1) is readily approxi-
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mated from the bootstrap sample, by employing a Monte Carlo approximation.

Our proposed approach for accounting for parameter uncertainty in ensemble post-

processing has both similarities and differences to the natural alternative of forming

a Bayesian model, for which parameter uncertainty is accommodated as an inher-

ent feature of the statistical model. The key difference is in the approach used for

estimating the distribution of the parameter estimates. In the frequentist philos-

ophy adopted in this chapter, we use the sampling distribution of the parameter

estimator, the distribution of the estimator that represents the typical variation

of the parameter estimates around the unknown, ‘true’ parameter values. In the

Bayesian philosophy, on the other hand, the model parameters are considered to

be random variables, in order to represent the user’s uncertainty about the ‘true’

parameter values. Bayesians would specify a prior distribution for the model pa-

rameters which, for example, would be based on their knowledge (or intuition) of

the relationships between the ensemble forecasts and verifying observations. The

prior distribution would then be updated by including the training sample, to result

in a posterior distribution for the parameters. The similarity between the two ap-

proaches is that the probability forecast distribution for the verifying observation is

obtained by integrating over the posterior distribution (in the Bayesian approach),

or the sampling distribution (in our frequentist-based approach). As we discuss in

section 5.5, there are advantages and disadvantages to both approaches. However,

our proposed method is easy to implement, and will serve as a useful guide for

determining the importance of accounting for parameter uncertainty. Friederichs

and Thorarinsdottir [2012] has applied a Bayesian model for probability forecasts

of peak wind speeds, and Siegert et al. [2015b] has proposed an approach that is

appropriate for forecasts on long time scales in the climate literature.

The remainder of this chapter is organised as follows. In section 5.2 we review an an-

alytic result for accounting for parameter uncertainty in the simple MOS model, and

give details of our proposed bootstrap resampling procedure which is appropriate

for more complicated models. In section 5.3 we describe the verification measures

that are used to compare forecasts that neglect and account for parameter uncer-

tainty. In section 5.4 we present results for three case studies, and in section 5.5 we

conclude the chapter with a discussion and ideas for future research.
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5.2 Parameter uncertainty: Analytic results and

bootstrap approximations

5.2.1 Analytic results for model output statistics

We now present an analytic result that enables forecasts to take account of param-

eter uncertainty when using the model output statistics (MOS) model, described in

section 2.4.4.1. Recall that the probability forecast distribution for a future obser-

vation, yt, conditional on the corresponding ensemble forecast xt is given by

yt ∼ N(a+ bx̄t, c
2), (5.2)

where a, b and c are the ‘true’ parameter values that we must estimate. As discussed

in the previous section, the standard approach in the literature is to issue proba-

bility forecasts by direct substitution of ψ̂(D) = (â, b̂, ĉ) for ψ = (a, b, c), such that

probability forecast distributions are issued as

yt ∼ N(â+ b̂x̄t, ĉ
2). (5.3)

Probability forecast distributions given by equation (5.3) have been used to post-

process ensemble forecasts on seasonal scales [Kharin and Zwiers, 2003; Tippett

et al., 2005], and for short-range weather forecasts [Glahn et al., 2009]. However,

equation (5.3) takes no account of the uncertainty in â, b̂ and ĉ as estimates of a, b

and c. Glahn et al. [2009] noted the issue of parameter uncertainty, and even gave

the result that we derive in this subsection, but asserted that it is not important for

training samples larger than N = 30, and did not refer to the issue thereafter.

It is easily shown that the parameter estimates for a, b and c that minimise the

negative log-likelihood (NLL) are

â = ȳ − b̂x (5.4)

b̂ =
Sx,y
Sx,x

(5.5)

ĉ2 =
1

N

N∑
i=1

(
yi − â− b̂x̄i

)2
, (5.6)

where x = N−1
∑N

i=1 x̄i, Sx̄,y = N−1
∑N

i=1(x̄i−x)(yi− ȳ) and Sx̄,x̄ = N−1
∑N

i=1(x̄i−
x)2, and N is the size of the training sample.

Draper et al. [1998, chapter 1] shows that the sampling distributions of the parameter
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estimates â and b̂ are

â ∼ N

{
a, c2

(
1

N
+

x
2

Sx,x

)}
(5.7)

b̂ ∼ N

(
b,

c2

Sx,x

)
. (5.8)

An unbiased estimator for c2 can be obtained by rescaling the likelihood estimator

by a factor of N/(N − 2), in order to obtain the unbiased sample variance estimator

for a sample of size N with N − 2 degrees of freedom,

ĉ2 =
1

N − 2

N∑
i=1

(
yi − â− b̂x̄i

)2
. (5.9)

Furthermore, a standard result from probability theory [Draper et al., 1998, chap-

ter 1] is
(N − 2)ĉ2

c2
∼ χ2

N−2. (5.10)

When issuing forecasts ŷt = â + b̂x̄t, therefore, the sampling distributions of the

estimators â, b̂ and ĉ2 should be accounted for. Draper et al. [1998, chapter 1] show

that

var(ŷt) = c2

(
1 +

1

N
+

(
x̄t − x

)2
Sx,x

)
. (5.11)

Accounting for uncertainty in the parameter estimates â and b̂ therefore leads to

probability forecast distributions with larger variance than those obtained through

the usual practice of direct substitution of the estimates in to the forecast distri-

bution. The variance of the forecast distribution for yt is inflated by a term 1/N ,

and a term that grows quadratically in the distance |x̄t − x| of the ensemble mean

x̄t from the mean of the ensemble means x̄i, i = 1, 2, . . . , N , in the training sample.

The forecast variance is therefore larger for more extreme values of x̄t. This feature

is intuitively appealing — it implies that forecast uncertainty increases with the dis-

tance of the ensemble mean x̄t from the mean of the ensemble means in the training

sample.

Finally, accounting for uncertainty in the parameter estimate ĉ2 results in a change

to the forecast distribution itself. Draper et al. [1998, chapter 1] show that the

forecast distribution for the future observation yt should instead take the form of a

t-distribution with N − 2 degrees of freedom, that is

yt − ŷt

ĉ
√
1 + 1/N + (x̄t − x)2/Sx,x

∼ tN−2,
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and so probability forecasts for yt should be derived from the tN−2 distribution with

expectation ŷt, and variance ĉ2(1 + 1/N + (x̄t − x)2/Sx̄,x̄). The tails of the t distri-

bution are heavier than the corresponding tails of the Gaussian distribution. This

fact, combined with the inflated variance derived above, results in larger forecast

uncertainty than would be derived through the standard approach of Tippett et al.

[2005]; Kharin and Zwiers [2003]; Glahn et al. [2009]. As the training sample size N

increases, the tN−2 distribution tends to the Gaussian distribution.

5.2.2 Accounting for parameter uncertainty with the

predictive bootstrap

5.2.2.1 Approximating the sampling distribution of parameter estimates

The analytic result derived in the previous subsection is based upon the assumption

that the distribution of the observation yt, conditional on the ensemble mean x̄t is

normal with expectation a+ bx̄t and constant variance c2. Unfortunately, as noted

in section 5.1, analogous results are not known for more complicated statistical mod-

els, such as the NGR model (see equations (2.19) and (2.20) on page 38) in which

the forecast variance is nonhomogeneous, and requires the estimation of two param-

eters. Furthermore, ensemble post-processing methods whose probability forecast

distributions are non-Gaussian, such as the methods developed for the forecasting

of precipitation (e.g. Scheuerer [2014], described in section 2.4.5), will typically

yield parameter estimates with non-Gaussian sampling distributions. In general,

therefore, analagous results to those presented for the MOS model are likely to be

either mathematically intractable or difficult to obtain. While it may be possible

to derive results using asymptotic theory, the small training samples that are often

encountered in real-world scenarios would limit the value of such work. Therefore, a

method that is easily applicable to a wide range of post-processing methods, with-

out the need for complicated mathematical analysis, seems highly desirable. Then,

if the effect on forecast skill of accounting for parameter uncertainty appears to be

significant, it may subsequently be worth attempting to derive analytic results for

small training samples.

An appealing and easy-to-implement option is to estimate the sampling distribu-

tion of the parameter estimates by bootstrap resampling [Efron and Gong, 1983].

The bootstrap method is a popular means of approximating the sampling distribu-

tions of summary statistics of data samples. Using the original sample for which the

summary statistic is calculated, the bootstrap method simulates NB new, ‘synthetic’

data samples, for which the summary statistic is recalculated. Each of the NB values

of the summary statistic is referred to as a ‘bootstrap replicate’, and the distribu-

144



5. Parameter uncertainty in ensemble post-processing

tion of the replicates is used to approximate the desired properties of the sampling

distribution of the summary statistic. In particular, the bootstrap is widely used

to estimate the sampling distribution of so-called pivotal statistics. The sampling

distributions of pivots are by definition independent of the ‘true parameter values’,

ψ, and can be used to approximate confidence intervals or to conduct hypothesis

tests. Bootstrapping pivotal statistics is appealing, since there is no error (beyond

the effects of sampling variation) in estimating properties of the distribution of the

pivot by bootstrap resampling — in other words, the sample of bootstrap replicates

of the pivotal statistic is a representative sample of its sampling distribution.

In the context of ensemble post-processing, we use bootstrap resampling to approx-

imate the sampling distribution of the estimated model parameter vector, ψ̂(D),

the model parameter estimates obtained by minimising the objective function over

the training sample D. As with pivotal statistics, we would like the empirical dis-

tribution of the bootstrap replicates to approximate the sampling distribution of

ψ̂(D). For example, in accounting for parameter uncertainty in the NGR model,

we would like the empirical distribution of parameter estimates obtained from boot-

strap resamplling, say (â∗NGR,j, b̂
∗
NGR,j, ĉ

∗
NGR,j, d̂

∗
NGR,j), for j = 1, 2, . . . , NB to pro-

vide a good approximation to the sampling distribution of the parameter estimates

ψ̂(D) = (âNGR, b̂NGR, ĉNGR, d̂NGR). Bootstrap resampling has been used to perform

inference in regression models, and is discussed in detail in Davison and Hinkley

[1997, chapter 6]. For example, users are more often interested in constructing

confidence intervals (or regions) for parameter estimates, and bootstrap resampling

provides an intuitive means of doing so when analytic results are not available or

are difficult to obtain.

We now discuss some possible approaches for using bootstrap resampling to approx-

imate the sampling distribution of the parameter estimates ψ̂(D). The simplest

approach is known as ‘case resampling’. Given the training sample,

D =


x1 y1

x2 y2
...

