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Abstract— Operations and maintenance is a vital area of 

research in the push to make wave energy a commercial reality. 

A tool has previously been developed by Pelamis Wave Power to 

obtain reliable estimates for operational expenditure and ensure 

smooth running of wave energy arrays. Wave Energy Scotland is 

now tasked with the future development of this operations and 

maintenance tool. One of its key inputs is the wave and wind data 

used to simulate weather windows suitable for marine access. 

This paper details the creation and validation of a Markov Chain 

Model to enhance the weather simulation capabilities of the tool. 

This will ensure that the operations and maintenance strategy of 

wave energy arrays is modelled more realistically, resulting in an 

increased confidence in cost estimates and logistical 

arrangements. 

 

Keywords— O&M Modelling, Markov Chains, Pelamis Wave 

Power, Wave Energy Scotland, Weather Windows 

I. INTRODUCTION 

Operational expenditure (Opex) is a significant cost of any 

offshore development. This cost needs to be minimised for a 

wave energy array to become commercially viable. Opex also 

needs to be modelled and analysed in order to obtain realistic 

estimates for levelised cost of energy. A research partnership 

between the Industrial Doctoral Centre for Offshore 

Renewable Energy (IDCORE) and Wave Energy Scotland 

(WES) seeks to address this challenge. The work had 

previously been undertaken in cooperation with Pelamis Wave 

Power (PWP), the company behind the world’s first 
commercial scale wave energy converter to generate 

electricity to a national grid. The operations and maintenance 

(O&M) strategy of the Pelamis technology is focused on rapid 

installation and removal of devices, using multicat vessels to 

bring them into the safety of a sheltered harbour for repair and 

inspection. 

The research partnership centres on the review and 

upgrade of an O&M tool, originally created by Pelamis Wave 

Power in 2007. The Monte Carlo-based tool uses reliability 

data to simulate the occurrence of faults during machine 

operation [1]. This ‘reactive’ maintenance approach is 
accompanied by a ‘proactive’ routine service on each machine, 
resulting in a complete O&M strategy. The work will result in 

fully optimised O&M strategies for a series of different wave 

energy sites, ensuring smooth operation and maximising 

revenue. 

 

 
 
Fig. 1 The use of inexpensive, readily available, multipurpose workboats is 

fundamental to Pelamis Wave Power’s O&M strategy. 
 

Aside from reliability statistics, the other key input to the 

O&M tool is weather data. Weather windows (periods of 

accessibility) were previously calculated based solely on the 

probability of exceeding a certain significant wave height. The 

reality, however, is much more complex. Other parameters, 

wave period and wind speed in particular; play a part in 

defining the weather windows suitable for marine operations. 

To address this complexity, a multivariate Markov Chain 

Model (MCM) has been developed to simulate realistic 

weather conditions for use in the O&M tool. It can also be 

used to obtain better estimates of power capture, and thus 

provide more realistic estimations of revenue. A similar 

methodology has been used for O&M tools in the offshore 

wind industry [2],[3]. 

This paper is split into two key sections. The first looks at 

the logic and methodology of the Markov Chain Model. The 

second discusses how the model has been validated to ensure 

maximum confidence in the output. 

II. METHODOLOGY 

A. Parameter Selection 

Three variables are vital in defining a weather window 

suitable for the installation or removal of a Pelamis device: 

- Significant Wave Height, Hs 

- Wave Energy Period, Te 

- Wind Speed, U10 (i.e. at 10m above sea level) 

 

The limitations on installation and removal operations 

have been assessed over the course of thorough testing of two 
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750kW P2 devices, operated by Pelamis Wave Power from 

2008 to 2014. The quick-release latch mechanism on the P2 

machines allows marine operations to be carried out in 

rougher seas than earlier devices. The limitations can now be 

primarily attributed to the boat specifications. Further testing, 

under the remit of Wave Energy Scotland, will lead to an 

increased confidence in installation and removal techniques, 

resulting in the current P2 weather window constraints being 

expanded. For the development of the Markov Chain Model 

detailed in this paper, the current P2 operations limits will be 

used: 

- No marine operations can be carried out in wind 

speeds of over 20 knots. 

- Installation operations are limited to 1.5m significant 

wave height, though this can rise to 2.5m depending on 

the corresponding wave energy period. 

- Removal operations are limited to 2.5m significant 

wave height, though again this can rise to 3.5m 

depending on the wave energy period. 

