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Abstract

The purpose of this thesis is to explore the interaction between antibiotics at sub-

lethal doses, and E.coli. Initially we focussed on pairwise antibiotic interaction, and

the potential to exploit these interactions to minimise antibiotic resistance. In test-

ing the hypothesis that antagonism will slow adaptation by reducing selection for

resistance we determined that there are conditions in which this fails to be the case.

We furthermore caution against treating drug interactions as anything other than

a dynamic property of the bacteria-drug interaction, by showing that the relation-

ship between two drugs may be both synergistic and antagonistic depending on a

variety of factors. Whilst exploring the adaptive response to drug combinations we

discovered a highly unusual effect of Doxycycline to act as a growth stimulant to

E.coli AG100. Chapter 3 and 4 are devoted to determining the nature and mecha-

nism of this stimulation, and analysing any potential genomic changes using whole

genome re-sequencing. Having shown that dose response is not always a monotone

function of increasing drug dose, in chapter 5 we also look at the dose response

in a diffusive context, using a custom built imaging system to show the common

non-monotonicity of disk diffusion type assays, that manifest themselves as bullseye

patterns of growth. We use a mathematical model to explore the ecological and

adaptive reasons for such patterns. Finally in chapter 6 we look at the coevolution-

ary history of phage and E.coli REL606 strains, by determining trade-offs caused

by λ phage and the sole carbon source maltotriose both utilising the same porin

(lamB) for cell entry.
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Chapter 1

Introduction

1.1 History of antibiotics

Antibiotics, in their first appearance in the early twentieth century, must have

seemed to those original recipients, to be nearly magical in their futuristic ability

to cure commonly fatal ailments with a simple injection. Whether Erlich’s Sal-

varsan [90] in 1911; which can appropriately be described as the worlds first modern

chemotherapeutic agent, to Prontosil, the first truly modern antibiotic in 1935, the

health implications of these new drug classes was obvious and profound. In the

decades following the release of benzylpenicillin in 1942, dozens of other antibiotics

were being routinely used to treat disease and infection, a rapidity of drug discov-

ery no doubt spurred on by the huge need arising from the injuries and spread of

infectious disease due to the second world war. As more drug targets were iden-

tified, high throughput screening techniques quickly discovered large numbers of

compounds that had bactericidal or bacteriostatic properties, yet with minimal side

effects to humans. From 1942 -1952, six new classes of antibiotics were discovered

and 12 new drugs were synthesised, leading US surgeons-general William H Steward

to to famously state ‘It is time to close the book on infectious diseases’. Although

there is debate over the veracity of this quote [110], it is undeniable that the in-

troduction of antibiotics marked the start of a medical revolution that might make

such exaggerations understandable.

However, as was apparent even to the early pioneers of antibacterial drug devel-

opment, the emergence of resistance was a foreseeable and inevitable consequence

of exposure to these antibiotics. Sir Alexander Fleming was explicit in highlighting

this risk when accepting his Nobel Prize (With Florey and Chain) in 1945, using

the words ‘If you use penicillin, use enough’, in order to ensure that sufficient doses

were used to remove all trace of an infection, leaving behind no resistant strains that

may have benefitted from their exposure, to become more resistant.

It has been this principle that has guided pharmacological thought in the years

since: although antibiotic resistance has been acknowledged as a problem, and more
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recently has received a great deal of attention as a potential problem with world-

altering consequences, the emphasis for scientific research has been in drug discovery

(the so called ‘arms race’ between bacteria and medicine). The prospect of minimis-

ing the emergence of resistance has been predominately limited to using high doses

or combinations of antibiotics in different classes to suppress resistant phenotypes.

This method, however, is limited in scope due to the nature of the selective pres-

sures, drug gradients within treatment, and competitive release. These themes, and

the implications that they hold for antibiotic therapy design, will be discussed in

more detail throughout this work.

The modern view of antibiotics is one of far less awe, most people in developed

countries experience the contempt bred by familiarity, and have come to expect

magic bullet treatments as par for the course. Therefore, when antibiotics fail,

whether due to resistance, mis-diagnosis, or inappropriate treatment (for example,

antibiotics being prescribed to treat viral infections, the public feels grieved at this

failure of modern medicine. The concept of returning to a pre-antibiotic era, whereby

surgical intervention would be almost certainly fatal, and diseases mostly eradicated

in the west could once again kill thousands, is difficult to contemplate. Nonetheless,

despite research priority being given to drug discovery, the pipeline for new classes

of antibiotics has all but dried up, with truly novel antibiotics now a rare occurrence

[67]. Furthermore, it is estimated by the World Health Organisation (WHO) that

from it’s clinical introduction, a new antibiotic has only two years of useful lifespan

before resistance becomes globally prevalent. These findings are leading more and

more people to question whether our guidelines for the usage of antibiotics is ap-

propriate, and whether there are mechanisms by which selection pressures can be

mediated, in order for resistance can be slowed, halted or even reversed.

1.2 Antibiotic testing and nomenclature

To ensure consistency we will now spend some time defining several core concepts

that are used in drug interaction studies, and yet have some variability over the

usage. For completeness, we now discuss some standard pharmacokinetic and phar-

macodynamic (PK/PD) definitions and concepts. The Clinical Laboratory Stan-

dards Institute (CLSI) defines the Minimum Inhibitory Concentration (MIC) of an

organism as the drug concentration in a 2-fold dilution plate at which no change

in turbidity is seen by eye at 24 hours [25]. Although this definition has the con-

venience of being a cheap and low-tech measure of efficacy, it is prone to human

error, and it ignores the potential for dosages with a less than total killing effect to

act as reservoir for resistance mutations. This definition states the MIC to be used

as meaning the lowest drug concentration to inhibit all growth, although it is also

acknowledged that the use of this terminology is entirely dependent on the context
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under which it was derived [84].

Other studies define the MIC as the lowest drug concentration that inhibits

any growth (i.e, the smallest dose to have any observable effect [33] et al.,. Under

this definition, the dose required for complete bacterial inhibition is called the mu-

tant prevention concentration (MPC) and the doses falling between the MIC and

MPC are referred to as the mutant selection window (MSW). Another concept that

has been used previously is the minimum bactericidal concentration (MBC), or the

concentration at which a 99.9% reduction (measure in CFUs) is seen [116]. This

measure also suffers from inconsistent use, it having another definition as the min-

imum concentration required to prevent growth of subculture in drug-free media

[60].

Assuming that the MIC is a fixed measure of the efficacy of a drug against each

bacterial strain is erroneous. Environmental changes will effect the MIC, whether

the concentration of available metabolites and extracellular resources, or tempera-

ture and pH. This is problematic for any comparison of MICs between laboratories

and highlights the necessity of standardised protocols and language for referring to

dose-dependent effects. Although the CLSI and EUCAST publish comprehensive

protocols for the standardisation of MIC determination, and then define set break-

points as meaning either a resistant or sensitive strain, it is made very clear by these

organisations that these breakpoints are guidelines and can in no way be considered

predictive or therapeutic doses. The broadness of the breakpoints even within the

same species gives some evidence of the extent to which MIC can be affected by

numerous factors.

According to the prevailing best practice, bacterial cells must spend as little time

in the MSW as possible in order to minimise selection of resistant genotypes. This

hypothesis has been challenged by several studies that have shown no correlation

between time spent in the MSW and the emergence of resistance [4, 23, 22]. Ad-

ditionally, as I shall discuss in more detail later, the idea that there is no bacterial

growth simply because it is below the threshold detectable by the human eye (still

the standard detection method for antibiotic resistance assays) may not be correct.

Whether through the presence of persisters or slow growing phenotypes that remain

at a population of <105, populations may recover, even from doses considerably

higher than MIC.

With such confusion over the best use of terminology to accurately describe

dose-dependent effects, it is perhaps even harder to quantify multi-drug effects in

a consistent manner. Drug interactions are usually deemed to be synergistic, an-

tagonistic, suppressive or indifferent (at a given time) using checkerboard assays

[112] and one of the purposes of this document is to use bacterial growth kinetics

to understand whether in vitro measures of drug interactions of antibiotic drugs are

robust.
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There are a number of physiological factors that can be measured to derive infor-

mation about the growth and fitness of bacteria, including growth rate, final optical

density and colony counting, to name a few common methods. It is important to

realise that each of these measurements has benefits and drawbacks, for example,

measuring growth rate is a standard measure of bacterial fitness but gives no infor-

mation about the efficiency of the cell (yield) or the overall growth during a given

time frame. This will be discussed in greater detail later, when measurement of

E.coli grown in the presence of Dox shows that the growth rate is largely unchanged

by increasing dose, rather it is the lag phase which is extended. For this reason we

have chosen to use a combination of final optical density in order to assess yield,

and area under the curve (AUC) as a proxy for growth rate, as it is a measure of all

aspects of the growth kinetics, not just the exponential phase.

1.3 Structure and mechanism of antibiotics in this

study

1.3.1 Doxycycline

Doxycycline is an antibiotic from the tetracycline family, and is an inhibitor of

translation. Dox binds reversibly to the 16S ribosomal subunit, and competes with

amino-acyl tRNA to bind to the ribosome. This competitive interaction means that

Doxycycline has a bacteriostatic mode of action as it slows the production of proteins

required for growth and division. However, it has been reported [31] that as little

as a two-fold increase in Dox concentration above the MIC can cause the antibiotic

to become lethal to cells, leading to a bactericidal mode of action. The mechanism

behind this lethality is unclear, but it is thought to be due to rupturing of the cell

membrane leading to lysis.

1.3.2 Rifampicin

Rifampicin is a semi-synthetic derivative of rifampycin, which was so named by the

research team to discover it after the main character ‘Riffifi’ in a popular French

book about a jewellery heist. Rifampicin is widely reported as being bactericidal,

and works by inhibiting RNA polymerase, thereby reducing successful transcription.

Although there exist other antibiotics that inhibit this process they do so by binding

to the DNA template, and so are highly toxic to the host, i.e., humans. Rifampicin

binds directly to the polymerase, and has been shown to be non-toxic at a four-fold

higher concentrations than is required for complete inhibition in E.coli.
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1.3.3 Erythromycin

Erythromycin is an antibiotic of the macrolide class, and similarly to Doxycycline,

it inhibits translation to cause a bacteriostatic effect. Erythromycin binds to the

50S subunit of bacterial 70S ribosome, and inhibits, through a poorly understood

mechanism, the translocation on aminoacyl-tRNA from the A binding pocket to the

P site. This inhibited translocation means that the A site remains occupied, and so

nascent polypepetide chains are terminated, creating short abortive peptides.
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Fig. 1.1: The structure of Doxycycline. The usual form of commercial powdered
Dox is as the hyclate salt.

Fig. 1.2: The structure of Rifampicin.

Fig. 1.3: The structure of Erythromycin.
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1.4 Drug Combinations

To combat the evolution of antibiotic resistance, and to prolong the effective lifes-

pan of these drugs, several treatment concepts have been developed to minimise the

probability of such resistance evolving. One such concept is that of combinatorial

drug treatments, whereby cocktails of two or more drugs are administered simultane-

ously in order to provide a more effective treatment regimen. Such combinations can

be additive (in that the drugs act independently of each other, and do not interact),

synergistic or antagonistic. However, it can be problematic defining the interactions

of drugs, and the method used to determine this interaction will therefore be very

important when basing a protocol on an assumed drug interaction.

The most common form of interaction test is the checkerboard or isobologram,

whereby two-fold dilutions are made of each drug, one in the x-axis and one in the y-

axis, usually in 96 or 384 well plates. When inoculated, the wells at which there is no

visible bacterial growth following 24 hours incubation, are plotted, and the shape

of the interaction will be used to estimate the interaction. A more quantitative

assessment can be reached using fractional inhibition combination indices, (FICI

measurements) from the same data.

Combinatorial treatments have come to be regarded as a vital tool in reducing the

emergence of resistance, and in treating infections that are already characterised by

antibiotic resistance, although there is increasing debate over whether combinatorial

treatments reduce resistance by exploiting synergy, or by increasing the chance that

an appropriate drug will be utilised against an unknown pathogen [113]. Under

the assumption that synergy increases total efficacy compared to each individual

drug given alone, the possibility arises that greater inhibition of bacteria can be

achieved without increasing toxicity. Additionally, even if a bacterial population

may have, or gain, resistance to one of the antibiotics, the second drug will be

able to successfully clear the infection. In general it is assumed that drugs will be

synergistically active if they are not competing for the same target, therefore an

example of a typical synergistic combination would be penicillin (cell wall synthesis

inhibition) and erythromycin (protein translation inhibition). The converse is also

assumed, that is drugs must compete for the same target, their joint efficacy will

be naturally reduced, and therefore the treatment is regarded as antagonistic [62].

Despite these guidelines, there are numerous reports of synergistic drugs utilising

the same mechanism of action, and also of non-competitive drugs which show either

additivity or antagonism, where one may expect synergy.

The idea that antagonistic drug combinations could be pressed into therapeutic

service in order to combat the spread of antibiotic resistance is a fairly new concept

[54], [119]. It has come about due to failure of synergistic treatments to limit the

emergence of resistance as effectively as was hoped. It has been shown that in

cases where a synergistic combination is deployed, the drug pair will exert a higher
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selective pressure on the population, and thereby will lead more rapidly to a sweep

of resistance than if the drugs were used in mono-therapy [13].

If antibiotic synergy can select for greater bacterial load, by providing a stronger

selective pressure for resistance, can the opposite effect be exploited by using antag-

onism to select against resistance? It is this question that forms the genesis of this

research, and in exploring the dynamic nature of drug interactions, and the adap-

tation of bacteria to sub-lethal concentrations of drug, we aim, initially, to test the

hypothesis described by Hegreness that antagonism can minimise the rate of adap-

tation in bacteria [54]. This idea is highly clinically important, as new methods for

controlling infection, whilst limiting resistance, are the apogee of infection control.

However, there is the significant proviso of ensuring adequate patient outcome; a

treatment that minimises the spread or emergence of resistance, but fails to clear an

infection, is not a treatment that can be of use outside of the lab. Therefore, when

looking at the properties of antibiotic combinations, both the effect on adaptation,

and the overall inhibitory effect of the treatment must be considered.

1.5 Fitness gains from antibiotics

It is known that antibiotic molecules have different biological functions, dependent

on dose. Given that most antibiotics in use today are either isolated, or derived from

microbiological secretions, it is perhaps not surprising that these small molecules

have roles beyond that of destroying competing strains of bacteria in the environ-

ment. Even taken logically, it should be evident that if this was the only purpose

of antibacterial compounds, resistance should have been far more widespread, if not

ubiquitous, immediately after clinical deployment. After all, many antibiotic com-

pounds have been isolated from bacteria in their natural environments, and there-

fore presumably have ancient biological origins, and yet retained their effectiveness

up until widespread usage as medicines became the norm. Therefore, do bacteria

retain an advantage to antibiotic sensitivity, or are antibiotics not present in the

environment in sufficient quantities to mediate resistance? If by gaining resistance

to one or more antibiotics, a bacteria can protect itself from an external threat, then

why is resistance not a universal phenotype? The standard explanation is that the

emergence of resistance must carry a fitness cost, usefully expressed as a slowing of

growth rate. Therefore, in an environment where the selective pressure of a drug

is present, a resistant phenotype will have the survival advantage - better to grow

slowly, than be killed by an antibiotic. When that selective pressure is removed how-

ever, that subpopulation will be outcompeted by their drug-sensitive fast-growing

ancestors. Although this initially looks like good news for clinicians, who may be

able to remove resistant populations altogether, simply by having a moratorium on

specific drug uses, the reality is far more complex. Studies have shown that the rate
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at which resistance is lost to a population is orders of magnitude slower than the

speed at which it is gained [118]. Additionally, the acquisition of resistance to one

antibiotic can promulgate further cross-resistance to other related compounds, or

even to antibiotics from entirely different classes.

1.6 Rate yield trade-offs and antibiotic resistance

Trade-offs have been widely theorised as being a primary driver of genetic diversity,

allowing a population level flexibility to cope with changing environments, and con-

ferring a more robust survival strategy, at the species level. Trade-offs have been

described in many systems, including infectivity vs burst size in viruses, affinity

vs transport rate in bacterial trans-membrane substrate transport, and growth vs

maintenance for bacterial cells. The variables may differ between these examples,

but the concept remains that same, that sacrificing fitness in one area will allow en-

ergy to be expended elsewhere, which may confer more advantages. It is important

to note that the outcome of the trade-off, whether it is advantageous or not will be

dependent on a range of external factors, and as the factors change, so too will the

bacterial population adapt and evolve their trade-off responses.

It is also worth noting that although trade-off shapes have been used to predict

increased diversity, in vitro data of such trade-offs is scarce, and attempts to measure

trade-offs are complicated and often unclear. In this study we will use a very simple

trade-off between maltotriose transport and lambda phage resistance in E.coli to

determine whether a trade-off exists when these two species are co-evolved, and

whether such a trade-off is a necessity in improving phage resistance, or whether

bacteria can instead trade-up. This experimental setup is used because maltotriose

can be supplied as the sole carbon source, which is taken into the cell via maltoporin,

which is also the attachment site for phage lambda. This allows generation of a co-

evolved library to be tested in varying resource concentrations and determine the

relationship between resistance and cellular effeciency.

Additionally we will investigate the means by which external stressors, in this

case the antibiotic Doxycycline, can mediate the trade-off between rate and yield

in E.coli, and how the trade-off shape changes over time when in the presence of

the drug. As Doxycycline is a bacteriostatic drug at medically relevant doses, it is

important to understand how the antibiotic may alter the growth of microorganism,

for example, if growth rate is slowed upon dosage, but over a longer timescale the

balance of the trade-off is shifted in favour of an increased yield, then this may be a

counter productive treatment strategy, only providing initial advantages, but in the

longer term benefitting the bacterial population by increasing metabolic efficiency.
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Table S1.1: E.coli strains used in this thesis

Strain Adaptation Source
AG100 Ancestral S.B. Levy
AG1001MIC Dox MIC adapted Evolved from AG100
AG1002MIC Dox 2xMIC adapted Evolved from AG100
AG100M9 Media adapted Evolved from AG100
AG100Str+ Streptomycin (1000xMIC) adapted Evolved from AG100
MG1655 Ancestral S.B. Levy
MG16551MIC Dox MIC adapted Evolved from MG1655
MG16552MIC Dox 2xMIC adapted Evolved from MG1655
MG1655M9 Media adapted Evolved from MG1655
REL606 E.coli B strain J. Meyer
TB108 Ancestral T. Bergmiller
eTB108 Ery MIC adapted Evolved from TB108
BW25113 Ancestral Keio collection
BW25113∆manZ Glucose transport knockout Keio collection
BW25113∆aceA Isocitrate lysase knockout Keio collection
BW25113∆aceB Malate synthase knockout Keio collection
BW25113∆icd Citrate synthase knockout Keio collection

1.7 Experimental Systems

The adaptation of bacterial cells to antibiotics will be studied, for the most part

using a serial transfer protocol, with transfers occurring every 12 or 24 hours. Ex-

ceptions will be those experiments determining spatial response to antibiotics which

will be carried out on M9 soft agar, and left for up to 72 hours for adaptation to

occur. Liquid media based experiments will utilise 96 well plates in order to increase

throughput and for ease of optical density measurements. The choice to use a mini-

mal media is important, as in many cases we will be seeking to understand whether

metabolism plays a part in antibiotic (or phage) resistance, and how trade-offs be-

tween various growth parameters can effect fitness. It was therefore necessary to

be able to accurately control and quantify the amount of carbon resources initially

provided to the growth environment. E.coli was used as the model organism in the

following work, due to the ease and safety of use, the well understood genome and

the availability of knockout libraries and tagged strains. The following strains will

be used throughout this thesis.

1.8 Thesis Aims

This thesis aims to explore the stability of inhibitory effects of antibiotics, whether

in combination or used singly, over clinically relevant timescales. The work shall be

carried out using a variety of strains of E.coli derived from K12, chosen for it’s short

generation time, ease of molecular manipulation, and lack of safety concerns. The

five chapters of this thesis will look at a number of physiological factors of bacterial
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growth, and the potential effects of antibiotic treatment on them. Furthermore, it

will assess how these factors are altered during the inevitable process of adaptation

towards selective pressures. The first chapter will look at the stability of two-drug

interactions, and at the robustness of claims of synergy and antagonism. This is

an important area of research as antibiotic combinations and cocktails are increas-

ingly being seen as a method for reducing the emergence and spread of multi-drug

resistant isolates, however there is a dearth of research into the long term effects of

combinatorial treatment on the selection for resistance.

In the second and third chapters we will be assessing the changes in inhibition

that can occur when a simple dose-response assays is serially transferred and evolved

for up to 10 days. Again, the relatively short evolutionary timescale of around one

week is not an arbitrary length of time, rather it accurately reflects the average

treatment length for infection with antibiotics. Although resistance measures are

well standardised globally, there is a common shortfall in that such measurements

are taken at only one time point, and therefore a promising looking treatment as

assessed initially may turn out to be less efficacious over the course of the whole

treatment window. We will show that in certain conditions, simple short term

adaptation to a sub-MIC antibiotic challenge can produce bacteria that are fitter

than their wild-type progenitors, and maintain a greater level of fitness even when

the drug is removed. We will also demonstrate that specific drug sequences can cause

this effect, and therefore there is the potential in real-world scenarios that poorly

designed treatment regimens may be having the opposite of the desired effect. The

third chapter will look at the genetic consequences of these effects, in an attempt to

determine a mechanism by which antibiotic treatments can fail so dramatically.

In chapter four we will investigate the role that metabolic trade-off can play in

influencing bacterial fitness. The model system that we shall use is based on a strain

library of E.coli REL606 co-evolved with lambda phage. We will show that there

exist multiple trade-offs within populations which can mediate many physiological

factors, including phage resistance, lag phase length, growth rate and yield.

In the final chapter we will return to looking at the effects of antibiotics on

bacteria, although in this case in a more ecological context. Experiments will be

performed in a spatial structure and the diffusion of both antibiotic (from a point

source) and glucose (from areas of low bacterial growth to high) will provide eco-

logical niches that should favour bacteria with homogenous phenotypes. This work

was brought about by the observation that when performing standard paper-disk

diffusion assays, the resulting growth along the monotonically decreasing drug gra-

dient was frequently non-monotonic. As such non-monotonicity has been observed

in both spatially structured and homologous (shake-flask) experiments within the

course of this thesis, these results would suggest that the assumption that increasing

drug dosage will have a proportional decrease in bacterial viability is erroneous, and
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further research is required to accurately determine the various roles of antibiotics

at sub-MIC concentrations.
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Chapter 2

Non-robust pharmacological

measures: treatment with

antagonistic combinations

2.1 Overview

In this chapter we test the robustness of drug interactions over a range of glucose con-

centrations, measurement times and antibiotic doses. Furthermore, we investigate

the effect selection on the adaptation of bacteria in these combinatorial treatments.

1. We show that experimental protocol can determine the result of an interaction

assay, simply by varying the time of measurement.

2. Model driven hypothesis suggests that drug interaction is not stable.

3. We further show that both the resource concentration and the drug concen-

tration will alter the reports of synergy and antagonism.

4. We aim to test the hypothesis that antagonistic antibiotic combinations may

slow the emergence of resistance.

5. Our results do not concur with the hypothesis that antagonism selects against

resistance.

6. Dox, in monotherapy and in combination with Rif can have a stimulatory

effect on E.coli.

2.2 Background

Antibiotic treatment, once considered a panacea for infectious disease, is increasingly

failing. The prevalence of antibiotic resistance in diverse pathogenic species has been

highlighted as a threat ‘as severe as terrorism’ by the UK’s Chief Medical Officer
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in her most recent report [44]. The findings emphasise the risks posed to health

worldwide and the hazards posed by a lack of new antibiotic development. However,

simply investing in new drug design should not be seen as anything more than an

ongoing and necessary measure in the treatment of microbial pathogens. Without a

more complete understanding of the selective pressures responsible for the explosion

in prevalence of drug-tolerant strains and species, any new antibiotic will surely lose

its efficacy once it enters general medical usage.

Despite the fact that the existence of resistance strains became clear soon after

antibiotic treatments became commonplace, the scientific and medical community

was slow to recognise their importance [48]. Since that time, antibiotic resistance

has become a widespread and pervasive problem with strains of almost all diseases

losing some measure of susceptibility to a once efficacious treatment. This rise of

resistance causes severe economic and health benefits due to longer hospital stays,

higher mortality and the high cost of finding alternative treatments [100]. This

economic cost is estimated to be between $5 and $24 billion per annum in the US

alone [15].

However, the cost of resistance is measurable not only in human terms. Resis-

tance to antibiotics generally confers a fitness cost on mutant bacteria, although

this fitness cost may be small, and ameliorated with further mutational events [32].

This cost manifests itself as a slowed growth rate under non-drug conditions and

it is hoped that we can exploit it to rationally design treatments that explicitly

militate against resistance evolution [5] by ‘reversing’ resistance due to the negative

selection pressure acting on these mutants in drug-free environments. It has been

shown, however, that the time taken for a resistance mutation to disappear from

a bacterial population is much longer than the time taken for such mutations to

arise when treated with antibiotics [39]. Combined with the phenomenon of antibi-

otic persistence that is due to cells that do not have genetically-encoded resistance

but which can survive by temporarily halting vegetative growth, the severe difficul-

ties associated with controlling the spread of resistant strains of common infectious

pathogens becomes apparent.

The evolutionary mechanisms of resistance include mutations of the bacterial

chromosome and acquisition of genetic material through bacteriophages, plasmids

and transposons [61]. The acquisition of resistance can be lateral (passed down gen-

erations) or horizontal (acquired from a different strain or species). The issue can be

exacerbated by healthcare professionals as bacteria can carry multiple plasmids or

be infected by phage harbouring multiple resistance-conferring transposons, thereby

creating bacteria that are multi-drug resistant [69]. Even in the wild, bacteria har-

bour many defence systems that may offer protection against antibiotics, including

numerous efflux pumps that can be up-regulated given the right environmental stim-

uli [77].
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Since Erhlich first espoused his treatment philosophy in 1913, conventional wis-

dom in the treatment of infection or disease with antibiotics has been to ‘hit early and

hit hard’. This maxim was taken to extreme by the discoverer of the first commercial

antibiotic (Prontosil), Gerhard Domagk, who treated his daughter’s acute wound in-

fection with a series of high, 10-gram doses, even before human trialling had been

completed; luckily his daughter survived. Under-dosing is a more commonly-cited

risk factor supporting the emergence of resistance [47, 37, 71]. Although Fleming’s

advice was based on the conceit of using high doses to entirely suppress mutant

resistance populations, like other studies [76] it ignores the risks associated with

providing such a strong selective pressure for resistance.

2.2.1 FIC measures

The standard protocol for establishing drugs interaction is using a checkerboard

assay. The outcome of this has a visually-determined and, therefore, subjective

component to it [112]. The FIC measurement has been reported as having poor

agreement with other methods such as the E-test, with agreement of only 55%

[45]. Synergy or antagonism is defined by this method as a Fractional Inhibitory

Concentration (FIC) and the FIC index (FICI) is derived by calculating the propor-

tional killing effect of a drug in combination when compared with its killing effect

in monotherapy. Therefore:

FICI =
Ca

MICa
+

Cb

MICb
=: FICa + FICb. (2.1)

Where Ca is the concentration of drug A required for a given level of inhibition when

in combination, and MICa is the concentration required for the same inhibition in

monotherapy. The FICI scores are normally defined as synergy, indifference or

antagonism for FICI < 1
2
, FICI ≈ 1 and FICI > 4, respectively [112], although

these values have changed historically. There is uncertainty as to the value of results

obtained using the arbitrary value of FICI < 1/2 defining synergy [81]; It has

been argued that weakly-interacting drug pairs with a FICI score between 1/2 and

99/100 may still be considered significantly synergistic [52] and, given this degree of

uncertainty, the test we adopt to test for synergy is described below.

The rationale behind multi-drug combination therapy is to simultaneously max-

imise drug efficacy and reduce resistance in bacterial populations. Another study

suggests that not only are the pharmacodynamic properties of two single drugs insuf-

ficient to predict drug interactions, but drugs that have been empirically determined

to suppress each others’ mode of action can still offer protection against single drug

resistance phenotypes [8]. A second study has suggested that the increased efficacy

of combination treatments yields necessarily greater selection for resistance [54, 119].

As a corollary, the latter claims that antagonistic drug pairings select against re-
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sistance. This is of little value if the reduced efficacy of the treatment means that

patient care is compromised to an unacceptable level in order to reduce resistant

evolution. And, as a result, we explicitly test the virtue of antagonism as a rationale

for treatment design.

2.3 Does antagonism select against resistance?

The treatment of bacterial infections in the 1930-1940’s with antibiotics created a

revolution in medicine, with dramatically increased survival rates for a range of

serious conditions [27]. Within just a few years, however, many strains of cultivable

pathogens were showing signs of resistance to antibiotics in vitro [38]. The lack

of new antibiotics in the development pipeline now [94] has dire implications for

our future ability to combat bacterial infection. However, only seeking to address

the scourge of resistance through the discovery of new drugs fails to address the

underlying root causes of the emergence of resistance and how this can best be

minimised with antibiotic therapy.

The use of combination therapies for the treatment of disease is not new. Used for

over seventy years [97, 105, 26], drug cocktails are used to treat microbial infections,

[109], viral infections [34] and cancers [96]. However, there are at least two rationales

that support the use of combinations for treating disease. One is based on the

observation that some drug pairings are more effective in combination than would

be predicted from an equivalent dose of each monotherapy. This is termed synergy

[26, 46, 24] and although used as the basis of increasing treatment efficacy, it is also

believed to suppress antibiotic resistance adaptation [78].

As explained in [76], the basis of the theory behind this hypothesis is the fol-

lowing. Suppose p is the probability of a resistance allele arising in a pathogen

population during treatment, if two drugs are used with independent targets, p2 is

then the probability of a resistance allele arising in a pathogen population during

treatment in a combination therapy that uses two antibiotics, assuming that muta-

tion is random across the genome. By the same argument, it would seem rational

to use three drugs. However, a problem with this argument is the complete absence

of any consideration of what selection for drug resistance may achieve. Indeed, it

is axiomatic that greater selection for drug-resistance will be observed at higher

dosages, the purpose of this work therefore is to begin to address question of how

dosage mediates selection for resistance as part of a combination.

The second purpose of this research is to understand what other processes might

lead to the loss of synergy during treatment with a combination of antibiotics. As

a model we take two drugs used in the treatment of Brucella melitensis. Using

simplified mathematical models of the modes of action of the drug pair rifampicin,

itself used in the treatment of important human diseases like TB, and doxycycline, we
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predict that antibiotic interactions, and therefore synergy, can depend on dosage and

time. As we show, a combination that begins synergistic, may even be antagonistic

later or vice versa.

Hegreness et. al., suggest that antagonistic combinations of antibiotics may

have unrecognised potential, due to the lower selection for resistance they postulate

[54]. Imagine a bacteria under an antagonistic treatment; it would have a higher

fitness (less inhibition) than the same bacteria treated with either of the drugs in

mono-therapy. In such a case a mutation giving resistance to one of the antibiotics

would reduce the bacterial fitness, by removing the antagonistic element of the

treatment. Therefore there is a selective pressure to lose such mutations as fitness is

negatively impacted. This is demonstrated in Figure 2.1, whereby the highest rate

of adaptation is in the most synergistic region, with antagonistic displaying lower

rates of adaptation than the single drug environments. This theoretical framework

was tested in the paper mentioned, showing a slower adaptation when antagonistic

combination were used. The figure below shows the results presented by Hegreness

et. al., [54], demonstrating the highest rate of adaptation in the most synergistic

treatment region.
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Fig. 2.1: Different drug pairs vary profoundly in their impact on the rate of adap-
tation. (A and B) For two pairs of drugs (A, synergistic ERY-DOX; B, antagonistic
CIP-DOX), the initial level of inhibition is shown for a matrix of concentrations of
the two drugs. The level of inhibition is defined as 1 - r/r0, where r is the growth
rate of the population in the presence of antibiotics and r0 is the drug-free growth
rate. The solid line corresponds to the line of 50% inhibition and is also shown on a
linear scale in the insets. (C and D) The rate of adaptation for the drug combina-
tions shown in A and B. The arrow in C points to a region of drug concentrations
where the rate of adaptation for the synergistic ERY-DOX combination is acceler-
ated relative to the single-drug treatments. This acceleration is surprising because
the more expected outcome of combining drugs is for adaptation to slow down [54].