...

xN yN


we create new, synthetic training samples, D∗, of size N by sampling with replace-

ment from the rows of D. The post-processing model is refitted for the training

sample D∗, with the resulting parameter estimates denoted by ψ̂∗. This process is

repeated NB times to form a set of parameter estimates (ψ̂∗
1, ψ̂

∗
2, . . . , ψ̂

∗
NB

), which are

interpreted as representing a sample from the sampling distribution of the parameter

estimates ψ̂(D).
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A second approach is the so-called ‘residual bootstrap’. In this case the statistical

model is fitted, and standardised residuals are calculated for the fitted values over

the training sample. For example, the standardised residuals for the NGR model

are given by

sri =
yi − µi
σi

for i = 1, 2, . . . , N, (5.12)

where µi = â + b̂x̄i and σi =

√
ĉ+ d̂s2i are the expectation and standard deviation

of the ith NGR forecast distribution, respectively. The residual bootstrap then

proceeds as follows. Firstly, a sample of size N is drawn (with replacement) from

the N standardised residuals sri, denoted sr∗ = (sr∗1, sr
∗
2, . . . , sr

∗
N). This sample is

then used to create synthetic observations, y∗i , i = 1, 2, . . . , N by

y∗i = µi + σisr
∗
i . (5.13)

In other words, the sample of standardised residuals is added to the fitted values

of the post-processing method, µi, and rescaled by σi. If the standardised residu-

als sri do indeed have unit variance, it follows that the ith synthetic observation,

y∗i , has variance σ2
i . The statistical model is then refitted using the N ensemble

forecasts, and the sample of synthetic observations y∗i , i = 1, 2, . . . , N . Again, this

process is repeated NB times to form a sample of NB parameter estimates. Our

implementation of the residual bootstrap is an extension of the approach described

in Davison and Hinkley [1997, chapter 6], which assumes that the variance of the

verifying observations is homoscedastic, rather than heteroscedastic. Note that, un-

like the case resampling approach, the residual bootstrap does not sample from the

ensemble forecasts — the ensemble forecasts remain fixed, while the standardised

residuals are viewed as independent random variables that are interchangeable.

A third approach is the ‘parametric bootstrap’ which, unlike the residual bootstrap,

assumes complete knowledge of the distribution of the observations. In our use of

the residual bootstrap we assume only that the first and second moments of the

forecast distributions are correctly specified — we do not make any distributional

assumptions in the simulation procedure used to create synthetic training samples.

On the other hand, the parametric bootstrap assumes that the statistical post-

processing model is correctly specified. In the case of the NGR post-processing

method, therefore, the standardised residuals sri defined above are assumed to be

IID N(0, 1), if the data really do arise from the fitted NGR model. In this case the

parametric bootstrap proceeds by simulating samples of size N from the standard

normal distribution, which are added to the fitted values µi and rescaled by σi, in

the same manner as given by equation (5.13), such that

y∗i = µi + σiz
∗
i , for i = 1, 2, . . . , N, (5.14)

146



5. Parameter uncertainty in ensemble post-processing

where the z∗i ∼ N(0, 1) are IID draws from a standard normal distribution. The

variables y∗i are then used as synthetic observations, and the model is refitted to

obtain the bootstrap parameter estimates. Again this procedure is repeated NB

times. As with the residual bootstrap, the parametric bootstrap does not sample

from the ensemble forecasts.

The three approaches to bootstrap resampling described above each place increas-

ing confidence on the statistical model specified by the ensemble post-processing

method. The parametric bootstrap assumes that the statistical model is correctly

specified, and that we are only unaware of the ‘true’ parameter values, ψ. The ap-

proach of resampling the standardised residuals assumes that the parametric func-

tions for the expectation and variance of the statistical model are correct, but does

not make distributional assumptions. Case resampling, which samples both the pre-

dictor variables (such as the ensemble means and variances) and the observations,

makes no modelling assumptions.

It seems that our parametric and residual-based resampling approaches are, in the-

ory, preferable to case resampling. Firstly, by resampling from the predictor vari-

ables as well as the observations, the synthetic training samples, D∗, contain less

information about the conditional distribution of the observations, given the predic-

tor variables. For example, outlying predictor variables may not be present in the

synthetic training samples. The synthetic training samples will also contain (with

high probability) replicate predictor variable-observation pairs, and so the training

samples D∗ are effectively smaller than the original training sample, D. On the

other hand, by maintaining all predictor variables in the synthetic training sam-

ples, the parameter estimates ψ̂∗ that are obtained with the residual and parametric

resampling approaches are subject to less sampling variation, and there is no loss

of information in the predictor variables. We might reasonably expect, therefore,

that the variability of the bootstrap replicates will be largest for case resampling,

while residual and parametric resampling will yield less variable estimates. If the

user wishes to use the bootstrap to estimate confidence intervals (or confidence re-

gions) for the parameter estimates, therefore, we would expect intervals obtained by

case resampling to be wider than those obtained with the residual and parametric

approaches.

In practice the statistical post-processing models are an approximation to the ‘true’

data generating process, and so which of the approaches to bootstrap resampling is

preferred is likely to depend on the accuracy of the statistical model as an approxi-

mation to the distribution of the observations. We might expect case resampling to

be preferred for poorly specified models. For example, suppose the ‘true’ relation-

ship between the ensemble means x̄i and verifying observations yi is nonlinear, rather

than linear, as is assumed by the MOS and NGR models. In that case, the stan-
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dardised residuals given by equation (5.12), sri, will each have non-zero expectation

that depends on the forecast occasion, i. The assumption of identically distributed

standardised residuals would therefore be violated. Intuitively, therefore, it seems

that resampling the residuals to create synthetic samples of observations using equa-

tion (5.13) would yield observations, y∗i , for which the assumed linear relationship

is typically a worse approximation than it is for the original sample of observations,

yi.In turn, therefore, the sample of bootstrap parameter estimates will be a poor

approximation to the sampling distribution of the parameter estimates in the lin-

ear model. On the other hand, sampling both the ensemble forecasts and verifying

observations with case resampling merely affects the effective size of the synthetic

training samples D∗ (as mentioned above) — we do not introduce synthetic obser-

vations for which the assumed linear relationship is a worse approximation to the

‘true’ nonlinear data generating process.

Finally, we consider the use of the ‘block bootstrap’ [Davison and Hinkley, 1997,

chapter 8]. If the standardised residuals given in equation (5.12) are temporally

correlated, then the assumption that the observations (conditional on the ensemble

forecasts) are independent and identically distributed is violated. In such cases,

therefore, independent resampling approaches (such as the three described above)

destroys the temporal dependence structure of the standardised residuals. The block

bootstrap samples ‘blocks’ from the original training sample, D, rather than sam-

pling independently, where the term ‘block’ refers to a series of length L of consec-

utive data from the training sample. The block length L is chosen so as to retain

the predominant features of the temporal dependence structure. For example, in

section 5.4.2 we experimented with blocks of length 2, as there was some evidence

of autocorrelation of the standardised residuals at lag 1, but not at longer lags. To

construct a new training sample, D∗, of size N , N/L blocks of length L are sampled

from the training sample D. The statistical model is refitted to D∗ to obtain pa-

rameter estimates ψ̂∗, and the process repeated NB times. In addition, we consider

two possible approaches of constructing ‘blocks’. The first is to sample blocks along

the lines of case resampling, by sampling blocks of both ensemble forecasts and the

corresponding observations. Alternatively, we also consider sampling blocks of stan-

dardised residuals, and not sampling from the ensemble forecasts (in keeping with

the residual bootstrap).

5.2.2.2 Accounting for the sampling distribution of parameter estimates

with the predictive bootstrap

We now explain how our bootstrap approximation to the sampling distribution of

the parameter estimates is used to account for parameter uncertainty in the resulting
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probability forecast distributions that are issued for the future observations. Firstly,

recall the integral given in section 5.1 (see equation (5.1)),

f̂(yt | xt, ψ) =
∫
∆D

f(yt | xt, ψ̂(D)) dF (ψ̂(D)),

where ∆D denotes the support of the CDF of the sampling distribution of the pa-

rameter estimates ψ̂(D). Having used one of the bootstrap resampling approaches to

obtain a representative sample of the sampling distribution, the integral is approxi-

mated with a Monte Carlo approach, as we now explain. Each of the NB bootstrap

replicates of the parameter vector, ψ̂∗
j , j = 1, 2, . . . , NB, results in a probability fore-

cast distribution with PDF f(yt | xt, ψ̂
∗
j ). In order to account for the sampling

distribution of the parameter estimates ψ̂, we average over the NB distributions

f(yt | xt, ψ̂∗
j ) to obtain

f̂(yt | xt, ψ) =
1

NB

NB∑
j=1

f(yt | xt, ψ̂∗
j ). (5.15)

Equation (5.15) is therefore a Monte Carlo approximation to the aforementioned in-

tegral given in equation (5.1). The sampling distribution of the parameter estimates,

ψ̂(D), has been integrated out to yield the marginal distribution of the observation

yt, conditional on the corresponding ensemble forecast xt, and the ‘true’ parameter

vector ψ. The resulting probability forecast distribution for a future observation yt

is thus a mixture distribution with NB ‘component distributions’.

This approach for accounting for parameter uncertainty, which is hereafter referred

to as the ‘predictive bootstrap’, was proposed by Harris [1989]. While the author

introduced the term ‘predictive bootstrap’, he did not provide examples of the use

of bootstrap resampling to estimate the sampling distribution of the parameter

estimates ψ̂(D). Rather, examples were presented for which the sampling distribu-

tion of parameter estimates could be calculated analytically. The author showed

that under the correct model for the data generating process, the expectation of

the log-likelihood for the predictive bootstrap forecast distributions is larger than

the expected log-likelihood for the standard plug-in forecast distributions or, equiv-

alently, that the negative log-likelihood is, on average, smaller for the predictive

bootstrap forecast distributions. As the negative log-likelihood is closely related

to the ignorance score (see section 2.5.3), we might reasonably expect to improve

the ignorance score of out-of-sample probability forecasts by using the predictive

bootstrap to account for parameter uncertainty.
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5.3 Forecast verification

In section 5.4 we compare the skill of the probability forecasts obtained with the

predictive bootstrap method, hereafter referred to as the ‘bootstrap forecasts’, and

the standard forecasts that do not account for parameter uncertainty, hereafter re-

ferred to as the ‘plug-in’ forecasts. In sections 5.4.1 and 5.4.2 we consider probability

forecasts, and in section 5.4.3 we consider the skill of ensemble forecasts that are

sampled from probability forecast distributions. The skill of probability forecasts

is assessed with the ignorance score (IGN), the continuous ranked probability score

(CRPS), the coverage of 95% prediction intervals, PIT histograms and the Brier

score, which is used to assess the skill of probability forecasts for binary events. We

use the NGR post-processing method, and so the bootstrap forecast distributions are

a mixture of NB Gaussian component distributions, each with different expectations

and variances that depend on the NB parameter estimates. Specifically, therefore,

the aforementioned verification measures are given as follows.

The ignorance score and CRPS

For the plug-in forecasts, the ignorance score and the CRPS are given by

IgnPlugin = − 1

T

T∑
t=1

log2

{
1

σt
ϕ

(
yt − µt
σt

)}
(5.16)

CRPSPlugin =
1

T

T∑
t=1

σt

[
zt{2Φ(zt)− 1}+ 2ϕ(zt)−

1√
π

]
, (5.17)

where ϕ(·) and Φ(·) denote the standard Gaussian PDF and CDF, zt = (yt−µt)/σt

is a (standardised) observation, and µt, σt depend on the post-processing method.

For MOS, we have

µt = â+ b̂x̄t

σ2
t = ĉ2,

and for NGR we have

µt = â+ b̂x̄t

σ2
t = ĉ+ d̂s2t .