 

The Hs-Te relationship described here, and shown 

graphically in figure 2, has been developed using the vast 

experience of Pelamis vessel engineers. 

 

 
Fig. 2 Current installation and removal limits for the P2 devices. 

 

Tidal currents are not included in the weather window 

simulations at this stage. The effect that tidal currents have on 

marine operations very much depends on wave site location in 

relation to the O&M base. As such, it may be useful to include 

tidal currents in future versions of the weather simulation 

model. However, this was not undertaken for the validation 

study described in this paper due to the requirement for 

flexibility in the Markov Chain Model. 

B. Input Data 

The Markov Chain Model (MCM) has been created and 

validated using hindcast data for Farr Point, one of the sites 

previously under development by Pelamis Wave Power, 

located off the north coast of Scotland. This dataset is over an 

18 year period, from 1/1/1992 to 31/8/2010, with 3 hour 

intervals. Future studies will consider other sites such as the 

European Marine Energy Centre (EMEC) in Orkney and 

Wave Hub off the Cornish coast. 

 

C. Model Resolution and Data Expansion 

The Markov Chain Model uses a probabilistic approach, 

whereby step changes are calculated based upon the 

occurrence of ‘sea states’ in the original dataset. It is therefore 

important that the input data is grouped and expanded where 

possible to maximise the capability of the model. In previous 

versions of the O&M tool a weather window was defined as a 

24 hour period where the significant wave height remains 

below a certain level. In addition to introducing the two new 

parameters into this definition, the resolution of the O&M tool 

has been changed to 6 hours. In other words, a weather 

window is now defined as a 6 hour period where the wave and 

wind conditions lie within the relevant constraints. By 

increasing the resolution of this model in this way, the 

changeable nature of weather conditions are better represented. 

It also allows the inclusion of more detailed permutations of 

boat operations (i.e. the number of installations and removals 

that are logistically possible over a certain period of time). 

A large dataset collected over at least 20 years is 

preferable. As a result, a method of expanding the 18 year 

hindcast data (with 3 hour intervals) into a 36 year dataset 

with 6 hour intervals was developed. This involved obtaining 

6 hourly averages at staggered intervals and using the 

alternate averages in newly created years. This method has 

been tested, showing that the statistical metrics of the 

expanded dataset, particularly weather wait times, are 

extremely similar to the hindcast data. The 36 year expanded 

dataset will be referred to as the ‘original dataset’ for the 
remainder of this paper. 

D. Sea States 

Due to the probabilistic nature of the Markov Chain 

process, it is necessary to group the original data values of 

significant wave height (Hs), wave energy period (Te) and 

wind speed (U10) into bins. These bins will be used to 

identify sea states containing all three parameters. 

Wider ranging data bins (i.e. low resolution of values) will 

result in fewer of bins and therefore provide the MCM with 

more data points with which to calculate transition 

probabilities. This is because there will be a greater number of 

data points falling into each bin. Data points in this sense refer 

to the occurrence of a specific value in the original dataset. 

However, if the resolution of values is too low (i.e. very few 

bins) then the MCM loses the ability to produce analytical 

results. Conversely, if the resolution of the binned values is 

too high (i.e. greater number of bins) then the limited number 

of possible transitions makes the MCM less able to produce a 

realistic time series. 

The three parameters (Hs, Te and U10) have been assigned 

resolutions based upon how experienced wave energy 

engineers make decisions about marine operations in real life. 

The resolutions have also been chosen to align with a power 

matrix used for analysis of the P2 devices, thus enabling 

power capture calculations to be carried out. A bin is 

represented by the midpoint value (i.e. 2.25m Hs denotes the 

bin 2m ≤ Hs < 2.5m). 
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The range and resolution of each parameter is as follows: 

- Significant wave height (Hs) ranges from 0.25m to 

9.75m, in steps of 0.5m. 

- Wave energy period (Te) ranges from 3s to 15s, in 

steps of 2s. 

- Wind speed (U10) ranges from 2.5kts to 47.5kts, in 

steps of 5kts. 

 

The minimum and maximum values here have been 

selected to be inclusive of at least 99% of possible values. In 

the rare cases where observations lie outside of these limits, 

they are placed in the closest bin. 