This is a compelling picture, which would indicate that antagonism could be

used to minimise the emergence of resistance. There remains the practical matter

of ensuring that the antagonistic treatment is still sufficiently potent to act as an

effective treatment; there being little point in minimising resistance if it comes at

the cost of treatment failure. Equally, this fitness landscape is making assumptions

that mutations providing resistance are the predominant mechanism for resistance,

whereas other mechanisms, such as up-regulation of efflux, could provide protection

against both drugs. Likewise, this hypothesis takes no account of cross-resistance,

which would undermine the argument for using antagonism to select against resis-

tance. It may be the case, therefore, that other drug combinations with less robust

antagonistic profiles may not reliably slow adaptation.
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2.4 Antagonism and synergy are not well defined

The utility of antibiotic for treatment can only be guaranteed if it is robust or stable

through time. Indeed, it has been noted that synergy can be lost as the antibiotic

molecules decay due to either host metabolism or instability of the molecules them-

selves, resulting in an ‘inversion’ of selection for resistance [92] because drugs can

decay into metabolites that promote pathogen growth. Before being able to test the

hypothesis that antagonistic treatments may slow the rate of adaptation to antibi-

otics, it is important that the interaction between the two agents is robust and stable,

otherwise a bias is introduced. We have demonstrated through a simple mathemat-

ical model that synergy can invert to antagonism, and thereby determined to test

the interaction of Rif-Dox in a variety of conditions to determine the robustness of

the interaction.
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2.4.1 Testing the robustness of antibiotic synergy and an-

tagonism

(a) (b)

i(θ)

(c) (d)

i(θ)

Fig. 2.2: The drug interaction profile is related to a ‘checkerboard’ diagrams shown
in (a) and (c). The concentration of both drugs is given on the x and y axes, bacte-
rial growth inhibition (or population density or some other fitness measure) is then
plotted on the z axis. The contour of all concentrations that reduce this measure
by half is an isobole here denoted IC50 and figures (a) and (c) show two checker-
board plots viewed from above. Basal concentrations of both drugs that achieve the
same inhibitory effect in this illustration are D50 and E50, θ then parameterises the
equidosage line between these two values. The fitness measure evaluated along this
line is shown in (b) and (d) and we define the degree of interaction based on this
curve, this is i(θ). We say the interaction is synergistic when the drug proportion
that minimises i(θ) satisfies 0 < θ < 1 as in (b), we denote the resulting value by
θsyn. In (d) the drugs are said to be antagonistic as i(θ) is maximised by a drug
combination.

Establishing synergy, both in vivo and in vitro can be difficult. For example,

different clinical strains of MRSA [12] show characteristics associated with both syn-

ergy and antagonism when treated with vancomycin plus rifampin depending on the

times they were measured, whether 24h or 48h. However, there has been no explicit

recommendation not to treat MRSA with this combination, just that caution should

be exercised when deploying them in the clinic [104]. Furthermore, even for the most

common interaction measure, the FICI (see page 28 for mathematical definition),

there is a lack of consistency in applying breakpoints for defining an interaction as

synergistic, antagonistic or indifferent. Authors have previously used widely varied
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interpretations of FICI scores, from < 1 = synergy,> 1 = antagonism [45] to the

more common definition of< 0.5 = synergy, 0.5−4 = additivity,> 4 = antagonism

[81]. This situation has led to the possibility of drug pairs being simultaneously clas-

sified as, for example, synergistic and additive, depending on what cut-off is used.

A further problem with FICI scores as a means of quantifying interaction is that

the design of the checkerboard assay can affect the reported interaction. This was

observed as long ago as 1987, where the assignment of interaction was different,

depending on whether a checkerboard method was used with 2-fold dilutions or

customised dilutions within a smaller range of concentration [55].

To begin with, suppose that B(t;A,B) denotes the density of a bacterial pop-

ulation at time t, measured in h, when grown in an environment containing two

antibiotics at initial concentration A and B in µg/ml. These two values will be

called ‘basal concentrations’ in the remainder. To ensure a fair comparison is made

of the efficacy of different drug combinations, it is necessary that each basal drug

concentration, A and B, is normalised to achieve equal inhibitory effect over some

fixed period of time, T say. We therefore assume that each monotherapy achieves a

factor-r reduction in bacterial density relative to a drug-free environment by time

T . This condition can be written

B(T ;A, 0) = B(T ; 0, B) = rB(T ; 0, 0).

This definition is arbitrary because T could represent any time during the entire

course of treatment, nevertheless it will be important to have one time over which

the two drugs can be compared in a fair manner. In practise, we take T to be either

12h or 24h. B will increase with increasing T , up to the point at which resources

become exhausted and the cells enter stationary phase, at which point the increase

in B will stop.

With A and B as basal drug concentrations, we now introduce a parameter that

allows us to combine both drugs whilst maintaining a constant effective dosage. This

parameter, denoted throughout by θ, takes values between zero and one inclusive

and it can be used to represent any drug combination along the so-called equidosage

line (see figure 2.2). For each value of θ, the actual concentration of drug deployed to

the environment of the bacteria is then θ ·Aµg/ml of one drug and (1−θ) ·B µg/ml

of the other.

The degree of interaction between drugs is usually defined in terms of the devi-

ation from a neutral interaction, derived either using Bliss independence or Loewe

additivity (see Definition 2 and 3, page 34-35) (for an extensive discussion of this

topic see [49]). Here we will use the latter and define synergism based on the so-called

drug interaction profile

i(θ) = B(T ; θA, (1− θ)B),
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defined for 0 ≤ θ ≤ 1.

A measure of the convexity and concavity of i(θ, T ) obtained by fitting a quadratic,

q(θ) = αθ2 + βθ + γ,

can be used to assess the nature of the drug interaction. Significant positivity (ob-

tained using a t-test) of α indicates synergy, negativity indicates antagonism. If

the density data is significantly nonlinear as a function of θ, meaning α 6= 0, the

fitted quadratic can be used to robustly estimate the drug proportion that max-

imises and minimises bacterial density at each time. This proportion is given by

one of θ = 0, 1 or −β/(2α) depending on which value is the lowest of q(0), q(1) or

q(−β/(2α)). Provided −β/(2α) lies between 0 and 1, an approximate upper bound

on the confidence interval for this optimal value can be found from a t-test that

returns confidence intervals for α, β and γ. Throughout we will refer to the test de-

scribed in this paragraph as the ‘α-test’ and it is implemented using the regression

facilities in the Statistics Toolbox of Matlab.

Definition 1 (ICx). The inhibitory concentration-x (ICx) of a bacteriostatic antibi-

otic used to treat a bacterial population is the minimal concentration required (stated

in µg/ml) to reduce the population density at 24h to x% of the growth observed when

no antibiotic is administered. (In practise the ICx concentration will be calculated

as the mean concentration required to inhibit x% of normal drug free growth at a

given time across several experimental replicates.)

Definition 2 (the Loewe drug interaction profile: i(θ); synergy, antagonism and

additivity). A drug interaction is said to be synergistic if, for all θ between zero

and one exclusive, the effect of the drugs combined is greater than the sum of effects

produced by each drug separately:

i(θ) < θ · i(1) + (1− θ) · i(0). (2.2)

It follows by construction that i(1) = i(0) = rB(T ; 0, 0) and so (2.2) asks that treat-

ment efficacy is greatest when drugs are combined. Note that inequality (2.2) is

necessarily satisfied if i(θ) is a concave function of θ. The drug interaction is said

to be antagonistic if the reverse inequality applies in (2.2); this will apply if i(θ) is

a convex function of θ. Under these assumptions the drug interaction is said to be

additive if i(θ) is a constant and therefore independent of θ. Examples of convex

and concave i(θ) can be seen in (2.2).

Bacterial inhibition due to drugs is measured here over a time interval of total

length T hours. On occasion we will therefore introduce time, T , explicitly into the

interaction profile and write the latter as a time-dependent interaction i(θ, T ).
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Definition 3 (Bliss independence). Bliss independence assumes that drugs in com-

bination act independently of one another, therefore two drugs both inhibiting 50%

of growth, would in combination inhibit growth by 75% (1−05∗05 = 0.75). Positive

or negative deviations from this independence would presume synergy or antagonism

between the drugs.

The issue of the robustness of measurements of antibiotic interaction are impor-

tant when the results of such tests may influence clinical regimens, or dictate best

practice. Interaction must be considered in light of environmental context, such as

carbon resource level or drug concentration, as well as over a period of time. An

interaction that is not consistent within these parameters may still be useful for

combating infection, or slowing resistance, but the range of interactions must be

understood if the drug pair is to be used effectively.
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2.4.2 Mathematical models of synergy loss

drug E 50−50 combination drug D
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d
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t(θ

))

Population density through time

θ

increasing time

Fig. 2.3: Solving equation (2.3) and plotting population density against drug pro-
portion shows that a short-term synergistic combination (blue) can appear to be
antagonistic later because of a change in population structure due to selection for
resistance (red). Note ∆t(θ) := S(t) +R(t) is shown on the y-axis.

2.4.3 Synergy loss from population structure and selection

for drug-resistance

It is known that changes in population structure can lead to the loss of synergy

in drug interaction profiles because of selection for drug-resistant alleles. To see

this, consider the following simple example of the phenomenon, by examining a

theoretical model taken from [95]. The following is the logistic growth equation

modified to include antibiotics:

d

dt
S = S(1− (S +R))− (k(θ) + µ)S, (2.3a)

d

dt
R = R(1− (S +R)) + µS, (2.3b)

where 0 < S(0)� 1 and R(0) = 0, we therefore begin with susceptible cells but no

resistant ones. S represents drug sensitive cells and R is resistant cells. µ denotes the

change from S to R representing adaptation to the antibiotic. This model therefore

allows for growth and adaptation to the antibioitc. If µ is set to 0, then the smile-

frown inversion does not occur and synergy is maintained. Here k(θ) = 1 + θ(1− θ)
represents the antibiotic synergy because it is a quadratic function minimised when

θ = 1/2. figure 2.3 shows the population densities that result from this model

plotted as a function of θ for increasing values of time t.

For short times (2.3a-b) exhibits synergy because growth is suppressed most by

the combination where θ = 1/2, so the plot of ∆t(θ) has the convex, U-shaped

‘smile’ shown in blue in Figure 2.3(b). At later times, but only provided µ > 0, the

shape of the profile changes and now density is greatest for the 50-50 combination
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and lowest for the ‘monotherapies’, where θ = 0 and θ = 1. So the plot of ∆t(θ)

now exhibits a near-concave, W-shaped ‘frown’ consistent with antagonism having

its maximal value at θ = 1/2, as shown in red in Figure 2.3(b). The passage from

synergy to antagonism is called the smile-frown transition [95].

2.4.4 Antagonism and synergy at different dosages in a path-

way

Metabolic adaptation has been proposed as one reason why synergy and antagonism

might be found within a population of human cells [101, 103]. However, we propose

that the mode of action of rifampicin and doxycycline can lead to the reporting of

both synergy and antagonism as the interaction of this drug pair, simply by changing

the concentration of drugs used. Rif and Dox were chosen for this study due poor

agreement in the literature as to the nature of the interaction between the two.

Furthermore, this combination is an important clinical combination as it is the first

line treatment for Brucellosis mellentisis.

Fig. 2.4: Rifampicin is represented by the inhibitor ‘A’ and doxycycline is repre-
sented by the inhibitor ‘B’ where transcription and translation are viewed as en-
zymatic processes acting in serial. E1 and E2 represent RNA polymerase and the
ribosome, therefore they will form complexes with the input material (wither DNA
or RNA, represented by X and P)

A conceptual model of the action of rifampicin and doxycycline is depicted in

figure 2.4. The former is a transcriptional inhibitor and the latter is a translational

inhibitor and, at least at their coarsest scale, we can choose to view these as in-

hibitors acting on two processes in serial, as represented in the latter figure. Here

a substrate Xin is convected physically (through the periplasm, for example) into a

region (the cytoplasm, for example) where, now denoted X, it can be processed by

two pathways represented en bloc by two single enzymes, E1 and E2, representing,

in this model, enzyme complexes RNA-polymerase and the ribosome, which will

both form intermediate complexes with their respective inputs (i.e DNA or RNA).

The former enzyme processes X to create a product P (RNA) and a by-product,

P ′ that is processed no further by the model. However, P is then processed by E2

to form a further product Y (protein) and a by-product Y ′ (for example, abortive

transcripts). The rate of production per unit time of the full product Y is the rate

of flux, J , through this pathway and this is inhibited by drugs at concentrations A
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and B that bind competitively to E1 and E2, forming complexes that cannot process

any of the substrates. Thus, J is a function of (A,B) so we write J(A,B) to make

this explicit.

To see how J(A,B) has the potential to express different interactions at different

dosages, consider the following kinetic model whereby all elements of the model are

assumed to satisfy the law of mass action.

d

dt
X = −k1X · E1 + k−1 · (XE1) +Xin, (2.4a)

d

dt
E1 = −k1X · E1 + k−1(XE1) + k2(XE1)− k3A · E1 + k−3(AE1),(2.4b)

d

dt
(XE1) = k1X · E1 − k−3(XE1)− k2(XE1), (2.4c)

d

dt
A = −k3A · E1 + k−3(AE1), (2.4d)

d

dt
(AE1) = k3A · E1 − k−3(AE1), (2.4e)

d

dt
P = k2(XE1)− k4P · E2 + k−4(PE2), (2.4f)

d

dt
E2 = −k4P · E2 + k−4(PE2)− k6B · E2 + k−6(BE2) + k5(PE2),(2.4g)

d

dt
(PE2) = k4P · E2 − k5(PE2)− k−4(PE2), (2.4h)

d

dt
B = −k6B · E2 + k−6(BE2), (2.4i)

d

dt
(BE2) = k6B · E2 − k−6(BE2), (2.4j)

d

dt
Y = k5(PE2), (2.4k)

where a bracketed expression, as in (Y Z), denotes a complex between molecules Y

and Z. k1 and k−1 are the association and dissociation rates between X and E1.

k2 is the non-reversible rate for the production of P from the the complex E1X. k3

and k−3 are the rates for the association and dissociation of the antibiotic A and

E1. Similarly k4 and k−4 are rates for the formation (and reverse reaction) of E2P ,

k5 is the rate for production of Y. Finally k6 and k−6 are the rates for the formation

(and reverse) of the antibiotic B complex with E2.
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Fig. 2.5: (a) This plot of J(A,B)/J(0, 0) as a surface is a checkerboard whose
contours (isoboles) are shown in (b). The geometry of these contours is consistent
with antagonism at low dosages but synergy at high dosages.

Rather than solve equation (2.4) analytically in steady-state, a single numerical

solution suffices to illustrate our point, as shown in figure 2.5. The latter illustrates

that the nonlinear kinetic model (2.4) can predict simultaneously the existence of

an antagonism at low dosages while also displaying synergy at higher dosages. It

is often assumed that drugs that both competitively inhibit the same target will

have an antagonistic interaction, whereas separate sequential targets will produce

synergy. However, at low dose an explanation for antagonism as predicted by the

model is that as flux is still very high, adding small amount of drug B to drug A (or

vice versa) has no noticealbe effect on growth - for this reason the lowest dose curves

are almost right angles, giving an antagonistic interaction. As the dose increases,

the central section of each curve becomes more linear (additive).

2.4.5 Empirical evidence that the rif-dox interaction is dif-

ferent at different doses

When Rif-Dox combination was tested (using 5 treatments; both mono-therapies,

as well as 25:75, 50:50 and 75:25 combinations) at the basal concentration achieving

a 50% inhibition, the resulting interaction is not stable over the course of a 24 hour

growth period. In brief, strains of E.coli AG100 were grown in M9 minimal media

supplemented with glucose at 0.2% and casamino acids (0.1%), as well as a single

or combinatorial drug treatment. Full methods are available in Appendix 1.1 (pg

172-173). As Figure 2.6 shows, what starts as an antagonistic combination inverts

to synergy within 18 hours. For low sub-MIC concentrations tested this result was

repeated at IC60. However, when concentration was increased to IC70 and IC80, the

inversion of antagonism becomes less clear, with the interaction ending in additivity.
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Fig. 2.6: (a) Drug interaction between Rif and Dox at varying basal mono-therapy
concentration at IC50. (b) at IC60 (c) at IC70 (d) at IC80. 0.2% glucose minimal
media was used in each case. Data point colours describe proportion of Dox - Rif
(Blue - Red).

2.4.6 Empirical evidence that the Rif-Dox interaction is dif-

ferent at different glucose concentrations

The available resources for bacterial growth also play a role in the interaction of the

drugs with the bacterial populations. Realistically, within nature the concentration

of resource is certain to vary over time, as a result of diffusion of nutrients and
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variable intake of energy (for example, resource concentration available to bacteria

in the human gut will peak after mealtimes, and fall to a minimum during the night).

In order to assess whether the non-robustness of drug interaction occurs at different

resource concentrations, the test was repeated with higher glucose concentrations

(Appendix 1.1, pg. 173). Having seen an inversion of synergy at low dose, in a

0.2% glucose minimal media, we tested the same drug combination and organism,

using a range of glucose concentrations from 0.4% to 1%. Figure 2.7. High glucose

environments seem to stabilise the initial antagonism, as can be seen in the 1%

glucose background. However, in other glucose concentrations, there is no inversion

to synergy. It is important to point out at this point the limitations of the method

for determining interaction based on a quadratic fit, namely that unless the drug

pair is accurately calibrated, the quadratic fit may return a statistically significant fit

indicating synergy, and yet not actually be showing an increased efficacy compared

to the mono-therapies. This is seen in Figure 2.7(b); in the right most plot, the

p-value of the quadratic fit indicates significant synergy, but because the E.coli

has adapted more rapidly to the Dox, every combinatorial treatment is actually

less inhibitory than the Rif mono-therapy. For a drug to be truly synergistic, the

combination must be more inhibitory than both the mono-therapies.
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Fig. 2.7: (a) Drug interaction between Rif and Dox at varying concentrations of
glucose in minimal media at 0.4% glucose. (b) at 0.6% glucose. (c) at 0.8% glucose.
(d) at 1% glucose. Basal IC50 mono-therapy dose was used in each case.

The changing nature of the interaction between rifampicin and doxycycline is

clear in Figure 2.6 and Figure 2.7: when the basal concentration of the drugs or

the available glucose concentration is changed, the interaction can be altered and be

reported as either synergy or antagonism. At low doses, the drug interaction can be

said to invert from antagonism to synergy and this can occur within a 24h period.

This pattern, however, is not seen at either the higher dosages or higher glucose
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concentrations that we tested. The same results are observed in a secondary pair

of predicted antagonistic drugs, Ery-Rif, although at a higher carbon concentration

(1% glucose), with the interaction being antagonistic initially (with a significant

p-value according to our quadratic fit test) and over 24 hours inverting to synergy

(again with a statistically significant negative quadratic fit).
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Fig. 2.8: Drug interaction between Rif and Ery, using basal drug concentrations of
IC50.

As these results demonstrate, the interaction between these two antibiotics is not

stable within a 24 hour growth period, inverting from antagonism to synergy. If this

interaction is serially transferred for one week, replenished with fresh media every

day, it will be possible to determine if the drug interaction is dynamic, or whether the

interaction stabilises. Using just a small section of the drug pair interaction profile,

we evolved bacteria in combination treatments using small proportions Rifampicin

with larger proportions of Doxycycline, as shown (Figure 2.9).Due to the short

timescales involved in these experiments it is unlikely that selection is responsible for

the non-robustness of these measures of interaction. It is possible that the dynamics

of growth determine this feature, for example a trade-off between rate and carrying

capacity would favour high growth rates at short timescales (i.e antagonism), and

yet at a later time point would favour the slower growing monotherapies, allowing

them to develop higher final density (e.g synergy).

2.5 Antagonism increases adaptation in Rif-Dox

Even at sub-inhibitory concentrations, (IC80) Rifampicin mono-therapy was effective

in removing all measurable trace of the bacteria by optical density within 2 days,

this is most likely due to the dilution effect of the transfer of around 1% by volume.

Populations treated with monotherapy doxycycline however, recovered very quickly

to the growth kinetics of the drug free control. Therefore, the intuitive expectation

would be that if Rifampicin (a very effective drug) is added in small quantities to

a less effective drug (Doxycycline) the overall efficacy of that treatment should be

improved. However, knowing that Rif-Dox is an antagonistic combination, we were

able to test whether antagonism is capable of suppressing the rate of adaptation with

respect to that of Doxycycline. Because Rifampicin is effective at clearing bacteria,
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a subsection of the antagonistic curve will be evolved using small quantities of Rif

as an adjuvant. Proportions of Dox:Rif of of 99 : 1, 95 : 5 and 90 : 10 will be used

(Figure 2.9) to ensure that the quantity of Rif does not eliminate all the bacteria.

The experiment was continued for 8 days, using a 24 hour serial transfer protocol,

details available in Appendix 1.1 (pg. 176).

Dox 75−25 50−50 25−75 Rif
0

0.05

0.1

0.15

0.2

0.25

0.3

drug combination IC80

op
tic

al
de

ns
ity

DOX 95%

DOX 90%

DOX 99%

Fig. 2.9: Example data showing an antagonistic interaction. The shaded area rep-
resents the proportions of Rif/Dox to be used for the adaptive serial transfer exper-
iment. This region of the curve is to be used because higher proportions of Rif lead
to bacterial clearing within 2 days, due to the dilution effect of the serial transfers.

2.5.1 Initial antagonism leads to overgrowth

The following data (Figures 2.10 and 2.11) quantify the stimulatory effect of both

the Dox mono-therapy and the Rif-Dox combination. Figure 2.10 shows the yield

of the combination treatments, normalised to the yield of the Dox mono-therapy.

It shows that whilst all Rif-adjuvants treatments fail to inhibit growth, only the

combination containing the largest proportion of Rif (10%) has a stimulatory effect

that is significantly greater than the Dox mono-therapy (right-tailed students t-test,

p = 0.02).
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Fig. 2.10: Density of bacteria over 8 seasons (1 season = 24 hours) normalised to the
average growth in Dox monotherapy. The combination with the highest proportion
of Rif (10%) is the ony condition that shows stimulation above the growth seen in
Dox mono-therapy (p = 0.02). The left hand panel shows the Rif only therapy,
and it can be seen that in most replicates there is total bacterial clearance within 3
seasons. Data colours show the proportion of Rif/Dox from blue to red.

Figure 2.11 shows the results from the same experiment but normalised to the

growth of the drug free control. As it clearly shows, all treatments used, with the

exception of Rif mono-therapy, have clear and significant stimulatory effect on the

final cell density of E.coli, within six seasons (in this experiment one season is 12

hours) of adaptation (p0.001 in each case).

Fig. 2.11: Growth of bacteria in combination treatments, normalised to drug free
growth. I can be seen that Rifampicin clears all bacteria in most replicates, whereas
all combinations that include Dox have a stimulatory effect compared to drug free
growth in most replicates. As in (Figure 2.10) the colours denote the proportion of
Rif:Dox from blue to red.

.
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2.5.2 Rate of adaptation increases with antagonism

The hypothesis described by Hegreness et. al., is that due to the deleterious effect on

fitness of a mutation protecting the cell form one of a pair of combination antibiotics,

antagonism will select against resistance. The use of such a treatment is problem-

atic, as the primary purpose of antibiotic treatment must be to treat infection, with

prevention of resistance being an important secondary concern. Therefore, an an-

tagonistic treatment, even if completely successful at preventing the emergence of

resistance, is useless as a therapy if it fails to reduce bacterial load. Our results

however, have shown that the measurement of interaction between drugs will effect

the result, i.e., measuring the interaction at 12 or 24 hours can produce opposite

interactions. Furthermore, we have shown that in one specific pair, a clinically used

combination that is reported as antagonistic in our model organism, adaptation will

lead to the most antagonistic combinations having the greatest yield of bacteria

within on week. Using the method for quantifying the rate of adaptation from the

paper cited above, we can calculate the rate at which the bacteria is adapting (in

terms of time taken to reach half the maximum change in growth rate). Results

show that treatments with Rif-adjuvant are adapting fastest, in general. Drug free

environments and Rif-monotherapy show no adaptation at all, either because of

very limited selection pressures (drug free) or because there is no detectable repli-

cation in the Rifampicin treatments, so adaptation is zero of necessity. There is a

weak correlation between increasing antagonism and increasingly adaptation, lead-

ing to a complete failure of the antagonistic treatment, to the point that the drug

combination becomes stimulatory, rather than inhibitory (Figure 2.12).
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Fig. 2.12: As proportion of doxycycline in IC80 treatment increases, antagonism
decreases (pairwise right-tailed t-test between Dox mono-therapy and Dox 90%
p = 0.03). The left hand panel shows the degree of antagonism, calculated by
the difference in density between every condition at season 8, and the mean density
of Dox and Rif mono-therapies at the end of season 1. The right hand panel shows
the same data for only the Dox containing conditions, with degree of antagonism
normalised to the most antagonistic treatment (Dox 90%). Rate of adaptation is
calculated using the formula explained in Appendix 1.1 (pg. 178-179).

2.6 Summary

We have used mathematical models and one-day antibiotic interaction assays to

establish that the interaction of transcriptional and translational inhibitors can differ

between dosages when used to treat E.coli. However, the observation of changes

in interaction within one day is contingent not only on the presence of antibiotic

efflux genes, (such as the multi-drug efflux pump acrAB), but whether changes in

antibiotic interaction are observed in one strain can depend on the environmental

state. By this we mean that antibiotic interactions can be manipulated by changing

the concentration of a limiting carbon source.

2.6.1 Effective treatment design using rifampicin and doxy-

cycline

It has been predicted that antagonism selects less for drug-resistant bacterial strains

than do synergistic ones [54]. Their idea states that point mutations that yield in-

creases to one of the drugs used as part of the combination treatment have greater

fitness-increasing effects in synergistic backgrounds than in antagonistic ones. How-

ever, the authors of the aforementioned study have not addressed whether antibiotic

antagonism can be used to define an effective anti-bacterial treatment.

In order to begin to remedy this omission, with the caveat in mind that antago-

nism may not be stable throughout the treatment, we sought to test this with the
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following protocol: we implemented a serial transfer protocol to extend a 12h treat-

ment of AG100 to 96h, with two transfers per day (12h per transfer), four different

basal dosages and fresh medium used at the start of each transfer.

From this data, we formulate the following hypothesis: Doxycycline monotherapy

exhibits greater selection for resistance than Rifampicin, but when small quantities

(up to 10%) of Rif are added as an adjuvant, the combination produces the greatest

number of bacterial cells over the 96h period. The only treatments that produce no

significant bacterial growth throughout the treatment is the rifampicin monother-

apy. This leads to total bacterial clearance, despite being a sub-MIC initial dose.

Despite the observed antagonism at season 1 of these two drugs, and moreover in

disagreement with the theory of [54], these combination therapies have produced

more bacteria across all replicates than either of the two mono therapies, exhibit-

ing a greater level of adaptation. The nature of the adaptation that occurs over

timescales of 96 hour will be explored in Chapter 4, albeit for a slightly different

experiment.
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Chapter 3

Stimulatory effect of sub-MIC

concentration of Doxycycline

3.1 Overview

Following on from results obtained in Chapter 2 (Figure 2.11), we see that Dox can

have a stimulatory effect on the growth of E.coli at doses that are initially completely

inhibitory. We go on to assess the mechanisms and causes of this stimulation. The

main findings of this chapter are summarised below:

1. The overgrowth observed is strain specific to AG100 (a K12-derived strain

from S.B Levy).

2. There is no apparent cost of resistance to the growth rate or cell density of

the adapted AG100 populations.

3. Although MG1655 adapts to higher concentrations of Dox, it does not over-

grow in the same manner as AG100.

4. A novel trade off between lag and yield is observed in the Dox stimulated

populations.

5. Sequential treatment with Strep followed by Dox can confer the overgrowing

phenotype.

3.2 Introduction

It is readily acknowledged that antibiotic resistance is a major global problem, with

an extremely limited novel drug development pipeline meaning that there have been

dire warnings made about the future of infectious disease control. The last new

antibiotic was discovered in 1997, and not introduced clinically until 2012, however

resistance had already been reported by 2006 [63]. This gives an indication as to the
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scope of the problem, with resistance emerging so rapidly pharmaceutical companies

are unwilling to invest large sums in discovering drugs that either lose efficacy very

quickly, or are withheld by doctors to minimise resistance. It is therefore imperative

to understand the factors that lead to the emergence of resistance, and any possible

strategies that can be used to prevent it’s spread. In the previous chapter we saw

that drug interactions (often used with the express purpose of reducing resistance)

can be unstable based on environmental conditions and timescale. We now suggest

that there is a similar paucity of research into the effects of sub-MIC concentrations

as a selective pressure, and that such an understanding will be critical in devising

strategies for the minimisation of antibiotic resistance. This is due to the fact that

agricultural and medical uses, as well the presence of naturally occurring antibiotics

in the environment, concentration gradients will ensure that bacteria experience

sub-lethal doses of antibiotics. This alongside the potential for antibiotics to change

bacterial phenotype, for example through acting as signalling molecule, as well as it’s

genotype through selective pressure, increases the speed at which resistance emerges

and spreads [50].

The dose-response assay is one of the most basic tests that can be performed

on cultivable bacteria to determine the concentration on a given antibiotic (or an-

tiseptic, toxin, etc.,) required to inhibit the growth of that bacterial population.

There are numerous protocols that all follow the same principles; that an increasing

concentrations of drug are inoculated with bacteria and grown under specific condi-

tions. The lowest concentration tested which results in no visible turbidity (usually

assessed at 24 hours of growth, although this varies depending on the species begin

tested) is regarded as the Minimum Inhibitory Concentration, or MIC.

Despite the fact that this test is ubiquitously used to determine effective dosages,

as well as to assess antibiotic resistance, (when compared to internationally collated

samples) [42] it provides no information about the robustness of the treatment to

adaptation. It likewise ignores the potential for the selection of resistant mutants

at sub-MIC concentrations. Figure 3.2 is a schematic representation that demon-

strates that even at sub-lethal antibiotic doses there is still a selective pressure being

exerted upon a resistant subpopulation, at any point where the inhibition of the an-

tibiotic reduces the wild-type fitness to a level below that of the mutant [6]. Whilst

it may seem like an unimportant factor in drug resistance, for example during dis-

ease treatment whereby a dose considerably in excess of the MIC is likely to be

prescribed, it is worth considering in more detail. Firstly, however high the dose

given is, temporal and spatial variations will mean that the drug is not distributed

evenly throughout all compartments of the body, or even cellular compartments.

This means that antibiotic gradients will exist, and so at some point the range of

drug at any given location will fall into this sub-MIC selective window, Furthermore,
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Fig. 3.1: In a region whereby a resistant mutant has a higher fitness than the wild-
type strain, a selective pressure will act and increase the frequency of the mutant,
even at drug concentrations that are not sufficient to eliminate the susceptible strain.
This sub-MIC selective window is often overlooked as a source of resistance. Figure
reproduced from FEMS microbiology reviews [6]

the degradation of the antibiotic, whether by active processes intracellularly, or by

thermodynamic properties, will again lead to drug gradients, which must include

these concentrations. Lastly, although it is an understandable impulse to asso-

ciate the cost of antibiotic resistance with human health, there are numerous other

reservoirs of resistance which may play equally important roles in the emergence of

drug-resistant strains, including agricultural use, and environmental contamination

(often as a result of excretion of antibiotics into water courses, either from human

or animal recipients of antibiotics).

It is with these factors in mind that we decided on the importance of determining

the impact of evolution on the shape of a dose-response profile. This information

is strangely lacking from the literature, and may therefore be an overlooked clinical

factor in preventing the emergence of resistant phenotypes.

3.3 Stimulatory effects of Doxycycline

3.3.1 Evolving an exponential phase dose-response

In order to establish the effect of treatment duration on MIC, a dose response for

E.coli AG100 in Doxycycline was set up as described in Appendix 2.1 (Materials

and Methods), and was propagated for eight 12-hour seasons, through serial trans-

fers into fresh media. Each transfer represents a bottleneck allowing only 1% of

the population to survive, and therefore selective pressure should ensure the most

resistant cells will come to dominate the population, leading to an increase in MIC.
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As Figure 3.2 shows, the dose-response follows a conventional sigmoidal shape

initially, with an MIC of 0̃.22µg/ml. However, after three seasons the response

starts to lose in monotonic form , and by the end of the experiment there is formed

a ‘hotspot’ range of concentrations at which the antibiotic is having a stimulatory

effect on the bacterial population size. Despite having observed such stimulatory

behaviour previously with Dox and Rif-Dox mixed treatment,this is an unexpected

result in the context of commonly held assumptions about the monotonicity of dose

response; it is strongly in disagreement of the principle of proportionality between

dose and inhibition. In addition, such a result can not be simply explained as the

result of the selective pressure at the inhibitory (but still viable) concentrations of

Dox causing the emergence of resistance. In a resistance population it is possible

that in the absence of a fitness cost, the bacteria could attain the same cell density

as the drug-free wild type, but for the density to exceed that of the control indicates

that adaptation to Doxycycline has increased the cellular efficiency, and stimulated

growth (as measured by final OD).

In order to quantitatively assess the non-monotonicity of growth over the course

of the experiment, a Hill function was fit to the data, and the data was subtracted

from the subsequent fit estimate. Therefore where the data does not fit to the

model, the result will be non-zero. Any concentrations which lead to an overgrowth

will have a positive value; Figure 3.3 demonstrates that the non-monotonicity of

the dose-response curve develops over the course of the experiment between the

concentrations 0.1µg/ml and 0.25µg/ml of Dox. The raw data and Hill-fit that

this test was derived from can be found in Appendix 2.2 (Figure B.1), with the

methodology described in Appendix 2.1, pg. 180.
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Initially the dose-response was measured at 12 hour seasons, rather than the more

traditional 24 hour dose response. The reason for this is that as E.coli has such a

short generation time, in order to select for growth rate, the transfers were made

during exponential phase, to provide an evolutionary bottleneck which would favour

rapidly growing individuals. To determine whether this was artificially creating this

striking overgrowth phenomena, the same dose response adaptive experiment was

performed at growth-arrest phase at 24 hours. It can be seen (Appendix 2.2; Figure

B.4 and Figure B.5) that the overgrowing phenotype is still clearly evident when

yield is selected for, rather than rate. As will be discussed in detail later in this

chapter, we hypothesis that as Dox concentration increases, rather than growth rate

decreasing, the lag phase is increasing, but growth rate is unchanged (Figure 3.20

and Figure 3.19). In order to ensure that future tests were consistent and to simplify

the experimental logistics, we decided to use 24 hour seasons for the remainder of

this study, as selection for either exponential or stationary phase populations gave

rise to the same phenotype.