Note that equation (5.17) for the CRPS is simply the out-of-sample equivalent of the

objective function used for parameter estimation in chapter 3 (see equation (3.3)).

The closed form expression was given in Gneiting et al. [2005].
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As noted in the previous section, the predictive bootstrap gives rise to mixture

distributions. The ignorance score for bootstrap forecasts using MOS and NGR post-

processing methods, which give rise to Gaussian probability forecast distributions,

is

IgnBootstrap = − 1

T

T∑
t=1

log2

{
1

NB

NB∑
j=1

σ∗−1

j,t ϕ

(
yt − µ∗

j,t

σ∗
j,t

)}
, (5.18)

where for MOS we have

µ∗
j,t = â∗j + b̂∗j x̄t

σ∗
j,t = ĉ∗j ,

and for NGR we have

µ∗
j,t = â∗j + b̂∗j x̄t

σ∗
j,t =

√
ĉ∗j + d̂∗js

2
t .

As noted in chapter 3 for the estimation of model parameters for the BMA and

BMD post-processing methods, the CRPS for a mixture of Gaussian distributions

was given by Grimit et al. [2006] as

CRPSBootstrap =
1

T

T∑
t=1

crps (yt, F (yt | xt, ψ)) , (5.19)

where F denotes the CDF of the mixture distribution given by the predictive boos-

trap, and the CRPS for an individual forecast at time t is

crps (yt, F (yt | xt, ψ)) =
1

NB

NB∑
j=1

{
A(yt − µ∗

j,t, σ
∗2
j,t)−

1

2

NB∑
k=1

A(µ∗
j,t − µ∗

k,t, σ
∗2
j,t + σ∗2

k,t)

}
(5.20)

where

A(µ, σ2) = 2σϕ(µ/σ) + µ {2Φ (µ/σ)− 1} , (5.21)

In section 5.4.1 we compare the results of the plug-in and predictive bootstrap

forecasts with the analytic results presented in section 5.2.1 for the MOS post-

processing method, hereafter referred to as the ‘analytic forecasts’. The ignorance

score for the analytic forecasts is given by

IgnAnalytic = − 1

T

T∑
t=1

log2 τN−2

{
yt

∣∣∣∣∣µt, ĉ2(1 + 1/N + (x̄t − x)2/Sx,x)

}
, (5.22)

where τN−2(·) denotes the density of the t-distribution with N−2 degrees of freedom,
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with expectation µt and the inflated variance derived in section 5.2.1. We are not

aware of a published result for the CRPS of a t-distributed random variable, and

so we use numerical integration to approximate the integral form of the CRPS (see

equation (2.44) on page 58) for the CRPS of the analytic forecasts in section 5.4.1.

We do not provide the CRPS for the BMA predictive bootstrap distributions, as we

do not consider probability forecasts in our example (section 5.4.3).

The probability integral transform

The values of the probability integral transform (PIT) for the MOS and NGR plug-

in forecast distributions, which are plotted in the PIT histograms in section 5.4.2

(see section 2.5.2.3 for details) are given by

FPlugin,t = Φ

(
yt − µt
σt

)
, (5.23)

where Φ(·) denotes the standard Gaussian CDF, and µt, σt are as given earlier in this

section for the ignorance score and CRPS of the plug-in forecasts. Similarly, the PIT

values for forecast occasion t of the MOS and NGR bootstrap forecast distributions

are given by

FBootstrap,t =
1

NB

NB∑
j=1

Φ

(
yt − µ∗

j,t

σ∗
j,t

)
, (5.24)

where µ∗
j,t and σ∗

j,t are as given above for the ignorance score and CRPS of the

bootstrap forecast distributions.

Prediction intervals

We calculate 95% prediction intervals using the 2.5% and 97.5% quantiles (q.025 and

q.975) of the probability forecast distributions. For the Gaussian and t-distributed

probability forecasts, these quantiles are calculated using the ‘qnorm’ and ‘qt’ func-

tions implemented in the R language [R Core Team, 2015]. We are not aware of

a closed form for the inverse of the CDF of a mixture of Gaussian distributions,

however, and so we estimate quantiles of the bootstrap forecast distributions nu-

merically using the ‘uniroot’ function of the R language. Specifically, to calculate

the p-quantile for a general forecast occasion we find the value of u that solves the

equation

F (u)− p = 0,

where F (u) is the CDF of the bootstrap forecast distribution evaluated at u.
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The Brier score

In section 5.4.2 we compare the skill of the plug-in and bootstrap forecast distribu-

tions in issuing probability forecasts of binary events, for the NGR post-processing

method. For a fixed threshold q, probability forecasts of the binary event {yt ≤ q}
for the plug-in forecasts are given by

Pr(yt ≤ q) = Φ

(
q − µt
σt

)
, (5.25)

and for the bootstrap forecasts by

Pr(yt ≤ q) =
1

NB

NB∑
j=1

Φ

(
q − µ∗

j,t

σ∗
j,t

)
, (5.26)

where µt, σt, µ
∗
j,t and σ

∗
j,t are as given earlier in this section. The Brier score and its

decomposition (see sections 2.5.3.2 and 2.5.5) are used to assess the skill of these

forecasts.

Verification for ensemble forecasts

Finally, in section 5.4.3 we sample ensemble forecasts from plug-in and bootstrap

probability forecast distributions for the BMA post-processing method. For BMA,

both the plug-in and bootstrap forecast distributions are mixtures of Gaussian com-

ponent distributions. We sample M ensemble members as the equidistant quantiles

qm/(M+1) for m = 1, 2, . . . ,M with the numerical method described above. The skill

of these ensemble forecasts is assessed using the empirical estimate of the CRPS

(see equation (2.48) on page 60) for univariate quantities, and the energy score (see

equation (2.47) on page 59) for forecasts over spatial fields.

5.4 Results

5.4.1 A simulation study

In this subsection we compare the skill of ‘plug-in’ and ‘bootstrap’ probability fore-

cast distributions in an idealised simulation experiment, so that the observations

are distributed according to the statistical model specified by the ensemble post-

processing method. We begin by showing results for the NGR model, and then

consider the MOS model for which we also have the analytic results given in sec-

tion 5.2.1. We present results using case resampling. The residual and parametric
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bootstrap approaches yield very similar results and, as the training data in this ex-

periment are independent by construction, there is nothing to be gained by using

the block bootstrap.

For the NGR post-processing method, the simulation experiment proceeds as follows.

1. Simulate 100 random variables ξi and θ
2
i , that are representative of the ensem-

ble mean (ξ) and ensemble variance (θ2).

2. For given ‘true’ parameters a, b, c and d, simulate 100 training observations yi

with distribution N(a+ bξi, c+ dθ2i ) for i = 1, 2, . . . , 100.

3. Simulate out-of-sample random variables ξ0 and θ20 and a corresponding ob-

servation y0 ∼ N(a+ bξ0, c+ dθ20).

4. Fix a training sample size, N .

5. Compute the ‘plug-in’ parameter estimates âNGR, b̂NGR, ĉNGR and d̂NGR by

optimisation of the negative log likelihood.

6. Also compute NB sets of parameter estimates (â∗j , b̂
∗
j , ĉ

∗
j , d̂

∗
j), j = 1, 2, . . . , NB

using bootstrap resampling.

7. Evaluate the probability integral transform, the ignorance score and the CRPS

for the plug-in and bootstrap forecast distributions. Determine whether y0 lies

in the prediction interval of the plug-in and bootstrap forecast distributions.

8. Repeat steps 4–7 for N in the set {10, 20, . . . , 100}.

9. Repeat steps 1–8 Nsim times to obtain NSim measures of forecast skill for the

various sizes of training sample.

In this study we used parameter values a = 1/2, b = 5/4, c = 1/2 and d = 3/2.

The predictor variables ξi were simulated as Gaussian-distributed random variables

with distribution N(0, 62), and the variables θ2i were taken as the absolute value of

simulations with distribution N(0, (1/2)2). The chosen parameter values are repre-

sentative of biases in ensemble location and dispersion that are commonly observed

in practical scenarios. The average variance of the observations is approximately

2% of the variance of the (synthetic) ensemble means, ξ, which is representative of

typical ensemble forecasts of temperature. However, we found that the qualitative

features of the results shown below are similar regardless of the marginal distribu-

tions of ξ and θ2, and the values of the true parameters a, b, c and d. We used

Nsim = 10 000 simulations for each training sample size and NB = 100 bootstrap

replicates. We also investigated simulations with 50 and 200 bootstrap replicates.

In our experience there is little to be gained in using more than 50 replicates — for
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Figure 5.1 Coverage of the 95% prediction intervals, the ignorance score (Ign) and the
CRPS for the plug-in forecasts (open circles) and the predictive bootstrap forecasts (filled
circles) as a function of training sample size, N , for simulated observations that follow the
NGR model.

example, improvements in the ignorance score occur only at the third decimal place,

while significantly increasing the computational cost.

Figure 5.1 shows the coverage of the 95% prediction intervals, the ignorance scores

and the continuous ranked probability scores for the standard plug-in forecasts and

the bootstrap forecasts (equation (5.15)) as a function of training sample size, N .

The predictive bootstrap forecasts improve on the plug-in forecasts under all three

measures shown in figure 5.1. The improvements are most significant for small train-

ing samples, although are still evident for training samples of size 50 and 60, which

are commonly used in real-world scenarios. Indeed, the coverage of the bootstrap

forecasts is closer to 95% than the plug-in forecasts for all training sample sizes

considered. The relatively large improvements in the ignorance score compared to

the continuous ranked probability score are due to the sensitivity of that score to

observations that lie in the tails of the probability forecast distributions. The boot-

strap method does not fully correct for the effect of parameter uncertainty on the

width of prediction intervals, which, on average, remain too narrow.

In figure 5.2 we show the PIT histograms for the plug-in and bootstrap forecasts for

training samples of size 30 and 60. In keeping with the coverage of the 95% prediction

intervals discussed above, the PIT histograms show that the predictive bootstrap

does not fully correct for the underdispersion of the standard plug-in forecasts. It is

a little disappointing that the predictive bootstrap yields only a small improvement

in the PIT histograms for training samples of size N = 60. Nonetheless, considering

figures 5.1 and 5.2 in combination, the gain in forecast skill that can be attributed to

accounting for parameter uncertainty with the predictive bootstrap in this idealised

setting is sufficiently encouraging to suggest that the method may be beneficial in

real-world scenarios.

We conclude our simulation experiment with an illustration of accounting for param-
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Figure 5.2 PIT histograms for the plug-in NGR forecast distributions (left) and bootstrap
forecast distributions (right), for training samples of size N = 30 (top row) and N = 60
(bottom row).
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Figure 5.3 As for figure 5.1, but for observations that are distributed according to the
MOS statistical model. The results of the analytic forecasts are shown as open diamonds.

eter uncertainty with the predictive bootstrap for the more simplistic MOS post-

processing method, for which we also have the analytic result for accounting for

parameter uncertainty given in section 5.2.1. The simulation experiment proceeds

as described above, except that the observations are drawn from Gaussian distri-

butions with constant variance, c2, in keeping with the assumptions of the MOS

method. We set c2 = 1.098, the mean variance of the observations yi in the simula-

tion experiment for the NGR post-processing method described above.