These bins provide the basis for identifying sea states 

(combinations of all three parameters). It is necessary to have 

a system of assigning IDs to sea states that is consistent across 

all months as this enables monthly transitions to be easily 

carried out (this will be discussed in section F). 1400 different 

sea states have been assigned using the possible combinations 

of the binned values above. Whilst all three parameters in the 

model are vital, significant wave height is viewed as the most 

important when making decisions about marine operations. As 

a result, the sea state IDs are assigned in order of Hs first, 

followed nominally by U10 then Te. Therefore, the actual ID 

number a sea state is given is trivial and doesn’t have any 
significant meaning in terms of the parameters (other than sea 

states with high ID numbers will contain large Hs values). 

However, it is vital to group combinations of the three 

parameters together in this manner to enable the MCM to 

easily calculate transitions from one 6 hour period to the next. 

E. Monthly Data 

Following the grouping process described previously, the 

original dataset was broken up into months to account for 

seasonal variability. As a further means of expanding the 

dataset, the monthly data includes the last five days of the 

previous month and first five days of the next month. For each 

6 hour interval, the sea state ID of the next interval is recorded, 

thus providing the possible transitions with which to carry out 

the probabilistic calculations of the MCM. This is 

fundamental to the Markov property, as the modelled sea state 

at any given interval is determined solely by the sea state at 

the previous interval. 

F. Transitional Properties 

The occurrence of each sea state within the monthly 

original data was identified, and the possible transitions to the 

next interval were listed. From this point, it is possible to 

calculate the probabilities of each of the possible transitional 

sea states occurring using the formula below: 

 
Where: 

- pij = probability of transitioning from sea state i to state 

j during this month 

- Nij = number of observed transitions from sea state i to 

state j in monthly dataset 

- Ni = number of occurrences of sea state i in monthly 

dataset 

 

1) Starting Probabilities:  

The sea state occurring at the very first interval of the 

modelled data has to be selected. To achieve this, the 

following formula was applied to every sea state within each 

monthly dataset: 

 
Where: 

- pi = probability of starting at sea state i during this 

month 

- Ni = number of occurrences of sea state i in monthly 

dataset 

- N = total number of intervals in monthly dataset 

 

By applying this universally, it means that the modelled 

dataset can begin at any month of the users choosing, creating 

a more versatile model. In addition, it provides a failsafe 

option for selecting monthly transitions. 

 

2) Monthly Transitions: 

A consistent sea state ID system has been used to enable 

the MCM to calculate transitions from month to month. In 

some situations, the final state from the previous month may 

not occur in the dataset for the next month. This will mean 

that the next state cannot be chosen probabilistically using the 

original equation. To account for this, a three tier hierarchical 

system of determining the sea state at the first 6 hour interval 

in the next month has been developed: 

 

Monthly transition 1: In most cases, the final state from the 

previous month will occur in the next month. If so, the sea 

state at the first 6 hour interval in the next month is selected 

using the original equation. 

 

Monthly transition 2: If the final state from the previous 

month does not occur in the next month, then the possible next 

states (from the previous month) are considered. Any sea 

states from this list which do not appear in the next month’s 

dataset are deleted. If one or more states remain, then one is 

chosen to become an intermediate state. This is achieved using 

a modified version of the original equation: 

 
Where: 

- pi1j2 = probability of selecting state j in next month 

from state i in previous month 

- Ni1j1 = number of observed transitions from sea state i 

to state j in previous month 

- new Ni1 = number of occurrences of sea state i in 

monthly dataset, once non applicable states have been 

deleted 
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The intermediate state is then treated as if it were the final 

state in the previous month. The original equation can then 

once again be used to determine the sea state at the first 6 hour 

interval in the next month. Monthly transition option 2 can 

therefore be thought of as skipping one sea state. 

 

Monthly transition 3: In very rare situations, none of the 

possible next states from the previous month will exist in the 

next month’s dataset. In these cases, the starting probabilities 
described previously are used to select the new sea state. 

Although this may result in larger jumps (in terms of Hs for 

example) from one 6 hour interval to the next, it has been 

deemed acceptable due to the fact that this option is required 

for less than 0.5% of monthly transitions for any given 

modelled time series.  

 

Does this final state
exist in Month 2?

Final state,
Month 1

Use it to find the next
state in Month 2

Do any of the possible next
states from Month 1 occur

in Month 2?