To confirm that this unexpected result was the result of a stimulation of growth

by Dox, and not a change in cell size or conformation that may lead to an over-

reported OD value, the experiment was repeated with a larger number of replicates

at just three concentrations (0µg/ml, 0.25µg/ml, 0.5µg/ml) and recorded the optical

density for 10 seasons Figure 3.4. The effect was consistent over the course of the

ten transfers, and colony counting (see Appendix 2.1; materials and methods) was

performed on sample replicates from the final season (n=3 ). CFU counts confirmed

a higher viable cell number in the overgrowing MIC environment, compared to

the media-only control. In AG100, no growth was seen at the 2xMIC condition.

The same larger number of replicates was also grown at 1 and 2xMIC (0.3/ml and

0.6/ml respectively) to determine whether this effect is replicable in a closely related

E.coli strain. Unexpectedly, the growth dynamics observed were very different, with

MG1655 adhering much more closely to the expected dose response. We hypothesise,

on the basis of genetic differences between these strains that the reduction in sigma

factor produced by AG100 is responsible for this difference in phenotype, however

this will be investigated in greater detail on page 80. Inhibition was monotone with

increasing drug, with no significant overgrowth at any concentration (Appendix

2.2; Figure B.6); in addition the lag phase length was changed by a lesser degree.

MG1655 did adapt more successfully to higher antibiotic concentrations however,

with growth seen at 2xMIC in 6 replicates (n=16 ), compared to just 1 replicate in

AG100. Other E.coli strains were also tested under the same experimental setup,

and did not display the overgrowth phenotype of AG100 (Appendix 2.2, pg.195-197).
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3.3.2 Effect of selection pressure on adaptation rate

In order to better understand the properties of this overgrowth we applied a mea-

sure of the rate of adaptation to assess whether an increasing selective pressure

was correlated with an increase in growth rate, and therefore a more rapid adap-

tation. Because Dox is not bactericidal drug, and has no direct effect on DNA

damage, the mutational rate of the cell should remain unchanged despite the drug-

challenge. Numerous other processes can affect phenotype, however, including dif-

ferential gene regulation, selection and increased translocational events [65], and by

whatever mechanism, such a striking ’overgrowth’ phenotype suggests considerable

adaptation. The rate of adaptation (α) is defined as the time taken for the half

maximal change in growth rate over the course of the experiment. The calcula-

tion on this measurement is described in Figure 3.5. This method of assessing

adaptation rate was devised by Hegreness et., al in [54] and is effectively a second

derivative of the growth rate. Although initial observations show a greater change

in lag phase than growth rate as the concentration of Dox increases, the growth rate

is still somewhat effected over the course of the experiment, with slight increase seen

in the overgrowing samples.
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Fig. 3.5: Representative data plot showing the cu-
mulative change in growth rate over the 8 seasons
of the experiment. The rate of adaptation (α) is
calculated using the formula in the plot. The grey
shaded area shows the change in growth rate (rate
as measured by area under the curve (AUC).

Several methods were tried to extract accurate growth rate information from the

growth curves of the evolved dose-responses shown previously. As described in the

material and methods section, linear, exponential and logistic models were fit to the

growth curves, and the best fit (as measured by adjusted-R2) was used to estimate

the maximum slope of the curve. However in this method, poor data fits caused

by inhibited populations not reaching stationary phase, gave wide variations in rate

estimates. To more accurately estimate a rate parameter we instead used the area

under the curve method, where an < an+1 < a36 are OD readings separated by 20

minutes: ∑
n=1:36

(an+1 − an)
(f(an+1) + f(an)

2

)
(3.1)

This AUC is then divided by the final density, and used as a proxy for growth

rate, and unlike other methods such as exponential slope measurement, it incorpo-

rates all aspects of the growth kinetics, such as the lag phase and stationary phase.

This method gave considerably more feasible rate estimates, and is the method to

be used in the following calculations of the adaptation rate (α). When this adap-

tation rate calculation was performed on the data from exponential phase transfer,

the rate of adaptation appeared greatest in a hotspot region overlapping highly with

the highest OD concentrations (Figure 3.7). It is a further demonstration of the

necessity of understanding the changes to dose-response over time, as the sub-MIC

selective window is selecting most strongly for rapid adaptation to the antibiotic.
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Fig. 3.6: Growth rate shows a slight increase with increasing Doxy-
cycline, but the larger change is in adaptation rate, which increases
with [Dox], until the point at which the concentration of doxycy-
cline is again inhibitory.

There is a positive correlation between rate and α, which is unsurprising, as the

α figure is the differential of the change in growth rate (Figure 3.6). What is more

revealing is, as Figure 3.6 shows, the growth rate increase is only marginal (shown

as a function of increasing Dox in Appendix 2.2; Figure B.3, and yet the increase

in both cell density and adaptation rate is significantly increased. It is suggestive

of another factor being involved in the adaptation to Dox, that is not related to

the growth rate, but instead is effecting a different physiological variable such as

lag phase. The change in rate over the course of the experiment (used to calculate

the rate of adaptation) is shown in Appendix 2.2; Figure B.2 for all replicates and

conditions. These results are consistent with the adaptation rate data for 24 hour

transfers, although with the slight caveat that in a longer growth window, the growth

rate does increase more noticeably with increasing Dox, as measured on season 4.

This is likely due to populations reaching stationary phase in 24 hours, giving higher

AUC values. This is a potential limitation of using AUC as a method for measuring

growth rate, but the underlying pattern of higher adaptation at the Dox ‘overgrowth’

hotspot remains true (Appendix 2.2; Figures B.7, B.2, B.9, B.10).

Previous studies have shown that the acrAB/tolC efflux system is a vital part

of E.coli defence against Dox, with the operon containing these efflux pump genes

undergoing a duplication during adaptation to sub-lethal doses [13]. When a dose
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response was adapted, as above, using the acrAB deleted AG100A strain, there is no

overgrowth, and no non-monotonicity of dose response observed over four transfers

(Appendix 2.2; Figure B.11). This shows that although cells lacking the efflux genes

can still increase their resistance (the MIC moves to the right), efflux is necessary

for the overgrowth phenotype to develop.
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3.4 Cost of resistance in overgrowth Dox treat-

ments

3.4.1 No cost of resistance in AG100

The question of the longevity of resistance once the selective pressure has been re-

moved has long been asked, as logic would dictate that such adaptations that are

advantageous in one context must be costly in a different environmental condition,

otherwise that adaptation would be permanently acquired. Mutational events that

can confer resistance can be chromosomal, for example modification of the target

molecule, or can involved accessory elements, such as enzymes to inactivate the an-

tibiotics [72]. However the resistance arises, there is compelling logic behind the

assumption of a fitness cost, whether due to the increased energy expenditure of

producing and maintaining accessory elements, or because a modified target or-

ganism, for example increased hydrophobicity in a binding pocket, may negatively

effect the primary function of the enzyme, as well as inhibiting drug-binding [7]. As

there are still high frequencies of bacteria which remain antibiotic sensitive, despite

millions of years of natural microbial exposure, as well as significant levels of an-

tibiotic exposure from human sources over the last 70 years, it would imply that

most resistance mechanisms are costly to the bacteria in the absence of antibiotic.

Meta-analysis of fitness costs (usually measured by growth rate compared to the

wild-type) has shown that in general this is true, with most drug classes reducing

growth rate regardless of species tested [82] [107] [16]. Despite a large number of

studies aimed at discovering the costs of resistance, it should be cautioned that the

absence of an observable cost in laboratory settings does not guarantee that there

are no real world conditions in which a significant cost may manifest itself [7], with

the inverse situation also being true.

The situation is further confounded by alternative explanations for the mainte-

nance of resistance, of which there are three potential mechanisms. In the simplest

case, the resistance may be genuinely cost free, alternatively secondary mutations

may be able to compensate for the fitness costs of the resistance mechanism [17]. The

final explanation is that a costly genetic change may be maintained in the genome

by genetic linkage with a different genetic marker under an alternative selection

pressure (this could be a second antibiotic with a separate mechanism of action),

meaning that the costly resistance could effectively piggyback on the selection of

the secondary marker. These compensatory mutations are difficult to discover, as

the complexity of gene regulation and expression is not fully understood even in the

most well characterised bacteria, and so it is remains challenging to differentiate

between a cost-free resistance, and a cost-compensated resistance phenotype [82].

We were interested to see if AG100 would display a significant cost of resistance

when the environment does not necessitate such protection against antibiotics. As
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we have already established that the presence of Dox in the environment had a min-

imal effect on growth rate (Figure 3.6) as measured by AUC, the cost of resistance

would be measured by cell number, in the same manner that the original overgrowth

was detected and measured. AG100 adapted to MIC Dox for 10 days was transferred

to drug-free media, and propagated for a further 10 days, with 1% serial transfers.

Dox-adapted AG100 was also propagated in Dox containing media at the MIC, and

wild-type cells were grown in both drug free media and Dox media as both posi-

tive and negative controls. The full methodology can be found in Appendix 2.1,

pg. 182. As Figure 3.8 shows, after 10 days in drug free media, the growth of the

Dox-adapted population is considerably higher than both the positive control, and

the drug-challenged resistant population. This would imply that not only is there

is no cost to resistance, the adaptation to Dox has conferred a fitness benefit to the

strain which is maintained, and in fact increases, in the absence of selection.
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3.4.2 Cost of resistance present in MG1655

MG1655, despite being very closely related to AG100 and sharing over 99% genetic

homology, does not show the same overgrowth when adapted to Dox. However,

MG1655 adapts more rapidly to higher concentrations, showing growth at both

1xMIC and 2xMIC within a week of adaptation. Although this adaptation does

not confer a boost to cell density, it is interesting that such similar strains can show

markedly different responses to drug-challenge. It was therefore of further interest to

see if such high-dose resistance would also come with no cost, as in AG100. The same

experiment was performed, and as can be seen in Figure 3.9, there is no similarity in

response whatsoever. Although the growth of the Dox-adapted population is slightly

higher when grown in drug free media, this can not be described as a lack of cost, due

to the fact that the cell density reached is still considerably lower than that of the

wild-type control. From previous studies we already know that MG1655 adaptation

to Dox involves a large genomic duplication of the mar operon, responsible for the

acrAB/tolC efflux system [13]. Such a large duplication (approximately 15% of

the genome) may be the cause of this cost of resistance, as the energetic cost of

maintaining a larger genome would mean less cellular resources are dedicated to cell

division. The genetic differences between strains will be explored in greater detail

shortly, in order to determine whether a basis for the difference in response to Dox

can be elucidated. This experiment was carried out exactly as previously described

(Appendix 2.1, pg.180).
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3.5 New trade-off present between lag and yield

3.5.1 Doxycycline mediated Lag-Yield trade off (LYTO)

Doxycycline has been previously described as both bacteriostatic and bactericidal

in it’s mode of action [43] depending on dose. Surprisingly that study found that

that as little as a two fold difference in dose could mean the difference between

a growth-arrest and a killing effect of the antibiotic. Despite this, Doxycycline is

predominantly described as bacteriostatic, as are the other tetracycline class an-

tibiotics. The logic behind this assignation is that because the mode of action is

reliant on inhibiting translation, a bacteria that is suffering from this drug stress

will still be able to grow (in terms of producing proteins required for replication) but

will do so at a slower rate, due to expending energy on the production of abortive

transcription products [43].

Bacteria can protect themselves from the inhibitory effects of antibiotics, par-

ticularly bacteriostatic drugs, by assuming a drug-tolerant state in which growth

and replication is dramatically reduced, or stopped. These non-replicating bacterial

cells can then tolerate very high doses of drug, as the level of translation required to

maintain in this state is very low, depriving the antibiotic of it’s target. The down-

side of this strategy is that tolerant cells can have a lower drug resistance as there

is far smaller chance of acquiring beneficial mutations, either de novo or through

horizontal gene transfer. However, these mechanisms are merely possible hypotheses

to explain the change in growth kinetics observed, a more detailed analysis of the

growth kinetics in this experiment will be required.

I had observed during performing dose-response assays using Doxycycline that

the growth rate remained largely unchanged regardless of the sub-MIC concentra-

tion of drug used (Fig 3.6). The reduction in bacterial load at the end of a given

time frame was instead due to a lengthening of lag, proportional to the amount of

drug used. Given that in the previous chapter it has been shown that antibiotic

treatments, (Doxycycline as well as Doxycycline/Rifampicin mixtures) can lead to

stimulation of growth in certain conditions, we were interested to see if there was a

trade off between the increase in lag-phase, and the stimulation of growth. Bacteria

have been shown to substantially up-regulate genes involved in ribosomal assembly

and translation [31], it is therefore a possible mechanism of resistance, that a long lag

phase during which ribosomal production is increased, gives protection against Dox

by reducing the competitive inhibition for the amino-acyl tRNA binding domain.

As can be seen in Figure 3.10, when E.coli AG100 is grown in range of Doxy-

cycline concentrations, as per a standard dose-response assay (see Appendix 2.1;

methods and materials ), growth is a monotonically decreasing function of drug

concentration at 24 hours. However, if the same assay is measured at a later time

point (in this instance at 40 hours), the growth no longer decreases monotonically
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with antibiotic, instead there is a distinct region in which cell number (as measured

by OD600nm and CFU counting) increases as Dox increases. The right-hand plots

give a stark example of how in cases where the bacteria suffers an initial inhibition

due to the drug (with a significantly longer lag-phase), this can improve the effi-

ciency of the cell, and allow the population to reach an optical density some 50%

higher than the stress-free cells. Such a trade off between lag-phase length and cell

yield (forthwith referred to as a LYTO) has not been previously reported and is

interesting and potentially clinically important, as cells that adopt a drug tolerant

strategy will eventually find themselves in a region in which the concentration of

the drug has fallen to stimulatory levels. This is inevitable due to the fact that as

the drug is metabolised or excreted, or as it diffuses through multiple cellular com-

partments, there will exist a gradient of concentration over time. Potentially then,

application of an antibiotic could lead to the stimulation of subpopulation of bacte-

ria that already exhibit drug-tolerant like behaviours. It is also important to note

that although the 0.4µg/ml Dox concentration growth curves at 24 and 48 hours

are shown as representative of the trade-off, there are a number of concentrations

that show the same behaviour, as can be seen in Figure 3.11.
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3.5.2 LYTO is strain specific

In contrast to these initial results when the same experiment was carried out using

E.coli MG1655, very little evidence of trade-off was seen between the lag-phase

length and the cell yield (Figure 3.13); although a longer exposure time of 40 hours

did slightly increase the MIC, there was only weak evidence of stimulatory behaviour

at the lowest Dox concentration (Figure 3.14). Furthermore, the increase in lag

phase length is not as pronounced as in AG100, and does not seem to confer the

same protection to the cells. As Figure 3.14 shows, the rate of growth decreases with

increasing Dox concentration; this is as would be expected as Dox is competing for

ribosomal binding, and inhibiting protein production. The experiment was repeated

for a further five strains (BW25113, ∆aceA, ∆aceB, ∆icd and ∆manZ), again with

no observation of such a trade-off (Appendix 2.2; Figure B.13) The rationale behind

choosing these five strains to test will be explained in more detail later.
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Fig. 3.12: Plot of Lag against Yield for growth curves plotted in Fig 3.11 showing
that as lag increases with increasing drug (darker blue dots) the yield also increases.
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3.5.3 What role does metabolism play?

E.coli is not a fastidious organism, and can be easily cultured on a range of media,

with a wide variety of carbon sources. However, glucose is the most easily utilised

carbon source for cell growth, and therefore high intracellular glucose concentrations

will repress the expression of genes required for extended metabolic pathways such

as the TCA cycle (Figure 3.16). When AG100 is grown using acetate as the sole

carbon source, growth is far slower due to a lower Gibbs free energy, and achieves

much lower densities than the stoichiometric equivalent amount of carbon coming

from glucose.
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Fig. 3.15: Plot of Lag against Yield for growth curves plotted in Fig 3.13 showing
that there is no increase in yield with increasing lag.
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Fig. 3.16: Schematic representation of TCA cycle and glyoxylate shunt [58].

3.5.4 Dox improves growth on acetate

We now show that doxycycline can accelerate this reduced growth, and that increas-

ing levels of the antibiotic can have a dramatic effect on improving the fitness of

the cells in acetate media (Figure 3.17). Also of note is that the MIC in an acetate

carbon source environment is approximately four times higher than when supplied

with glucose.
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Fig. 3.17: Doxycycline seems to mediate the metabolism of acetate, allowing im-
proved growth on this poor carbon source. This effect is visible immediately (left
hand panel) and increases over 4 seasons (1 season is 24 hours). See Appendix 2.1
(pg. 181) for methods.

E.coli can grow on a number of carbon sources, utilising different metabolic

pathways to maximise energy yield from the carbon resource presented to them. In

this study, M9 minimal media is used to limit the availability of carbon in the media

to precise amounts of glucose. However, during the metabolism of glucose, E.coli

dissimilate acetate into the extra-cellular environment. Acetate can be metabolised

utilising either the TCA cycle, or the modified TCA cycle, known as the glyoxylate

pathway. The advantages to the organism that these pathways provide are that a

complete TCA cycle will yield 36 ATP molecules, per acetate molecule metabolised,

compared with only two ATPs per glucose in glycolysis. The Glyoxylate pathway

does not yield ATP, but can transform acetate into sugars, such as succinate, that

can more easily be transformed via gluconeogenesis into glucose. The TCA path-

way, despite having a very high energy yield has an oxidative cost, as NADPH is

oxidised to NADH+, making this pathway unsustainable without reducing agents

present. For this reason, the TCA cycle is normally repressed in organisms growing

in abundant glucose sources [86]. Bacteria growing in acetate media can activate

the glyoxylate pathway, with acetate entering the TCA cycle as acetyl-CoA. The

decarboxylation steps present in the TCA cycle are skipped in this process, and the

glyoxylate shunt can re-route the metabolic process to form succinate, an interme-

diate in gluconeogenesis. Therefore the glyoxylate shunt pathway can be used to

generate ATP from acetate starting materials, by feeding succinate into gluconeo-

genesis [66].
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To attempt to determine if a specific pathway was essential to stimulatory effect

of Dox, we repeated the daily transfer experiments using the strains listed in Ta-

ble 3.1. The Keio collection comprising single gene knockouts of every non-essential

gene in E.coli, based on the parent strain BW215513. The strains chosen to test the

importance of metabolic pathways for stimulation by Dox have gene deletions for

critical enzymes. ∆aceA and ∆aceB, for example, are lacking the enzymes required

for succinate to be processed through the glyoxylate overflow pathway, constraining

or removing the ability of these strains to utilise acetyl-CoA to create biosynthetic

intermediates. As can be seen from Appendix 2.2; Figures B.13, B.12, none of the

knockout strains exhibited overgrowth, but neither did the parent strain, BW25113.

This shows that the strain specificity of this phenotype must be explained by some

pre-existing genetic difference between AG100 and other K12 strains that have been

tested.

3.5.5 RYTO and LYTO in Dox-adapted AG100 strains

Having seen that certain Dox concentrations can improve the yield of AG100, as

well is increasing the rate by which such cells adapt to their environment, we was

interested in determining whether the richness of carbon resources would create a

rate-yield trade off within or between strains with different evolutionary histories.

Trade-off geometry is theorised to be responsible for the maintenance of biodiversity

in microbes [99] and it has been shown previously that when trade-offs can be found

in vivo, their shape can be predictive of co-existence [83]. There are numerous

biophysical constraints on bacteria that can lead to trade-offs, with the ‘waste from

haste’ rate-yield trade off being just one. Equally, there exist everyday constraints to

bacterial fitness that we may not associate with trade-offs, such as the reduction in

growth rate (the fitness cost) of antibiotic resistant strains; this could be viewed as

rate-resistance trade-off. It is therefore necessary to consider a multitude of possible

physiological factors which are interdependent when looking for trade-offs in noisy

in vivo laboratory experiments.

AG100 and MG1655 was grown in media supplemented with glucose (at 6 dif-

ferent concentrations) and casamino acids only, or with Dox at MIC and 2xMIC

concentrations. The serial transfer protocol was similar as previously described in

this chapter, but used a 24 hours season time (see Appendix 2.2 for results). Once

the populations had adapted to their new environments, they were then transferred

in the same manner to each of the other environments that they had not experienced

(e.g., the AG100 strain adapted to MIC was transferred to drug-free and 2xMIC

environments). Growth was then measured by absorbance at OD600nm. In this way

we hoped to determine any underlying trade-offs present that were dependent on

environmental conditions, and whether these trade-offs are able to modulated by

controlling glucose input. The raw data (growth curves) used to calculate RYTO
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and LYTO for AG100 and MG1655 is available in Appendix 2.2 (pg. 202-210).
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Figure 3.18 shows the results of growing MIC adapted AG100 in three different

drug conditions ranging from drug free to twice the MIC concentration. The yield of

cells in this context is defined as the final optical density divided by the amount of

glucose supplied. This show the yield in terms of cells produced per unit of glucose

supplied. However, this measurement does assume that glucose has been exhausted

and is the limiting factor, which may not be the case when growth is inhibited by

antibiotics. All three conditions show a clear within strain trade-off, that cellular

efficiency at converting glucose into optical density (and therefore increasing yield) is

considerably higher at low glucose. This is explained by a previously theorised trade-

off between rate and yield which is due to the flux through the metabolic pathway

that is used; a rapid glycolytic pathway that produces a small amount of energy (a

net production of 2 ATP per glucose molecule) or a TCA cycle pathway that requires

a more sizeable investment of protein, and imposes a redox stress cost on the cell,

but which can produce a greater amount of energy (a net production of 36 ATP

per glucose molecule) [83]. Although in this figure yield is plotted against glucose

concentration, as rate increases with increasing glucose, we can make assumptions

about rate-yield trade offs, based on this information. Figure 3.18 utilises the model

proposed by the authors of that study, to fit a model of the following form:

c(S0) = chi
1

1 + pS0

+
pS0

1 + pS0

clo (3.2)

This model (taken from previously published work by J.Meyer et. al., [83])

has parameters of c (yield), S0 (the sugar concentration supplied) and p (a pheno-

type that controls the rate of decrease of yield in increasing sugar concentration).

Therefore chi represents the highest yield attainable, achieved at the lowest sugar

concentrations, with clo being the inverse. It is notable that whilst it is traditionally

assumed that a resistance mutation will impose a cost to fitness, often defined as a

decreased growth rate, the Dox adapted strains shown in Figure 3.18 have an even

greater efficiency when removed from the drug-stress. The RYTO theory would

suggest that rate will decrease in such cases, and yet as as is shown in Appendix

2.2 (Fig. 27), the growth rate of is does not decrease in sub-MIC concentrations of

Dox. Therefore if a trade off is responsible for maintaining the increasing yield, it

must be involving a fitness parameter other than growth rate.

Previously we saw that Dox imposes a cost on cells, not in terms of growth rate

as is the case with other strains such as MG1655 (Figure 3.14, but by elongating the

lag phase. This lag phase elongation gave the benefit of higher cell yield, forming

a trade-off between lag and yield that was visible at 40 hours. However, given that

a yield increase becomes apparent within 12 or 24 hour seasons, after adaptation

to the environment, it would seem that adaptation is removing some lag cost, and

maintaining the yield benefit. Cells from each adapted condition were inoculated

and then grown at the condition to which they were adapted. The results show that
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Fig. 3.19: When E.coli populations are grown for 5 seasons in Dox concentrations
of 0/ml, 0.3/ml (MIC) and 0.6/ml (2 x MIC) it can be clearly seen that as drug
concentration increases, so to does lag phase length, and yield. This shows a trade
off between lag and yield.

although the drug-adapted populations have a longer lag than the wild-type, their

yield is significantly increased, thus showing the LYTO is still in effect (Figure 3.19).

It also appears that adaptation to the media has remediated some of the inhibitory

effect of doxycycline, with a mean lag phase in the MIC-adapted population of 13

hours, compared to 21 hours when wild type cells are challenged by Dox (Appendix

2.2;. Figures B.16 B.17).

This LYTO is also maintained when the bacteria are grown in drug-free media

(Figure 3.20). This provides further evidence that this adaptation is not costly

to AG100, and shows that an extended lag is not merely a function of Dox con-

centration, but seems to be an advantageous growth feature to increase cell yield.

We have already seen that at every glucose concentration tested, AG100 that has

adapted to grow in inhibitory concentrations of doxycycline gains a significant in-

crease in yield over the wild-type growth. This increase in yield is not correlated

with a reduced growth rate, but appears to correlate with a increased lag-phase. As

a further check, the lag and yield were assessed for the MIC adapted populations,

grown in zero-drug. MIC and 2xMIC environments. Although the same LYTO is

present between the drug adapted and wild type cells (when Dox is removed, the

MIC adapted population still has a lag phase slightly longer than that of the wild

type, with a considerably higher yield), there is no within strain trade off, as the lag

cost to cells is almost entirely ameliorated by adaptation, when antibiotic pressure
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Fig. 3.20: Data showing the lag and yield of AG100 adapted to three different
Dox concentrations. As cells experience a greater drug stress the time spent in lag
phase increases. When these adapted strains are grown without the drug present,
the lag times remain greater for those populations that have adapted to a stressful
environment. However, at the same time the yield is also higher for these cells.

is removed (Appendix 2.2; Figure B.2). In MG1655 where the original overgrowth

phenotype is not observed, we would not expect to see this increase in yield over

wild-type, however analysing the growth kinetics at 6 glucose concentrations shows

that there is indeed a transient increase in yield above wild-type levels at low glucose

(Appendix 2.2;.Figure B.25). The difference in lag phase is much smaller, however,

than in AG100 (Appendix 2.2; Figures B.19 B.20), meaning that there is no signifi-

cant difference in lag phase between the MIC-adapted and wild-type strains, whether

grown in their adaptive environments or at 0/ml Dox (Appendix 2.2; Figures B.21

B.22 B.23). Likewise, the keio mutant strains that were grown for 48 hours did

not display an increased yield, and showed no LYTO (Appendix 2.2; Figure B.14).

There is also however still clear evidence of the RYTO within strains (Appendix 2.2;

Figure B.24).
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Table S3.2: Table showing non-carbon metabolism related mutations in K12 strains

Mutation Protein Function Strains with mutation
lam− Extracellular matrix protein BW25113, MC4100, MG1655
rpsL b.p substitution in Streptomycin resistance gene AG100
rph− Decrease in pyrimidine synthesis BW25113, MG1655
glnX B.p sub in tRNA suppressor AG100
fimB Deletion of structural gene recombinase promotor MC4100
argE Arginine synthesis AG100

Table S3.3: Table showing carbon metabolism related mutations in K12 strains

Carbon metabolism mutation Function Strains with mutation
araD Del in PPP pathway BW25113, MC4100
galK Galactose metabolism sub AG100
xylA Fermentation of xylose AG100
mtl− Mannitol uptake deletion AG100
lacZ Increases beta-galactosidase activity BW25113
fruK 29 codon deletion to fructokinase MC4100
rhaD Rhamnose metabolism deletion BW25113

3.6 Sequential treatments can create overgrowth

phenotype

3.6.1 Genetic differences between strains

Why is it that E.coli AG100 shows such a clear overgrowth at a Doxycycline hotspot

of around the MIC, when other strains that are closely related do not show the same

phenotype? Table 3.2 below shows the non-metabolism related genetic differences

between the strains tested. The high degree of similarity between the strains suggests

that a small genetic difference, perhaps as small as a single SNP can have a dramatic

effect on the response of a bacterium to a relatively short exposure to antibiotic. It

is of course already well known that such small genetic changes can greatly increase

resistance or tolerance, but the lack of available information about the effect of

adaptation on the MIC exposes a weakness of understanding of how pre-existing

genotypes can effect the resistance profile of bacteria.

Strains BW25113 and MG1655 are very closely related, sharing two mutations,

lam− and rph−. The genetic similarities may provide a hypothesis as to why these

two strains have the most similar dose-response and evolutionary adaptation to

Doxycycline. Neither of these mutations effect carbon metabolism, whereas strain

AG100 contains numerous deletions and nonsense mutations that effect several com-

ponents of carbon metabolism, including mannose, galactose and xylose metabolism

(Table 3.3). This could provide an explanation for the relative lack of robust growth

in AG100 compared to other WT strains - in the same carbon resource environ-

ments, the AG100 strains achieves approximately three-fold lower optical density

growth within 24 hours. Conversely the araD mutation present in BW25113 and

MC4100 decreases the efficiency of the PPP (pentose-phosphate pathway), mean-

ing that less reducing agents (NADPH) will be produced to protect the cell from

ROS (Reactive Oxygen Species), and fewer phosphorylated glucose molecules will be
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made available to glycolysis having been converted to fructose-6-phosphate. This is

a somewhat similar effect as you would expect to see for the xylA mutant in AG100,

however araD has a more critical flux control role through the pentose-phosphate

pathway.

3.6.2 Forcing overgrowth phenotype through sequential treat-

ments

AG100 has a unique genetic difference from the other strains tested, that the lit-

erature suggests may play a role in altering the metabolic regulation of E.coli. A

mutation in rpsL changes the conformation of the ribosomal 16S subunit, at the

binding site of Streptomycin (Strep). This conformational change gives AG100 a

high innate resistance to streptomycin, and also has the affect of repressing genes re-

quired for stress response pathways, including many starvation, or stationary phase

genes, whilst up-regulating genes required for unrestricted division [93]. The same

authors also demonstrated that such a mutation created a trade-off between long

term survival (harmed by the down-regulation of stress response pathways) and short

term growth (which is maximised by rpsL mutation), causes an increased growth

rate on poor carbon sources, compared to control with a wild-type rpsL gene. As

we have seen, Dox can mediate the metabolism of acetate and other poor carbon

sources, presumably up-regulating genes required to ensure higher flux through the

TCA cycle for the production of energy. I hypothesise that the presence of both

an rpsL mutation, and a Dox containing environment could lead to a boost in cell

yield by de-repressing TCA cycle genes, whilst at the same time down-regulating

stationary phase genes, meaning that these cells will make more efficient use of the

exogenous sugars to maximise growth.

The most common resistance mechanism to Streptomycin (Strep) is a target site

mutation in rpsL, changing the conformation of the drug binding site on the ribo-

some, allowing translation to proceed without being blocked by the antibiotic. As

this mutation is extant in AG100, meaning that it has a very high a priori Strep re-

sistance, we hypothesised that forcing a similar mutation in other strains may confer

the overgrowing phenotype. A selection of strains, including MG1655, BW25513 and

four single gene deletions from the Keio collection (a library of single-gene knockouts

from the BW25113 parent strain) were exposed to high concentrations of Strep (see

Materials and Methods), before undergoing the same adaptation to a doxycycline

dose-response gradient. As mutation in rpsL is the most common streptomycin re-

sistance mutation, a stringent regime of gradually subjecting strains to streptomycin

(at concentrations of up to 1000 x MIC) was assumed to confer this mutation. It

would be advantageous to confirm this mutation with sequencing in the future. Al-

though this protocol was unsuccessful at conferring the overgrowth phenotype to the

majority of strains tested, one particular Keio knockout strain demonstrated that
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Fig. 3.21: ∆manZstrpR (Strep resistant manZ knockout strain from BW25513), when
compared to ∆manZ (non-strep resistant control of the same strain) (middle panel)
and AG100 (top panel) shows a distinct overgrowth, as well as a dramatic increase
in fitness over the course of five seasons. Although both the top and bottom pan-
els show overgrowth stimulated by Dox, this phenotype appeared more quickly in
ManZstrepR, byseason3, whereasinAG100thephenotypeappearedafter5seasons.

the shape of the evolved dose response can be changed to show a yield increase at a

similar hotspot region as seen in AG100 (Figure 3.21). Methodology and raw data

for these experiments are found in Appendix 2.2 (pg. 198-199).

The overgrowth visible from season three onwards is not as substantial in

BW25513∆manZstrepR as it is in AG100, and is more transient, with the phenotype

having been lost at all but the lowest Dox concentration by season five. However,

it is clear comparing the ∆manZ and ∆manZstrep+ that there is a degree of non-

monotonicity in the Strep resistant strain that is not seen in the un-evolved knockout

(Figure 3.22). It is also evident that the rate of adaptation in ∆manZstrep+ is con-

siderably higher than in any other strain; the first season growth is very low, but

within two seasons the optical density is exceeding the Strep− strain. The ∆manZ

lacks the gene encoding mannosephophotransferase, and their phosphorylation of D-

glucose is defective. Although there are other enzymes that can perform the same

function, ∆ManZ is less fit than the parental strain, and the other knockouts, sug-

gesting that it is an important enzyme for glycolysis to occur efficiently. It therefore

provides further evidence that other metabolic pathways must be important in the
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Fig. 3.22: Other than AG100, only ∆manZstrpR showed any signs of overgrowth after
exposure to high concentrations of streptomycin. Interestingly, although the fitness
of the streptomycin resistant strain is initially very low, as expected, adaptation is
extremely rapid, and overgrowth is seen at >MIC concentrations. Panels from left
to right represent seasons from 1 to 5.

overgrowth phenotype.

Although a sequential treatment with Strep and Dox was able to confer a boost

to cell density in ∆manZ, the kinetics of growth are not entirely analogous with

AG100. In this case, although the final density of cells increases when stimulated

by Dox, the lag phase does not increase, meaning that the LYTO is not required in

all circumstances for overgrowth (Appendix 2.2; Figure B.15).

3.7 Summary

We have seen in this chapter the failure of antibiotics to act as a bacterial inhibitor,

and instead to stimulate growth to a level considerably higher than the wild-type.