In figure 5.3 we show the coverage of 95% prediction intervals, the ignorance score

and the CRPS for the plug-in, bootstrap and analytic forecast distributions, where

‘analytic’ refers to the result presented in section 5.2.1 for MOS forecasts. The

results indicate that accounting for parameter uncertainty with the predictive boot-

strap method yields more skilful probability forecasts than the standard plug-in

forecasts, although the analytic T -distributed forecasts are superior in skill. Again

the predictive bootstrap does not fully correct for the underdispersion of the plug-in

forecasts — on average the prediction intervals remain too narrow. The skill of the

predictive bootstrap and plug-in probability forecasts converge more rapidly for the

MOS post-processing method than for NGR, and the assertion by Glahn et al. [2009]

that accounting for parameter uncertainty is not important when training samples

are larger than N = 30 appears to be justified. However, were the analytic result

given in section 5.2.1 not known, the predictive bootstrap would remain a useful

addition to the out-of-sample probability forecasts.

5.4.2 Parameter uncertainty in 2-metre temperature

forecasts

We now present the results of an investigation in to the effect of accounting for pa-

rameter uncertainty with the predictive bootstrap method for probability forecasts
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of 2-metre temperature observations. The observations and 10-member ensemble

forecasts were taken from version 2 of the GEFS reforecast project [Hamill et al.,

2013], described in section 2.6. The forecast lead time was chosen as 48 hours, at

a grid point located near to New York City, USA (40 degrees North, 74 degrees

West). Ensemble forecasts were issued at 00 UTC, which corresponds to 20:00 or

19:00 local time, depending on the time of year. Out-of-sample probability forecast

distributions were issued for the period 26 May 1990 – 15 September 2014 inclusive,

using a rolling training sample of the previous N ensemble forecasts and observa-

tions, where N denotes the training sample size. The results presented below are

therefore calculated using a total of T = 8879 out-of-sample forecasts and verifying

observations. We show results using NB = 100 bootstrap replicates. As mentioned

in the previous subsection, we found forecast skill to be similar for 50, 100 and 200

replicates, and so do not comment further on the value of NB. Many of the following

results are also presented in Siegert et al. [2015a, section 3.3].

Preliminary investigations (not shown) demonstrated an improvement in the skill of

probability forecasts when using the NGR post-processing method compared with

the more simplistic MOS method discussed in section 5.2.1. The so-called plug-in

NGR forecasts are more skilful than MOS forecasts when both neglecting and ac-

counting for the effect of parameter uncertainty in the MOS forecasts. This provides

clear motivation for investigating the effect of accounting for parameter uncertainty

with the predictive bootstrap on probability forecasts issued with the NGR post-

processing method.

5.4.2.1 Choosing the bootstrap resampling approach

We found that the ‘case resampling’ approach for estimating the sampling distribu-

tion of the parameter estimates resulted in probability forecasts that were slightly

more skilful than those obtained with either the approach of residual resampling or

the parametric bootstrap. This is thought to be a result of some misspecification of

the statistical model issued by the NGR post-processing method. We provide evi-

dence for this claim later in this section (see figure 5.8). As discussed in section 5.2.2,

the approach of case resampling places the least confidence in the statistical model,

and is therefore the most resilient to violations of modelling assumptions. However,

we stress that the differences in the measures of forecast skill are small, and that all

three approaches improve on the standard ‘plug-in’ forecasts. At lag 1 the sample

mean of our correlation values was approximately 0.15, and correlations decayed to 0

for longer lags. Therefore, while there is evidence of some temporal correlation in the

standardised residuals, the correlations do not amount to a statistically significant

violation of the NGR model assumptions. However, we applied the block bootstrap,
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using a block length of 2, so as to investigate whether there was anything to be

gained in its use. As with the residual and parametric bootstrap approaches, how-

ever, we found that the skill of the out-of-sample probability forecasts was slightly

worse than when using the simple case resampling approach. This was also the case

for longer block lengths. In what follows, therefore, we show results for the approach

of case resampling only. We suggest that the block bootstrap may yield improved

probability forecasts if a time series model that allows for temporal correlation in

the residuals was used in place of the standard NGR post-processing model, which

assumes implicitly that the standardised residuals are independent. Indeed, the

approach of case resampling, in which the ensemble-observation pairs are sampled

independently from the original training sample, adopts this assumption, which may

serve to explain the improved forecast skill over the block bootstrap approach.

5.4.2.2 Comparing plug-in and bootstrap probability forecasts for

2-metre temperature

In figure 5.4 we show the coverage of the 95% prediction intervals, the ignorance

score and the continuous ranked probability score for the out-of-sample probability

forecasts as a function of the training sample size, N , before and after accounting

for parameter uncertainty with the predictive bootstrap method. The coverage of

the 95% prediction intervals is more accurate for the bootstrap forecast distribu-

tions, particularly for small training samples, which are also the training samples

that are prefered by the ignorance score and CRPS (we discuss this point further

below). However, as we found in our simulation experiment, the bootstrap forecast

distributions on average remain underdispersed — the 95% prediction intervals re-

main too narrow. The improvements in both the ignorance score and the CRPS for

the bootstrap forecasts are most evident for small training samples, but also persist

for large training samples. It is encouraging to note that the predictive bootstrap

forecasts yield an ignorance score for training samples of size N = 20 that is less

than that of the plug-in forecasts with training samples of size N = 50. As noted in

section 5.4.1, the large improvements in the ignorance score relative to the CRPS are

due to the sensitivity of the ignorance score to the overpopulation of observations in

the tails of the plug-in forecast distributions which, to some extent, is corrected by

the predictive bootstrap (as evidenced by the coverage of the prediction intervals).

Using the quantity 2IgnA−IgnB , where IgnA and IgnB denote the ignorance scores for

forecasts before and after accounting for parameter uncertainty, respectively, we find

that for the optimal training samples (discussed further below) the forecasts that

account for parameter uncertainty assign on average 6% more probability density

to the verifying observations than the plug-in forecasts.
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Figure 5.4 Coverage of the 95% prediction intervals, the ignorance score (Ign) and the
CRPS for the plug-in forecasts (open circles) and the predictive bootstrap forecasts (filled
circles) as a function of training sample size, N , for probability forecasts of 2-metre tem-
perature.

The plots of the ignorance score and CRPS as a function of training sample size

presented in figure 5.4 indicate that the training sample size is a highly influential

factor in the skill of the out-of-sample probability forecasts, for both the standard

plug-in and the predictive bootstrap forecast distributions. Contrary to the belief

that larger training samples are preferable, the scores indicate a strong cyclical, or

seasonal effect of training sample size on the forecast skill. Training samples that

contain forecasts that are relevant to the time of year perform well in comparison to

training samples that contain, for example, the previous six months of forecasts and

observations. To illustrate this point, consider the plug-in forecasts. The optimal

training sample size as measured by the CRPS is N = 70, while N = 400 (i.e.

a similar time frame, but with an additional year of training data) is optimal for

the ignorance score. When accounting for parameter uncertainty with the predictive

bootstrap, however, training samples of size N = 50 are optimal for the CRPS, while

N = 60 is optimal for the ignorance score. Indeed, for the predictive bootstrap

forecasts, the values of both scores are very similar for training samples of size

40–70. Our findings therefore indicate that accounting for parameter uncertainty

with the predictive bootstrap may help to reduce the optimal training sample size.

This could prove an important benefit for users who may have access to limited

data and/or computational resources. For example, while in this thesis we have

concentrated on short-range weather forecasts, it is also necessary to post-process

ensemble forecasts of seasonal or climate forecasts, for which far less training data

is typically available. See Siegert et al. [2015a, sections 3.1 and 3.2] for examples

of the method in post-processing ensemble forecasts on seasonal and decadal time

scales.

Figure 5.5 shows PIT histograms for the plug-in and bootstrap probability forecasts

for training samples of size N = 60, which were found to be almost optimal as mea-

sured by the ignorance score and CRPS. In figure 5.6 we show the corresponding
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Figure 5.5 PIT histograms for probability forecasts of 2-metre temperature using plug-in
(left) and predictive bootstrap (right) forecasts. Model parameters are estimated using
rolling training samples of the previous 60 ensemble forecasts and observations.

PIT histograms for the smaller training samples of size N = 30. For both sizes

of training sample the outermost PIT histogram bins for the plug-in forecasts are

significantly overpopulated, particularly for the shorter training samples. This is

indicative of probability forecast distributions whose tails are too light, in keeping

with our findings in the simulation experiment and the explanation provided in sec-

tion 5.1. Furthermore, the non-uniformity of the central bins of the PIT histograms

suggests remaining biases in the location and/or dispersion of the NGR probability

forecast distributions — more observations fall in the upper tails of the forecast

distributions than the lower tails. In keeping with the coverage of the prediction

intervals shown in figure 5.4, the PIT histograms for the bootstrap forecasts indi-

cate that accounting for parameter uncertainty with the predictive bootstrap has

not fully corrected for the aforementioned underdispersion of the plug-in forecasts,

although the overpopulation of the outermost bins of the PIT histograms is reduced.

Finally, we turn to an assessment of the skill of the plug-in and bootstrap probability

forecast distributions in issuing probability forecasts of the form p = Pr(y ≤ q),

where, as in chapter 3, y is the verifying observation and q is a threshold of interest.

In table 5.1 we show the Brier score and the reliability and resolution components

of its decomposition (see section 2.5.5 for details) for five thresholds of interest,

namely the quantiles q1/20, q1/10, q1/5, q1/3 and q1/2 of the climatological distribution

of the observations over the period of investigation, where the notation qα refers to

the 100 × α% quantile. Recall that smaller Brier and reliability scores, and larger

resolution scores, are preferred. We show the scores for training samples of size

N = 60. The qualitative features of the scores are similar for other training sample

sizes (not shown).
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Figure 5.6 As for figure 5.5, but for training samples of size N = 30.

Plug-in Bootstrap
Brier Rel Res Brier Rel Res

q1/20 186 200 289 185 150 289
q1/10 297 379 603 295 341 603
q1/5 353 229 125 350 160 125
q1/3 342 123 1877 340 105 1879
q1/2 283 147 2214 280 137 2217

Table 5.1 Brier scores and the reliability (Rel) and resolution (Res) components of their
decomposition, calculated at five thresholds of interest, for training samples of size N = 60.
The Brier scores and the resolution components are scaled by 104, and the reliability
components are scaled by 106.
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The effect of the predictive bootstrap is most evident for the reliability scores, which

indicate that accounting for parameter uncertainty improves the forecast reliability

at each of the five thresholds considered here. It is encouraging that the Brier

scores all improve when accounting for parameter uncertainty with the predictive

bootstrap, although we note that the differences between the Brier scores for the

bootstrap and plug-in forecasts are small relative to the differences in the igno-

rance scores and the CRPS shown in figure 5.4. Interestingly, despite the fact that

the bootstrap forecasts yield probability forecast distributions that are more dis-

persed than the corresponding plug-in distributions, the resolution components of

the Brier score decomposition are very similar. Unfortunately, the standard errors

of the scores reported here are too large for us to report a statistically significant

improvement in the scores for the predictive bootstrap forecasts. The scores exhibit

some temporal correlation (not shown), and so we approximate the standard errors

using the expression given in section 2.5.3 [Wilks, 2006b, pp 144-145]. However, in

combination with the other results presented in this subsection, it is evident that

accounting for parameter uncertainty with the predictive bootstrap in this real-

world scenario results in more skilful probability forecasts than are issued with the

standard plug-in approach.