Choose one
probabilistically and use

that to find the next
state

Choose next state in
Month 2 using start

probabilities

First state,
Month 2

Yes

Yes

No

No

 
 
Fig. 3 Decision matrix explaining the three tier hierarchical system for 
monthly transitions. 

G. Transitional Properties 

Using the logic described here, the Markov Chain Model 

is capable of creating a fully modelled dataset with 6 hour 

intervals, the length (i.e. number of years) of which is chosen 

by the user. It is vital that the modelled dataset, providing 

values for Hs, Te and U10, has the same statistical parameters 

as the observed dataset. A thorough validation process has 

been undertaken to ensure that this is the case. 

 

 

 

 

 

 

 

 

III. VALIDATION 

A. Data Expansion 

The first validation stage required is to confirm that the 

data expansion and ‘binning’ process described previously is 
acceptable for use. The selected method for this task is to 

compare the average values for all three parameters. The Farr 

Point hindcast data is referred to as the ‘observed data’, whilst 
the expanded and ‘binned’ data is labelled ‘modified’. Figure 

4 shows that there is no significant statistical difference 

between the observed and modified values when analysing 

significant wave height. The same is true for wave energy 

period and wind speed, as shown in figures 6 and 7. 

 
Fig. 4 Mean Hs comparison between modified and observed datasets. 

 

B. Modelled Dataset 

A 100 year modelled dataset has been generated for the 

remainder of the validation procedure. When used by the 

O&M tool, it is unlikely that this many years will be required. 

A more suitable time scale would be 15 to 20 years, the design 

lifetime of a Pelamis wave farm. However, a 100 year time 

series provides an extensive dataset with which to confidently 

assess all statistical parameters of the MCM.  

The initial validation step was extended to compare the 

modelled average values for all three parameters (Hs, Te, U10) 

against the modified and observed values. Figure 5 shows that 

the modelled time series for Hs differs enough from the 

original dataset to provide variance, yet clearly follows the 

same seasonal trends. Figures 6 and 7 demonstrate that this is 

also true for wave energy period and wind speed. 

 
Fig. 5 Mean Hs comparison between modelled, modified and observed 

datasets. 
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Fig. 6 Mean Te comparison between modelled, modified and observed 

datasets. 

 

 
Fig. 7 Mean U10 comparison between modelled, modified and observed 

datasets. 

 

C. Parameter Correlation 

It is vital that the relationships between each of the three 

parameters are successfully replicated in order to show that 

the Markov Chain Model (MCM) can deal with multiple 

variants. Correlations have been analysed to assess the ability 

of the MCM to achieve this. This method has previously been 

used to validate a Markov-based model for use in offshore 

wind farm O&M simulations [4]. Significant wave height and 

wind speed is the most obvious relationship, as higher wind 

speeds tend to lead to greater wave heights. Therefore, the 

relationship is assumed to be approximately linear. Figures 8-

10 illustrate this relationship graphically. It is important to 

consider the ‘modified’ (i.e. expanded and ‘binned) dataset 

here, as well as the ‘observed’ (Farr Point hindcast) values, in 

order to fully assess the capability of the MCM. The 

correlation has been quantified using Pearson’s correlation 
coefficient (R) (table 1). This means that the difference 

between the R values can be expressed as a percentage. 

TABLE I 
PEARSON’S CORRELATION COEFFICIENTS FOR HS VS U10 FOR ALL THREE 

DATASETS, AND RELEVANT PERCENTAGE DIFFERENCES 

 Original Modified Modelled 

R 

 

0.639 0.623 0.621 

% Difference from 

Original 

 

- 2.54% 2.86% 

% Difference from 

Modified 

- - 0.32% 

 

It is clear that ‘binning’ the original values has some effect 
on the correlation. It is expected that this stems from the 

resolution of the bins, as well as from the method of pulling 

values that lie outside the relevant constraints into the nearest 

bin, rather than being ignored. Yet, the percentage difference 

in the R value seen by rounding is approximately 2.5%, which 

is acceptable. A better correlation could be obtained if the 

number of bins was increased, though this is unnecessary due 

to the benefits of selecting these resolutions (as described 

previously). The modelled dataset clearly shows a similar 

wind and wave correlation to the original values, with less 

than 0.5% difference from the modified data. A similar pattern 

was found by assessing the correlation between significant 

wave height and wave energy period. 

 
Fig. 8 Wave height and wind speed correlation for the ‘observed’ dataset. 