Because this trait is only exhibited in a single strain tested, it is possible to dis-

miss as an artefact of in vitro studies, and not relevant outside of the lab. This

would, however, be ignoring the underlying concept of this research, that there is

not sufficient understanding of the evolutionary response of bacteria to low doses of

antibiotics. These sub-MIC concentrations will play an important role in the acqui-

sition of resistance, as they allow for a dividing population to mutate, whilst under

the selective pressure of an inhibitor. Furthermore, these low doses will be found in

any antibiotic treatment in vivo regardless of the initial concentration of drug used,

due to diffusion into cellular compartments, as well as drug degradation and decay.

When a simple single drug treatment can lead to an inversion of the expected be-

haviour of a commonly used antibiotic, it demonstrates the necessity of determining

88



not only the inhibitory effect of a drug initially, but how robust this inhibition is

over time. We also describe a previously un-reported trade off between lag phase

length and yield. The ’waste from haste’ efficiency trade off between rate and yield,

[83] measures the fitness of cells by their growth rate. However, in this study we

have shown that growth rate is not effected by Dox stress, and that the parameter

effected is the length of lag phase. An increase in lag phase could be regarded as the

cost of resistance in this case (as it most certainly would be in an environment with

competitors), and yet if just growth rate and yield are measured it would appear that

the yield increases with no commensurate reduction of rate. The lack of reporting

of this lag-yield trade off may suggest that when looking for fitness costs and gains,

all growth parameters should be investigated, not just rate and yield. Sequential

therapy is frequently used as part of an antibiotic switching strategy designed to

reduce antibiotic resistance, and yet here we have demonstrated a system whereby

a specific sequential treatment can lead to the total failure of treatment, and the

stimulation of growth. We have provided evidence that metabolism of poor carbon

sources, such as acetate scavenging, is implicated in this overgrowth phenotype, and

that a mutation in rpsL is responsible for the strain specific nature of the effect.
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Chapter 4

Whole genome re-sequencing of

Dox-adapted AG100 and MG1655

4.1 Overview

In the previous chapter we have described some unusual adaptive responses to Doxy-

cycline, and the changes in fitness that these adaptations conferred. We performed

whole genome sequencing on 18 samples of E.coli in order to determine any genetic

variance that may help to explain the overgrowth observed. The principle findings

of this sequencing were as follows:

1. Unique polymorphisms were identified in drug adapted populations, starvation

metabolism genes were affected in AG100.

2. No polymorphisms were detected in MG1655 carbon-metabolism genes.

3. The acrAB/tolC efflux system was within a highly duplicated region in MG1655

adapted to Dox.

4. The acrAB/tolC efflux systems was also duplicated in AG100, although with

a lower frequency.

5. There is a 30kb deletion from AG100 when adapted to antibiotic, with the

loss of 49 lambda-like prophage genes, which have a poorly defined role in

stress response.
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4.2 Introduction

Using simple serial transfer protocols, we have highlighted the importance of under-

standing dose-response dynamics over the whole timescale of treatment. A concen-

tration of Dox that inhibits 100% of visible growth during the first growth period

(whether 12 or 24 hours) can be having a stimulatory effect on cell yield after just

four days of adaptation. The fact that adaptation to antibiotic pressure can lead

to a strongly non-monotone dose response contradicts some of the most basic as-

sumptions of the mechanism of inhibition of antibiotics. However, non-monotone re-

sponses have been reported previously, notably being described as hormesis [75] and

the Eagle effect [39]. What sets this results apart, is in addition to an non-monotonic

response, the antibiotic becomes stimulatory of growth, within a clinically relevant

concentration. It is important to highlight the implications for treatment success,

as well as the questions raised as to out understanding of the mode of action of

Doxycycline, when the efficacy of a drug can be so inverted within short timescales.

Perhaps the more concerning observation made of this phenotype is that the resis-

tance to Dox does not carry a cost in terms of growth rate as might be expected

for a high yield population. The fact that the cost of resistance manifests as an

increased lag phase is a novel description of the mode of action of Dox, as far as

we have found. Although only one strain of E.coli showed this result, the fact that

non-overgrowing strains can be forced into a phenotype that is stimulated by Dox

has great relevancy. The method of using sequential drug treatments to minimise

the spread of antibiotic resistance is used globally, and yet, without a thorough un-

derstanding of the complex interactions between stress, metabolism and replication,

the interacting histories of drug exposure can lead to undesirable effects. These

alterations to growth dynamics can be striking; in the case of ∆manZstrpR there is a

considerable gain in cell number (as measured by OD) at all concentrations of Dox,

as well as the appearance of an overgrowth phenotype.

Whole genome resequencing was performed on the samples taken at various time

points in the adaptive experiment showing the increase in yield in Doxycycline en-

vironments (Fig 3.2). As this phenotype appeared to be strain specific, samples of

both AG100 (displaying the phenotype) and MG1655 (growing in high Dox concen-

trations, but showing no increase in yield) were sequenced. In this way the MG1655

strains could act as a positive control and determine if there were unique adapta-

tions to AG100 that would explain the strain specific nature of the effect. Bacteria

was sampled at the beginning of the experiment (wild-type cells) and the end of the

experiment at both zero drug (media adapted controls) and in Dox (phenotype of

interest). Three samples were taken of each whole population. Cells were sampled

for sequencing from frozen experimental micro-plates, and DNA was extracted using

a GeneJet silica micro-column method. The full methodology of the DNA extrac-

tion and sequencing pipeline is described in Appendix 3.1 materials and methods
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Table S4.1: Sequenced populations

Strain Condition Replicates
AG100 Ancestral 3
AG100 M9-adapted 2
AG100 MIC-adapted 3
MG1655 Ancestral 3
MG1655 M9-adapted 3
MG1655 2xMIC-adpated 3

section. The strains sequenced are summarised in Table 4.1.

In Chapter 2 we conducted adaptation experiments which had the effect of in-

creasing Dox resistance in both AG100 and MG1655 strains. However, in the AG100

strain, this resistance was accompanied by a boost to cell density, to a level greater

than the drug free control. We have ascertained that this phenotype has a novel

lag-yield trade off, and hypothesised that harbouring a streptomycin resistance mu-

tation on rpsL may enable more efficient carbon metabolism in the presence of Dox.

We also observed a greater level of resistance (to 2xMIC) in MG1655, but this was

a more conventional adaptation, which conferred a cost compared to the drug free

environment. By sequencing the whole genomes of these two strains, at multiple

points in their evolutionary history, we can hope to determine the genetic variation

contributing to increased resistance and overgrowth.

All sequencing was performed by Exeter Sequencing Service on an Illumina Mi-

Seq v3 on paired-end Nextera libraries.

4.3 Results

4.3.1 AG100 coverage

Coverage plots of all aligned reads were generated using Blast Ring Image Generator

(BRIG) [3] to easily show major structural changes to the genome. The coverage

plots below (Figure 4.1, Figure 4.3) are annotated with genes related to multi-drug

efflux systems, including the acrAB components of the acrAB/tolC efflux pump.

There is an area of the genome with an increased coverage that is suggestive of a

duplication between 308,415bp and 596,822bp. The regulatory repressor acrR is also

present in the weakly duplicated region in the Dox-adapted AG100. Unlabelled red

arrows on the outermost ring of the figure shows the presence of putative prophage

genes, as annotated by PROKKA [111].

Dox-adapted coverage

There is an increase in read depth in the genomic region containing an important

efflux system (acrAB), as would be expected from previous similar studies [13].

92



Fig. 4.1: Coverage plot for three replicates of AG100, adapted to MIC concentrations
of Doxycycline. There is a deletion of a number of prophage genes, and indication
of a duplication of a region containing the acrAB/tolC efflux pump in all three
replicates.
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In AG100, however, the frequency of the duplication is not at 100%, rather there

is an increase in coverage of approximately 30% in the Dox-adapted populations.

This would imply that only around a third of the population are harbouring this

duplicated region, and that it is not therefore essential to the overgrowth phenotype

(Figure 4.2).

Wild-type coverage

It can be seen that the wild-type strain does not have any evidence of a duplication

to the region containing acrAB, and has a fully intact genome with no deleted

elements. This indicates that both the loss of prophage and the duplication event

are mediated by the presence of Dox.

4.3.2 Deletion in Dox-adapted AG100

A large deletion can be seen in the coverage plot of Dox adapted AG100, (around

850kbp) whereby the coverage drops from a mean of 119 to 7. Annotation with

RAST and PROKKA determined this region to encode prophage genes. These

prophage genes show a high homology with phage lambda, and are bookended by

Galactosidase and Biotin genes as expected of lambda prophage [56]. Figure 4.4

shows the genetic differences between the Dox-adapted and wild-type populations

in this prophage. A complete list of prophage genes is available in Appendix 3.1;

Figure C.1.

4.3.3 AG100 Dox-adapted SNP effects

SNPs in each replicate of the Dox-adapted AG100 detected using VarScan were com-

pared using VCFtools, and reported SNPs common to all three replicates recorded.

These were then compared to the M9-adapted control SNPs to ensure that the poly-

morphisms were unique to the drug adapted genomes. These SNPs are shown in

Table 4.2. Four non-silent polymorphisms were identified as being unique to the

AG100Dox populations, and they were contained within two genes. One of these

genes is a mobile element protein, and one is involved in carbon metabolism under

starvation response. This gene, named slp for starvation lipoprotein, is expressed

under carbon starvation, or stationary phase, and is regulated by rpoS. We know

that rpoS is defective due to a mutation in rpsL in AG100, so this polymorphism

could therefore exist as a compensatory mutation in AG100 to limit the costs of

streptomycin resistance. The alternate base reading was present at a frequency of

10.61% and 10.28% for the two SNPs respectively, with full filtering and quality

control data shown in Appendix 3.1 (Table C.3). Mutations in the mobile element

protein had a similar frequency of between 12-14%.
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Fig. 4.2: a) shows the relative coverage of the duplicated region in the three 3 Dox-
adapted replicates. The ratio does not reach two, indicating that the duplication in
this region is not at a high frequency within the population, or that the duplication
was not complete due to the position in the replication cycle at the time of harvest.
b) shows the mean coverage of the duplicated region in the M9 and Dox-adapted
populations. The higher coverage in the Dox-adapted populations shows that the
duplication is an affect of the drug.
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Fig. 4.3: Coverage plot for three replicates of AG100, grown in M9 for two overnight
cultures, but otherwise unchanged from the wild-type ancestral strain.
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The loss of the prophage represents a change to the stress response of AG100, as

does the pre-existing rpsL mutation. It could therefore be the case that metabolic

gene function is not directly affected by mutation, but rather is controlled at the

regulatory level, effected by obtuse upstream genetic variations.
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4.3.4 MG1655 coverage

Dox-adapted coverage

BRIG was used to plot the coverage of MG1655 in drug and non-drug adapted en-

vironment, in exactly the same manner as for AG100. There is a duplication in the

Dox-adapted population, however in MG1655 the proportion of the genome that un-

dergoes duplication is larger, with the region spanning from 271,063bp to 693,445bp.

The duplication is also far more clearly defined, suggesting a higher frequency in the

population. All genes contained in the duplicated region are recorded in Appendix

3.1; Table C.2 There is a second duplication in a region annotated with the putative

transmembrane efflux protein yiaV. This duplicated region however was present in

all sample of MG1655, including the wild-type. It seems that the duplication in this

region is a pre-existing feature of the ancestral strain used to start this experiment.

This may have occurred during a past culturing or re-culturing of the ancestral

strain, but not noticed previously.
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Fig. 4.5: Coverage plot for three replicates of MG1655, adapted to 2 x MIC concen-
trations of Doxycycline. As previously seen there is a large duplication in the region
encoding the acrAB/tolC efflux pump. Interesting there is also a duplication in the
putative transmembrane efflux pump of yiaV.
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Wild-type coverage

The key feature shown by the coverage plot of MG1655WT is a duplicated region

between 3,674,130bp to 3,802,567bp, containing the putative efflux system yiaV, as

observed in MG1655Dox populations. The occurrence of this duplication in the wild

type cells demonstrates a de facto change in genomic conformation from the assumed

ancestral MG1655 strain. This could have occurred during a prior re-sampling and

freezing, during transit or during the revival and growth of the samples for this

experiment. Because the duplication remains present in media and Dox adapted

populations, the inference must be that the cost of carrying the additional genomic

material is not sufficient to create a selective pressure favouring its loss. MG1655

is commonly used as a model organism, and it has been reported that there is

genetic variation between laboratory maintained strains, and the CGSC strains, for

example, the isolate used by Soupene et al,. [36] contained a fnr deletion, the isolate

currently being distributed by the CGSC is fnr+ [57].

The frequency of the duplicated acrAB region is high in MG1655, with a ratio of

nearly 2:1 in all replicates, indicating that the over expression of efflux is a require-

ment to resistance to high Dox doses, and that it has swept to fixation through the

population.

4.3.5 MG1655Dox SNPs

Non-silent mutations were found in four genes in all three replicates of Dox-adapted

MG1655, as shown in Table 4.3. These SNPs were found with low frequency (4-

8%), the complete information on quality thresholds can be found in Appendix

3.1; Table C.3. There are also a number of synonymous mutations found in all

replicates, including two polymorphisms to a secondary efflux system, yiaV, found

in the second duplicated region of the genome. Although these polymorphisms do

not change the amino acid encoded, there may be non-silent effects due, for example,

tRNA specificity. The fact that they are present in all replicates of the Dox-adapted

populations, but not present in the media-adapted or wild type populations would

suggest that efflux is under a selective pressure.

One of the non-silent mutations appears in an intergenic region, with no anno-

tation made by either RAST or PROKKA. The other three SNPs that could have a

phenotypic effect were in diverse target systems, none with any immediate relevance

to increased drug resistance. The pnp protein, a polyribonucleotide transferase, is

a component of the RNA degradasome, and is a cold-shock protein, essential for

growth at low temperatures. A mutation in lyxK, a xylulose kinase enzyme repre-

sents the only carbon metabolism mutation found in the sequencing of drug adapted

MG1655. The lyxK gene is normally silent, however a mutation to the yiaJ tran-

scriptional repressor (which occurs in the second duplicated region of these MG1655
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Fig. 4.6: Coverage plot for three replicates of MG1655, adapted to 2 x MIC concen-
trations of Doxycycline. As previously seen there is a large duplication in the region
encoding the acrAB/tolC efflux pump. The putatative transmembrane efflux system
yiaV (duplicated at around 3700kbp) is also present in duplicate in the wild-type,
meaning that its presence in the MG1655Dox populations can not be attributed to
adaptation to Dox.
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Fig. 4.7: a) shows the relative coverage of the duplicated region in the three 3 Dox-
adapted replicates. A value of close to 2 shows a duplication has taken place. b)
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the Dox-adapted populations shows that the duplication is an affect of the drug.
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populations) switches the gene on and allows for phosphorylation of L-xylose and

further metabolisation of L-xylulose 5-P by the pentose phosphate pathway [59]. It

can not be assumed that xylulose is being metabolised in this fashion, because a large

inversion event which deactivates the repressor is required for expression of lyxK, and

in this case the repressor lies within the duplicated region of the genome. The final

polymorphism identified is paaX, regulatory protein of phenylacetic acid degrada-

tion [10]. This gene negatively regulates DNA transcription, as well as phenylacetate

catabolism (part of the process of aromatic hydrocarbon metabolism).
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Chapter 5

Trade-offs and trade-ups between

bacterial traits and phage

resistance: why does phage

therapy fail in in vitro models?

Note

This document is the result of a collaboration between:

1. Robert Beardmore, Exeter University, UK (data analysis, algorithm develop-

ment)

2. Mark Hewlett, Exeter University, UK (bacterial experiements)

3. Rafael Pena Miller, CCG(UNAM) Mexico (image analysis)

4. Justin Meyer, UCSD, United States (coevolution and other phage experi-

ments)
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5.1 Overview

In this chapter we observe the following key properties of data on the coevolution

of a bacterial strain and a lytic phage:

1. coexistence in an in vitro model of failed phage treatments of bacteria between

λ-phage-susceptible and apparently λ-phage-resistant Escherichia coli.

2. Seeking a trade-off between phage resistance and bacterial ‘fitness’ to explain

this, in fact we observe the opposite: a trade-up whereby simultaneous in-

creases occur in both resistance to phage and fitness through sugar uptake in

certain strains that we call “superstrains”.

3. This trade-up has a structural basis: mutations the cause increases in sugar

uptake occur at the same locations on the protein as mutations that lead to

enhanced phage resistance.

4. We then show this property of the lamB is sufficient to explain the failed of

phage therapy that we observe.

5. En route, we elucidate a number of trade-offs whose existence has been hy-

pothesised in the literature.

Core idea

In this experimental work we use a laboratory microcosm that contains E.coli which

are predated on by λ-phage and the liquid medium in which the cells grow has a

single limiting carbon source, maltotriose. E.coli can express a maltoporin on its

outer membrane assembled from the product of the lamB gene and by increasing

the concentration of the products of this gene, the cell can increase the import

rate of maltotriose into its periplasm. However, we have left the bacterium with a

regulatory and evolutionary decision to make because λ-phage gain access to the

cell through the same maltoporin.

This experimental protocol forces selection to act upon the lamB gene, but how

exactly? The choice is this: increase the ability of the porin, by mutation for

example, to import an essential sugar into the cell, or else decrease the likelihood

of the phage binding to the porin and gaining entry, thus killing the cell. Using

this protocol we will be able to pinpoint a trade-off between these two traits and so,

according to coevolutionary theory, understand how the coevolution of bacterium

and phage proceed.
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5.2 Introduction

The concept that we have insufficiently many antibiotic drug targets to support the

future needs of human medicine when faced with the rapidity of bacterial evolution

has been much-discussed recently, both in the scientific literature and within the

wider public. However, irrespective of our own future ability, or indeed inability,

to cure microbial infection using antibiotics, we can be completely confident that

bacteriophage will maintain their potency against bacteria, however they evolve,

because they have done so for several hundred millions years already.

By contrast, the discovery and subsequent optimisation for medical purposes by

humans of small molecule antibiotics is a process that began less than a century

ago and yet, without doubt as a direct result of the increase in circulation of such

molecules, aided and abetted by transmissible resistance plasmids, some bacteria

are now capable of exhibiting pan-antibiotic resistant phenotypes. We therefore

contend that the science of microbial viruses, including bacteriophage, both natu-

ral and synthetic, will come to play an increasingly core part of our fight against

microbial infection. We have much to learn from phage about how to tackle bac-

teria, indeed, despite their very small genomes, phage are able to overwhelm the

CRISPR-mediated adaptive immunity of bacteria.

But if we are to successfully exploit phage to produce new and successful treat-

ments for infection, topic infections in particular, the following question must be

addressed. Within the context of bacterial treatments: how long do phage maintain

their potency against bacteria within closed infections? Moreover, we need to know,

why do phage do so badly in in vitro model study systems? If we are to optimise

phage therapy for medical purposes, we need go in vitro model systems but, as we

show below, phage are rarely able sterilise in vitro cultures.

To make this discussion a little more precise, from an in vitro model system for

infection we can ask the following research question. When a given phage strain is

known to be able to lyse a particular bacterial strain, let us suppose they are then

both co-inoculated into the same culture device, like a chemostat or a microtitre

plate, as if the phage were being used to treat the bacterial population as an in-

fection. How many bacterial generations can pass before the, presumably evolved,

phage has no remaining potency against the co-evolved bacterial strain? Moreover,

if the phage does maintain its potency in this way, how often does the bacterial

population collapse, meaning, how often is the treatment successful due to phage?

Figure 5.1 is typical of the kind of phenomenon that we have in mind as motiva-

tion for these questions. In this figure, data is shown for three different experiments

whereby a wild-type Escherichia coli bacterium, strain REL606, has been inoculated

into microtitre plate wells along with a single strain of phage λ. In none of these

experiments, of 18 conducted, did the phage sterilise the device of bacteria and,

moreover, in 8/18 of the experiments the phage was lost, not the bacteria. Bacterial
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Fig. 5.1: We are interested in the question of how often a lytic phage can
sterilise an in vitro culture of bacteria. Here, three contexts for such in vitro
phage therapies are studied whereby 18/18 treatments failed to clear the bacterium,
and 8/18 failed because the phage was not maintained in the device. The three
cases have different carbon sources supplied to the bacterium, namely (a) glucose
(3/6 lost the phage), (b) maltose (3/6 lost the phage) and (c) maltotriose (2/6 lost
the phage).

and viral quantification was performed by removing a sample from the experiment

each day and using standard colony counting to assess the number of bacteria. To

determine virion number, the sample was spread onto a lawn plate of bacteria, and

covered with agar to prevent indiscriminate viral spreading. Plaque counting was

performed and adjusted for the dilution used to calculate virions per ml (assuming

that each plaque is caused by a single virus particle).

So, resolving the above suite of questions is key to understanding the utility of

phage as part of our arsenal for treating infection. For if, it turns out, that the

evolutionary response of the bacteria is so rapid that de novo mutations quickly

render wild-type phage obsolescent within a matter of hours or days from the start

of treatment, then we will need new ways of using phage to treat infection that may

incorporate a need for adjuvant small molecules that are able to help the phage

achieve control over the bacteria.
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5.2.1 Aside: the use of synthetic phage

Although there are regulatory impediments currently precluding the use of genet-

ically modified phage for human treatments, synthetic or engineered phage are a

reality that may well, in time, become a useful clinical tool and their efficacy has

been demonstrated in in vivo murine models as adjuvants to small molecule an-

tibiotics [79]. From the perspective of engineering principles for phage design, it is

important to acknowledge that if we are to expend energy into the design and syn-

thesis of such antibiotic agents, it is essential we undertake the analyses required to

understand the longevity or ‘evolutionary resilience’ of phage as a class of antibiotic

agents. It is also important to understand what might make for a successful phage

therapy and what distinguishes those from unsuccessful ones.

5.3 Bacteria-Phage Coevolution

Phage are viruses that are pervasive predators of bacteria. There are numerous stud-

ies showing that when phage and bacteria are co-evolved, an evolutionary arms race

occurs, in which the resistance on the bacteria and the infectivity of the phage both

increase, seeking a replicative advantage. Although this has been demonstrated in

the lab, in rich media [2], it is questioned whether this is a plausible scenario in the

wild, with recent research showing that in non-sterile soil co-evolution experiments,

P.fluorescens gained more resistance to contemporary phage than previous phage;

this demonstrates a more fluctuating evolution [21]. It is frequently stated that co-

evolution is an important driver of ecological diversity, as it creates a large number

of niches for generalist (low infectivity, wide host range) and specialist (high infec-

tivity, narrow host range) phage to exploit, with a similar diversifying effect on the

bacterial host. The understanding of the dynamics of co-evolution have been highly

influenced by the proposal of Van Valen’s Red Queen Hypothesis (RQH) [115] which

states that continuous evolution is driven by biotic factors, and can occur in a fluc-

tuating, escalating or chasing manner. In the fluctuating RQH where interactions

between host and predator are controlled by a few traits under tight genetic control,

allele frequency will oscillate in a negative frequency dependent manner, rare host

genotypes will be at an advantage and will therefore become more common - and

therefore more predated [53]. The escalating RQH is perhaps the most commonly

described, whereby interacting traits are selected for in a single direction, leading to

successive adaptations in both parties, with the change in fitness being zero relative

to the other party [87]: in evolutionary terms this is a case of running to stand still.

Finally the chasing the Red Queen theory is similar to an arms race, however it

occurs normally when there are numerous traits which can adapt to increase fitness;

therefore the co-evolutionary game is constantly changing [68]. In this chapter, the

interaction between lambda phage and REL606 will be expected to follow fluctu-
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ating or escalating dynamics, as the attachment site for the phage is a maltoporin

essential for uptake to the bacteria of maltotriose (the only carbon source supplied).

The success of phage therapy, defined as the ability of phage to sterilise (of

some target bacterium) the environment into which it is inoculated, is likely to be

contingent upon the ecological niche of the host bacterium and the availability of

extracellular nutrients within that niche. For example, if we take the case of T7

phage and Escherichia coli co-cultured in a chemostat environment, the bacterium

need not be cleared by the phage [108]. In that case it is shown that if extracellular

nutrients, like carbon sources, reside at sufficiently low concentrations, the bacteria

are able to persist in such a way that can also support a phage population in steady-

state. It is therefore already known that phage treatment alone need not be sufficient

to clear an infection and that lack of success can be due to an insufficient supply of

carbon which prevents enough phage from being made to clear the bacterium.
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Fig. 5.2: The predictions of a very simple mathematical model of phage
therapy. (a) Shows the locus of steady-states in (B,P )-space as a function of sugar
supply, S0, shown in black (the sterilised state where B = P = 0), blue (the phage-
lost state where B > 0 and P = 0) and the phage-endemic state (where B > 0 and
P > 0). Superimposed on this are five dynamical plots determined at different S0

concentrations which show ever-larger Lotka-Volterra-like convergent but oscillatory
dynamics that grow in amplitude as S0 increases following the introduction of a small
number of phage into a bacterial population. Plot (b) then shows how the smallest
observed bacterial density across each oscillation (a proxy for the likelihood of phage
therapy success) eventually decreases as S0 increases.

We can see this in a very simplified mathematical of phage-bacterium dynamics

in which neither are permitted to evolve with respect to any of the modelled traits.

So consider this model of their respective population dynamics in a chemostat with
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washout rate d and carbon supply parameter S0:

d

dt
B =

(
c
V S

K + S
− d− φP

)
B, (5.1a)

d

dt
P = (βφB − d)P, (5.1b)

d

dt
S = d(S0 − S)− V S

K + S
B. (5.1c)

Here β is the phage burst size (number of phage released upon lysis), φ is the

infection likelihood on contact between bacteria B and phage P , S is the carbon

source concentration, K is the half-saturation constant of bacteria for the sugar, S,

and V is the maximal uptake rate of sugar by bacteria. The dynamics of equation

(5.1a-c) are shown in Figure 5.2. This figure shows how small S0 values are sure to

either lead to phage loss; at higher S0 values one observes convergence towards a

steady-state in which phage are endemic.

The question therefore remains, how can phage therapy work in this simple model

and this is answered by Figure 5.2(b). This shows how the oscillations seen in the

dynamics of Figure 5.2(a) are able to lead to the stochastic loss of the bacterium

only when a bloom of bacteria subsequently creates a bloom in phage which then, in

turn, massively suppresses the bacterial population later in time. This suppression, if

sufficiently large, might be enough because of the high, yet momentary, phage supply

to completely remove the bacterium; this argument requires a little demographic

stochasticity in addition to the model in (5.1a-c) so that small bacterial populations

are not able to recover. Note that the model, as presented, also includes no phage

resistance on the part of the bacterium.

Thus, as Figure 5.2(b) shows, when sugar supply increases, the blooms within

the boom-bust cycles in the bacterial and phage population dynamics become ever

more pronounced and it is this feature that leads to bacterial densities becoming

ever smaller at their minimal point. However, increasing sugar in this way is a

potentially double-edge sword in terms of practical considerations because it also

has the property that the bacterial blooms are become larger, commensurate with

the value of S0. Therefore, in order to have a large enough bloom to enable clearance

by phage, a population of bacteria may be required that is so large it would have

fatal toxic effects before the clearance could occur. So while the long-term, stable

steady-state value of B is independent of S0 when the phage are present in Figure

5.2(a), the blooms of B do depend on S0, something that could be lethal for an

infection treated in vivo.
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5.4 Pan-phage-resistant de novo mutations in the

bacterium

Missing from the model defined by equations (5.1a-c) is the idea of adaptive evolu-

tion. Thus, the model is too simple to allow for the bacterium to become a better

competitor for resources by ingesting the sugar more quickly, or by becoming re-

sistant to the phage. In addition, the phage are not allowed to co-evolve with the

bacterium and become more infective or for its burst size to adapt to changing cir-

cumstances. We therefore consider the implications of the resistance properties of

co-evolving phage and bacteria as discussed in the introduction.

So, there is another possibility that can lead to the failure of phage therapy, even

within theoretical windows of extracellular resource concentrations might clear the

bacterium: the bacterium evolves to become pan-phage-resistant before the phage

is able to sterilise the infection. One study contains just such data on the existence

of bacteria that resist attack by all ‘known’ phage; i.e., the bacteria is resistant to

the phage that is currently trying to infect it, but remains resistant to all preceding

phage genotypes - this is an example of escalatory RQH [51]. More precisely, this

study investigates the coevolutionary dynamics of Pseudomonas fluorescens SBW25

and the phage SBW25Φ2 and bacterial mutants that were universally resistant to

all isolated phage emerged during the first 20 transfers in five out of six replicate

batch transfer experiments (transferred every 48h, 60 transfers in total).

It is noteworthy that in none of those replicates did the completely resistant

bacterial types fix in the bacterial population. In two replicates the resistant mutants

fluctuated at frequencies between 0.8 and 1.0 and the authors note however that

the presence of phage at times when frequency of resistance reached 1.0 indicates

that sensitive bacteria where still present in the community, although they failed

to sample them. In one replicate complete resistance reached a frequency of only

0.4 by the end of the experiment. In two other replicates the universally resistant

types reached frequencies of 0.4 and 0.8 over the next 20 to 30 transfers and were

subsequently lost from the population.

This study therefore points to an important hypothesis: complete resistance

to phage can occur rapidly during phage therapy via de novo genetic change and,

moreover, those mutations need not fix in the population. This may because these

mutations are associated with metabolic, or ‘competitive’, costs. We are therefore

interested in measuring costs of resistance in the context of the λ-phage treatments

of E. coli in Figure 5.1 and in asking whether there are mutations that induce phage-

resistance, and if so, is there any evidence of pan phage resistance, and, if so, does

that resistance also come with associated metabolic costs?

The remaining data in this document will show that phage resistance can evolve

de novo and that it need not be associated with bacterial fitness costs because the
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adapted bacterial proteins can be mutated in such a way that dual adaptive benefits

can accrue from those mutations. Moreover, there can even be regions, so-called

adaptive hotspots, on the bacterial proteins that can provide the dual benefits.

5.5 A 3-day Bacteria-Phage Coevolution Experi-

ment and Two Libraries

Each well of a 96-well microtitre plate containing liquid minimal growth medium

with 125µg/ml maltotriose was inoculated with wild-type E.coli B(REL606) and

λ-phage. REL606 was used as it shows good growth on maltotriose, and has a

fully sequenced genome. The two populations were coevolved for three days by

transferring around 1% of the contents of each well to a new plate every 24h in

which fresh growth medium had been prepared. At the end of the three day period,

a number of bacteria and phage were isolated and the lamB gene of each isolated

bacterium was sequenced. The lamB gene was sequenced in the ancestral strain,

and compared to sequenced genes from the co-evolved strains. All sequencing was

done by a collaborator, Justin Meyer. The lamB gene is a maltoporin responsible

for the transport of maltotriose into the cell. However it is also the attachment site

for lambda-phage, and therefore is a suitable target for sequencing, as it is essential

to both the bacteria in a maltotriose carbon environment, and to the phage as

an attack site. A unique identifier was associated to each isolated genotype of

bacteria and phage and the lamB amino acid sequence folded using an approximate

free-energy-minimisation algorithm. This resulted in a library of 93 phage and 49

bacteria (Table 5.1). These co-evolution experiments were performed by Justin

Meyer (unpublished results), who supplied the phage library for use in this study.

An infectivity/resistance matrix can be derived from the analysis of phage infec-

tivity as following the methodology in Appendix 5.1 (Material and Methods). When

each phage type and each bacterial type are assayed and processed in this way, the

result is depicted in Appendix 5.1 (Figure 5.3). The same data is illustrated using a

different algorithm in the same appendix (Figure 5.4) that is more sensitive to minor

differences in the infectivity phenotype the image processing algorithm determines.

Perhaps the most prominent region in Figure 5.3 is the white area showing bacteria

in the library that cannot be infected by any of the isolated phage.