5.4.2.3 Analysis of forecast residuals

Earlier in this subsection we commented that the statistical model specified by

the NGR post-processing method is in some cases an inadequate fit to the data.

We now illustrate this claim with two diagnostic plots. The use of such plots was

discussed in section 2.5.2.1. In figure 5.7 we plot the residuals rt = µt − yt of

the out-of-sample forecasts, where yt and µt are the verifying observations and the

expectation of the NGR plug-in forecasts, respectively, against the ensemble mean

x̄t, for t = 1, 2, . . . , T , where T = 8879 denotes the size of the test dataset for

which out-of-sample forecasts are issued. A nonparametric approximation to the

expectation of the residuals is shown in red, using the Loess function described

in section 2.5.2.1. The residuals rt should be symmetrically distributed around

the line r = 0 if the forecast means µt = â + b̂x̄t are well-calibrated with the

observations. Figure 5.7 indicates that the observations are generally well estimated

by µt, although there is some evidence of miscalibration for small values of x̄.

More interestingly, in figure 5.8 we plot the squared standardised residuals,

ssrt =

(
yt − µt
σt

)2

,

against the ensemble standard deviation, st. If the NGR forecast variance, σ2
t =
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Figure 5.7 Residuals rt as a function of the ensemble mean x̄t. A nonparametric Loess
approximation to the expectation of the residuals is shown in red.
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Figure 5.8 Squared standardised residuals ssrt as a function of the ensemble standard
deviation st. A Loess approximation to the expectation of ssr is shown in red. The
vertical axis is plotted on a square root scale.

165



5. Parameter uncertainty in ensemble post-processing

ĉ + d̂s2t is a well-calibrated estimate of the squared residuals, r2t = (µt − yt)
2, it

follows that the expectation of ssrt is 1. Significant deviations from the line ssr = 1

are indicative of a misspecified statistical model. The plot in figure 5.8 shows that

while this relationship is satisfied for much of the data, a significant number of the

squared standardised residuals lie far from the line ssr = 1. In chapter 6 we illustrate

how such plots can be used to improve the statistical model assumed by the NGR

post-processing method.

5.4.3 Accounting for parameter uncertainty in

post-processed ensemble forecasts of temperature and

air pressure

As a final example we consider post-processed ensemble forecasts, rather than prob-

ability forecasts, where the ensemble forecasts are sampled from probability forecast

distributions as described in section 2.4.6 and as also illustrated in chapter 4. We

compare ensemble forecasts that are sampled from the plug-in and predictive boot-

strap forecast distributions, using the Bayesian model averaging (BMA) mixture

distributions (see section 2.4.3.2). We use M = 50-member ensemble forecasts is-

sued by the European Centre for Medium-Range Weather Forecasts (ECMWF) for

Berlin, Frankfurt and Hamburg airports, for the period 1 May 2010 – 30 April 2011

inclusive. Observations were provided by the Deutscher Wetterdienst (DWD). This

dataset was also used in the article Schefzik et al. [2013], which presented the idea of

ensemble copula coupling (ECC), described in section 2.4.6 for producing calibrated

ensemble forecasts over spatial fields. As in Schefzik et al. [2013], parameter esti-

mates for the plug-in and bootstrap probability forecast distributions are estimated

using rolling training samples of the previous 30 days. The results presented in the

previous two subsections therefore indicate that we might reasonably expect to im-

prove the forecast skill with the predictive bootstrap method, due to the relatively

small training sample size. We again use case resampling with NB = 100 bootstrap

replicates.

We correct ensemble forecasts for biases in their location using the linear correction

(LC) ensemble adjustment scheme, introduced in section 3.3.2. Specifically, the

CDF of the plug-in forecast distribution at forecast time t is

F (yt | xt, ψ̂(D)) =
1

M

M∑
m=1

Φ

(
yt − x̂m,t
σBMA
t

)
, (5.27)

where Φ(·) denotes the standard Gaussian CDF, σBMA
t is the dressing kernel variance

estimated from the previous N ensemble forecasts and verifying observations, and
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ECMWF Plug-in Bootstrap

Temperature
Berlin 1.249 0.964 0.956
Frankfurt 1.263 0.922 0.923
Hamburg 1.062 0.910 0.905

Pressure
Berlin 0.796 0.714 0.714
Frankfurt 0.782 0.715 0.707
Hamburg 0.771 0.700 0.689

Table 5.2 The CRPS for the raw ensemble forecasts, and ensembles sampled from plug-in
and bootstrap BMA forecast distributions at Berlin, Frankfurt and Hamburg airports for
the period 1 May 2010 – 30 April 2011.

the adjusted ensemble member x̂m,t is given by

x̂m,t = xm,t + â+ (b̂− 1)x̄t.

The CDF of the bootstrap forecast distributions is

F (yt | xt, ψ) ≈
1

M ×NB

NB∑
j=1

M∑
m=1

Φ

(
yt − x̂∗j,m,t
σBMA∗
j,t

)
, (5.28)

where x̂∗j,m,t and σ
BMA∗

j,t denote the adjusted ensemble members and the estimated

dressing kernel variance for the jth bootstrap replicate. Preliminary investigations

(not shown) indicated that forecast skill did not improve under the more flexible

LCR scheme that also permits a rescaling of the ensemble forecasts, and so we use

the LC scheme for reasons of parsimony.

Ensemble forecasts were sampled from the plug-in BMA and predictive bootstrap

probability forecast distributions. The M ensemble members were taken as the

equidistant 100 × m/(M + 1)% quantiles of the probability forecast distributions,

for m = 1, 2, . . . ,M . The quantiles were calculated numerically as described in sec-

tion 5.3. To facilitate a further comparison of our results with those of Schefzik et al.

[2013], the ECC methodology was applied to the post-processed ensemble forecasts

at the three airports. Recall from section 2.4.6 that Schefzik et al. [2013] found that

by preserving the rank dependence structure of the raw ensemble forecasts with the

ECC methodology, the multivariate ensemble forecasts improved in skill compared

to those that did not preserve the rank dependence, particularly for forecasts of air

pressure. In table 5.2 we show the mean CRPS for the three individual airports,

and in table 5.3 we show the mean energy scores for multivariate forecasts of the

spatial field defined by their location, for both temperature and air pressure.

The results presented in tables 5.2 and 5.3 indicate that the predictive bootstrap

leads to improvements in the skill of ensemble forecasts, at both individual locations

(as measured by the CRPS), and over the spatial field defined by the three airports
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Before ECC After ECC
ECMWF Plug-in Bootstrap Plug-in Bootstrap

Temperature 2.342 1.979 1.969 1.875 1.865
Pressure 1.478 1.401 1.382 1.371 1.353

Table 5.3 The energy scores for the raw ensemble forecasts and ensembles sampled from
plug-in and bootstrap BMA forecast distributions for the spatial field defined by Berlin,
Frankfurt and Hamburg airports, for the period 1 May 2010 – 30 April 2011.

(as measured by the energy scores). For spatial forecasts, the improvements in

forecast skill (as measured by the energy scores) due to the use of the predictive

bootstrap are small relative to those due to the ECC methodology for temperature,

but of similar order for air pressure. For individual airports, the standard errors

of the CRPS values reported in table 5.2 (not shown) are too large to conclude

that the predictive bootstrap yields a statistically significant improvement for any

of the six forecasts considered. Typically the standard errors are of the order 3 ×
10−2 for air pressure forecasts and 5× 10−2 for temperature forecasts. Statistically

significant results may exist for some forecasts (most noteably for air pressure) if the

analysis was extended to a larger dataset of approximately eight years of forecasts

and observations, provided that the improvements in forecast skill were similar for

that dataset. Similarly, the standard errors of the energy scores preclude us from

reporting a statistically significant improvement in forecast skill when using the

predictive bootstrap. The standard errors are of the order 4 × 10−2 for forecasts

of air pressure and 5 × 10−2 for forecasts of temperature. However, a statistically

significant improvement in the energy score of air pressure forecasts would exist

with the combination of the predictive bootstrap and ECC methodology, were an

additional two years of data available for analysis and the improvements in forecast

skill were to persist. The ECC methodology alone yields a statistically significant

improvement in the energy score for temperature forecasts, but not for air pressure

forecasts.

The results of our plug-in forecasts differ slightly from those of Schefzik et al. [2013].

In particular, our plug-in BMA forecasts for temperature produce a worse energy

score, but improve significantly with the application of the ECC methodology, unlike

the results of Schefzik et al. [2013] who reported that ECC did not improve the

skill of temperature forecasts. We note with interest that the energy scores of our

plug-in forecasts for both temperature and air pressure improve on those given in

Schefzik et al. [2013] after ECC, while without ECC we achieve a worse energy score.

These differences presumably derive from the model fitting procedure. Schefzik

et al. [2013] use the ‘EnsembleBMA’ R package [Fraley et al., 2007] to estimate

model parameters. In this case, each member of ensemble forecast xt is recalibrated

to x̂m,t = â + b̂xm,t, for m = 1, 2, . . . ,M , such that the sample variance of the

adjusted ensemble forecast, x̂t is b̂
2s2t , where s

2
t is the sample variance of xt, and
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b̂ is the parameter estimate found by regressing the training observations yi on the

ensemble members xim, for i = 1, 2, . . . , N . On the other hand, we form adjusted

ensemble forecasts using the LC scheme introduced in section 3.3.2, such that x̂m,t =

xm,t + â + (b̂ − 1)x̄t, where x̄t is the sample mean of xt. In this case the ensemble

variance remains unaltered (see section 3.3.2). Furthermore, Schefzik et al. [2013]

use the expectation-maximisation algorithm for parameter estimation, whereas we

use the Nelder-Mead and BFGS algorithms as described in section 2.4.7.3.

5.5 Discussion and conclusions

In this chapter we have highlighted that users of ensemble post-processing meth-

ods should acknowledge and account for the effects of parameter uncertainty on the

probability forecast distributions that are issued for the future, verifying observa-

tions. We have proposed an approach for accommodating parameter uncertainty

in the statistical models that are used for ensemble post-processing that is based

on bootstrap resampling, known as the predictive bootstrap, that is easy to imple-

ment and is applicable to a large variety of ensemble post-processing methods. In

three case studies it was shown that accounting for parameter uncertainty with the

predictive bootstrap yielded more skilful probability forecasts than were obtained

from the standard practice of direct substitution of parameter estimates in to the

chosen parametric family of probability distributions. Accounting for parameter un-

certainty with the predictive bootstrap method resulted in significant improvements

to the ignorance score, due to the sensitivity of this score to observations that lie

in the tails of the probability forecast distributions. Encouragingly, the predictive

bootstrap was also shown to result in more uniform PIT histograms, and improve-

ments to the reliability component of the Brier score decomposition, calculated at

various thresholds of interest. Unlike Glahn et al. [2009], who asserted that parame-

ter uncertainty was not important for training samples larger than 30 forecasts and

observations, we found that the predictive bootstrap resulted in improvements to

forecast skill for both small and large training samples. Our investigation of 2-metre

temperature forecasts also indicated that the predictive bootstrap may reduce the

optimal training sample size, which could be an important result for forecasters with

limited data resources.