 

 
Fig. 9 Wave height and wind speed correlation for the ‘modified’ dataset. 

 

 
Fig. 10 Wave height and wind speed correlation for the modelled 100 year 
time series. 

 

From the close correlations and matching seasonal 

variability, it can be said that the MCM produces a synthetic 

dataset which is sufficiently accurate for use in the O&M tool. 

However, further validation steps are required to confirm this 

statement. 

D. Weather Waits 

The primary reason for building such a detailed and 

extensive weather model is to represent realistic access 

windows. This is a hugely important consideration for O&M. 

The length of time a weather window remains closed for is 

determined by the persistence of weather conditions. Seasonal 

variability is the best way to analyse this. It is vital to check 
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that the persistence of weather conditions in the synthetic time 

series does not differ significantly from the original dataset.  

Figure 11 shows that there is little difference when 

considering the cumulative distribution functions (CDFs) of 

varying significant wave heights during the three winter 

months (December, January, February). The best way to 

interpret this graph is by thinking in terms of weather wait 

times. For example, from figure 11 it can be determined that 

there is approximately a 62% probability of having to wait 

less than 5 days for a 2m Hs weather window during the 

winter months. 

It has been proven that the binning process does not affect 

the original dataset significantly. As a result, all ‘original’ 
values now refer to the modified dataset. 

 
Fig. 11 Winter (Dec-Feb) persistence of Hs comparison for original and 
modelled datasets. 

 

This validation step can go much further. The multivariate 

nature of the MCM allows persistence to be defined in greater 

detail. As stated previously, Pelamis vessel engineers have a 

number of constraints to consider before deciding to install or 

remove a machine from site. These conditions include that no 

marine operations are to be carried out when the wind speed is 

greater than 20 knots. Also, a removal can be carried out in 

rougher seas than an install. In addition, the maximum 

significant wave height allowed for marine operations 

depends on the wave energy period. The current constraints 

for the P2 device were shown in figure 1 (page 2). A weather 

window is deemed ‘open’ if the sea state’s wave height and 

period values lie below the relevant line in figure 1 (and if the 

wind speed is below 20 knots) for a given period of time (i.e. 

6 hours in this analysis). It should be noted that these limits 

are expected to increase as installation and removal techniques 

are improved. 

The persistence CDFs created when using these operational 

limits to identify wait times also show that there is little 

difference between the original and modelled time series’ (see 

figures 12-15) 

 

 
Fig. 12 Winter (Dec-Feb) persistence of non-accessible weather conditions. 
Comparison of original and modelled datasets for install and removal 

constraints. 

 

 
Fig. 13 Spring (Mar-May) persistence of non-accessible weather conditions. 
Comparison of original and modelled datasets for install and removal 

constraints. 

 

 
Fig. 14 Summer (Jun-Aug) persistence of non-accessible weather conditions. 

Comparison of original and modelled datasets for install and removal 

constraints. 

 

 
Fig. 15 Autumn (Sep-Nov) persistence of non-accessible weather conditions. 

Comparison of original and modelled datasets for install and removal 

constraints. 
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This information can be quantified using seasonal mean wait 

times (i.e. the average time spent waiting for an open weather 

window) with 95% confidence intervals applied (figure 16). 

From this validation step, it can be said that the statistical 

metrics in the modelled time series are not significantly 

different from the original dataset in terms of accessibility, 

with 95% confidence. The percentages of open weather 

windows also show very little difference between the two 

datasets (table 2). 

 
Fig. 16 Mean wait times for a weather window during each season, using 

install & removal weather constraints. Comparison of original and modelled 

datasets with 95% confidence intervals applied. 

 

TABLE II 

PERCENTAGE OF OPEN WEATHER WINDOWS USING INSTALL AND REMOVAL 

WEATHER LIMITS 

 
Percentage of open weather 

windows (%) Difference 

(%) 
 Observed Modelled 

 Install Removal Ins. Rem. Ins. Rem. 