5.5.1 Is There A Phage Host-Range Trade-Off? No!

We can use the infectivity data in Figure 5.3 to determine whether the phage that

are most infective suffer any costs of infection by having a reduced bacterial host-

range, in other words, do phage suffer a host-range trade-off. Thus, to each bacterial

genotype and to each phage we can associate the following phenotypes: the first is
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Table S 5.1: E.coli B(REL606) mutants derived from a wild-type strain
following coevolution with λ-phage, showing their library identifier and
the mutations found in lamB.

label mutation found (SNP unless stated otherwise) location on lamB (b.p.)

wt (j = 0) N/A
2b deletion: -GAC 292-294
4a C → A 854
7a insertion: +TCGCAGGGTAAAGGGCTG 795-796
8a -GATTTCAA 1264-1271
9a -AAC 871-873
11a T → G 556
13a +TACGGTCGTGCCAACTTGCGTGATAACT 652-653
13b -GCCGTTCCTGCTGATTTCAA 1252-1271
14a T→ G 835
17a -AAC 871-873
18a T → G 538
19a +T 610-611
20b -A 349
21b +TCGCAGGGTAAAGGGCTG 795-796
22a G → T 1210
23b A → C 793
26a -AAC 871-873
27a +T 597-598
28b -T 726
29a A → G 518
30a G → A 571
41a A → C 284
47a T → A 850
50b G → T 874
51a C → A 824
51b C → A 843
52a G → T 809
56a -AAAGGGCTGTCGCAGGGT 805-822
57b C → T 788
59a G → C 1285
60a G → T 709
61a A → C 518
61b G → T 559
62b A → G 1211
65b C → G 1059
66a +ACTTCG 1240-1241
67a C → T 136
68a C → T 815
69a -CAA 864-866
70a A → C 793
70b -TCGCAGGGTAAAGGGCTG 796-813
71a A → C 793
71b G → T 809
94a -ACCGATCCGGCC 304-315
95a G → A 821
96a A → T 760
96b A → C 581
97b A → C 580
98a deletion & insertion 704-719
99a A → G 560

115



13a
17a
20b
26a
28a
28b
2b

56a
65b
67a
94a
96a
9a

19a
61b
70b
69a
98a
71b
68a
51a
13b
95a
29a
22a
57b
52a
59a
51b
70a
61a
21b
99a
11a
71a
4a

23b
41a
7a

50b
66a
60a
47a
27a
18a
30a
62b
96b

wt
97b

Phage

9
4
−

6
0
6
−

1
6
9
−

6
0
6
−

2
9
7
−

b
−

1
1
7
−

6
0
6
−

1
5
0
−

6
0
6
−

1
9
5
−

6
0
6
−

2
6
6
−

6
0
6
−

1
8
−

6
0
6
−

2
1
2
−

6
0
6
−

1
3
2
−

6
0
6
−

2
9
−

6
0
6
−

2
9
8
−

6
0
6
−

1
9
−

6
0
6
−

1
9
8
−

6
0
6
−

2
6
5
−

6
0
6
−

1
2
0
−

6
0
6
−

1
7
−

6
0
6
−

2 w
t

2
7
−

6
0
6
−

1
6
9
−

6
0
6
−

1
5
9
−

6
0
6
−

1
1
9
−

6
0
6
−

1
6
1
−

6
0
6
−

1
2
3
−

6
0
6
−

1
2
3
−

6
0
6
−

2
4
−

6
0
6
−

2
5
2
−

6
0
6
−

2
2
8
−

6
0
6
−

2
2
8
−

6
0
6
−

1
5
9
−

6
0
6
−

2
1
9
−

6
0
6
−

2
6
2
−

6
0
6
−

1
8
−

6
0
6
−

1
5
6
−

6
0
6
−

2
6
1
−

6
0
6
−

2
1
3
−

6
0
6
−

1
2
7
−

6
0
6
−

2
7
0
−

6
0
6
−

1
6
0
−

6
0
6
−

2
5
7
−

6
0
6
−

2
1
1
−

6
0
6
−

2
4
1
−

b
−

1
2
9
−

6
0
6
−

1
9
5
−

6
0
6
−

1
6
5
−

6
0
6
−

2
7
−

6
0
6
−

1
6
0
−

6
0
6
−

1
2
1
−

6
0
6
−

2
1
1
−

6
0
6
−

1
5
7
−

6
0
6
−

1
2
6
−

6
0
6
−

1
2
−

6
0
6
−

2
9
4
−

6
0
6
−

2
2
9
−

6
0
6
−

2
2
2
−

6
0
6
−

2
1
−

6
0
6
−

1
1
4
−

6
0
6
−

2
2
2
−

6
0
6
−

1
7
1
−

6
0
6
−

2
2
6
−

6
0
6
−

2
9
6
−

6
0
6
−

2
1
7
−

6
0
6
−

2
6
7
−

6
0
6
−

2
5
0
−

a
−

1
6
8
−

6
0
6
−

1
9
6
−

6
0
6
−

1
7
1
−

6
0
6
−

1
7
0
−

6
0
6
−

2
6
2
−

6
0
6
−

2
4
1
−

6
0
6
−

1
5
1
−

6
0
6
−

1
4
−

6
0
6
−

1
9
9
−

6
0
6
−

2
4
7
−

6
0
6
−

1
3
2
−

6
0
6
−

1
6
6
−

6
0
6
−

2
5
2
−

6
0
6
−

1
6
8
−

6
0
6
−

2
1
8
−

6
0
6
−

2
1
3
−

6
0
6
−

2
1
4
−

6
0
6
−

1
2
0
−

6
0
6
−

2
2
1
−

6
0
6
−

1
4
7
−

6
0
6
−

2
5
6
−

6
0
6
−

1
2
−

6
0
6
−

1
5
1
−

6
0
6
−

2
9
9
−

6
0
6
−

1
6
7
−

6
0
6
−

1
1
8
−

6
0
6
−

1
1
−

6
0
6
−

2
3
0
−

b
−

2
3
0
−

b
−

1

B
a

c
te

ri
a

 E.coli B(REL606)−λ infection matrix

darker red denotes higher likelihood of infection (ordered according to total susceptibility/infectivity)

Fig. 5.3: A representation of the genotype-by-genotype infection matrix showing
infectivity on a white-grey-red scale of increasing infectivity; the wild-type phage and
bacteria are indicated by the blue lines. The value of the red dot at the intersection
of these two lines, the wildtype-to-wildtype interaction, is unity. The main feature
of interest is the large white region representing a cluster of completely resistant
bacterial genotypes.

Fig. 5.4: A genotype-by-genotype infection matrix displayed using Matlab’s
dendrogram routine, bacteria are represented vertically and phage are horizontal.
The main feature of interest is the large white region representing a cluster of ‘pan-
library-phage-resistant’ bacterial genotypes.

a vector of dimensionless values between 0 and 1 representing the infectivities of

each phage genotype to every bacterium, this is a sum of the matrix columns in

Figure 5.3. This sum is then normalised such that the maximal observed phenotype

of all genotypes in the library is unity. The second phenotype is then the number

of non-zero entires that appear in this column, in other words, the size of the host

range.
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Fig. 5.5: The smaller the set of phage that infect an E. coli the more
resistant it is to the phage that can infect it. We can also say it this way: the
more susceptible an E. coli strain is to each phage, the more phage there are that
can infect it. The top-left plot shows all the regressions for all bacterial genotypes
with the significance of the non-constant nature of the linear regression given in
the figure legend; all but two regressions are significant. The remaining five plots
are example regressions for five genotypes, including the wild-type strain, REL606,
denoted ‘wt’ in the figure legend.

Figure 5.5 shows the results of analysing the resulting pairs of phenotype for all

phage strains using a series of robust linear regressions. If there were a host-range

trade-off, one should observe that phage which are infective to more bacterial hosts

should also pay the penalty, or cost, of being less infective of the hosts they can

infect. Thus, the linear regressions in Figure 5.5 would gave negative slope in the

presence of such a trade-off, however, this is clearly not the case. We can reject the

hypothesis that the regression is negative in all but two of the regressions because

each such slope is, in fact, positive and therefore consistent with a ‘host-range trade-

up’.

Informally, this can be seen as the idea that Figure 5.3 has a nested structure

because the bacteria can be classed, or ordered, according to how susceptible or

‘sticky’ to phage they are. Simply put, some have phage receptors that are more

sticky than others and thus bind both more genotypes of phage and, of those that

can bind, they bind better, at least according to the assay as implemented.

5.6 Bacterial Growth Trade-Offs

Resistance is usually assumed to carry a fitness costs to the bacterium which resists

the phage, this fitness cost is assumed to form a trade off: the greater the phage

resistance phenotype, the lower bacterial fitness will be, where the term ‘fitness’
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can be interpreted in a variety of measures of vegetative growth. However, trade-

offs often prove elusive in practise and so we sought data on a wide variety of

different trade offs in our library of E.coli and λ-phage mutants. To study the

existence of trade-offs we focus on the interactions between four bacterial traits:

exponential growth rate, duration of lag phage, cell yield per carbon supplied and

phage infectivity using the above infectivity matrices.

To summarise our findings, we observe that there may be no trade-offs, trade-offs

that are present may be environmentally mediated, and there can even be trade-

ups. A trade-up arises when a bacterial strain can simultaneously increase two traits

through a single mutation, for example when complete resistance to phage preda-

tion arises alongside an exponential growth rate increase due to that one mutation.

Indeed, it is worth stressing again that we will show that there are mutations that

confer complete resistance to all of the phage in our library and yet those muta-

tions also appear to make bacteria fitter than the wild-type bacterium from which

the mutant was derived. We discuss the potential evolutionary implications of such

‘superstrains’ in the remainder (Table 5.2).

Table S5.2: Six possible trade-offs from four bacterial traits where ? can be either
‘within strain’, ‘between strain’, and ‘trade-off’ or ‘trade-up’.

four traits cell yield lag time phage resistance

growth rate ? ? ?
cell yield ? ?
lag time ?

5.6.1 Bacterial library: growth kinetic parameters

Each bacterial genotype was grown in a single flask for 24h in the absence of any

competitors in order to measure the following metabolic parameters. If bacterial

density is given by b(t), we suppose that b follows a model of the following logistic

form

b(t) = b0 +
k

1 + a exp(−rt) .

Using this simple sigmoidal growth model, we can fit to growth data taken from

a growth assay to produce a phenotype (a, k, r) for each bacterial genotype. One

exemplar fit between data and model is shown in Figure 5.6. More fits are shown in

Figure 5.7

We can robustly determine the blank parameter, b0, the maximal population

density parameter, k, and the exponential growth rate r. The length of lag phase

is determined in a different way. For this we perform a series of regressions on

data starting at the time when there are three density datapoints available, this is
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Fig. 5.6: A visual comparison of short-term bacterial growth using a mathematical
model and experimental growth data determined in a microtiter plate reader and
shown for the E.coli B(606) wildtype. The residual used for the fit only uses data
up to the end of exponential phase, the x-axis denotes the length of the experiment
in hours.

following one hour of growth. We then perform a linear regression on that data,

once it has been filtered to remove high-frequency noise. Then, we decide if that

regression is significantly non-constant at the p = 0.01 level, if so, we decide that the

lag phase has lasted 1h. If not, we continue to add in density datapoints from later

times until such time as we do achieve significance at the p = 0.01 level using the

same regression test. If so, the earliest time point for which this test is successful is

deemed to be the lag time.

The entirety of all the raw observed data is presented in Figure 5.8 where the bac-

terium has been cultured in 2.5, 5, 10, 20, 40, 80, 160 and 250µg/ml of maltotriose

in the Davis Minimal (DM) culture medium. DM media is recommended for the

isolation of nutriotional mutants from E.coli, additionally the minimal nature of the

media ensures that maltotriose is the only carbon source available to the bacteria

from the media (although obviously there will be cross-feeding and scavenging from

other carbon sources within the duration of the experiment). The figure shows the

opportunity for the data to probe a number of common hypothesis relating to the

nature of trade-offs. For example:

1. RYTO The rate-yield trade-off is a trade-off whereby higher growth rates

comes at a ‘cost’ of lower cell yield per mole of carbon supplied. In other words,

faster growth is necessarily less efficient. One can see apparent evidence for the

RYTO in Figure 5.8(c) where the collation of all the raw metabolic data does

indeed appear to show a negative and highly nonlinear correlation between

rate (the parameter r from the datafits) and yield (total population density
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Fig. 5.7: A visual comparison of short-term bacterial growth using a mathematical
model and experimental growth data determined in a microtiter plate reader and
shown for the E.coli B(606) wildtype for six resource concentrations. The resid-
ual used for the fit only uses data up to the end of exponential phase, the x-axis
denotes the length of the experiment in hours. An approximate 95% confidence
interval about each prediction is shown, reflecting the uncertainty in the estimated
parameters.

divided by sugar supplied).

2. LRTO The lag-rate trade-off is the idea, apparently consistent with the raw

data in Figure 5.8(a) that an increased growth rate comes at the cost of a

longer lag phase. This is not a commonly-studied trade-off in the literature.

3. LYTO As rate is negatively correlated with yield (RYTO) and rate is posi-

tively correlated with lag (LYTO) it follows that lag and yield must be nega-

tively correlated, as can be seen in Figure 5.8(b).

The nature of the dependence of the duration of lag phase on the supply of sugar

(maltotriose) to the cells is shown in Figure 5.9 for four library strains that illustrate

the four different classes of behaviour in the entire library. If y denotes the lag phase

data and x is the set of maltotriose concentrations used then the model y = a+ bxp

groups the dataset into four clusters (not shown) whereby p = 0, 1/2, 1, 2 denoting

constant lag, linear increasing lag, or nonlinearly-increasing lag. The mechanistic

basis of the observed behaviour is unknown at the present time.
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Fig. 5.8: Three vegetative growth traits measured in laboratory condi-
tions indicate three trade-off hypotheses: (a) a longer lag phase yields a
greater growth rate; (b) longer lag may correlate with lower yield; (c) greater growth
rate may correlate with lower yield. The latter is the classical rate-yield trade off
(RYTO). The colour code indicates cultures in low maltotriose conditions for all
strains (the bluest data) to cultures in high maltotriose conditions (red data).

5.6.2 Is there a relationship (potential trade-off) between

lag phase and phage resistance? No!

We sought a relationship, or potential trade-off, between the duration of lag phase

and phage resistance, the hypothesis being that longer lag would correlate with

greater resistance, and we have the datasets to probe this hypothesis in the above.

When we therefore performed two different tests, one appropriate for continuous

data and one appropriate for categorical data, both tests are consistent that there

is no evidence for the hypothesised trade-off. This can be seen in Figure 5.10.

In Figure 5.10 we see a Kruskal-Wallis one-way analysis of variance performed

on all bacteria from the library that exhibit what are defined to be two classes of

resistance phenotype, these are either complete library-pan-resistance or else being

susceptible to at least one of the phages. None of these tests show any significant

evidence of different lag times between those two classes, although there are some

maltotriose conditions (2.5, 5, 80µg/ml) that are consistent with longer lag times
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Fig. 5.9: The metabolic dataset contains four different classes of sugar versus lag be-
haviour: (a) shows a linear increase in lag as maltotriose increases in concentration,
(b) shows constant, or near-constant, lag as sugar increases, (c) shows a quadratic
increase in lag with sugar increase and (d) shows a square-root increase in lag with
sugar. These have been determined by fitting a power law of the form y = a + bxp

to the data, where the value of p is reported in each of the four plots where it is
called the ‘power’.

being associated with greater phage resistance. But the evidence for this claim

across the entire dataset is not replicated between the different conditions tested.

Indeed, the totality of evidence for trade-offs in our dataset that involve the lag

parameter is weak. Take Figures 5.11 and 5.12 which show attempts to correlate

lag with yield and lag with growth rate, respectively. There is evidence at some

resource concentrations of a negative correlation, and it is statistically significant

at those particular resource concentrations, but the correlations are weak and they

are not consistent between different resource conditions. We therefore refrain from

declaring that there is any evidence for a lag-rate or lag-yield correlation, despite

the evidence for it in some of the experiments we performed.
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Fig. 5.10: Two tests seeking a correlation between lag duration and phage
resistance. (a) For each maltotrise concentration the duration of lag is plotted
versus the total infectivity phenotype for that bacterium and then a robust lin-
ear regression is performed. None of the regressions are significantly non-constant,
apart, perhaps, the regression at 250µg/ml but even here any possible correlation is
very weak. Note: different colours denote data for different bacterial strains. (b) A
Kruskal–Wallis one-way analysis of variance performed on bacteria exhibiting two
classes of resistance phenotype (either complete library-pan-resistance or else being
susceptible to at least one phage) shows no evidence of different lag times between
those two classes.
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Fig. 5.11: Metabolic data seeking correlations between yield and lag time at different
resource concentrations. Note: different colours denote data for different bacterial
strains.
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Fig. 5.12: Metabolic data seeking correlations between yield and lag time at different
resource concentrations. Note: different colours denote data for different bacterial
strains.
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5.7 The Rate-Yield Trade-Off (RYTO)

Supporting the idea of a rate-yield trade off is the notion of a branched metabolic

pathway, such as that found in glycolytic-TCA structure found in almost all living

cells. A schematic of this structure that is sufficient to describe a RYTO is shown

in Figure 5.13 where the legend describes the verbal rationale behind how a RYTO

with respect to ATP production is derived.
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Fig. 5.13: A RYTO in terms of ATP yield as a function of the rate at which substrates
are processed can be the result of a branched metabolic structure. The middle plot
shows that when resource supply is low, hence so is the rate of ATP production, all
metabolic intermediates, X, are processed to form the product Y because enzyme
E2 is not saturated. The right-most plot shows that when substate supply is high,
E2 is saturated and so X is completely lost to an intermediate, P, rather than via the
ATP-producing step to Y, P then diffuses away and possibly out of the cell itself,
whereupon the substrate produce n units of ATP very quickly, because of the high
substrate concentration, rather than the full quota of n+m units; this is therefore
a fast but inefficient pathway from the perspective of ATP production.This image
and following model are used from a previous publication with permission [83].

It can be shown [13] that if c(S0) is the ATP yield of the pathway schematic in

Figure 5.13 then its branched structure gives the form of a RYTO, with substrate

supply concentration S0, whereby

c(S0) = chi
1

1 + pS0

+
pS0

1 + pS0

clo. (5.2)

Here chi represents the highest possible yield (obtained at the lowest sugar) and clo is

the inverse, with p being the phenotype that controls the rate of yield decrease with

increasing sugar. Although this has been derived from the perspective of an ATP-

RYTO, we will apply this model to whole-population estimates that are pertinent

to a growth-efficient RYTO, assuming that ATP yield and ATP production rate are

correlated with cell yield and the rate of cell growth.

5.7.1 A within-strain rate-yield trade off

Figure 5.14 shows that the bacterial strains exhibit growth rate-yield data that is

consistent with the mathematical model in equation (5.2), note how yield declines

to a plateau as the growth rate increases because of increasing sugar concentration.

Figure 5.14 also shows that some of the strains, according to a nonlinear regression
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test, can have constant yields and the relatively likelihoods of the fit of a constant

model versus equation (5.2) are shown in the legend of the figures. Thus, while the

RYTO can be present in particular strains, it need not be in all cases. The growth

rate and yield relationship is explicitly shown in Fig. 5.16.
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Fig. 5.14: The within-strain RYTO for six different strains from the bacterial li-
brary on top of which is superimposed datafits of the theoretical model specified by
equation (5.2). The data on the x-axis is sugar concentration, note, but we still call
this a RYTO because growth rate is positively correlated with sugar supply at these
concentrations. ‘RL’ denotes the relative likelihood of a nonlinear regression versus
a constant (no yield) model.

5.7.2 RYTO, non-Monod, growth kinetics

Theoretical approaches to representing growth rate as a function of extracellular

resource concentration have taken the following approach for many decades. The

126



a)
0 0.5 1 1.5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

x 10
−3

growth rate (per h)

y
ie

ld
 (

O
D

6
0
0
 p

e
r 

m
a

lt
o

3
)

 

 
wt data (blue is low sugar, red is high sugar)

theoretical RYTO

b)
0 0.5 1 1.5 2 2.5

0

0.2

0.4

0.6

0.8

1

1.2

1.4
x 10

−3

growth rate (per h)

y
ie

ld
 (

O
D

6
0
0
 p

e
r 

m
a

lt
o

3
)

 

 
2b data (blue is low sugar, red is high sugar)

theoretical RYTO

c)
0 0.5 1 1.5

0

0.5

1

1.5

2

x 10
−3

growth rate (per h)

y
ie

ld
 (

O
D

6
0
0
 p

e
r 

m
a

lt
o

3
)

 

 
26a data (blue is low sugar, red is high sugar)

theoretical RYTO

d)
0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

x 10
−3

growth rate (per h)

y
ie

ld
 (

O
D

6
0
0
 p

e
r 

m
a

lt
o

3
)

 

 
56a data (blue is low sugar, red is high sugar)

theoretical RYTO

e) 0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

−3

growth rate (per h)

y
ie

ld
 (

O
D

6
0
0
 p

e
r 

m
a

lt
o

3
)

 

 

70a data (blue is low sugar, red is high sugar)

theoretical RYTO

f)
0 0.5 1 1.5 2

0

0.5

1

1.5

2

x 10
−3

growth rate (per h)

y
ie

ld
 (

O
D

6
0
0
 p

e
r 

m
a

lt
o

3
)

 

 
95a data (blue is low sugar, red is high sugar)

theoretical RYTO

Fig. 5.15: The within-strain RYTO for six different strains from the bacterial li-
brary on top of which is superimposed datafits of the theoretical model specified by
equation (5.2). The data on the x-axis is growth rate, note.

idea is that the extracellular resource diffuses, randomly attaches to a transporter,

with so-called affinity 1/K, which then translocates the molecule into the periplasm

of the bacterium, or perhaps its cytoplasm, and this happens at a maximal rate

per unit time, V . Various simplifying assumptions of this nature are then used to

propose that the rate of change of the concentration of the resource in the periplasm

(or cytoplasm) of the cell is given by

U(S) =
V S

K + S
,

the ‘U ’ denoting the fact that this is an uptake rate of a substrate, S. In order to

turn this quantity, an uptake rate, into a growth rate of a cell, one typically assumes

that the intracellular resource is metabolised into biomass with a given efficiency, or
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conversion constant, c, so that the growth rate of the cell is

G(S) = c× V S

K + S
. (5.3)

However, if we acknowledge that c can also depend on S when the latter is a sugar

that is metabolised by the cell, because of the RYTO is may be necessary to use the

trade-off form for c described above in equation (5.2), and so

G(S) = c(S) · V S

K + S
=

(
chi

1

1 + pS
+

pS

1 + pS
clo

)
· V S

K + S
.

We therefore sought strains in the library for which this composite Monod-RYTO

model is a better descriptor of growth rate data than the pure Monod model in

(5.3).
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RYTO−adjusted regression (adj R
2
 ≈ 0.975, RL ≈ 0.0291)

Fig. 5.16: An example of a bacterial strain where a Monod description may need
to be modified to include the RYTO in order to get an appropriate description of
growth rate data as a function of sugar supplied.

Although a RYTO was present in all strains measured, we found only one strain

that showed significant evidence of requiring a RYTO modification of the standard

Monod model in order to accurately model the effect of sugar concentration on

growth rate. Goodness of model fit was according to a relative likelihood criterion

based on AIC values of the respective datafits. It is shown in Figure 5.16. (Akaike

informational criteria, a measure of the relative quality of statistical models for a

given dataset).

5.7.3 A within-strain RYTO, but a between-strain RY Trade-

Up!

Figure 5.17 shows that when one plots scattergrams at all the different maltotriose

concentrations tested of growth rate versus yield data, one obtains a positive corre-

lation between these traits. One might have anticipated that the RYTO observed
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above within-strain also extended to the between-strain dataset, but it does not.

The mechanistic and genetic basis for observing this behaviour in the data are not

clear.
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Fig. 5.17: A series of scatter plots of rate and yield data show the existence of a
between-strain rate-yield trade-up (RYTU) that is observed at all but one of the
maltotriose concentrations tested (namely above 2.5µg/ml where the data is noisy).
Note: different colours denote data for different bacterial strains.

The evolutionary consequences for the absence of a RYTO and instead a RYTU

are the following. It forces one to make the prediction that when this strain of E.coli

evolve in the presence of phage, there may be strains who can increase their growth

rates through adaptive evolution and, moreover, those strains are simultaneously

capable of increasing their metabolic efficiency. It provides the possibility that

there therefore exist super-mutants who can optimise their ‘fitness’, however the

latter term is defined in relation to some combination of growth rate and yield.

Thus a RYTU would appear to preclude an evolutionary trajectory towards the

coexistence of two specialised mutants, one that specialises in terms of growth rate

and the other than has a slower rate of growth but gains by being more efficient;

this appears to not be possible among the strains we have isolated in the presence

of phage.
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5.8 Growth-Resistance Trade-Offs and Two ‘su-

perstrains’

It is often assumed, when faced with a stressor like antibiotics or phage, that different

bacterial genotypes expressing resistant and susceptible phenotypes coexist because

there are fitness costs of resistance. This is based on the idea that there is a truism

of living systems whereby entities are either generalists (‘jacks of all trades’), or

specialists (masters of one particular trade). Thus, based on this idea, a phage-

resistant genotype should pay a fitness cost in terms of its intrinsic ability to divide,

for example the bacteria better able to resist phage are less able to metabolise or

transport a sugar needed for growth. This particular case is the subject of our study,

we go in search of such fitness costs and ask whether resistance to phage does result

in impaired metabolism. We shall find that it does not and, in fact, we see features

in our data of quite the opposite behaviour: masters of all trades can exist.

5.8.1 Costs of resistance: no evidence for growth-resistance

trade-offs

We have a sufficiently well-structured dataset to probe hypotheses on the relation-

ship between phage resistance and metabolic traits so we are now interested in

whether, or not, there are costs of phage resistance exhibited by the bacteria. To

summarise the totality of findings in this direction, we will show below that these

questions can be subtle. While there may be costs in the mean, when taken over

all sub-groups from the library, there are also reasons why certain strains do not

exhibit costs at all. These are the ‘superstrains’ we described at the start of the

chapter.

We first turn to Figure 5.18 which shows that there is little clear and consistent

evidence of a negative, or indeed positive, correlation between growth rate and phage

resistance. Thus, we have no evidence to claim the existence of costs of resistance

in our library based on this data. Moreover, Figure 5.19 also shows there is no

basis on which we can claim a negative, or positive, correlation between yield and

phage resistance. So, again, there is no evidence here of metabolic costs of phage

resistance.

Figure 5.20 provides further evidence that there are no costs of phage resistance,

according to the data we have gathered. In Figure 5.20(a) a scatterplot shows

the change in growth rate of each bacterial genotype from the wild-type (ρ(φ) =

φmut/φwt where φ denotes the phage susceptibility phenotype) strain versus the

change in infectivity from the wild-type strain (ρ(r) = rmut/rwt). It shows that

while the latter decreases with respect to wild type, as indicated by the values of

ρ(r) being less than unity for all genotypes, meaning that the mutants are more

phage resistant on average than the wild-type, the former, ρ(φ), shows no evidence
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Fig. 5.18: Two tests seeking a correlation between growth rate and phage
resistance. (a) For each maltotriose concentration growth rate is plotted versus the
total infectivity phenotype for that bacterium and then a robust linear regression
is performed. Although just one of the regressions is significantly non-constant,
namely the regression at 10µg/ml, even here any possible correlation is very weak.
Note: different colours denote data for different bacterial strains. (b) A Kruskal–
Wallis one-way analysis of variance performed on bacteria exhibiting two classes of
phage resistance phenotype (either above or below half of the maximal susceptibility
observed to all phage) shows no evidence of differential growth rates between those
two classes.

at all of decreasing. Quite the opposite is, in fact, observed.

Importantly, Figure 5.20(b) shows three ‘outliers’ (56a, 2b, 26a) that are high-

lighted. These are bacteria that are both pan-resistant with respect to the library of

isolated phage but which also exhibit growth rates that are greater than the median

and mean of the phage-susceptible class of bacteria. These are therefore candidates

for masters of all trades, the ‘superstrains’ whose existence we alluded to in earlier

discussions.

One the left of Figure 5.21(a) we see mathematical model fits of a Monod-only
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Fig. 5.19: Two tests seeking a correlation between yield and phage re-
sistance. (a) For each maltotriose concentration yield is plotted versus the total
infectivity phenotype for that bacterium and then a robust linear regression is per-
formed. Although just one of the regressions is significantly non-constant, namely
the regression at 40µg/ml, even here any possible correlation is very weak. Note:
different colours denote data for different bacterial strains. (b) A Kruskal–Wallis
one-way analysis of variance performed on bacteria exhibiting two classes of phage
resistance phenotype (either above or below half of the maximal susceptibility ob-
served to all phage) shows variable evidence of differential yields between those two
classes that could be interpreted as both a trade-up and a trade-off in different cases.
In short, the data has variable characteristics between conditions.

form (the RYTO information is not included as part of the fits) to the growth rates

of all the bacteria in the library as a function of maltotriose. The wild-type fit in

Figure 5.21(a) is shown in blue. Now, pan-phage-resistant bacterial genotypes are

shown in black and phage-susceptible genotypes are shown in grey and the question

we have is whether any of these datafits lies above the wild-type datafit for all

modelled sugar concentrations? Therefore, to examine this more closely, on the

right of Figure 5.21(a) we have the same information as on the left, except that
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Fig. 5.20: Further evidence that there are no costs of phage resistance.
In (a) we see a scatterplot of the entire dataset which shows the change in growth
rate of each bacterial genotype from the wild-type (ρ(φ)) strain versus the change in
infectivity from the wild-type strain (ρ(r)). It shows that while the latter decreases
substantially with respect to wild type, as indicated by the values less than unity,
meaning that the mutants are more phage resistant on average than the wild-type,
the former shows no evidence of decreasing. This is true both in the mean and in
the sense that some strains are clearly both more resistant than the wild type strain
and have greater growth rates. (b) This is pair of ANOVAs in which the mean
growth rate (left) and the maximal observed growth rate (right) are analysed for
two classes of bacteria: one that is pan-phage-resistant with respect to this library
of and another which is susceptible to at least one phage. Neither are able to reject
the hypothesis that pan-phage-resistant bacteria have lower growth rates, moreover
three ‘outliers’ (56a, 2b, 26a) are shown. These are bacteria that are both pan-
resistant and also exhibit growth rates that are greater than the median (and mean)
of the phage-susceptible class of bacteria.

now only some of the genotype fits are plotted and the colour coding is different

to the left plot. In red are datafits for genotypes that are pan-phage-resistant and

highlighted in bold red are two of these which also possess the property of having

faster growth than the wild-type at all maltotriose concentrations tested. In other

words, we have identified two ‘superstrains’: 56a and 26a.

We now wish to address the question of how these two bacterial genotypes might

have achieved the feat of resistant phage much better than the wild-type bacterium
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Fig. 5.21: An initial indication as to why there are no costs of phage
resistance. One the left of plot (a) we see mathematical model fits (of a Monod
form) to the growth rates of all the bacteria as a function of maltotriose supplied, the
wild-type fit is shown in blue. Pan-phage-resistant bacterial genotypes are shown in
black and phage-susceptible genotypes are shown in grey. On the right we have the
same information except only some of the genotype fits are plotted and the colour
coding is different. In red are datafits for genotypes that are pan-phage-resistant
and highlighted in bold red are two of these which also possess the property of
having faster growth than the wild-type at all maltotriose concentrations tested.
For completeness, plot (b) shows that there are many bacterial genotypes which are
fitter (in the sense of exhibiting faster than wild-type growth) at some maltotriose
concentrations but which are less ‘fit’ at other maltotriose concentrations. Thus,
these genotypes exhibit a mixture of costs of resistance and sometimes they do not
have any costs at all.

and also in having much better metabolic phenotypes like growth rate across the

entire spectrum of maltotriose concentrations.

Just for reasons of completeness we present Figure 5.22 which shows a range of

data pertinent to demonstrating the existence of ‘superstrains’ 56a and 26a, more-

over strain 2b displays some of the features but from the quality of the data associ-

ated with this strain we refrain from adding it to the list of monsters.

Each subplot of Figure 5.22 shows three strains of bacteria and the goodness

of fit of the mathematical models used to determine the list of ‘superstrains’. It

compares these models to the analogous model fitted to the wild-type growth rate
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Fig. 5.22: Comparisons of growth rate model datafits (of a Monod form) to the
analogous model fitted to the wild-type growth rate data, the fits for the ‘superstrain’
genotypes (26a and 56a) are above that of the wild-type.

data, showing that the fits for the ‘superstrain’ genotypes are significantly above

that of the wild-type.

5.9 The protein homotrimer of interest: LamB

LamB is a protein encoded by the mal operon which is responsible both for the

uptake of extracellular maltotriose, and other maltodextrins, but to which the phage

λ is able to bind. For this reason, LamB is often known as the λ receptor and the

entire porin is formed from a homotrimer of three LamB proteins, as shown in Figure

5.23.

After the co-evolution experiment had been performed, bacteria were isolated

from mono-culture, and lamB was sequenced using Sanger sequencing. In this way,

all unique mutations were detected, and each strain caryring a unique mutation was

assigned a code. The 54 unique mutations comprise the library of mutants used in

this study. Co-evolution and sequencing work was carried out by Justin Meyer. In

order to compare two protein structures of two different LamB mutants we perform

a so-called morphometric analysis allied to a range of different clustering techniques.

These are applied to the α-carbon structure in each folded LamB monomer in an
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side view top view

Fig. 5.23: Two views of the wild-type E.coli B(REL606) maltoporin formed from a
trimer of the products of the lamB gene (produced using JMol).

attempt to determine where across LamB the greatest changes are observed, this

is typically done with respect to the wild-type protein structure because we are

interested in evolutionary changes in the protein’s structure. In order to perform this

morphometric analysis a series of algorithms was implemented by Prof. Beardmore,

following the methodology set out in Appendix 5.1 (Methods and Material). Briefly,

alpha-carbon data was extracted from a protein folding program (I-TASSER) and

proteins were scaled to be of an equal size. Then a 3d point-matching alogorithm

from [88] was implemented to determine the distance between matched points, for

example between the ancestral protein type, and an evolved maltoporin containing

SNPs or Indels.

5.9.1 ‘Superstrain’ pleiotropy: spatially-localised protein changes

with a dual function

Using the algorithms presented in the previous section we can begin to understand

where on the LamB protein the geometrically largest changes have occurred because

of the selection for phage resistance in the presence of maltotriose. This information

is summarise in Figure 5.24 that is based on the determination of cluster centres and

clusters using the mean shift algorithm (with a fixed bandwidth for all subfigures)

applied to a kernel density estimate of all the distances from mutant proteins to the

wild-type.