Three approaches (case and residual resampling, and the parametric bootstrap) were

proposed for estimating the sampling distribution of the model parameter estimates.

Case resampling was found to be the best option for the two real-world examples pro-

vided in this chapter, which we attribute to some misspecification of the underlying

statistical models. However, we suggest that users should also investigate the other

approaches suggested, in order to determine the approach that is most appropriate
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for their particular case. The block bootstrap was also suggested as an approach

that could be used if residuals from the fitted model exhibit significant temporal

autocorrelation, although we found it to be ineffective for our examples. We suggest

that statistical models that incorporate temporally correlated residuals may be of

benefit here, and expect that the block bootstrap may then prove beneficial.

We were slightly disappointed that the predictive bootstrap did not yield more signif-

icant improvements to the probabilistic forecast skill, particularly for the simulation

experiment in which the statistical model was correctly specified. However, we have

at least shown that parameter uncertainty is a potentially important factor in the

skill of probability forecasts, and one that should in general not be ignored, as has

historically been the case. We suggest that refinements to the resampling procedures

for approximating the sampling distribution of parameter estimates may result in

more skilful bootstrap forecast distributions. For example, ensemble forecasts in

the training sample that are similar to the current, out-of-sample ensemble forecast

could be weighted such that they are resampled more frequently than those ensem-

ble forecasts that bear little resemblance to the current forecast. We encourage the

investigation of such resampling schemes.

An alternative approach to estimating and accounting for parameter uncertainty

is to formulate a Bayesian model, in which case parameter uncertainty is an in-

herent feature. Friederichs and Thorarinsdottir [2012] introduced a novel Bayesian

approach for probability forecasts of extreme windspeeds using the generalised ex-

treme value distribution, and Siegert et al. [2015b] proposed a Bayesian approach for

the post-processing of ensemble forecasts on longer time scales that are associated

with climate science. Comparisons between the predictive bootstrap and Bayesian

models are strongly encouraged. However, unlike the predictive bootstrap, a possi-

ble disadvantage of Bayesian models is the need to specify prior distributions for the

parameter estimates. As in Friederichs and Thorarinsdottir [2012] informative prior

distributions may be difficult to obtain, and the choice of prior may significantly

affect the skill of the probability forecasts. On the other hand, an appealing fea-

ture of the predictive bootstrap is its flexibility and applicability to a wide range of

forecast distributions. Bayesian models are also likely to require the use of Markov

Chain Monte Carlo algorithms, which could prove computationally burdensome for

forecasting systems of many weather variables, locations, and forecast lead times.

A third possibility of estimating the sampling distribution of the parameter esti-

mates is to exploit known asymptotic properties of their sampling distributions in

special cases, such as the well-known asymptotic normality of likelihood parameter

estimates. With the exception of some irregular cases, likelihood-based parameter

estimates are asymptotically unbiased and normally distributed, with a covariance

matrix that can be calculated directly from the likelihood function. We could there-
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5. Parameter uncertainty in ensemble post-processing

fore simulate parameter estimates from the asymptotic sampling distribution, and

obtain forecast distributions in an analogous manner to those of the predictive boot-

strap method. However, preliminary results indicate that this approach results in

less skilful forecasts.
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6 Improving model specification,

effects of ensemble member

dependence, and closing

remarks

6.1 Improving model specification with diagnostic

plots

6.1.1 Introduction and motivation

In this section we provide an example of using diagnostic plots to improve the skill

of probability forecasts issued with the NGR ensemble post-processing method. The

potential for using such plots to diagnose and improve the specification of statistical

models is discussed in section 2.5.2.1. We construct revised models for the variance

of the NGR forecast distributions, and compare the skill of the resulting Gaussian

probability forecast distributions with those issued by the ‘standard’ NGR post-

processing method introduced by Gneiting et al. [2005] (see equations (2.19) and

(2.20) on page 38).

In chapter 5 we suggested that the statistical model assumed by the NGR post-

processing method could be improved, as in some instances the model is a poor fit

to the data. We used diagnostic plots of the residuals and squared standardised

residuals,

rt = µt − yt,

ssrt =

(
µt − yt
σt

)2

,

where t indexes the forecast occasions in the test dataset, yt is the verifying obser-

vation for forecast occasion t, and µt and σ
2
t are the expectation and variance of the

NGR probability forecast distribution, respectively. While we concluded that the
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6. Improving model specification and effects of ensemble member dependence

expectation of the NGR forecast distributions, µ, is sufficiently well specified, plot-

ting the squared standardised residuals against the ensemble standard deviation, s

(see figure 5.8) illustrated that the form of the NGR forecast variance, σ2 = ĉ+ d̂s2,

is inadequately specified.

In order to illustrate how the statistical models specified by ensemble post-processing

methods might be improved, we return to forecasting in the Lorenz 1996 system

(Lorenz [1996], see section 2.6.1 for details). The Lorenz 1996 system was chosen so

as our revised models could be formed in a data-rich setting for which we can be con-

fident that our conclusions are not due to random chance and/or anomalous data.

Our example is based on forecasts at lead time 4, although the procedure we follow

and describe below is equally applicable to other lead times. As in chapter 3, model

parameters are estimated using training samples from the first of the datasets de-

scribed in section 2.6.1, that exhibits temporal correlation. The skill of the resulting

probability forecast distributions is then assessed using the second of our datasets,

that contains 190 000 ensemble forecasts and observations that are effectively inde-

pendent. To begin, we show diagnostic plots for parameter estimates obtained with

a training sample of size 100 000 forecasts and observations. This extremely large

sample size was chosen in order to ensure that the effects of parameter uncertainty

on the resulting out-of-sample probability forecasts are negligibly small. We show

results for parameter estimates obtained by minimising the negative log-likelihood

(NLL). However, in keeping with our findings in chapter 3, we found that the analo-

gous results for parameter estimates obtained by minimising the continuous ranked

probability score (CRPS, not shown), are qualitatively and quantitatively similar.

Recall that if µt and σ2
t correctly specify the expectation and variance of the dis-

tribution of the verifying observation yt, then it follows that the expectation of the

residual is E(rt) = 0, and the expectation of the squared standardised residual is

E(ssrt) = 1. Significant deviations of the mean residuals from the line r = 0, and the

mean squared standardised residuals from the line ssr = 1 are therefore indicative

of a misspecified statistical model. In the following figures we approximate these

expectations with a nonparametric fit to the scatter plots of residuals and squared

standardised residuals, using the Loess function implemented in the R language [R

Core Team, 2015] and described in section 2.5.2.1.

6.1.2 Results

In figure 6.1 we show the residuals rt as a function of the ensemble mean x̄t, for

t = 1, 2, . . . , T , where T = 190 000 denotes the size of the test dataset. The Loess

curve indicates that the residuals rt are approximately centred around the line r = 0,

and the scatter plot indicates that the residuals are evenly spread throughout the
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Figure 6.1 Forecast residuals r as a function of ensemble mean x̄. A nonparametric ap-
proximation to the expectation E(r) is shown in red.

range of x̄. The distribution of the residuals rt therefore appears to be independent

of the ensemble mean x̄t — there is no evidence of correlation between the value

of x̄ and either the expectation or variance of the residuals. We can conclude from

this figure, therefore, that the forecast expectations µt = â + b̂x̄t are adequately

specified.

With the forecast mean µt well specified, we now assess the adequacy of the forecast

variance σ2
t = ĉ + d̂s2t . Figure 6.2 shows the squared standardised residuals ssrt

as a function of the ensemble standard deviation st. In this case, the Loess curve

deviates significantly from the line ssr = 1. The Loess curve indicates that the

estimator σ2(s) is too large for small and large values of s, and too small for the

remaining values. The linear specification of the NGR forecast variance is therefore

an inadequate fit to the data under consideration.

We now illustrate how figure 6.2 can be used to improve the NGR post-processing
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Figure 6.2 Squared standardised residuals ssr as a function of ensemble standard deviation
s. A nonparametric approximation to the expectation E(ssr) is shown in red. The vertical
axis is plotted on a square root scale.
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method. We denote by f(s) a functional form for the nonparametric Loess ap-

proximation to the expectation E(ssr(s)) of the squared standardised residuals as a

function of the ensemble standard deviation s. If we can find a function f(s) that

is a good approximation to the Loess curve, therefore, we can form a revised model

for the forecast variance, say σ2
f1 as

σ2
f1 = (c+ ds2)f(s), (6.1)

where in general f(s) depends on further parameters that are to be estimated. We

can then form an estimate to σ2
f1 as

σ̂2
f1 = (ĉ+ d̂s2)f̂(s), (6.2)

where the notation f̂ indicates our estimate of the function f by optimisation of

an objective function. Returning to figure 6.2, a plausible approximation to the

nonparametric estimate of E(ssr2(s)) = f(s) is

f(s) = 1− (1− ps)e−qs, (6.3)

where p and q are parameters that are to be estimated. Observe that the function

f(s) tends to 0 (1) as s tends to 0 (∞), implying that the estimator σ̂2
f1(s) tends to

0 as s tends to 0, and to c+ds2 as s tends to ∞. Despite the indication in figure 6.2

that we should specify a function f(s) that tends to 0 as s tends to ∞, this seems

unreasonable in the context of ensemble post-processing — it is counterintuitive to

model the forecast variance as a decreasing function of the ensemble variance. In

any case, we suggest that the Loess estimates for large s should be treated with

caution due to the sparsity of data for such values.

Figure 6.3 shows the squared standardised residuals as a function of ensemble stan-

dard deviation, for the revised estimate of σ2,

σ̂2
f1,t = (ĉ+ d̂s2t )×

{
1− (1− p̂st)e

−q̂st
}
, for t = 1, 2, . . . , T.

The Loess approximation to the expectation E(ssr(s)) now closely follows the line

ssr(s) = 1, indicating an improvement to the variance of the Gaussian NGR forecast

distributions.

Interestingly, upon convergence of both the Nelder-Mead and BFGS numerical algo-

rithms (see section 2.4.7), the parameter estimate q̂ is negligibly small. It therefore

follows that our estimated function f̂(s) is approximately equal to p̂s, and so σ̂2
f1,t

is approximately equal to (ĉ + d̂s2t )p̂st. For small values of s, such as the majority

of those encountered in this example, the term ĉp̂s dominates the term d̂p̂s3. This
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Figure 6.3 Squared standardised residuals ssr as a function of ensemble standard deviation
s, for NGR forecast distributions with variance given by equations (6.1) and (6.3). A
nonparametric approximation to the expectation E(ssr) is shown in red. The vertical axis
is plotted on a square root scale.