Full 

dataset 
38.8 59.5 38.0 58.7 -0.8 -0.8 

Winter 17.6 36.1 16.7 34.7 -0.9 -1.4 

Spring 39.8 61.5 38.7 59.7 -1.1 -1.8 

Summer 65.2 86.0 65.3 86.1 0.1 0.1 

Autumn 31.3 53.1 30.9 54.0 -0.4 0.8 

 

E. Power Capture 

The other key reason for developing a detailed weather 

model is to gain more realistic estimations of power 

generation for the wave farm. The ‘binned’ values of 

significant wave height and wave energy period can be 

compared to the values in the P2 power matrix (more 

specifically, the O&M contract agreed target table). The 

power matrix has been modified slightly to ensure consistency 

with the binned data. Figure 17 compares the 6 hourly average 

power output of the original and 100 year modelled datasets, 

with 95% confidence intervals shown. As with the weather 

persistence analysis, the modified (i.e. expanded and ‘binned’) 
dataset is used here to represent the ‘original’ values. 
 

 

 

 

 
Fig. 17 Average power output over a 6 hour period for the full dataset, and for 

each season. Comparison of original and modelled datasets with 95% 
confidence intervals applied. 

 

Figure 16 shows that there is seasonal consistency in terms 

of estimated power output between the original and modelled 

datasets. However, the 95% confidence intervals do not 

overlap for the full dataset average, nor do they overlap for the 

season of spring. It is expected that this anomaly stems from 

the power matrix used. It was not possible to interpolate all 

the values from the power target table. This includes situations 

where the power had to be assumed to be zero, even though 

there would clearly be some power output in reality. Although 

these instances would be very rare, they may have accounted 

for the slight discrepancies seen here. Nevertheless, the 

average power outputs estimated from the modelled dataset 

are realistic and show the expected seasonal variability. 

IV. CONCLUSIONS 

A Markov Chain Model has been used to generate a time 

series of synthetic weather data for use in the Pelamis-based 

O&M tool. This method was selected over other options 

described by Monbet, Ailliot and Prevsto [5] due to its wide 

ranging and proven use. Markov models have been used for 

simulating weather sea states for some time [6],[7]. The model 

is required to provide more realistic data for assessing weather 

windows and power capture than is currently available in the 

O&M tool. Significant wave height, wave energy period and 

wind speed are all generated at 6 hourly intervals. A 100 year 

modelled time series, produced using an 18 year hindcast 

dataset from the Farr Point site, has been analysed in order to 

validate the process. 

There are several limitations and improvements that could 

be made to the model. Firstly, the resolution of 6 hours has 

been chosen as it is suitable for assessing marine operations 

within the O&M tool. However, when used to 

probabilistically determine sea states, this resolution may be 

too large. By averaging values of wave height and period over 

lengths of 6 hours it is likely that swells are not accounted for. 

This is particularly relevant when using wave energy period; a 

parameter calculated from the spectral moment. Another issue 

identified is with the monthly transitions when a new sea state 

cannot be found. An alternative method for the third monthly 

transition stage could be to find the next ‘closest’ sea state, 

ideally in terms of significant wave height. This would avoid 

the potential for substantial ‘jumps’ at the beginning of a 

month. 
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However, even without these potential improvements, it 

has been shown that the modelled time series is successful at 

replicating the seasonal variability of the original dataset. It 

was found that the method of treating multiple parameters was 

suitable, as there was little difference in variable correlation 

between the two datasets. Realistic representation of weather 

windows and power capture is of vital importance to the 

O&M simulation. It has been proven that the statistical 

metrics of the 100 year modelled time series are not 

significantly different from the original dataset in terms of 

accessibility and estimated power capture. 

In conclusion, this validation phase has shown that the 

Markov chain model is suitable for use in the Pelamis-based 

O&M tool, although improvements could be made. A vast 

database of modelled time series’, of varying lengths, has 
been created. As a result the O&M tool is capable of searching 

through, say the 20 year collection, and choosing one at 

random with which to carry out its simulations. This is 

necessary in order for the O&M tool to maintain the function 

of statistical analysis between different weather scenarios. 

V. FUTURE WORK 

The Markov Chain Model has been developed as a 

collection of modules using the coding language Visual Basic 

for Applications (VBA). As a result, it is flexible and can be 

easily manipulated to work with any size and resolution of 

input data. Future work of this IDCORE project will involve 

using the MCM to process weather data for a number of sites 

around the UK suitable for wave energy devices. By also 

identifying logistical bases of operations for each site, it will 

be possible to analyse the O&M strategies for each, and thus 

compare them in terms of accessibility and operational 

expenditure. To the author’s knowledge, this level of detailed 

analysis specific to O&M has not yet, at the time of writing, 

been undertaken for wave energy devices. 
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