This procedure first calculated all pair-wise geometric distances using the dunmatched

function defined in the above matching algorithm, call this matrix (Dij) with the

wild-type LamB protein situated at i = 0 for convenience. The largest α-carbon

changes for those proteins that cluster at certain distances from the wild-type are

then plotted on the wild-type version of the protein. Figure 5.24 shows that dif-

ferent protein subsets of the entire library have changes that cluster at particular

locations on the wild-type LamB protein, not randomly across the protein. These

136



a)

 

 

cluster centre 1 (all mutations)

2

3

4

5

6

7

8

9

10

11

12

13

14

15

b)

 

 

cluster 1 (complete resistance mutants)

2

3

4

c)

 

 

cluster 1 (indels only)

2

3

4

5

6

7

d)

 

 

cluster 1 (SNPs only)

2

3

4

5

6

7

8

9

Fig. 5.24: LamB ‘movement clusters’ of different genotypes and phenotypes obtained
using the mean shift algorithm. (a) Shows cluster centres associated with changes
assessed across the entire library of LamB genotypes. (b) Shows clusters (not only
the centres) determined by the mean shift algorithm associated with the pan-phage-
resistant subset of the library. (c) Shows clusters determined by the mean shift
algorithm associated with the insertion and deletion mutations subset of the library.
(d) Shows clusters determined by the mean shift algorithm associated with SNP-only
mutations in the library.

locations are shown for mutations that are either SNPs, indels or associated with

pan-phage-resistant genotypes. Note that there are two particular regions on LamB

that have the greatest geometric movement following the selection procedure that

created the library, these are in ‘outer loop’ regions and also in the ‘greasy slide’.

The latter is a region of aromatic residues via which maltotriose gains entry into

the porin and thereafter into the periplasm of the cell. The outer loops reside in the

extracellular part of the protein that is responsible for the docking of the phage’s J

protein on its tail fibre.

If Figure 5.24 represents a summary of the totality of evolutionary changes across

the LamB protein, analogous structural changes exhibited by the ‘superstrain’ geno-

types will show how LamB can be altered by specific mutations that have a dual

function of both providing phage resistance and increasing the uptake of maltotriose.

Thus, in Figure 5.25 we see how the LamB protein of strains 26a and 56a have

moved to accommodate the mutations and the largest movements are highly lo-
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Fig. 5.25: Localised LamB ‘movement clusters’ of two the ‘superstrain’ genotypes.
The left-most plot shows how each α-carbon changes in x, y and z-space and these
changes are highly localised to one region of the protein which are induced in the
centre and right plots: the data is relevant to strains (a) 26a and (b) 56a.

calised in the case of 26a, slightly less so in the case of 56a because, in the latter

case, the regions that are deemed to have moved from the wild-type protein by the

matching algorithm are described by multi-bump structures (see leftmost plot of

Figure 5.25(a) and (b)).

5.9.2 The lock and key phase transition hypothesis: dis-

tance in protein space correlates with phage resistance

Phage-bacterial binding is often said to follow a lock and key property whereby the

bacterial transporter in the outer membrane has a lock structure which is fitted by

the key of the phage tail fibre protein [35]. With this in mind, we hypothesised

that bacterial proteins that are further from the wild-type in protein space are

also less susceptible to the wild-type phage. We tested this using the data shown

in Figure 5.26. This shows how deviation from the wild-type protein in Euclidean

distance measure correlates in a nonlinear manner with deviation from the wild-type

susceptibility vector to each phage.

However, the data is quite sparse because of a cluster in the protein data at mid-

range protein distances which, nevertheless, seems to be consistent with a potential

for a ‘phase transition’. Namely, there is a key distance from the wild-type protein of

around 100 units above which it appears to become difficult for the wild-type phage

to attach to the evolved LamB. This can be seen in Figure 5.26(a) which shows a

sudden rise in Euclidean deviation from the infectivity (aka susceptibility) of the
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Fig. 5.26: (a) A sigmoidal model fit is shown on data that indicates a potential
relationship between the distance (dmatched) from wild type LamB in protein space
with the distance from wild type in the susceptibility to wild type phage phenotype.
A greater distance from WT indicates reduced susceptibility to phage. (b) A log-log
transform of the data in (a) is shown and two different linear fits are presented, one
accounting for noise in the y direction, and one accounting for noise in both x and
y directions (a Deming regression). Both are significantly non-constant, indicating
a positive correlation in the data. The 95% confidence interval is indicated for the
slope of the Deming regression (blue).

wild-type bacterial strain. 5.26(b) then uses two different measures of correlation to

assess whether protein distance to wild-type LamB is correlated with this infectivity

phenotype by taking logs of the data in two different senses and then applying

two different linear regressions. The first (in grey) is a standard, robust linear

regression whereas the one presented in blue is a Deming regression which accounts

for potential errors in both the x and y data. Both of these indicate significant

positive correlations between protein distance and infectivity distance to the wild-

type.

We tested if this property remained when we added in not just the wild-type

phage but all the evolved phage too. Indeed, the property remains in terms of the

correlation between protein distance and susceptibility to phage; this can be seen in

Figure 5.27 where the same features can be noted there as in Figure 5.26. The same

is true of Figure Figure 5.28 which uses the unmatched α-carbon distance measure

as part of the data analysis.
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Fig. 5.27: (a) A sigmoidal model fit is shown on data that indicates a potential
relationship between the distance (dmatched) from wild type LamB in protein space
with the total susceptibility to all phage phenotype. (b) A log-log transform of the
data in (a) is shown and two different linear fits are presented, one accounting for
noise in the y direction, and one accounting for noise in both x and y directions
(a Deming regression). Both are significantly non-constant, indicating a positive
correlation in the data. The 95% confidence interval is indicated for the slope of the
Deming regression (blue).
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Fig. 5.28: (a) A sigmoidal model fit is shown on data that indicates a potential
relationship between the total protein distance (dunmatched) from wild type LamB
in protein space with the total susceptibility to all phage phenotype. (b) A log-log
transform of the data in (a) is shown and two different linear fits are presented, one
accounting for noise in the y direction, and one accounting for noise in both x and
y directions (a Deming regression). Both are significantly non-constant, indicating
a positive correlation in the data. The 95% confidence interval is indicated for the
slope of the Deming regression (blue).

Note that Figures 5.26, 5.27 and 5.28 use ‘log− log’ and ‘log(1 + ·)− log(1 + ·)’
transforms of the data. This is because the data contains zeros where the bacteria

are resistant to all known phage and so a log− log transform forces some datapoints

to become Inf in Matlab which are then not plotted. Thus a similar transform was

used that does not have this property to ensure this procedure did not introduce

any artifactual results because of the loss of data.

From the above analysis that protein structure could correlate with resistance

to phage properties, we then asked whether clustering strains according to pro-

teins using the distance matrix (Dij) defined above would also cluster like phage-

susceptibility phenotypes. The result of this analysis is represented in Figure 5.29.

Figure 5.29 is based on the matched distance metric, dmatched, shows how like

proteins cluster within the dendrogram with like resistance phenotypes that are
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Fig. 5.29: A dendrogram created using the protein distance matrix (Dij) to which a
hierarchical spectral clustering algorithm has been applied. The analysis is based on
a choice of fifteen clusters which are indicated as a numerical label on each bacterial
genotype. The circular blobs are sized and colour coded according to the phage-
susceptibility phenotype determined from the prior image analysis. Open white
circles with black edges are pan-resistant bacteria.

marked with a coloured blob. There are some visible exceptions to this, so for ex-

ample strain 27a has been clustered into a region containing a large number of phage

that are highly resistant, despite 27a being highly phage susceptible. Similarly, 65b

has been placed into a region containing many phage-susceptible strains despite it

being completely phage resistant (with respect to the genotypes in the library).

As the clustering process using dmatched contained these anomalies, we then also

used dunmatched and followed the same hierarchical cluttering procedure to see if

it would provide a better discrimination of phage resistance properties based on

LamB structures. So, in a similar vein we present Figure 5.29 that is based on

the unmatched distance metric, dunmatched. It also shows how like proteins cluster

within the dendrogram with like resistance phenotypes that are marked with a

coloured blob. Again, there are visible exceptions to this, so strains 27a and 47a

have now been clustered into region containing large numbers of phage that are

highly resistant, despite them being highly phage susceptible. Similarly, 56a has

been placed into a region containing many phage-susceptible strains despite it being

phage resistant.
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Fig. 5.30: A dendrogram created using an ‘unmatched’ protein-to-protein distance
matrix to which a hierarchical spectral clustering algorithm has been applied. The
analysis is based on a choice of fifteen clusters which are indicated as a numerical
label on each bacterial genotype. The circular blobs are sized and colour coded
according to the phage-susceptibility phenotype determined from the prior image
analysis. Open white circles with black edges are pan-resistant bacteria.

5.9.3 Summary

We utilise a library of REL606 E.coli that have been co-evolved with lambda phage

to test the effect on co-evolution on fitness, and whether predictions can be made

as to the resistance of bacteria to phage by the change in the maltoporin protein.

We also demonstrate that there are trade-offs and trade-ups present within the

library, with some superstrains showing an increase in resistance, growth rate and

yield. Figure 5.28 shows that as euclidean protein distance increases from the wild-

type, the susceptibility to phage decreases. However, this does not occur in a linear

fashion, but rather demonstrates a switch-like response, that a certain minimum

change in protein distance is required to confer resistance, and this change can

happen in a narrow range of protein distance. We therefore conclude that while

LamB is a potential predictor of phage resistance, it is not a perfect predictor.

This is not surprising, there are many ways a bacterium can resistant exploitation

by phage that involve the targeting of phage DNA once it has entered the cell as

part of the CRISPR-Cas mediated DNA editing system that provides bacteria with

an adaptive immune response. Thus it is possible to have a mutant phage with a

wild-type LamB that could, in principle, be partially phage resistant.

Interestingly we again see a trade-off between lag phase length and a growth

parameter, in this case, growth rate. Because the length of the lag phase is not
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frequently quantified in studies searching for trade-offs, there is little discussion on

this effect in literature, and yet it is an important growth parameter to assess in

order to understand the growth kinetics of the bacterial population. We also show

that within each strain there is a consistent RYTO, i.e., as sugar concentration is

increased, rate increases and yield decreases. However, when looking at trade-offs

between strains, we observe a trade-up between rate and yield; that is to say that

at any given maltotriose concentration, a high yield will be correlated with a high

rate.
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Chapter 6

Selection for efflux:

Non-Monotone Selection for

Resistance in a Spatial Antibiotic

Gradient
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6.1 Overview

By implementing an analogy of the laboratory protocol used to determine antibiotic

susceptibility, the so-called E-test, we are able to quantify aspects of selection for

antibiotic resistance in a spatial drug gradient. The principle findings of this chapter

are:

1. Diffusion of antibiotic in this experiment is described by a power law.

2. One might expect greater drug dose to correlate with lower population densi-

ties, we show that this expectation is not met in practice.

3. Reasons for this are both ecological and evolutionary.

4. Using a combination of theoretical modelling and spatially-extended labora-

tory microbial growth experiments, we show that the growth rate of a bacterial

population with genetically distinct subpopulations can be maximised at in-

termediate distances from the antibiotic drug.

5. Each subpopulation is distinguishable by the number of resistance genes they

carry and can have a maximal grown rate at a different spatial locations.

One prediction from this observation is that microbes growing in an antibiotic

gradient can exhibit, at least temporarily, a certain ‘bullseye’ pattern formed

from concentric rings. Experiments using Escherichia coli provide evidence

for the existence of these rings and we show, using genetic manipulation of the

resistance genes in question, that such a genetic manipulation can move the

location of this pattern.

This chapter represented the work of a within-lab collaboration between the

following people who each contributed to different aspects of the project. Their

contributions are detailed as follows.

R. C. Reding Roman: implemented experimental protocols, analysed data,

designed experiments and mathematical models;

M. Hewlett: designed and implemented experimental protocols, analysed data,

aided development of custom imaging system;

F. Gori: implemented computer codes to simulate mathematical models;

S. Gardner: developed a multi-fluorescence video capture device based on an

Arduino controller and a commercial camera;

I. Gudelj: designed experiments, provided funding for the project from a

NERC grant;

R. Beardmore: provided funding from an EPSRC grant, wrote and analysed

mathematical and computer models.
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6.2 Introduction: selection for resistance at

different dosages

The purpose of this study is to test the following hypothesis: is it true that

a greater antibiotic dose necessarily yields fewer bacterial cells? The Eagle

effect of decreased penicillin effect at high doses, observed many years ago

[39], provides one of the earliest answers to this question, and that answer is

negative for it can be the case that bacterial densities increase with increasing

antibiotic dose. However, how Darwinian selection for resistance might also

produce datasets like those reported by Eagle, and others, have received little

attention in the literature. We therefore study this question from an evolu-

tionary and ecological perspective, focussing on how resistance by efflux can

contribute to datasets that also lead to the rejection of the above hypothesis.

In short, we will conclude that a phenomenon known as competitive release

can combine with selection on gene duplication mutations that mediate drug

resistance by efflux to produce spatiogenomic patterns in which more drug

need not correlate with fewer bacteria.

One of the most common assays performed in hospitals is the antibiogram [106,

91], it is an in vitro test for susceptibility to a range of antibiotics. At the core

of antibiotic susceptibility testing is a simple laboratory test that determine

zones of inhibition, these are often performed using manufacturers’ so-called

E-strips [117]. The E-strip is impregnated with a gradient of antibiotics and it

is placed onto a bacterial lawn whereupon killing and growth inhibition of some

of the bacteria can result. From this killing, a clearance appears on the lawn

up to a certain drug concentration from which one can read concentrations at

which the microbe is sensitive to the drug used.

As this protocol by its very design creates a spatial gradient of antibiotic, we

are interested in ecological and evolutionary features that might result from the

implementation of such a test. The bespoke implementation in our laboratory

of an analogue of the test is illustrated in Figure 6.1.

This drug susceptibility protocol is performed on an agar plate containing

minimal growth medium (M9), a carbon source (glucose was used in all cases,

at a concentration of 0.2%), salts and amino acids. At the centre of the plate

a circular region of agar is excised by hand and replaced with agar that has

been impregnated with an antibiotic at a controlled dose, an antibiotic gradient

therefore ensues across the plate. Soft agar is used, as this allows bacteria to be

inoculated throughout the agar, not just on the surface. This was done so that

a homogeneous inocula could be achieved throughout the whole plate. Plates

were incubated at 30◦C in static incubator, or in our custom image system.
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Fig. 6.1: A schematic of our implementation of the antibiotic susceptibility test: an
antibiotic drug held at high dosage at the centre of an agar plate diffuses out into
a bacterial lawn, producing a killing zone or zone of inhibition where by the higher
the dose, the larger the zone.

Photographs were taken every 12 hours for 3 days, or every 20 minutes in cases

where a time-lapse video was taken.

It is thought that antibiotic gradients are associated with rapid selection for

resistance, the idea being that a microbial population is exposed to small

increments of drug which can be easily dealt with. A little like the tale in

which a frog that can be boiled slowly by steadily increasing the temperature

of the water of the pan in which it sits, so a microbe is thought to readily

survive small increments in antibiotic dosage when an abrupt change would

be lethal [114].

We therefore use a laboratory model system in which changes in antibiotic

resistance can be measured over short timescales. This system sees the bac-

terium Escherichia coli K12, strains TB108, MG1655 and AG100, treated with

tetracycline and macrolide antibiotics, we use this combination because K12

has a clinically important efflux pump [18] formed from the products of the

operon acr and the protein TolC [74]. Moreover, acr resides in a genomic region

that can be recombined to produce duplications and triplications very rapidly

under antibiotic selection pressure involving macrolides and tetracyclines [70].

6.2.1 Increases in the zone of inhibition of MG1655 and

AG100 with dose are consistent with linear diffusion the-

ory

The fundamental solution of the linear diffusion equation

At = σAxx,
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(a)

0.1 Di↵usion and clearance zone in MG1655 and AG100

For both MG1655 and AG100 strains, bacteria were inoculated into soft agar supplemented with 1% glucose.
The central circle of the plate was made with concentrations of doxycycline ranging from 1xMIC (all doses refer
to concentrations used in liquid media) to 128xMIC, in 8 two-fold steps. The clearance zone was measured by
fitting a circle to the radius of no growth, and by measuring pixels until growth reached an arbitrary threshold
(e.g., 0.3 ⇤ maxgrowthintensity). The raw pictures, profiles and clearance zones are shown below.

Raw image − false colour

Polar Transformed Image

Figure 1: Raw pictures of AG100 at various Dox concentrations.
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Figure 2: AG100 profile plots, whereby pixel intensity (brightness) is used as a proxy for optical density, and
thereby, growth.

1

1xMIC 2x 4x 8x 16x 32x 64x 128x

(b)
0 20 40 60 80 100 120

0

20

40

60

80

100

c
le

a
ra

n
c
e

 z
o

n
e

 r
a

d
iu

s
 (

p
ix

e
ls

)

drug concentration at centre (xMIC)

 

 
power law: coefficient 95% CI (0.444,0.625)

data (mean ± 95% CI)

0 20 40 60 80 100 120
0

20

40

60

80

100

c
le

a
ra

n
c
e

 z
o

n
e

 r
a

d
iu

s
 (

p
ix

e
ls

)

drug concentration at centre (xMIC)

 

 
power law: coefficient 95% CI (0.403,0.508)

data (mean ± 95% CI)

Fig. 6.2: (a) Raw data: an image of a bacterial lawn (in false colour) showing how
the zone of inhibition on that lawn increases in area with increasing dose, here at
1,2,4,....,128 times the MIC dose determined in planktonic culture conditions. (b)
The increase in area for the tetracycline drug for strains MG1655 and AG100 follow a
power law with coefficient close to a value of two: a quadratic. This is consistent with
increases in zone of inhibition being described by a threshold killing model whereby
escape of the drug fro the centre following a diffusion equation, as shown in the
text (Statistical note: correlation coefficients are R2 = {0.898, 0.959} respectively,
F-statistics versus constant models are F = {728, 1930} and corresponding p-values
are given by: p = {1.43 · 10−82, 3.45 · 10−115}.)

on an infinite two-dimensional domain with Dirac delta initial condition of

mass Ac is given by the expression

A(t) =
Ac

4πσt
exp

(
−(x2 + y2)/4tσ

)
which represents a temporally-modulated normal distribution, in which σ rep-

resents the diffusion rate. . If we assume, as is natural, that extracellular

and intracellular drug concentrations are highly correlated and, also, that the

concentration of A leads to bacterial killing provided it is of a sufficiently high

value, Ad say, a value known as the minimal bactericidal concentration (MBC),

then the zone of inhibition, or killing, is given by those pairs (x, y) for which

Ad < max
t>0

Ac
4πσt

· exp
(
−(x2 + y2)/4tσ

)
.

Let us write r =
√
x2 + y2. By taking the derivative with respect to t of the

function A(t) defined within the latter inequality and setting this derivative to

zero, we find this maximum occurs when t = r2/4σ. At this value of t there

results A(t) = Ac/(πr
2e). Hence, equating Ac/(πr

2e) with Ad, we deduce that

killing occurs up to a certain spatial radius, r < rd say, where

rd = (Ac/(Adπe))
1/2 .
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If we therefore examine plot of empirically-determined zones of inhibition, like

those in Figure 6.2, we ought to observe that the increase in radius of that zone

with the dosage applied scales like the square root of the drug dose. From a

nonlinear regression p1 + p2x
p3 , we observe that the value p3 = 1/2 lies within

the 95% confidence interval for the estimate of this power coefficient. We

therefore cannot reject the hypothesis that some value of the power coefficient

provides a better fit than the theoretically-predicted square root law. We shall

modify this simple diffusion-based theory later in order to provide more refined

predictions of the nature of population dynamics in the growth region outside

these zones of inhibition.

6.2.2 The AcrAB-tolC efflux system, the acr operon and

its duplications

Outside the zones of inhibition where drug dosage is so high that bacterial

killing is assured, we anticipate a complex set of population dynamics between

different tetracycline and macrolide resistance mechanisms available to the

E.coli cell. In particular, the E.coli chromosome carries genes that encode

proteins AcrA, AcrB and TolC which form a membrane-spanning efflux pump

that includes tetracyclines and macrolides in the family of small molecule

substrates that it can pump. Moreover, structure-altering mutations in AcrB

are known to mediate clinical resistance to a range of antibiotics [18].

R P R P R P
(a) (b)

R R

R

(c)

Fig. 6.3: (a) The basic structure of an operon: a promotor region in light grey,
followed by a gene coding a protein that represses transcription of the same operon,
followed by a second protein that encodes part of an efflux pump. We use the
green font colour to highlight the fact that we have a strain which has GFP fused
to the protein P, we also have strains without GFP fused to P. We have in mind
that P represents the A and B proteins of the acrRAB operon. (b) E.coli can
duplicate the number of copies of the acr operon in its genome which leads to a
novel network structure following duplication in which the two copies repress each
other. (c) Following a further duplication of one of the operons, a three-node network
results with all nodes repressing each other.

The efflux proteins AcrA and AcrB are encoded within an operon acr, that we

shall also write acrRAB to highlight the fact that the operon contains a triple
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of proteins, two of which form the pump but the first of which to be tran-

scribed encodes a repressor of the same operon. Now, acr is contained within

a genomic region in the E.coli chromosome that can be recombined into the

chromosome to form a large mutation with a high mutation rate consisting of

about 8% of the entire bacterial genome. Under strong selection for resistance

as encoded by this pump, this region has been observed to be duplicated in

doxycycline monotherapy and triplicated in a doxycycline-erythromycin cock-

tail treatment [70] within five days of exposure to these antibiotic conditions

at low population densities.

When these operons are duplicated, triplicated, or held at an even greater

copy number, this creates a growing network of ever stronger co-repression, as

depicted in Figure 6.3. Moreover, the acr operon is regulated by a complex

stress network that includes the mar regulon and regulatory mutations in this

operon, through marR can mediate expression of the AcrAB-TolC efflux pump

[70].

In order to illustrate how this pump is regulated during different phases of bac-

terial growth and in different antibiotic concentrations, we present the data

in Figure 6.4. Using an altered MG1655 strain in which GFP is physically

fused to AcrB, a strain denoted TB108. The latter strain, which allows us to

infer data on efflux pump numbers per cell, shows that the pump decreases

in concentration in lag and stationary phase, during the period up to 12h in

Figure 6.4(a). In the absence of drug as stationary phase is entered, the pump

is up-regulated to a value deemed to be unity for this discussion. A region of

stasis is reached from 18h onwards in which the pump concentration neither

declines nor increases. When the drug erythromycin is used in the growth

medium, a similar dynamic of regulation of the pump is observed except that

the final concentration per cell is much higher and it continues to increase

in stationary phase, to a value about 40% higher than that observed in the

absence of drug. Now, Figure 6.4(a) and (b) both show that an increasing

down-regulation of the acrB protein is observed as more drug is used in the

growth medium. Thus, while it might be hypothesised that more drug neces-

sarily leads to an increase in pumps expressed per cell, this statement is only

true for certain dosages. The opposite is also observed in a single season of

bacterial growth.
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Fig. 6.4: (a) A fluorescence microscope image showing the localisation of GFP within
a section of an E. coli cell close to the moment of division. Using this labelled strain
of bacterium we are able to deduce how the dynamics of regulation of the protein
AcrB correlates with the use of the macrolide, ERY. In the absence of the drug
(grey curve) the protein is down-regulated through lag and exponential phase (less
than 12h) before being up-regulated and then stabilising in stationary phase (12h
and beyond). When drug dosage is applied, first at a low dosage of 5µg/ml, the
concentration of AcrB per cell increases substantially to level about 40% higher at
its maximum in the absence of drug. However, as the dose is further increased
we observed a negative correlation between drug and AcrB concentration per cell.
(b) The negative correlation so-described is significant across a wide range of ERY
dosages, as shown by the results of determining a t-statistic (for the derivative of
GFP per cell with respect to dose) following a linear regression that is testing for
the increase or decrease in AcrB concentration as dose changes.
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Fig. 6.5: A (relative) dose-response of three strains of E.coli with respect to the drug
erythromycin using units of optical density measured at 600nm. The acr knockout
strain AG100-A is most sensitive to the drug, followed by TB108 which has a GFP
physically fused to AcrB, followed by the AG100 and eTB108 strains, which have
very similar dose-response profiles. TB108 is a derivative of E.coli K-12 MG1655,
with GFP fused to the acrB protein.
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Fig. 6.6: A spatial dose-response assay using strain eTB108 showing the population-
wide expression of AcrB using the proxy of green fluorescence levels (shown next
to optical density (i.e. white light)) at 24h (left) and 48h (right). eTB108 refers
to the strain TB108 which has been evolved for 8 days in Erythromycin, and has
a higher degree of resistance. This yields a per cell measure of AcrB concentration
which is done by calculating fluorescence observed per optical density. This measure
is shown in the inset of both plots which indicate a linear relationship between the
spatial coordinate and AcrB per cell, at least for this strain of bacterium, which
indicates a positive correlation between drug dose and pumps per cell. Moreover,
the levels of AcrB expression are higher at 24h than at 48h during conditions when
extracellular resources, like glucose, are at lower concentrations.
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6.2.3 A duplication of the acr operon does not double

protein AcrB concentration

Consider the following differential equation model of the acr operon shown in

Figure 6.3. The auto-repressive nature of structure, whereby the repressor R is

transcribed, followed by the efflux protein, P, and then R represses the further

transcription of the operon leads to one possible model of the following form:

d

dt
P = −d0P + ρM, (6.1a)

d

dt
M = −d1M + g

V

1 + kP
+M0. (6.1b)

Here d0 and d1 are degradation rates of the protein, P, and of mRNA associated

with the transcription of the operon. We assume that the concentration of the

repressor protein, R is proportional to that of P, which is reasonable given

they are encoded by the same operon. The parameter M0 is a basis level of

transition of the operon, gV +M0 is the maximal rate of transcription, where

the parameter g is a proxy for the number of copies of the operon held in the

genome.

In steady-state, equation (6.1a-b) satisfies the following. First, P = ρM/d0,

and therefore M0 + gV/(1 + kP) = d1m = d1d0P/ρ. This is a quadratic in P

which, when solved, gives

P = P∗(g) := α +
√

1 + β · g,

where α = (k−1 − ρM0/(d0d1))/(k−1 + ρM0/(d0d1)) and β = 4V ρ
d0d1k

(k−1 +

ρM0/(d0d1))−2.

Let us now assume that A(t) is the internal concentration of antibiotic in the

cell and that A0 is extracellular concentration of the drug, therefore,

d

dt
A = ϕ(A0 − A)− ρA · P. (6.1c)

where φ is the diffusion rate of A in or out of the cell, and ρ is the association

rate between A and P.

Then, in steady-state,

A = A∗(g) :=
ϕA0

ϕ+ ρP
=

A0

1 + ϕ
ρ
(α +

√
1 + β · g)

.

We therefore deduce, because of the auto-repressive nature of the efflux operon,

that internal drug concentration and concentration of the efflux protein itself,

scale as
√
g, the square root of the number of copies of the operon in the
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genome.

At this point we make the following remark. In the above, the value of M0

is assumed to be small and should in fact be g · M0 in this analysis. This

reflects the idea that if a gene is copied in the chromosome, then the basal

transcription rate could well, indeed should, increase approximately linearly

with the number of copies of the transcribed gene. This modification has

the effect of changing the terms α and β above so that they also depend on

g. However, if M0 is small enough, then the above predicted square root

dependence of A∗(g) on g will be largely unaffected, although there clearly

do exist parameter regions where that dependence will be lost. In short, the

replacement M0 → g ·M0 in the above manipulations makes clear in which

parameter regimes that can happen. Throughout the remainder, for simplicity,

we assume that α and β do not depend on g.

6.3 Theoretical predictions: the bullseye pat-

tern

6.3.1 The bullseye pattern: a heuristic derivation

Assume for now that environmental, meaning extracellular, antibiotics de-

grade sufficiently during the time of an experimental protocol in order for the

diffusion equation with decay to be a reasonable description of the dynamics

of the antibiotic molecules through space, ignoring uptake and efflux for the

moment. Doxycylcline degrades to methacycline and 6-epidoxycycline when

subjected to elevated temperatures and UV exposure. At 40◦C around 2% of

Dox has degraded to these products. Our results agree with these published

values, with Dox stored under our experimental conditions retaining over 95%

efficacy after 2 days. Thus we suppose that the parameter that was denoted

A0 above now depends on space and time in such a way that

At = σAxx − dA,

where A(x = 0, t) = Ac and A(x → ∞, t) = 0 hold for all t > 0. In steady-

state, this equation has solution

A = A(x) = Ac · e−(σ/d)1/2x.

Consistent with the experimental protocol depicted in Figure 6.1, if we assume

the existence of a diffusing extracellular nutrient, call it S, then we may also

introduce two further diffusion and decay parameters, this time for the carbon
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source glucose, and write S = S(x) = Sc · e−(Σ/D)1/2x. In this case it should

be clarified that the decay term for glucose actually refers to sugar lost to

the environment due to consumption by bacteria, not physical degradation.

We use the latter form as a coarse approximation of the true nature of the

nutrient concentration, S, because no cells can be found within the red, high-

drug region in the centre of Figure 6.1. However, cells are found inside the grey

region and they will begin to ingest those nutrients and grow, this will create

a nutrient gradient whereby more nutrients can be found inside the red region

than outside it. Thus, we assume for now that the nutrient has a similar form

to the drug profile. As this is a heuristic derivation, to makes matters simpler

still we will assume

S = S(x) ≈ Sc · e−(σ/d)1/2x.

Now, suppose that bacteria grow through time according to Michaelis-Menten-

Monod kinetics in the sense that their growth rate, G, can be written

G = G(S,A) = c · vS

κ+ S
· f(A),

where f(A) is an A-dependent inhibition function which slows growth as a

function of intracellular drug concentration, A. Thus, following the dependen-

cies in this simple model, G is a function of x. We are interested in where the

maxima of this function, G(x), might occur and so we now compute ∂
∂x
G(S,A).

So, we first note that

∂

∂x
G(S,A) = f ′(A)A′

cvS

κ+ S
+ f(A)

cvS′

κ+ S
− f(A)S′

cvS

(κ+ S)2

and as we are seeking maxima with respect to x of this quantity, we now

determine whether, or not, the latter expression has zeros. This occurs if and

only if

0 = f ′(A)A′S + f(A)S′ − f(A)S′
S

κ+ S
. (6.2)

Now, collating the information we have so far and using the fact that A rep-

resents intracellular drug concentration, by relating this to extracellular drug

concentration, we have A0 = Ac · e−(σ/d)1/2x and, therefore,

A =
Ac · e−(σ/d)1/2x

1 + ϕ
ρ
(α +

√
1 + β · g)

= A∗(g)
S

Sc
.

Thus, equation (6.2) has a solution if and only if the following quadratic in S

does too:

0 =
A∗(g)

Sc
· f
′(A)

f(A)
· S(κ+ S) + κ. (6.3)
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Fig. 6.7: Illustrating the theory behind a spatiogenomic bullseye pattern.
(a) The intersection of the line and the quadratic functions give the values of the
environmental sugar concentration, S, for which growth rate has a local extremum
(a maximum). In this illustrate example, it is only in those regions for which S
lies between 2 and 3µg/ml (at the intersection of the red and black lines) for which
growth rate can have a local maximum and, then, it is only for a certain range of
the number of additional gene copies. (b) The analogous plot to that given in (a),
but showing dependence on A rather than S. (c) From (a) and (b) we deduce that,
for the correct values of A and S, there can be local spatial maxima with respect to
growth rates whose location can change with the number of copies of the resistance
operon, acr.

We have reached a point beyond which we cannot easily continue without

specifying a form for the function f(A) which denotes the rate of decrease in

growth rate as a function of antibiotic. These are not generally well-understood

and, in the absence of any better model, we assume that we are working with

a protein synthesis inhibitor that binds to a pocket on the ribosome and that

growth rate is proportional to the number of drug-free ribosomes. If we impose

mass-action kinetics onto the following standard schema whereby antibiotic,

A, binds to the ribosome, R, to form the inhibited complex, [AR],

A+R[k−1]k1[AR]
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then one can readily derive

R

R + [AR]
=

1

1 + qA

as being the fraction of antibiotic-free ribosomes. We therefore set f(A) =

1/(1 + qA) where q is a parameter. Given this set of assumptions, we deduce

that equation (6.3) is equivalent to

S · (κ+ S) = qκ

(
qS +

Sc

A∗(g)

)
. (6.4)

Equation (6.4) can be re-written with respect to antibiotic too, whereupon it

takes the form

A ·
(
κS−1

c A∗(g) + A
)

= qκ (1 + A) . (6.5)

It is clear from the linearity and quadratic nature of their respective LHS and

RHS that equations (6.4) and (6.5) have solutions that depend on g and, as

illustrated in Figure 6.7, the growth rate function G, defined above, can have

local maxima in space that are located in different places for different values

of g. In order words, an antibiotic can create a spatio-genomic pattern with a

multi-bump structure with respect to the drug gradient.

Whether, or not, the potential for such a multi-bump structure is realised in

practise depends on many parameters within the model. For example, not

only is an antibiotic gradient required in the theory, a resource gradient has to

be created by virtue of the fact that the use of high antibiotic dosages kills so

many cells that it the resources are ‘released’. This also requires the presence

of cells some distance from the drug source in exactly the manner depicted

in Figure 6.1. In that figure, the indicated ‘killing zone’ contains no bacterial

cells but it does contain antibiotic and glucose, and other nutrients, in the agar

that will both diffuse outwards to create the requisite gradients. The glucose,

or any other sugar, gradient is created by virtue of the greatest population

densities being present furthest from the drug at the start of the experiment.

6.3.2 A theoretical genetics model of drug efflux

Having used a highly stylised form of mathematical modelling to infer that a

spatio-genomic pattern, in the form of a bullseye, can appear in an antibiotic

gradient because of a spatial nutrient gradient, as illustrated in Figure 6.7, we

now turn to a mathematical that is more explicit in its ability to capture both

the diffusing nature of different bacterial and chemical species and the manner

in which ecological dynamics mediate the potential existence of the bullseye

pattern.
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To begin the specification of the model, we first define the radial diffusion

operator, written L, of a function f(r), by

L(f) =
∂2f

∂r2
+

1

r

∂f

∂r
.