177



6. Improving model specification and effects of ensemble member dependence

motivates the idea of a second revised model for the NGR forecast variance,

σ2
f2 = c+ ds+ es2 + gs3, (6.4)

where now c, d, e and g are parameters that are to be estimated. However, both

the Nelder-Mead and BFGS algorithms failed to converge for this model, with the

‘optim’ function reporting degeneracy of the Nelder-Mead simplex. We therefore

reverted to the more parsimonious model

σ2
f3 = c+ ds+ es2. (6.5)

The corresponding plot of squared standardised residuals for this model (not shown)

is very similar to figure 6.3. The parameter estimate ĉ is of the order 10−5, and so

the NGR forecast variance is approximately

σ̂2
f3,t ≈ 1.873st + 0.636s2t .

The estimate σ̂2
f3 therefore tends to 0 for small s, and is an increasing function of

s. The negligibly small estimate ĉ is of particular interest. Previously, in chapter 3

and Williams et al. [2014], we found that ĉ was a crucial parameter in issuing skilful

probability forecasts for the NGR model proposed by Gneiting et al. [2005] — we

found that an NGR model with the constraint c = 0 was far less skilful than the

standard linear function of the ensemble variance. However, our findings presented

in the above figures indicate that allowing additional flexibility in the model for

the forecast variance may lead to alternative conclusions, and yield forecast distri-

butions whose moments are better calibrated with the properties of the verifying

observations.

Note further that a similar form to the revised function for the forecast variance given

in equation (6.5) would also be recovered if the forecast standard deviation σ were

modelled as a linear function of the ensemble standard deviation s, in an analogous

manner to the standard NGR formulation for the forecast variance [Gneiting et al.,

2005]. Specifically, if we set σ = c+ ds, then σ2 = c2 + 2cds+ d2s2, which is of the

same functional form as equation (6.5), except that we allow additional flexibility

in our model by using three, rather than two parameters.

As a further assessment of the forecast skill of our revised NGR post-processing

method, we calculate the mean ignorance score and CRPS (see section 2.5.3.2 for

details). Firstly, we consider the parameter estimates obtained from the large train-

ing sample of size N = 100 000, and assess the skill of out-of-sample probability

forecasts using the second, test dataset of size T = 190 000. The values of the CRPS

for the standard [Gneiting et al., 2005] and revised (equation (6.5)) NGR forecasts
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Figure 6.4 Pit histograms for the standard NGR model (left) and the revised model with
variance given by equation (6.5) (right).

are 2.785 and 2.779, respectively, and the ignorance scores are 2.441 and 2.410. The

standard errors of these scores are sufficiently small such that the differences are

statistically significant at the 5% level.

In figure 6.4 we show the PIT histograms for the standard NGR model and our

revised model with forecast variance given by equation (6.5). Perhaps surprisingly,

differences in the PIT histograms are small, although the histogram for our revised

model is slightly closer to uniformity than that of the standard linear model. Both

histograms display an inverted U-shape pattern, and the rightmost histogram bin

is overpopulated with observations. Given that parameter uncertainty is negligibly

small in this example, and that we are confident in the calibration of the expectation

and variance of the Gaussian forecast distributions issued by our revised NGRmodel,

the PIT histograms may indicate misspecification of either higher moments of the

forecast distributions, or the form of the distribution itself.

Finally, we compare the forecast skill of our revised NGR model with the standard

model given in Gneiting et al. [2005] for small training samples that are likely to

be encountered in practice. As in chapter 3 and Williams et al. [2014], we fit 500

instances of each model to training samples of size 100, where each training sample

is effectively independent, while the data within the training sample are temporally

correlated. We calculate verification scores for each of the 500 sets of parameter

estimates over the test dataset of size 190 000, and report the mean of the 500

scores for the two models. The CRPS of the standard (revised) forecasts is 0.819

(0.805), and the ignorance scores are 2.615 (2.561). Again, the standard errors are

sufficiently small so as the differences in these scores are statistically significant.
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Using the quantity

22.615−2.561,

the revised NGR forecast distributions on average assign 3.79% more density to the

verifying observations than the standard NGR model.

6.1.3 Further comments and recommendations

In this section we have provided an illustrative example of the use of diagnostic

plots to improve the statistical models that are specified by ensemble post-processing

methods. Our example was based on a data-rich setting for which we had a clear

indication of how the NGR forecast variance could be improved. It may be more

difficult to suggest revisions to the statistical models in other scenarios, such as that

presented in chapter 5, for which there is less data and no obvious indication of a

functional form of ensemble covariates that captures the qualitative properties of the

residual-based diagnostic plots. Indeed, the revised model given by equation (6.5)

resulted in only minor improvements (not shown) to the forecast skill of the stan-

dard NGR model for those data. Nonetheless, we suggest that forecast users and

other researchers should conduct similar diagnostic analyses, in order to determine

whether their statistical models can be readily improved. While we do not know

whether such analyses are conducted prior to publication, we are not aware of simi-

lar discussions in the literature. We therefore encourage authors to show, or at least

comment on, diagnostic plots as well as the popular qualitative and quantitative

assessments of forecast skill that are usually presented.

Our example has concentrated on revising the statistical model used for the NGR

forecast variance. We have also conducted preliminary investigations in to the cal-

ibration of the skewness of the NGR forecast distribution, which (by definition of

being Gaussian) is assumed to be 0. This was accomplished by plotting values of the

probability integral transform (PIT), given by F (yt | µt, σ2
t ), against the ensemble

skewness, say τt. Nonparametric estimates of the quantiles of the distribution of PIT

values as a function of ensemble skewness were then plotted (see section 2.5.2.4 for a

brief discussion), in order to assess departures from uniformity as a function of the

ensemble skewness. We found there to be little evidence of an obvious systematic

relationship, and so did not pursue this line of enquiry. However, forecasters may

wish to conduct similar analyses for other forecast scenarios.

Forecasters may also wish to check the assumption of temporally independent resid-

uals — recall that the verifying observations should appear to be independent, condi-

tional on the corresponding ensemble forecasts. This can be achieved by plotting the

autocorrelation and partial autocorrelation functions of the residuals or standard-
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ised residuals for different forecast lags. Significant values of the autocorrelation

function indicate dependence in the forecast residuals, which could be addressed,

for example, by fitting an autoregressive model. We found that the assumption of

conditional independence was satisfied in the examples considered in this thesis.

6.2 Ensemble member dependence and forecast

verification

As noted in section 2.2.4 and as used frequently throughout this thesis, it is popular

to interpret ensemble members as independent and identically distributed (IID)

realisations of underlying ensemble distributions. In section 2.5.4 we discussed fair

scoring rules, which are appropriate for assessing the skill of ensemble forecasts

under this interpretation. However, in that section we also stated that it is possible

to ‘hedge’ ensemble forecasts in order to attain improved scores. In this section we

therefore highlight the effect of dependencies between ensemble members on popular

verification measures, specifically the rank histogram and the fair analogue of the

continuous ranked probability score, denoted FCRPS (see sections 2.5.2.3 and 2.5.4).

In this section we illustrate the complexity of verifying post-processed ensemble

forecasts. As mentioned in section 4.2.7, correcting for biases in the location of

ensemble forecasts can induce dependence between the ensemble members, even if

the members of the ‘raw’ ensemble forecasts truly are independent and identically

distributed (IID). As we demonstrate below, such inter-member dependencies may

lead to verification results that cause the user to make misleading conclusions. In

this section we demonstrate the effect of inter-member dependence with the rank

histogram and the fair analogue of the continuous ranked probability score (FCRPS).

We begin with a simulation experiment in which the ensemble members are drawn

from a symmetricM -dimensional distribution. The ensemble members are therefore

exchangeable (see definition 2.2.1). Specifically, we draw ensemble members from

the multivariate normal distribution with mean vector 0 and covariance matrix Σ,

where

Σ =


1 r r . . . r

r 1 r . . . r
...

...
...

...
...

r r r . . . 1

 .

Here the constant parameter r governs the covariance between ensemble members

xm and xn for m ̸= n. We draw N = 106 ensemble forecasts with M = 10 members.

In figure 6.5 we show rank histograms for two examples. Firstly, the observations
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yi, i = 1, 2, . . . , N are IID draws with distribution N(0, 1). The observations there-

fore share the same marginal distribution of the ensemble members, but do not share

the same dependence structure and so are not exchangeable with the members. Sec-

ondly, we show the rank histogram for the case when the observation and ensemble

members are drawn from the M + 1-dimensional multivariate normal distribution

with covariance matrix Σ. In both cases we set r = 0.25. In the first case, the

rank histogram is U-shaped, which is usually taken as an indication of ensemble

underdispersion. However, as noted above the marginal distributions of the ensem-

ble members and observations are equal — the U-shaped histogram is a result of

the inter-member dependence. The positive correlation of the ensemble members

means that, in a sense, the members ‘cluster together’, and so a larger than desired

proportion of observations populate the outer histogram bins. On the other hand,

the rank histogram for the second example, in which the ensemble members and

observations are exchangeable, is flat. The fact that the observations and ensemble

members are multivariate draws from the same distribution means that the observa-

tion is equally likely to populate theM +1 rank histogram bins. Bröcker and Kantz

[2011] reported that the rank histogram can still be used when evaluating ensemble

forecasts whose members are exchangeable but not independent. As we have seen

in this example, however, it is also necessary for the observation to be exchangeable

with the ensemble forecasts — that is, for the observation and ensemble members to

be draws from a symmetric (M +1)-dimensional multivariate distribution. Further-

more, as noted earlier and in section 4.2.7, the post-processing of ensemble forecasts

may induce inter-member dependencies. In that case, the rank histograms of the

post-processed ensemble forecasts may not be flat, even if, for example, biases in

ensemble location are corrected such that the expectation of the ensemble members

and verifying observations are equal.

We now turn to the more interesting scenario of post-processing ensemble forecasts.

Recall that in chapter 4 we used a linear function of the ensemble mean to correct

for bias in the ensemble location, and a linear function of the ensemble variance

to correct for bias in the ensemble dispersion (see equation (4.52)). In this section

we consider a simpler example in which the ensemble variance is correctly specified,

and we correct the bias in ensemble location with a linear function of the ensemble

mean only. Specifically, ensemble forecasts x = (x1, x2, . . . , xM) are adjusted to

x̂m = a+ (b− 1)x̄+ xm for m = 1, 2, . . . ,M, (6.6)

where x̄ = M−1
∑M

m=1 xm is the aforementioned ensemble mean, and the constants

a and b are model parameters. In this example we do not estimate a and b —

they are considered to be known exactly. The sample mean of the post-processed

ensemble is x̂ = a+bx̄, while the ensemble variance, s2, remains unchanged. To ease
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Figure 6.5 Rank histograms for ensemble forecasts whose members are dependent. Obser-
vations are independent of the ensemble members (left), and share the same multivariate
distribution (right).

notation, in this example we consider ensemble members and observations with unit

variance, although our conclusions easily transfer to the case of a constant variance,

say c2. We illustrate the effects of inter-member dependencies on the FCRPS. Recall

from section 2.5.4 that the FCRPS for a general ensemble forecast, x, with verifying

observation, y, is

FCRPS(x, y) =
1

M

M∑
m=1

|y − xm| −
1

2M(M − 1)

M∑
m=1

M∑
n=1

|xm − xn| .