This is defined for sufficiently smooth functions, f that satisfy f ′(0) = 0 and

f ′(r0) = 0 where r0 > 0 is a positive constant that defines the radius of the

circular domain in which the diffusion processes are assumed to take place.

The following partial differential equations are now used to describe the spatial

dynamics of antibiotic inhibition to which we allude above:

∂

∂t
B0 = G0(S, a0)B0 + δ(1 + ∆)B1 − δB0 + ρbL(B0), (6.6a)

∂

∂t
B1 = G1(S, a1)B1 − δ(1 + ∆)B1 + δB0 + ρbL(B1), (6.6b)

∂

∂t
a0 = −ηa0 +B0ϕ(aext − a0)−B0

vp0

k + p0

a0 + δ(1 + ∆)a1 − δa0 + ρaL(a0),(6.6c)

∂

∂t
a1 = −ηa1 +B1ϕ(aext − a1)−B1

vp1

k + p1

a1 − δ(1 + ∆)a1 + δa0 + ρaL(a1),(6.6d)

∂

∂t
aext = −ηaext −

1∑
i=0

Biϕ(aext − ai)−
1∑
i=0

Bi
vpi
k + pi

ai + ρeL(aext), (6.6e)

∂

∂t
S = − vS

κ+ S

1∑
i=0

Bi + ρuL(S), (6.6f)

subject to initial conditions as depicted in the schema of the protocol in Figure

6.1 and using no-flux (Neumann) boundary conditions so that no mass can spill

out of the simulated experimental agar plate at any time.

The model (6.6) captures the densities of two bacterial subpopulations having

density Bi(t) at time t and expressing different numbers of copies of an efflux

gene or operon, where the i = 1 genotype has one more than the i = 0 geno-

type, where this gene codes a protein, or protein complex, that transports drug

from the cell. The intracellular drug concentrations for each subpopulation Bi

is denoted by ai and is measured per unit volume. The variable aext is the

extracellular concentration of drug, S denotes the concentration of a limiting

carbon source, glucose in our experimental systems.

Note that mutational changes in the genome are encoded in such a way that

passage from B1 to B0 is more frequent than from B0 to B1. We have done this

because the genomic region in which acr resides is unstable in the sense that

replication of the chromosome usually leads to just one copy of the operon,

and mother cells with a duplication are more likely to have two ‘daughter’

cells where one such daughter is without that duplication than to have two

daughters where both daughters carry it. In other words, there is strong
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physiological purifying selection acting against the duplication mutation [85].

Equations (6.6a) and (6.6b) describe the variation of bacterial density with

respect to time. The model assumes that this variation is caused by three

phenomena, one for each term of the equation. The first part of these equations

describes the temporal variation of bacterial density Bi due to the growth

and division of bacteria with intracellular drug concentration ai and in an

environment with glucose concentration S. This phenomenon is modelled as

an exponential growth of the bacterial population, with cellular growth rate

Gj(S,A) := cj ·
1

1 + pA
· vS

k + S
,

where c is cell yield per glucose supplied, v and k are the maximal uptake rate

and half-saturation constants associated with Michaelis–Menten uptake of the

single carbon source S, and p is the reciprocal of the half–saturation constant

due to the inhibition from ribosome-antibiotic binding.

To represent the cost of expressing the efflux gene, we chose the yield of ci of

each sub-population, Bi, to satisfy the condition that their respective yields are

ordered such that the greater resistance genotype has a lower per-glucose cell

yield, in other words c1 < c0. We have assumed this because the chromosomal

recombination events that produce increases in the copy of the acr operon

carry with them 8% of the entire set of genes held in the chromosome. It is

highly likely that the duplication will therefore come at a large ‘protein cost’

whereby many proteins will be over-expressed following the duplication that

have no selective advantage and yet energy in the form of carbon and ATP is

used in order to express those genes.

The second terms of equations (6.6a) and (6.6b) describe the variation of

Bi caused by down/up–regulation of the efflux gene in some of the bacteria.

The down–regulation of the efflux gene in some of the B1 cells make them

become B0, while B0 that up–regulate that gene become B1. It should be

noted, however, that if acr is downregulated in B0, the cell may still pay a

cost due to the increased production of proteins on the operon that may not

be downregulated. The process of up–regulation of efflux genes is assumed to

occur randomly as a Poisson process at a certain rate δ per cell per hour (the

probability of expression and amplification of the gene per cell per unit time

are assumed, for simplicity, to be the same); similarly, the down–regulation

is a Poisson process with rate δ(1 + ∆), a value necessarily greater than δ.

The final terms of (6.6a) and (6.6b) give the variation of bi(t) due the radial

diffusion of bi with rate ρb.

The process of up-regulation of efflux genes and both increases and decreases

in the copy number of the efflux genes are assumed to occur randomly as
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a Poisson process at a certain rate δ per cell per hour (the probability of

expression and amplification of the gene per cell per unit time are assumed,

for simplicity, to be the same).
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Fig. 6.8: Predictions of two versions of the model (6.6) when efflux operon
duplication is impossible (in case (a)) and then possible (in case (b)): (a)
this shows a result of simulating (6.6) when it is impossible for a second operon
to appear in the chromosome, using parameter values that therefore simulate an
‘operon knockout’ experiment. In this case the spatio-genomic density pattern is
formed from a single bright ring. (b) This is analogous to (a), except that the model
parameters are now chosen so that duplication of the efflux operon is possible; note
how an ‘inner ring’ of bacteria develops which is formed from b1, the bacterium with
that second operon copy (shown in yellow in the middle plot).

We assume a functional form for pj (the number of pumps produced by j

copies of acr) that is monotone increasing and bounded in j, controlled by

a dimensionless constant g (the Michaelis-Menten function pj = (j − 1)/(1 +

g(j − 1))). Thus pj is also dimensionless and the quantity pj/(k + pj) is the

probability of finding a pump in the state where it momentarily is bound to

drug. The rationale for this is that the polymerase transcription complex,

assumed limited in number, has to compete for each gene copy, thus providing

a limit on the number of efflux genes that can be simultaneously expressed.

The remaining variables in (6.6) have the following meaning: ϕ is the antibiotic

diffusion rates across the cell membrane, v is the maximal antibiotic efflux

rates and k is half-saturation constants associated with efflux pump-antibiotic

molecule binding; V and K are the maximal uptake rate and half-saturation

constant associated with Michaelis-Menten uptake of the single carbon source,

glucose S; Gj(S,A) is the per hour growth rate of each cell detailed above; δ

is the rate of amplification of the efflux gene and δ(1 + ∆), a value necessarily
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greater than δ, is the rate of decay of the efflux protein expressed by this gene.

Finally, therefore, n− 1 is the maximum copy number of the gene.

The main result of using equation (6.6) is shown in Figure 6.8 where it can be

seen that there is a clear difference in the nature of the spatio-genomic pattern

depending on whether the antibiotic efflux operon present in the chromosome

can be duplicated, or not. In the case where it cannot be duplicated, the

spatial pattern is simple and consists of a single ‘growth ring’ where bacterial

densities have achieved a local optimum. This is consistent with the analysis

illustrated in Figure 6.7, but it indicates that only one of the predicted rings is

realised using the diffusion model (6.6). Although nutrient release from dead

cells may will play a role in nutrient availability, this is not modelled here and

is not necessary in order to form multiple rings. The duplication of the efflux

operon allows a bacterial sub-population to approach closer to the centre of

the plate, i.e., to a region with a higher concentration of glucose. Figure 6.8

shows that in order to achieve something like the bullseye pattern predicted

by Figure 6.7, we must use a strain of bacterium that is able to duplicate the

efflux operon, acr. These provide testable experimental predictions that we

address in the following section.

6.4 Experimental Data

We now provide an analysis of the result of some bacterial growth experiments

that, we believe, show evidence of the bullseye pattern predicted in theory.

Before we are able to do this, we first present some mathematical measures of

monotonicity that we can apply to dose-response curves in order to provide

a quantitative description of how many rings a spatial dose-response pattern

possesses.

6.4.1 Mathematical measures of (non-)monotonicity

A First Numerical Measure of Non-Monotonicity: the Hill function

We explore three methods of measuring non-monotonicity to determine which

is sensitive to changes in density, without identifying a large number of false

positives from experimental noise. The benefits of each method will be briefly

discussed now. The basic idea of an empirical antibiotic dose-response is en-

capsulated in Figure 6.5. In it, an exponential scale of increasing dosages is

presented on the x-axis and the y-axis contains data relating to the growth

of the microorganism in question, in that case optical density although other

measures, such as growth rate, are also used in the antibiotic literature. It is
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common, as we have also done using the dose-response data in Figure 6.9(a),

to assume that the data decreases monotonically with dose and to numerically

fit a Hill function to it. A Hill function takes the form

H(A) = H0 ·
Kn

Kn + An

where H0, K and n are three parameters to be determined as part of the data

fit. Using this fit, we can then estimate ICx values which are the dosages that

give an x% reduction in growth. In other words, ICx satisfies the relationship

H(ICx) = x
100
·H0, thus the value of K is the IC50 of the data.

However, as Figure 6.9(b) shows, Hill functions are not accurate descriptors of

dose-response data when one is interested in studying, as we are here, the effect

selection for resistance has at different dosages. For the latter figure shows the

effect on the Hill function-like data, gathered at 24h, after that E.coli data has

been evolved in the presence of erythromycin for a further 72h. The details of

how this is done are contained in the methods section, but it is clear from the

figure that the monotone nature of the data has changed; while there is short-

term monotonicty of dose-response the strength of selection at different dosages

differs in such a way that monotonicity is not preserved through adaptive and

evolutionary changes. This observation is consistent with the theory of section

6.3.1 which shows that the maximal growth rates for different genotypes can

occur at different dosages and it is difference of these growth rates between

genotypes that determine the strength of selection for resistance.
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Fig. 6.9: An erythromycin dose-response curve of the E.coli AG100 strain with a
Hill function fit super-imposed onto the data. The latter is used to determine an
IC99 within a certain confidence. Drug dose is shown on a linear scale on the x-axis,
optical density at 24h is shown on the y-axis. As can be seen in the left-hand plot, at
96 hours a hill-function can no longer be fit to the data due to the non-monotonicity
observed.

We therefore require statistical methods for quantifying the the non-monotonicity

properties of dose-responses. One could, of course, use the goodness of fit,
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or poorness of fit, of a Hill curve to dose-response data but this would not

capture information about the oscillatory properties of the dose response. An-

other approach is to perform a best-monotone function fit to data, this could

be achieved as follows.

A Second Numerical Measure of Non-Monotonicity: monotone datafit-

ting

Suppose that (u0, u1) ∈ H := R × L2((0, 1),R), we can define a monotonic

function M(u) ∈ W 1,1((0, 1),R) by

M(u0, u1)(x) = u0 +

∫ x

0

u1(y)2dy.

Note that d
dx
M(u0, u1) = u2

1 ≥ 0 almost everywhere and u2
1 is an element of

L1 by definition, justifying our claims on the properties of M .

Now, any dataset resulting from the experimental construction of a dose-

response curve gives rise to a function in W 1,1 through linear interpolation: if

(xi, yi) defines a discrete set of points with 0 = x1 < x2 < ... < xN = 1 repre-

senting a series of antibiotic dosages, we take the maximal dose to be xN = 1

which should be thought of simply as a normalisation to unity, then the linear

interpolant of the data points yi is not only a continuous function, but it is in

fact Lipschitz. It is therefore a member of the space W 1,∞ which is contained

within W 1,1. We can therefore apply the operator M to experimental data.

Given a function d(·) ∈ W 1,1, supposed to represent an empirical dose response

dataset, we then define the best monotone approximation of d to be the element

(v0, v1) ∈ H that achieves

min {‖M(u0, u1)− d‖L2 : (u0, u1) ∈ H, ‖M(u0, u1)‖∞ ≤ ‖d‖∞} .

If we define r(u0, u1) := ‖M(u0, u1) − d‖L2 then r is a sum and composition

of convex and linear functionals and operators and H is a Hilbert space on

which infimising sequences of M are bounded and from these observations one

can prove that there is a unique minimiser of r. Moreover, approximations

to this can be readily computed using a direct optimisation algorithm if d is

the piecewise linear interpolant of a discrete dataset. We call the value of r

so obtained the measure of monotonicity of the function or dataset d. It is

not a fine measure of how the data oscillates, but it is a measure of how ‘not

monotone’ the data is.

In order to illustrate that the appearance of non-monotone dose-response pro-

files with mid-dose local maxima can appear for a range of antibiotic drug
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molecules, we applied this numerical measure of non-monotonicity to a video

of E.coli AG100 growth in the presence of kanamycin, see Figure 6.11. The

raw data is contained within a video, a few frames of which are illustrated in

Figure 6.10. Consistent with the theories developed earlier, this data exhibits

a transition from monotone to non-monotone dose response.

A Third Numerical Measure of Non-Monotonicity: the oscillation

profile

Although a metric with respect to monotonicity allows one to quantify the loss

of monotonicity in the dose-response profile through time, the above theoretical

modelling arguments have indicated that there is the opportunity, given the

right environmental conditions, for the presence of subtle structures within

those nonlinear profiles. For example, the non-monotonicity may be due to

selection for certain copies of specific drug resistance operons occurring at

different drug dosages. In order to discern those effects, which are predicted

to be associated with multi-bump dose-response patterns, we need a finer

measure of these oscillation that we can apply to experimental data.

We therefore turn to the winding number of a given function, call the function

f(t) and letW (f) denote its winding number about the number α. We consider

f to be normalised in two ways such that its domain is [0, 1] and, over this

domain, inf(f) = 0 and sup(f) = 1. Its winding number is the valueW (f, α) =

w(f − α, f ′) where

w(x, y) =

∫
xdy − ydx
x2 + y2

.

We say that the oscillation profile of f(t), is the function of α defined by

O(f)(α) := W (f, α)

defined for all values of α, but potentially non-zero only for α ∈ ran(f) where

ran(f) := (inf(f), sup(f)) = (0, 1). Note that O(f)(α) = 0 for values of α

outside that range, inside that range O(f) only takes integer values. If we

now define a sequence On :=
∫
O(f)(α)<n

O(f)(α)dα, with O0 = 0, and then set

Bn = On+1 −On,

we call the latter the bumpiness spectrum of the function f .

In order to illustrate how the oscillation profile and the bumpiness spectrum

might be used to provide insight into the non-montone and multi-bump nature

of empirical data, we turn to Figure 6.12. It shows synthetic examples of both

monotone dose-repsonse profiles and also non-monotone profiles. The figure
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Fig. 6.10: Frames from a video showing the transition from monotone to non-
monotone dose response in the inhibition of E.coli growth by kanamycin held in
the central circular region. The top-most image was taken at time, t = 0h, the
bottom-most at t = 24h. The right column shows the mean dose-response deter-
mined from each image in the left-hand column.

also shows how the bumpiness spectrum encapsulates the oscillatory character

of those profiles in a manner that is reminiscent of Fourier series coefficients.
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Fig. 6.11: The result of quantifying the transition in the dose-response data of Figure
6.10. Plot (a) shows how the data exhibits a low degree of non-monotonicity at early
on the in the experiment because the best monotone fit to data is a good descriptor of
the dose-response. Plot (b) shows, at a later time, that the best monotone fit to data
gives a relatively poor fit. The right-hand images in (a) and (b) show the difference
between filtered data and the best monotone fit. (c) Tracing the goodness of fit of
the best monotone descriptor of the dose-response data shows deterioration through
time, indicative of a transition from monotone to non-monotone dose response.

6.4.2 Applying the bumpiness spectrum to laboratory

spatial dose-response data

We will now claim that the bumpiness spectrum so-defined can be used to cor-

roborate visual evidence for an emergent pattern exhibiting concentric rings
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Fig. 6.12: Measures of non-monotonicity (the oscillation profile and bumpiness mea-
sure) using the winding number of some synthetic data. In each of (a-f) one can
see, in the left column of the two images, a function representing a particular dose-
response pattern with zero drug at the x = 0 position and higher drug where x� 0.
Plot (a) shows a monotone dose-response which is reflected in the oscillation profile
equation, shown in the middle figure of plot (a), to the zero function. Plots (b-f) have
increasing degrees of non-monotonicity which is reflected in the oscillation profile
in the right-hand figure of each plot whereby the grey regions have increasing area.
In each window, the right-most plot corresponds to the bumpiness spectrum. Plot
(f) accords with what one might expect from intuition: the bumpiness spectrum of
a cos(2π · x) function, suitably normalised, is (0, 2, 0, ...) as it exhibits exactly two
bumps. Plot (a) shows that the bumpiness spectrum of a monotone function is the
zero sequence (0, 0, ....).

of increasing radius when E.coli grows in a spatial antibiotic gradient, as pre-

dicted by the above theory.

First, the experimental data for this is a pair of images that we present in

Figure 6.13 (a) and (b). The left-hand image shows the optical density profile

as a function of the distance from the source of the drug at the centre of the

plate whereby drug dosage necessarily decreases towards the edge of the plate.

Images taken from these agar plates are shown in the right-hand image of the

same figure whereby the white semi-circular region is the drug source. This

figure illustrates bacterial population density at 24h and, to the eye, appears to

exhibit bullseye ring patterns. This appears consistent with the density images

on the left, and although the acr knockout strain has an essentially increasing

density profile with decreasing drug, as may be expected, the AG100 wild-type
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Fig. 6.13: The left-hand image shows the mean optical density of two bacterial
strains at 24h, AG100 and AG100-A, the latter does not have a functional acr operon
whereas the former does. The two right-hand images are false colour representations
of two different agar plates on which the respective strains were cultured. The centre
of each plate contained 1/ml of Doxycycline.

strain has an altogether different, and clearly non-monotone, character.

To quantify this apparent non-monotonicity, effectively in order to produce

numerical measures of what the human eye perceives in Figure 6.13(b), we

present Figure 6.14. It shows the oscillation profile of the population density

data as a function of the spatial coordinate for the two E.coli strains AG100

and AG100A, Figure 6.14 is an analysis of data taken from Figure 6.13(a).

The population density data relating to AG100A in the left-hand image of

Figure 6.14 looks almost monotone to the human eye and, indeed, Figure

6.14(a) shows little quantitative evidence of non-monotonicity. There is some

evidence of a mutli-bump profile to be seen in the bumpiness spectrum, but

certainly not to the same extent as that seen in the analogous data for strain

AG100. This data can be seen in Figure 6.14(b). The latter data alluded to,

for AG100, shows in quantitative terms what appears to the human eye in

Figure 6.13 whereby distinct rings highlighting regions of growth can be seen

for this strain, consistent with predictions made earlier using mathematical

models.
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Fig. 6.14: (a) The left-most plot shows an analysis of the dose-response profile which
constitutes the observed mean optical density as a function of the spatial distance
from the source of the drug (at position zero), and in this case it is derived from
strain AG100A that lacks the efflux pump operon, acr. The left-hand plot shows (in
red) the best monotone function fit to data, filtered data (in blue) and the dash blue
lines indicate the leftmost point where the optical density has been established to be
significantly above zero using a t-test with significance level p = 0.05. To the right
of this point we assume that optical density is significantly positive. The middle
plot is the oscillation profile O(f)(α) for this AG100A data and the rightmost plot
is the bumpiness spectrum that is derived from the oscillation profile. Neither of
the latter two measures are consistent with the presence of oscillations. (b) This is
the analogous analysis to (a) but now for the strain AG100 that possesses the acr
operon.

6.5 Conclusions

We have used a prediction from the results of several theoretical models to

show that bacterial growth in an antibiotic gradient can result in a visible

spatial pattern, moreover this pattern can be used to reject the hypothesis

that more antibiotic necessarily equates to less bacterial population growth.

The laboratory model system we have used is not based on the occurrence

of single nucleotide polymorphisms (SNPs) as the drivers of the evolutionary

processes that produce this spatial pattern, but rather a drug efflux operon

that is rapidly duplicated by recombination in the face of antibiotic stress

is the mechanism of resistance selected for by evolution. It is selection on

this operon that creates the requisite spatial pattern. Moreover, we have

introduced a series of quantitative measures of monotonicity to help discern in

quantitative terms what is apparent to the human eye in images of bacterial

growth on agar plates in antibiotic gradients.

170



Our results are not directly relevant to the interpretation of antibiograms in

a clinical context, although we have shown that an increase in drug dosage

increases the size of the zone of bacterial growth inhibition according to a

square root law, consistent with diffusion theoretic models of bacterial killing.

However, our observations are key to understanding conditions for which an

increase in drug concentration will not necessarily reduce bacterial densities.

After all, all practical uses of antibiotics create decaying dose profiles as one

moves further way from the point source of an antibiotic drug. So, while it may

be thought that one can mitigate, or even obviate, the process of selection for

drug resistance by always passing to ever greater dosages [?, 90], those dosages

must eventually decay to zero in regions of treatment located not too far from

the source whereby one might be able to observe the effects we allude to in

our study.
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Chapter 7

Conclusions

7.1 Antibiotic combinations

Much faith has been placed in the idea of utilising cocktails and combinations

of antibiotics, either in mixture, sequence or cycling, in order to minimise the

problems caused by resistance. The logic behind such a hypothesis is that

a cell that gains resistance to a single agent will then be confronted with a

second (or third, etc) agent, to which it has no resistance. For this reason

combinations of drugs are often in different classes, to minimise the chance

of cross-resistance. However, the literature shows that determination of drug

interactions as synergistic or antagonistic are complicated measurements that

are confounded by a number of factors, including the time of measurement, re-

source background, drug dose and the method of measurement. It is for these

reasons that the drug pair used in Chapter 1, Rifampicin and Doxycycline,

have been assessed as both synergistic and antagonistic in the treatment of

Brucellosis melentiasis. What is more, my research shows that an interaction

that appears to be strongly indicating a favourable interaction (normally syn-

ergy) can be misleading, depending on the growth stage of the cells; therefore

a difference in the time of measurement of just 12 hours can show a complete

inversion of interaction. Initially an experiment was devised to test the hy-

pothesis that antagonism can slow the emergence of antibiotic resistance, but

in order to test this hypothesis accurately we must be assured that the inter-

action is stable and robust - if the original interaction is mis-assigned then the

results of such a test can not be relied upon.

7.2 Antibiotics as growth stimulants

The first three chapters of this work are predominantly concerned with non-

monotone dose response, and an adaptive response to Dox that leads to a
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stimulation of bacterial growth. Initially this seems to be of very great concern

- although antibiotic resistance is a widely recognised grave threat, the idea of

“super-resistance” that allows cells to experience a growth boost in the pres-

ence of antibiotics has not before been shown. We show that in E.coli AG100

several days of adaptation to Dox is sufficient to confer this overgrowth phe-

notype. However, recapitulations of this experiment using different but closely

related strains, failed to replicate the result. The fact that this effect appears

to be strain specific allows for an exploration of the mechanism behind such

an adaptive effect. To this end, the genetic differences between AG100 and

MG1655 were compared. Despite a very high degree of homology between the

two strains, a mutation in rpsL in AG100 is not present in MG1655, This mu-

tation represses the function of rpsL, which in turn leads to a downregulation

of the production of sigma-factor; rpoS. This protein is responsible for many

of the physiological changes that a cell undergoes when resources are limited,

and the growth enters the stationary phase; the absence of rpoS is reported

to lead unrestricted division, with the cell failing to enter stationary phase.

Equally, this mutation is known to improve growth on poor carbon sources,

such as acetate, which our results also demonstrate. For this reason a range of

strains (including metabolic mutants from the Keio collection) were subjected

to high doses of Streptomycin in order to attempt to force a mutation in rpsL

and recreate the overgrowth phenotype in a new strain. This experiment was

partially successful, with one of the strains tested showing an overgrowth in the

presence of Dox, after having become resistant to Strep (around 1000xMIC).

The strain that showed this overgrowth was ∆manZstrepR. Although it is in-

teresting that a strain that is already glycolysis limited, through a knockout

of mannosephosphotransferase, is the strain to show an increase in yield when

treated with Dox, an important future step would be to sequence this strain,

ideally with whole genome sequencing, although sequencing the rpsL gene

would also be sufficient to determine if the strep resistance mutation present

in AG100 is also present in this strain. Likewise, sequencing of other strains

that did not develop an overgrowth phenotype would enable us to determine

if the hypothesis is correct, or if that lack of overgrowth is due to those strains

not developing the strep resistance mutation in the same location.

In addition to confirming the hypothesis through sequencing, it would be ad-

vantageous to repeat this protocol with a far greater number of replicates. Our

results showed that although ∆manZstrepR did gain a stimulatory effect from

Dox, this effect was transitory, lasting only 24-48 hours, and there was a high

level of variability between replicates. An experiment is currently being per-

formed using automated liquid handling technology to increase the throughput

of this test, with 96 replicates being tested, after anywhere from 1-12 days of
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exposure to increasing concentration of strep. This protocol will allow us to

determine the conditions that maximise bacterial yield, and gain more robust

results. Furthermore, in order to definitively ascertain the specificity of this

effect, a high throughput screening of bacterial species and strains to Dox

should be performed. Using automated liquid handling and OD reading, it

would be possible to screen dozens of common pathogenic and non-pathogenic

bacteria and assess the inhibition over evolutionary timescales.

7.3 Phage co-evolved metabolism

We show, through a carefully controlled model system using co-evolved REL606

E.coli and lambda phage, that metabolic trade-offs are present within each

strain when grown in differing concentrations of maltotriose as the sole carbon

source. However, we also show that when compared between strains these

growth parameter correlations may manifest as trade-ups, whereby at a given

carbon resource concentration, both yield and rate are increased. We do not

observe a noticeable trade-off or trade-up between the level of resistance to

phage and the growth rate or length of lag phase of bacteria, but we do notice

that yield and resistance are positively correlated at high maltotriose concen-

trations and negatively correlated at high concentrations, thereby displaying

both trade-off and trade-up behaviour dependent on environment. We finally

show that the change in the protein shape of the maltoporin is a reasonable

predictor of phage resistance, with a switch to phage resistance when the shape

of the protein changes beyond a certain threshold, with similarly shaped mal-

toporin mutants tending to cluster with similarly resistant mutants.

7.4 Non-monotone spatial dose-response

The greatest challenge in collecting experimental data of this type was ensur-

ing that image capture was precise enough to detect small changes in density,

and convert that data to a pixel intensity score. The experimental setup cre-

ated some image artefacts, for example condensation or reflection on the plate

confounded accurate readings. Additionally, small imperfections in the agar

plate construction can again lead to non-symmetrical diffusion, which impacts

image analysis. Since the completion of this study, the image platform has

undergone several design iterations, including the addition of superior insula-

tion and a air flow (filtered) system in order to reduce condensation. Likewise,

the position of the camera and light sources has been modified to remove re-

flections. These changes have improved image quality, which further reduces
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noise and means that oscillatory profiles are cleaner. Repeating the bullseye

pattern experiments in this new system design may somewhat improve results.

This imaging system allows for exciting studies to be made in real time, in

the future similar experiments could be performed using swarming strains of

bacteria on plates with various drug ’pathways’ allowing visualisation of the

pathway that most rapidly selects for resistance. Plate construction could

also be potentially improved; the lab has acquired a 3D printer, allowing cus-

tom design of agar templates, rather than improvising using lab equipment

(for example, using a 40mm petri dishes as the template for the central drug

containing agar section); this would remove the non-symmetry previously dis-

cussed. Bullseye patterns are frequently seen (although often ignored) when

performing E-tests on a large variety of bacteria. It would be an interesting

extension to this study to repeat the setup using a wider selection of species

and drugs: if the bullseye pattern is replicated, sequencing could be used to

determine if duplication of efflux is a necessary feature in each case.
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Appendix A

Chapter 2: Appendix

A.1 Materials and Methods

Reagents

Bacterial cultures were grown from the same colony for 16 hours at 30oC and

180rpm in M9 minimal broth (Part A: 40mM K2HPO4, 15mM KH2HPO4; Part

B: 2.3mM Trisodium citrate, 7.5mM (NH4)2SO4, 1mM MgSO4) supplemented

with 0.2% glucose and 0.1% Casamino Acids (Fischer Scientific and Duchefa).

Strains

The AG100 strain of E.coli was chosen as the model organism of this study,

the genome is well-understood and the Keio library of single-gene knockouts is

available. We consider AG100 a wild-type strain, although it was first isolated

as a seperate K-12 strain in 1983. The AG100A(∆acr) mutant lacking the

full operon acrAB required for producing essential efflux pump components

was also used. All strains used were provided by Dr Laura McMurry (Tufts

University). Strains were stored frozen in glycerol (30%, -80◦ with µl samples

of AG100 thawed from frozen aliquots and grown in overnight cultures in M9

media (37◦C, 180 r.p.m shaking) for use. Colonies were visually checked after

24 hours culture on LB agar and subsequently re-cultured in M9 overnight, as

above, for use.

Dose-response assay

Rif and Dox powder (Sigma Aldrich) were prepared and stored at 4◦ in the

dark, as per manufacturers instructions. Stock solutions were made by dissolv-

ing the powder in methanol and mqH2O respectively (50µg/ml and 5µg/ml).

Row-wise increasing concentrations of antibiotic were inoculated with AG100
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in a 96 well microplate (150µl total volume per well) using a 96 pin replicator.

Optical density was measured every twenty minutes (Biotek ElX808, 600nm).

Control growth was established in M9 media (glucose 0.2% + casamine 0.1%)

as described in [119].

Rifampicin: static/cidal test

The growth curves for a range of concentrations of rifampicin are shown for

AG100 and AG100A . The relevant optical density measures are given in Fig-

ure A.1 whereas Figure A.2 below shows CFU data at three time points at

zero drug and 2.2µg/ml Rif. The CFU data is consistent with a reduction

in the number of live cells and, therefore, bactericidal effect of the antibiotic.

(mean CFU based on three replicates and 24h total incubation; 37◦ used for

CFU data) beyond 12h in Figure A.1. Rifampicin has a bacteriostatic effect

on wild-type AG100.
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Fig. A.1: (a) Optical density profiles of AG100 through time cultured for 24h at
different concentrations of rifampicin. The highest dosage used leads to no growth
at all, moreover growth is slower at increased dose but there is no evidence of
cell death or lysis (see appendix for controls). (b) Optical density profiles of the
AG100A(∆acr) strain through time cultured for 24h at different concentrations of
rifampicin. The loss of population density in stationary phase is consistent with
bactericidal activity and the live cell count (see appendix) shows a reduction in
CFUs after the 12h timepoint is reached.

Drug-Interaction assay

Single-drug basal concentrations for both Rif and Dox given by the IC50,60,70,80

concentrations were obtained from dose-response curves and used as the basis

of a combination treatment of in a synergy assay, as follows. Combinations

of Rif-Dox with equal inhibitory effect were then combined in the following
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Fig. A.2: A CFU/ml count for strain AG100A at three different time points both
with (red; at 1.8µg/ml) and without rif (blue). Three readings were taken at 0h,
12h and 24h showing the reduction in viable cells between the latter two time points
in the presence of rif (error bars are shown (s.e.); p < 0.01).

proportions; (R,D) = (1, 0), (3
4
, 1

4
), (1

2
, 1

2
), (1

4
, 3

4
), (0, 1) relative to those basal

dosages. The microtitre plate was inoculated and automatically read as de-

scribed above. The most challenging aspect of this experiment was ensuring

that the ICx levels for both drugs were calibrated correctly, so that for example,

an IC50 dose of dox gave rise to the same cell density as the IC50 concentration

of Rif. The dose response curves for all the drugs and strains used is below.

Rifampicin and doxycycline dose-response curves

Dose-response curves for both these drugs and for E.coli K12 strain AG100

are shown in figure A.3. These figures are used to calculate the different con-

centrations of both drugs are required to achieve, for example, the IC90. Dose-

response curves for both these drugs and for E.coli K12 strain AG100A(∆acr)

are shown in figure A.4. Dose-response curves for Rifampicin and Erythromycin

are shown in figure A.5.

Fig. A.3: (a) Dose-response of AG100 for rifampicin at 12h. (b) Dose-response
of AG100 for doxycycline at 12h. Basal dosages used to test for dynamic drug
interaction profiles are IC60, IC70, IC80 and IC90.
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Fig. A.4: (a) Dose-response of K12 strain AG100(∆acr) for rifampicin at 12h. (b)
Dose-response of AG100(∆acr) for doxycycline at 12h. Basal dosages used to test
for dynamic drug interaction profiles are IC50, IC60, IC70 and IC80.

Fig. A.5: Dose-response of AG100 for Erythromycin at 12h. Illustrates the IC50
basal dosages used to test for dynamic drug interaction profiles in M9 media sup-
plemented with 1% glucose and 0.5% casamino acids .

CFU to OD conversion

Throughout this document, cell population density has been measured using

OD at 600nm as a proxy for that density. This can be confounded by cell

size changes which can vary through growth phases and at different sugar con-

centrations. In order to ensure stability of the relationship between different

sugar supply concentrations and cell numbers in CFU per ml, we performed

an experiment where cells were grown in different maltotrise concentrations

and both OD and CFU/ml were correlated. This is shown in Figure A.6.

In order to ensure that optical density measurements used in this document

correspond to live cells at all glucose concentrations, we additionally performed

a calibration of the plate reader by comparing OD measurements to CFU

(colony-forming units) at multiple glucose concentrations, comparable to the

range used throughout this research. The data produced using this experiment

across a range of glucose concentrations in M9 minimal media are presented

in figure A.6 which shows an approximately linear relationship holds between

the two measures.
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Fig. A.6: CFU and OD are equivalent measures of E.coli population densi-
ties, provided that density is high enough. Validation that E.coli cell densities
as measured in units of OD600 or CFU (colony forming units) are approximately
equivalent: from this data we deduce that 108CFU per ml ≈ 0.128OD.
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Fig. A.7: Illustration of the linear correspondence between cell densities at different
glucose concentrations, measured using optical density at 600nm light wavelength
and a live cell count.