The inclusion of the ensemble mean x̄ in equation (6.6) induces dependence between

the members of the post-processed ensemble forecast x̂ = (x̂1, x̂2, . . . , x̂M). It can

be shown that the correlation between ensemble members x̂m and x̂n for m ̸= n is

ρ(x̂m, x̂n)m̸=n =
b2 − 1

b2 +M − 1
. (6.7)

Observe, therefore, that b < 1 (b > 1) induces negative (positive) correlation between

the ensemble members, and that the correlation increases with b2. We explain the

relevance of this result in the example below.

We consider a second simulation experiment, which proceeds as follows.

• Simulate N realisations of a latent random variable, ξ, with distribution

N(10, 62).

• Simulate M -member ensemble forecasts xi, i = 1, 2, . . . , N , whose members

are IID realisations with distribution N(ξi, 1).
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Figure 6.6 The fair CRPS as a function of the model parameter b, for simulated data and
ensemble forecasts post-processed with equation (6.6).

• Simulate observations yi, i = 1, 2, . . . , N , with distribution N(a+ bξi, 1).

• Post-process the ensemble forecasts xi such that x̂i,m = a + (b − 1)x̄i + xi,m,

for i = 1, 2, . . . , N and m = 1, 2, . . . ,M .

• Repeat the above steps for chosen values of the parameter b.

In this experiment we setN = 100 000,M = 10 and a = 0. We investigate parameter

values b in the set {0.1, 0.2, . . . , 2}. In figure 6.6 we show the FCRPS as a function

of the parameter b. The FCRPS is an increasing function of b, and is therefore also

an increasing function of the inter-member correlation ρ (recall that ρ is also an

increasing function of b).

At first sight the plot in figure 6.6 appears to be a surprising result — the expectation

of the ensemble members is equal to the expectation of the observations, and the
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expectation of the ensemble variance s2 is equal to the variance of the observations.

However, in this case the ensemble variance is a misleading estimate of the variance

of the ensemble members, since the ensemble members are no longer independent.

It can in fact be shown that the variance of an ensemble member, say x̂1, post-

processed with the linear function of the ensemble mean described above, is

var(x̂1) = σ2
x =

b2 +M − 1

M
,

where (as in our simulation experiment) the ‘raw’ ensemble member x1 has unit

variance. Furthermore, the covariance between ensemble members x̂m and x̂n, for

m ̸= n, is

cov(x̂m, x̂n)m ̸=n = σxm,xn =
b2 − 1

M
.

In our simulation experiment, therefore, the ensemble members on the ith fore-

cast occasion, x̂im,m = 1, 2, . . . ,M , are now realisations of a multivariate normal

distribution with mean vector ξi, and covariance matrix

Σ =


σ2
x σxm,xn . . . σxm,xn

σxm,xn σ2
x σxm,xn . . .

...
...

...
...

σxm,xn . . . σxm,xn σ2
x

 .

The plot in figure 6.6 can be explained as follows. Recall from the kernel represen-

tation of the continuous ranked probability score (see equation (2.45) on page 58)

that the first term in the expression for the FCRPS is the sample estimate of the

expectation E(|y − x|), where x is a random variable whose distribution is a prob-

ability forecast distribution for the verifying observation, y. For our simulation

experiment, however, analytic results exist for this expectation. Observe that the

random variable y − x̂1 is normally distributed, with expectation 0 and variance

σx̂1,y =
b2 + 2M − 1

M
.

Analytic results in Gneiting et al. [2005] show that the expectation E(|y − x̂1|) is

given by

E (|x̂1 − y|) = σx̂1,y

[
y − x̂1
σx̂1,y

{
2ϕ

(
y − x̂1
σx̂1,y

)
− 1

}
+ 2Φ

(
y − x̂1
σx̂1,y

)]
.

This is an increasing function of σx̂1,y, and thus also an increasing function of b.

Observe further that the second term in the expression for the FCRPS is independent
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Figure 6.7 Rank histograms for simulated data and ensemble forecasts post-processed with
equation (6.6).

of the ensemble post-processing, since

|x̂m − x̂n| = |xm − xn|.

It therefore follows that the FCRPS is an increasing function of b, in keeping with

the plot shown in figure 6.6.

Figure 6.6 and the above working provides a further illustration of the complicated

nature of assessing the skill of ensemble forecasts. We have shown that the fair CRPS

attains different values, depending on the value of the parameter b that is used to

correct the bias in ensemble location. Intuitively it seems that the post-processed

ensemble forecasts are equally skilful regardless of the value of the parameter b— the

expectations of the post-processed ensemble forecasts and the verifying observations

are equal, and the expectation of the ensemble variance is equal to the variance of

the observations. However, larger values of b result in larger variances of the post-

processed ensemble members x̂m, as well as larger values of the covariances σx̂m,x̂n .

The larger variances yield larger values of the FCRPS.

Finally, we show rank histograms for the cases b = 0.75 and 1.25, which corresponds

to ρ ≈ −0.046 and 0.053, respectively. As with figure 6.5, positive inter-member

correlation yields U-shaped rank histograms, while (as we expect) negative inter-

member correlation yields inverted U-shaped rank histograms.

The examples provided in this section illustrate that care should be taken when

directly post-processing ensemble forecasts, that is, when not sampling ensemble

forecasts from probability forecast distributions. In particular, forecasters should be

careful when using verification measures such as the rank histogram and fair CRPS
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to assess the calibration of ensemble forecasts. Our examples serve to emphasise

our point that forecasters should use multiple measures of forecast skill — we have

provided an example in which ensemble forecasts whose members exhibit negative

inter-member correlation yield inverted U-shaped rank histograms but an improved

FCRPS compared with ensemble forecasts whose members are independent (when

b = 1) and so yield flat rank histograms, but a worse FCRPS. Users of real-world

forecasts are unlikely to know the precise nature of any inter-member dependence,

which depends on the method used to generate the ensemble forecasts (see the

discussion in section 2.2.2).

6.3 Closing remarks

In this thesis we have presented novel work that has served to address some distinct

and important topics in the post-processing of ensemble weather forecasts. Firstly,

in chapter 3 we presented an investigation in to the comparative skill of compet-

ing ensemble post-processing methods in issuing probability forecasts for extreme

events. Using the Lorenz 1996 system as a surrogate for the atmosphere, we showed

that ensemble post-processing adds significant value to the probabilistic forecast

skill. Further investigations in to the benefits of ensemble post-processing for prob-

ability forecasts of extreme events are strongly encouraged. We also demonstrated

that two popular ensemble post-processing methods, NGR and BMA, exhibit similar

probabilistic forecast skill provided that the first and second moments of the proba-

bility forecast distributions are allowed to take equally flexible functional forms. It

was shown that allowing the bias in ensemble location to be corrected by a linear

function of the ensemble mean yielded significant improvements to the forecast skill

for extreme events, compared with the seemingly more common practice of a simple

constant bias correction.

In chapter 4 we detailed a novel, ‘distribution-free’ ensemble post-processing method,

that could serve as a more useful baseline for comparing new models than the usual

baseline forecasts that are based on relative frequencies of the raw ensemble mem-

bers. Our distribution-free method allows the biases in ensemble location and disper-

sion to be corrected by linear functions of the ensemble mean and variance, in keeping

with the parameterisations of the expectation and variance of forecast probability

distributions that we considered in chapter 3. Parameter estimation was performed

using the method of moments which, unlike the popular approach of estimation by

optimisation of a proper scoring rule, does not require the user to specify a paramet-

ric family of distributions with which to model the verifying observations. Rather

than producing probability forecast distributions, our distribution-free method leads

directly to post-processed ensemble forecasts. The ensemble forecasts also preserve
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the rank dependence structure of the raw forecasts, which has been shown to be ben-

efitial in forecasts of multivariate predictands. Perhaps surprisingly, we found that

the popular approach of resampling ensemble forecasts from probability forecast

distributions issued by ensemble post-processing methods yielded ensemble fore-

casts that were only slightly more skilful than the ensemble forecasts produced by

our distribution-free method. When appropriate we suggest that forecasters should

compare the skill of post-processing methods that assume a parametric family of dis-

tributions for the verifying observations with our distribution-free method, in order

to ensure that the specification of a distribution adds value to the forecast. While

we found that parameter estimation by the method of moments was sufficient for

correcting the biases in ensemble location, parameter estimation for the bias cor-

rections in the ensemble dispersion was more problematic. We therefore encourage

efforts in the direcction of distribution-free parameter estimation with more robust

techniques than the method of moments. The development of robust parameter es-

timates would enable users to compare the skill of different probability distributions

with the same expectation and variance.

In chapter 5 we made the first formal investigation in the field in to the effects of

uncertainty in the model parameter estimates on the probability forecasts issued

by ensemble post-processing methods. We proposed to account for parameter un-

certainty by integrating over the sampling distribution of the parameter estimates.

We used a bootstrap resampling approach to approximate the sampling distribution,

and a Monte Carlo approximation to the aforementioned integral. We demonstrated

that accounting for parameter uncertainty yielded more skilful forecasts than the

standard approach in the field, in which the parameter estimates are treated as

‘truth’, and parameter uncertainty is ignored. While we are confident that more so-

phisticated methods to account for parameter uncertainty can be developed, such as

with Bayesian models, our bootstrap approach is easy to implement and applicable

to a wide range of ensemble post-processing methods. Our method therefore serves

as a useful starting point that can be used to assess the importance of parameter

uncertainty for forecasts of a given predictand. It may then subsequently be worth

employing a Bayesia model, or attempting to derive analytic results for the sampling

distribution of parameter estimates, for specific applications in which accounting for

parameter uncertainty is important.

In this chapter we have demonstrated that forecasters should explicitly consider the

calibration of the moments of their probability forecast distributions or ensemble

forecasts, as well as the usual measures of forecast skill that are typically presented

in the literature. In another application to forecasting in the Lorenz 1996 system,

we have shown that the standard linear functions of ensemble covariates can be

improved upon, to issue probability forecasts distributions whose moments are better
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calibrated with the equivalent moments of the verifying observations. Our revised

statistical model also leads to improvements in the ignorance and continuous ranked

probability scores. We suggest that developers of new statistical models should

discuss the features of diagnostic plots, such as those presented in section 6.1. In

our view, the combination of the results presented in chapters 3, 5 and section 6.1

of this chapter, should aid in the improvement of the statistical models that are

specified by ensemble post-processing methods. Indeed, we intend to consider the

combination of these distinct aspects of ensemble post-processing methods in future

work.

In this chapter we have also highlighted that ensemble member dependence may

lead to misleading conclusions when diagnosing the performance of ensemble fore-

casts with the popular rank histogram. We encourage the development of verifica-

tion measures that accomodate ensemble member dependencies, although suspect

that such developments may be difficult to implement in practice, as the ‘true’ de-

pendence structure is not known and must therefore be estimated. Furthermore,

we strongly encourage continuations in the development of methods for forecast

verification in general. Weighted scoring rules are a promising development for as-

sessing the skill of forecasts for extreme observations. These scores enable the user

to weight those observations that are of particular interest while maintaining the

desirable property of propriety, and so the scoring rule becomes a weighted average

of the forecasts and observations, rather than the mean average as has been reported

in this thesis. Diks et al. [2011] and Gneiting and Ranjan [2012] have investigated

weighted versions of the likelihood and CRPS, respectively. The development of

complimentary graphical tools, such as conditional rank and PIT histograms, seems

highly desirable.
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