If we accept the datapoint at 1% glucose in figure A.7, from this we deduce

that 109 CFU/mL corresponds to 0.25 OD units. As the culture devices we

use contained a liquid volume of 150µL, we deduce that 0.25 OD correspond

to 1.5× 108 live cells, 0.1 OD therefore corresponds to 6× 107 live cells.

Serial-transfer protocol

A 96 well micro-titre plate was set up as follows: A dose response assay was

performed to determine the concentrations of Rif and Dox required to achieve

IC50,60,70,80 at twelve hours. These concentrations were used to prepare com-

bination treatments. The five Rif:Dox treatments and controls (combinations

proportions used were; 100:0, 99:1, 95:5, 90:10, 0:100, Positive control, Nega-

tive control, Empty well) filled the wells from top to bottom of the plate. 3
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replicates were used for each basal inhibitory concentration. Master solutions

of all well environments were made in sufficient quantities to prepare 9 identi-

cal plates. Plates 1-8 are used for the 8 serial 12h transfers in the experiment.

Plate 9 is re-inoculated with fresh E.coli at the end of the experiment as a

drug degradation control. Transfers are carried out using a 96 pin replicator,

and optical density is measured every twenty minutes (600nm).
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A.2 Supplementary data

Rif-adjuvant rate of adaptation calculation

Rate of adaptation calculated as per Hegreness et. al., [54], the methodology of

which is discussed in more detail in chapter 2. Increasing amount of Rifampicin

in the combination treatment lead to higher levels of antagonism (and hyper-

antagonism, with the growth of bacteria being greater than that of control),

but also lead to an increase in adaptation rate. The seasonal change in growth

rate, and the time taken for half maximal growth rate change are shown in

Figure A.8, with the correlation between increasing OD and rate of adaptation

shown in Figure A.10.
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Fig. A.8: Change in growth rate shown for all environments. Only the rifampicin
mono-therapy shows a complete inhibition of bacteria across the course of the ex-
periment. Doxycycline quickly becomes useless as an inhibitor and starts to act as
a stimulant to growth. Surprisingly however, the addition of small proportions of
Rif (up to 10%) increase this stimulatory behaviour.
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Fig. A.9: Representative data plot showing the cu-
mulative change in growth rate over the 8 seasons
of the experiment. The rate of adaptation (α) is
calculated using the formula in the plot. The grey
shaded area shows the change in growth rate (rate
as measured by area under the curve (AUC).
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The rate of adaptation is measured as shown on the above plot (Figure A.9),

and is a second derivative of the growth growth rate. In this way, the time

taken for half the maximal change in rate is multiplied by half maximal change

in rate to derive the rate of adaptation.
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Appendix B

Chapter 3: Appendix

B.1 Methods and Materials

Dose-response

Concentrations of drug from twice MIC to 0 were selected. Unlike in NCLSI

guidelines, drug concentrations did not conform to a two-fold dilution method.

Instead concentrations were chosen to fall within the range of ‘sub-inhibitory’

doses. 96 well microtitre plates (Greiner) were loaded column-wise with 11

drug concentration and 1 control. Replicates were loaded row-wise, at 150µl

per well. Inoculation was performed using a 96 pin replicator (Sigma), and

Growth was recorded by BioTek eLx808 UV/ABS reader, 600nm every 20

minutes. All drug solutions were made in media containing the requisite carbon

source at the desired concentration.

Evolution of Dose-Response assay

A concentration gradient of eleven drug environments was inoculated with

E.coli (AG100). Drug concentrations ranged from twice MIC (from prior ex-

periments) to zero. Growth was recorded by BioTek eLx808 UV/ABS reader,

600nm every 20 minutes. Approximately 1% inocula was transferred from

each well to an identical plate (using 96 pin replicator from sigma) to refresh

the carbon source in the media. Transfers were carried out every twelve hours

in the initial experiment, and every 24 hours in the subsequent experiment.

Experiments were continued for four days.

CFU counts

Colony forming unit counts were used to confirm optical density reading as

a proxy for cell number. CFU counts were performed for all principle ex-
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periments, and calibration curves comparing OD to CFU in differing glucose

environments were used to corroborate using OD as a proxy for density. Unless

otherwise stated in the text, samples were taken from 3 biological replicates,

and underwent sequential 10-fold diluted in nutrient free M9. 100µl was added

to the surface of a solid LB agar petri disk and spread to cover the whole sur-

face using a disposable L-shaped spreader (Sigma). Three technical replicates

were made for each sample. Plates were inverted and incubated for 24 hours

at 30◦C and then counted manually.

Acetate dose-response

As above, however 1.37% acetate was used, to provide a stoichiometrically

identical number of carbon atoms to the 1% glucose used in the prior experi-

ments.

Rate-yield trade off in Doxycycline resistant strains

To investigate whether the increased rate of adaptation seen at several con-

centrations of Doxycycline, and the commensurate resistance gained had any

effect on the metabolic efficiency of these strains, growth was recorded at

six glucose concentrations. The strains that were used were all derived from

AG100 and MG1655, shown in Table B.1, and had been frozen (-80◦) following

the 10 day adaptation protocol.

All strains were grown for 24 hours, OD measured at 600nm every 20 minutes.

Strains were grown in six glucose concentrations (0.01%, 0.05%, 0.1%, 0.2%,

0.5% and 1%) and in three different environments: M9 (supplemented with

casamino acid, 0.1%), the IC99 of the wild-type and the IC198 of the wild

type. This will allow a comparison of growth rates and yields for these strains

and sub-strains, both in the environment that they are adapted to, and in

environments that are more or less challenging than they are used to. In this

way we can detect any costs of resistance to cellular efficiency or metabolism.

Table SB.1: Strains used to measure rate and yield in Doxycycline adapted cells.

Parent Strain Adapted conditions Name
AG100 / AG100wt
AG100 M9 AG100m9

AG100 MIC AG100MIC

AG100 2xMIC AG1002MIC

MG1655 / MG1655wt
MG1655 M9 MG1655m9

MG1655 MIC MG1655MIC

MG1655 2xMIC MG16552MIC
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Rate was calculated in three ways; by fitting an exponential model, a logistic

model and by calculating the area under the curve (AUC). The goodness of the

model fits were compared by R2 number. However, the AUC was the measure

adopted in all further calculations, as rate estimates from this method gave the

most consistency for all growth curves, whereas model fit methods tended to

fail in cases where growth was very low, or stationary phase was not reached.

Measuring costs of resistance

To determine whether Doxycycline resistant sub-strains are carrying a fitness

cost due to their resistance, when the selective pressure of the drug is removed,

the growth kinetics must be compared to the wild-type growth. All the strains

from the adaptive experiment were revived from -80◦ stocks and revived as

previously outlined. Strains were revived in the environment that they had

previously been exposed to (thus AG100MIC is revived overnight in M9 supple-

mented with 1% glucose, 0.1% casamino acid and 0.3µg/ml Dox) before being

grown in drug-containing and drug-free environments. Serial transfers ( 1%,

96-pin replicator) were made every 24 hours, for 10 seasons. Thus the cells

were removed from there adaptive environment for the same length of time

as the initial adaptation took to occur. By using the OD24hr as a proxy for

fitness (with CFU counts carried out on season 1 and season 10 to confirm cell

numbers), comparisons can be made across strains and across environments.

Developing Streptomycin resistance

Strains were exposed to increasing concentrations of Strep in order to increase

resistance through the acquisition of a mutation to rpsL. Exposure was per-

formed on solid LB agar plates, at concentrations of 2xMIC, 8xMIC, 32xMIC

and 128xMIC. The MIC was determined with a standard dose response curve,

as described previously. Large inoculate (250l) from dense overnight cultures

in LB media were spread on the initial 2xMIC Strep-containing plates. Be-

tween each subsequent plate, 5 colonies were sampled from the plate and grown

overnight in LB media supplemented with the same concentration of Strep as

they had been grown on (to ensure that resistance was not lost), before re-

plating onto the next Strep concentration. If less than 5 colonies were success-

ful in growing at any concentration, all viable colonies were sampled. There

were no occasions with no viable colonies for sampling. The use of large inocula

and colony plating allowed for a rapid increase in antibiotic concentration.
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B.2 Supplementary Data

Dose-response adaptation
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Growth rate in 12 hour transfers

Evolution of dose response was carried out using 24 hour seasons to confirm

that overgrowth is not an artefact caused by selecting for increased growth

rate in exponential phase (figure B.4).

Dose response transfer experiments were assessed for non-monotonicity by

fitting a Hill-function to the data set, and subtracting the true from predicted

values. Therefore in Figure B.5, a deviation from the 0 (red horizontal line)

represents an overgrowth (positive) or undergrowth (negative) compared to

the predicted monotonically decreasing values. In Figure B.5 the fit is not

exact at any season. This is due to a significant hormesis effect at low drug

concentration, even apparent on the first season. However, the overgrowth

phenotype is still seen clearly in later seasons, as the MIC increases (to the

point where the highest Dox concentration used becomes sub-lethal), and the

final cell density in the overgrowth concentrations reaches approximately twice

the cell density of the drug-free control.
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Fig. B.3: Rate decreases as doxycycline concentration increases, however at the
dosages where the overgrowth is noticed, the rate improves to a level not significantly
above the wild-type. As the drug becomes entirely inhibitory, the rate decreases to
zero as expected.

Fig. B.4: Evolution of dose response with 24 hour seasons.
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No overgrowth in MG1655
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MG1655 is very closely related to AG100, however the same experimental

protocol does not produce an overgrowth of cell density in MG1655. This may

provide insight as to the mechanism of overgrowth, by comparing the known

genetic differences between these two strains.

Change in rate of adaptation for 24 hour transfers

The same rate of adaptation measurement from [119] is used to confirm that

adaptation rate increases in AG100 with 24 hour seasons in the same manner

as the transfers that were undertaken with 12 hour seasons. As the shorter

seasons should select for rate, with the longer seasons selecting on k, it may

be expected that the phenotype that demonstrates a stimulatory effect on

cell density will be more apparent in the longer season transfer. Indeed, the

overgrowth seen is more substantial in the 24 hour seasons, and appears more

quickly. In addition, the growth rate also increases to a greater degree than

in the 12 hour transfers, therefore selecting more strongly for k also seems to

select an increase in growth rate as well. This is seen later in the rate-yield

trade off described, and yet is insufficient to explain the ability of Dox to

enable a higher cell density.
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for 24 hour seasons]The rate of adaptation is again fastest in the ‘hotspot’ region of

Dox. There is no concentration of Dox used that led to a clearing of bacteria.
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Fig. B.9: As with the twelve hour transfers, there is a weak positive correlation
between the slightly increasing growth rate and the rapidly increasing adaptation
rate as the [Dox] increases. The exception is the 0.5/ml concentration, whereby
growth was still inhibited by 8̃0%, and therefore does not fit the pattern.
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Fig. B.10: Growth rate vs Dox
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Efflux is necessary for overgrowth

The acrAB/tolC efflux system is a multi-drug efflux pump, implicated in drug

resistance in E.coli for a large number of antibiotics, as well as antiseptics and

other toxic compounds. This is an innate system, and therefore resistance

can be controlled by regulation, without the requirement of a de novo pro-

tection mutation. The consequence of efflux can be imagined to be effectively

decreasing the amount of drug experienced intra-cellularly, therefore it would

be expected that the acrAB knockout strain AG100 would have a decreased

MIC compared to the wild-type. This is indeed the case, with the MIC of

0.15/ml around threefold lower than the MIC for the wild-type (both strains

grown for 24 hours seasons). Figure B.11 also demonstrates that as well as

the expected decrease in MIC, there is no evidence of overgrowth at any con-

centration, therefore implying that this efflux system is required in order for

cell density to be stimulated by Dox.

Fig. B.11: Dose-response curves showing the evolution of the E.coli Ag100a strain
to Doxycycline. Hill function fits every curve, monotonicity of antibiotic inhibition
is maintained in the absence of acrAB/tolC efflux

No overgrowth in other strains

Figures B.12 and B.13 provide additional evidence that this stimulatory effect

of Dox is a strain specific phenomena, with closely related K12 strains not

exhibiting the same phenotype. Four strains (MC4100, MG1655, BW25113

and AG100) are compared, with only AG100 showing stimulation, and only

MG1655 showing high levels of resistance (at 2xMIC). Figure B.13 shows ge-

netically engineered strains of BW25113, from the Keio collection (provided by

the CGSC at Yale). Again, none of these strains demonstrate the phenotype

of interest, and therefore unfortunately could not be used to test the hypoth-
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esis that metabolic competency in different pathways could be necessary for

stimulation.

No overgrowth in Keio knockouts
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Streptomycin resistance does not cause overgrowth in most strains

In order to determine if rpsL mutation (the predominant mechanism of Strep-

tomycin resistance) could enable the lag-yield trade off seen in AG100, each

strain from the Keio collection was subject to four days of increasing Strep

pressure, from 2xMIC to 128xMIC. Rather than adaptation in liquid media,

cells were grown on solid agar impregnated with the appropriate concentration

of Streptomycin. By inoculating the agar with cells at a high density, the large

inoculum size allowed a higher probability of inoculating a resistant cell line.

This enabled a high level of Strep resistance to emerge rapidly. None of the

strains so treated exhibited the increased lag leading to a higher yield over

48 hours of growth in Dox (Figure B.14), however one strain (∆manZ) did

develop such an overgrowth within 3 seasons, when adapted to Dox.
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∆manZstrpR does not exhibit a lag yield trade-off

Although ∆manZstrp+ does exhibit an increase in cell density comparable to

that seen in AG100, as Figure 3.21 shows, there is not a significant increase

in lag time. Potentially the longer lag phase is not required for the cells to

up-regulate TCA cycle genes, as ∆manZ is already glycolysis limited, and

therefore is more likely to be utilising alternative metabolic pathways already.
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Rate-yield and Lag-yield trade off raw data
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Fig. B.16: [ AG100 displays LYTO]E.coli AG100 strains adapted for one week in
conditions of either zero drug, MIC or twice MIC were grown in drug free me-
dia. Both antibiotic-adapted strains outperform the wild-type bacteria, the growth
curves showing a clear lag-yield trade off, as well suggesting that there is not a
growth rate cost for resistance in this case.

Fig. B.17: Strains adapted to MIC and 2xMIC show growth when in media sup-
plemented with MIC concentration of Dox. Although growth occurs, and occurs to
a higher level than wild-type bacteria in drug-free media, growth is not as high as
when the drug stress is removed.
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Fig. B.18: This plot shows the comparison of yield and lag for AG100 populations
adapted to 1xMIC [Dox] and subsequently grown at three concentrations of the drug.
As expected there is minimal growth at the Dox concentration that is higher than
the adaptive background of the population, but what is very clear is the dramatic
increase of yield that the population shows when the drug is removed. Although
the lag decreases when drug is removed, it does not decrease to wild-type levels, so
although adaption can mitigate the strength of the lag-yield trade off, it can not
remove it or invert it to a trade up.
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Lag-yield data for MG1655

Where can trade-off’s be found?
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Fig. B.19: Using the same system as above, MG1655 wild-type and adapted strains
were grown in drug free media. The drug adapted strains show signs of outcompeting
the wild-type only in glucose concentrations of 0.1% and 0.2%, elsewhere the wild-
type strain has the highest fitness in this media.

Fig. B.20: As expected, in media containing Dox at the level of the MIC, the wild-
type strain fails to grow, and the drug adapted strains show levels of growth, with
the MIC-adapted strain being most fit. OD does not reach the same density as
wild-type growth in zero drug.
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Fig. B.21: The yield is lower for all drug adapted MG1655 populations than the
control

Fig. B.22: There is no LYTO present in MG1655 when drug challenge is removed
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Fig. B.23: No LYTO present in MG1655 in Dox
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Fig. B.25: Although MG1655 did not show overgrowth during the initial dose re-
sponse testing, the adapted strains do have a higher than wild-type growth (as
measured by OD) at certain low glucose concentrations
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Appendix C

Chapter 4: Appendix

C.1 Material and Methods

DNA Extraction: DNA was extracted from frozen samples (150µl culture

+ 75µ/l 80% glycerol) using an Ambion gene jet DNA extraction kit. Sample

was extracted from populations taken from season 8 of the adaptive experi-

ment, results shown in Chapter 2, Fig 3.8. A small quantity (1µl) was removed

from the frozen population using a sterile tip, and inoculated into M9 media

containing the same concentration of nutrients and antibiotic as the adaptive

condition, therefore recapitulating the conditions of season 9. The only differ-

ence between the experimental condition and the condition used for growing

an overnight culture for DNA extraction was that a larger volume (5ml) was

used for DNA extraction (in 15ml Falcon tubes). As well a season 8 pop-

ulations, a sample was taken from the ancestral AG100 and MG1655 frozen

populations to act as a control. 18 samples were extracted in total, as shown in

Table 4.1. The kit extraction protocol was slightly modified to increase yield,

with a larger sample (5ml) being used, and centrifuged at 4◦C for 10 minutes.

The supernatant was discarded and the pellet was resuspended in the lysis

buffer as per the instructions. After DNA binding to the silica column, an

additional wash step was used, with a 2 minute rinse in 80% ethanol, in order

to remove all guanidine salts. The binding tubes were centrifuged whilst open

for 1 minute following this wash to ensure that all ethanol was removed, as

this would stop the elution of DNA during the final step of the extraction. To

further maximise yield, the wash buffer was heated to 45◦C and left to soak the

column for 5 minutes before elution. DNA quantitation was performed initially

on a NanoDrop spectrophotometer, which also gave an indication of contam-

ination with protein or organic salts. DNA was also run on a 1% agarose gel

to ensure that DNA size was in excess of 10,000bp and to act as a secondary

check to ensure that there was no protein contamination (which would show
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up as smearing on the gel). Finally DNA was accurately quantitated using the

Qubit system, ensuring yields of over 25ng/µl in 50µl. Samples with sufficient

DNA in excess washing buffer were spun on a vacuum centrifuge at 45◦C until

volume was reduced by half, to increase the concentration of DNA.

Paired-end DNA libraries were prepared by Exeter Sequencing Service, us-

ing the Nextera (Illumina) library preparation protocol [14]. Although three

biological replicates were sequenced for each condition, only 2 replicates for

the M9-adapted AG100 population were used due to an error in the library

preparation stage. The purpose of sequencing both ancestral and M9-adapted

cell lines was to ensure that any adaptation observed by whole genome re-

sequencing was due to adaptation to Doxycycline, and not adaptation to min-

imal media, or random genetic drift.

DNA Quality Control

After extraction of genomic DNA, quality control checks were carried out.

Bioinformatics strongly follows the principle of ‘Rubbish in, rubbish out’, in

terms of the quality of genetic material will have a large effect on the reliability

of the final DNA sequence. Therefore quality control steps are vital at every

point of the process, from the DNA extraction, library prep and through to

bioinformatics. The first checks which were carried out was quantification

of DNA volume, using NanoDrop (Figure C.1(b)) and Qubit systems. The

NanoDrop can also give information about possible contaminants, but can

be unreliable at low concentrations of DNA. For this reason, the preferred

pre-submission quality control step of the Exeter Sequencing Centre is to run

the DNA on a 1% agarose gel to check for contamination, degradation and

sufficient fragment length (Figure C.1(a)).

DNA QC

Sequence data quality control

Once the sequence data was returned from ESS, some quality control steps

are also necessary to remove bias inherent in the sequencing system. Reads

are scored for quality, with quality tending to diminish towards the end of the

read.
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a) b)

Fig. C.1: a) Minimal smearing and bright bands suggest an un-degraded sample free
from contaminants. On the left hand side is shown at 10kb ladder, so fragment size is
confirmed as greater than 10kb. b) NanoDrop spectrophotometry shows absorbance
at a range of wavelengths.

Fig. C.2: FASTQC trimmed read file, showing Q score of ¿25 for all position of the
read. Representative image of data quality.
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Bioinformatic pipeline

../../../Desktop/bioinformatics_pipeline.png

[Bioinformatic pipeline]Schematic representation of the final pipeline used to

analyse AG100 and MG1655 whole genome data. Image adapted from

www.ebi.ac.uk

Quality Control

Exeter sequencing service performed some initial quality assessment, as well as

adapter trimming, but otherwise the sequence data was raw when delivered. All

reads were quality controlled before further analysis. FastQC was used to perform

read trimming, removing read ends to ensure that quality across the whole read

length was in excess of a Phred quality score of 20 (although the end of some reads

was as low as 20, the mean across the reads was much higher, with most read

positions with a quality above 30.

Scaffold plots

Contigs were assembled and aligned against the previously published genomes for

AG100 and MG1655 respectively. Each sequenced population mapped well against

the references, with a maximum of 8 contigs required for assembly (Figure C.3).
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Alignment

All sample reads were mapped to the previously published E. coli K12 (AG100)

reference genome [95]. Each sequence was indexed to the reference in fasta format,

using the BWA (Burrows-Wheeler alignment) index subroutine (BWA 0.7.4). Align-

ment was also performed using BWA, and aligned files were subsequently sorted to

genomic position and indexed using Samtools and filtered to remove any non-paired

end matches [73]. Coverage was analysed using genomeCoverageBed in Bedtools

[98], and data was further analysed in Matlab.

Variant calling

Single Nucleotide Polymorphisms (SNPs) were called using VarScan 2.3.8. VarScan

uses a heuristic/statistic method to based on read depth, base quality and variant

frequency in order to call SNPs. Filters were added to SNP calling to ensure that

high quality calls were made. These quality filters were; minimum read depth of 60,

with at least 10 reads supporting the alternative variant, a P-value of 0.05 or less and

a minimum average quality of 30. Additionally VarScan calls SNPs as homologous

if over 90% of the reads support one or the other variant. VarScan also detected

short indels in the same manner. Pindel was used to detect structural variations,

including inversions, rearrangements and indels. Pindel works by detecting break-

points using a pattern-growth algorithm. This identities paired reads whereby only

one of the reads is able to map to the reference. By breaking the unmapped read

into shorter fragments, and re-mapping, the breakpoint of insertions or deletions

can be detected. Duplication events were determined using CNVnator v0.3 [20],

which analyses mapping density statistically to discover copy number variants. The

genome must be split into ‘bins’ for CNVnator to compare, the bin size was left as

the default of 100 after calibration. Although the high mean coverage meant that

a smaller bin size (and therefore a more accurate copy number variance for a given

genome position) could be used, CNVnator documentation suggests that the bin

size not be smaller than the read length.

Annotation

Both genomes sequenced have been annotated previously and these annotation files

were used in annotation of wild-type populations of AG100 and MG165. These files

were accessed from EBI and ENSEMBLE respectively [40], [41]. Annotation of the

evolved genomes was also performed using RAST for initial web-based viewing, and

PROKKA to annotate the consensus fasta files of all experimental replicates [9],

[89], [19], [111].
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Table SC.1: Phage deletion genes - AG100Dox

Start Stop Length (bp) Function Subsystems
806940 806392 549 Phage protein - none -
807439 807257 183 DNA-damage-inducible protein we DNA repair
807663 807550 114 Phage protein - none -
808573 807893 681 Phage exonuclease (EC 3.1.11.3); - none -
809355 808570 786 DNA repair protein RecT (prophage associated) DNA repair
809657 809361 297 Mobile element protein - none -
809875 809732 144 Kil protein - none -
810449 810081 369 Single stranded DNA-binding protein phage-associated
810754 810632 123 antirestriction protein - none -
811905 811582 324 Phage antitermination protein N Phage nin genes
813659 812820 840 hypothetical protein - none -
814485 813772 714 Phage repressor - none -
814586 814786 201 Regulatory protein cro - none -
815061 815198 138 Phage repressor - none -
815231 816130 900 Origin specific replication initiation factor Phage replication
816127 816828 702 Replication protein P - none -
816825 817115 291 Ren protein - none -
817189 817629 441 Phage NinB DNA recombination Phage nin genes
817608 818498 891 Phage NinC Phage nin genes
818814 818984 171 Phage NinF Phage nin genes
819391 819588 198 Phage NinG rap recombination Phage nin genes
819585 819791 207 Phage NinH Phage nin genes
819769 820434 666 Phage NinI serine/threonine phosphatase - none -
820431 821054 624 Phage antitermination protein Q Phage nin genes
821731 822054 324 Phage holin Phage lysis modules
822038 822514 477 Phage lysin 1
822511 824610 2100 Phage terminase large subunit
824607 824813 207 Phage head-tail joining protein Phage capsid proteins
824810 826411 1602 Phage portal protein Phage packaging machinery
826392 827711 1320 Phage capsid and scaffold Phage capsid proteins
827721 828053 333 Head decoration protein - none -
828109 829134 1026 Phage major capsid protein Phage capsid proteins
829176 829574 399 Phage capsid and scaffold Phage capsid proteins
829586 829939 354 Phage capsid and scaffold Phage capsid proteins
829951 830529 579 Phage tail completion protein Phage tail proteins
830526 830921 396 Phage minor tail protein Phage tail proteins
830950 831669 720 Phage tail assembly Phage tail proteins
831685 832107 423 Phage minor tail protein Phage tail proteins
832089 832523 435 Phage minor tail protein Phage tail proteins
832516 835077 2562 Phage tail length tape-measure protein 1 Phage tail proteins
835074 835403 330 Phage minor tail protein #tail protein M Phage tail proteins
835403 836101 699 Phage minor tail protein Phage tail proteins
836251 836850 600 Phage tail assembly protein Phage tail proteins
836847 837419 573 Phage tail assembly protein we Phage tail proteins

C.2 Supplementary Data

Prophage genes in deleted region

Genes in duplicated region
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Appendix D

Chapter 5: Appendix

D.1 Materials and Methods

Bacteria and Phage Library: a genotype × genotype Infectivity matrix

from imaging algorithms

In order to determine an infectivity phenotype for each bacteria-phage pair, a bac-

terial lawn on an agar plate was inoculated with each of the phage to produce a

plaque the size of which determines the relative infectivity of each phage for that

bacterium. A typical bacterial lawn resulting from this assay is depicted in Figure

D.1(a). A photograph of each plate was taken with a digital camera at a resolu-

tion of 72dpi (see Figure D.1(a)) and processed using the public-domain software

ImageJ [1]. After acquisition, the picture was converted into an 8-bit image and

filtered to reduce the effect of non-uniform illumination. The local normalisation

algorithm used is based on local mean and variance values computed using local

spatial smoothing [30].

The obtained image was then smoothed using a Gaussian blur (with σ = 4) and

enhanced using a contrast stretching algorithm (normalized, with 3 saturated pix-

els). The resulting image was then thresholded using the iterative isodata algorithm

[102], inverted and converted to a mask. By combining the resulting image with

the original image we get the pre-processed image shown in Figure D.1(b). Then

the region of interest (ROI) was established manually for each picture in order to

determine the 8 × 12 grid where each phage was inoculated. From each cell in the

grid a sub-image was automatically cropped and the area of each blob measured

using a growing region algorithm with optimised thresholds. Both the grid and the

obtained blobs are illustrated in Figure D.1(c).

The blob-detection algorithm can be summarised as follows: 1) first determine a

seed pixel, for instance by choosing a local maximum near the centre of the image; 2)

then recursively add in neighbouring pixels that are above the optimised threshold,

and thus increasing the size of the region; 3) finally convert the resulting blob into a

polygonal ROI and compute its area. After repeating this process for each of the 96
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Quantifying phage infectivity patterns through image processing

The photograph of each plate was taken with a digital camera at a resolution of 72dpi (see Figure 1a) and
processed using the public-domain software ImageJ [1]. After acquisition, the picture was converted into an
8-bit image and filtered to reduce the effect of non-uniform illumination. The local normalization algorithm
used is based on local mean and variance values computed using local spatial smoothing [2].

The obtained image was then smoothed using a gaussian blur (with σ = 4) and enhanced using a contrast
stretching algorithm (normalized, with 3 saturated pixels). The resulting image was then thresholded using
the iterative isodata algorithm [3], inverted and converted to a mask. By combining the resulting image with
the original image we get the pre-processed image shown in Figure 1b).

Then the region of interest (ROI) was established manually for each picture in order to determine the 8× 12
grid where each phage was inoculated. From each cell in the grid a sub-image was automatically cropped
and the area of each blob measured using a growing region algorithm with optimized thresholds. Both the
grid and the obtained blobs are illustrated in Figure 1c).

The blob-detection algorithm can be summarized as follows: 1) first determine a seed pixel, for instance by
choosing a local maximum near the center of the image; 2) then recursively add in neighbouring pixels that
are above the optimized threshold, and thus increasing the size of the region; 3) finally convert the resulting
blob into a polygonal ROI and compute its area. After repeating this process for each of the 96 cells in the
grid, the obtained values are then normalized in order to measure the likelihood of infection of each phage
type, a quantity that can be visualized using a heat map, as illustrated in Figure 1d).

Figure 1: An example (bacterial type 23B) illustrating the image processing steps taken to quantify phage
infectivity patterns from the picture of a plate. a) Photograph at 72dpi. b) Pre-processed image. c) Blob-
detection algorithm. d) Resulting normalized infectivity data (darker green denotes higher likelihood of
infection).

Fig. D.1: An example (bacterium 23b) illustrating the image processing steps taken
to quantify phage infectivity patterns from the picture of a plate. a) Photograph
at 72dpi. b) Pre-processed image. c) Blob detection algorithm. d) Resulting nor-
malised infectivity data (darker green denotes higher infectivity).

cells in the grid, the obtained values are then normalised to provide a proxy for the

likelihood of infection of each phage type, a quantity that can be visualised using a

heat map, as in Figure D.1(d).

Growth Kinetics

A library of 56 strains that had been co-evolved with λ phage was obtained from

Justin Meyer (San Diego) with thanks. Image analysis was carried out by Rafael

Pena-Miller (UNAM, Cuernavaca) to determine plaque size and depth to give a

quantitative measure of infectivity fot every strain. In order to assess any potential

change in growth kinetics as a result of mutated maltoporin transport protein, each

strain was grown for 24 hours at 8 concentrations of maltotriose as the sole carbon

source. All strains had the same REL606 ancestor, with the genetic differences

between all strains had been elucidated using illumina sequencing of the lamB gene.

In order to determine the trade off between growth rate and yield, as well as any

correlation with resistance, all strains were grown for 24 hours in 8 concentrations

of maltotriose, ranging from 2.5µg/ml to 250µg/ml. Davis minimal media was used

throughout to ensure that maltotriose was the only carbon source supplied to the

bacteria. Experiments were carried out with five replicates for each strain (plus

positive and negative controls) using two strains per 96 well microplane (150µl well

volume). Optical density was read using a Biotek Elx808 uv/vis absorbance reader
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every twenty minutes. To ensure measurable growth levels at the lowest maltotriose

concentrations, cells were revived in LB media for 12 hours after sampling from the

freezer. 100µL of this overnight culture was then added to Davis media supplemented

with the appropriate level of sugar. After a second overnight growth, cells were used

to inoculate the micro-plate using a 96-pin replicator, transferring approximately

1µL per well.

Calculating growth rate

Growth rate is a key calculation in deterring rate-yield trade off dynamics, and yet is

not as trivial a calculation as may be assumed. The standard method of calculating

a rate value is to differentiate the exponential growth curve, and derive a doubling

time from this information. However, as previously mentioned, such as approach not

only takes no account of the length of the lag phase, or the growth arrest phase, it

can also be difficult to arrive at a realistic number, especially in cases where growth

is very low and fails to follow a sigmoidal growth pattern, making curve fitting more

difficult.

For this reason, other methods of calculating rate were attempted and compared.

The stepwise difference was measured, and the largest stepwise difference (or Rmax,

as it will be described hereafter) used as a rate measurement. Alternatively the area

under the curve for the whole growth curve was calculated (in this case, using the

trapezoid approximation method) from the raw data. Both of these techniques had

the advantage of making calculations based on the raw data, and not requiring curve

fitting. Although using raw data without model fitting has advantages, in this case

the standard sigmoidal model was used to determine rate. This decisions was made

for a number of factors; firstly to ensure consistency with other studies of growth

rate. As opposed to experiments in Chapter 2, there was no antibiotic to act as a

growth limitation in this study, therefore all strains reached stationary phase within

the 24 hours of the experiment. For this reason, a sigmoidal fit could be achieved

more easily, and was therefore adopted to find the rate.

A Protein-Matching Heuristic

A protein matching algorithm begins by extracting the α-carbon data from the ap-

proximate folding package (I-TASSER). We then perform a Procrustes-like analysis,

extended to include the matching of proteins with SNPs, insertions and deletions.

In order to match two proteins of different sizes we used an iterative and heuristic

extension of the rectangular munkres algorithm to extend the 3-d point-matching

algorithm given in [88], as follows. This algorithm also defines a distance between

two proteins’ α-carbon structures, P and Q, the algorithm is defined as follows.

Suppose {pj}Nj=1 = P and {qj}Mj=1 = Q are given.

237



0. If N = M , the Procrustes algorithm (using only direct isometries) followed by

the munkres linear matching algorithm defines an optimal pairing of minimal

Euclidean distance such that j = J(i) for i = 1, .2, ..., N .

Otherwise, the following iteration is implemented when N > M with the goal

of locating a subset of P that matches Q optimally, or close to optimally:

1. Let j := 0,P0 := P ,Kbest := {p1, ..., pM},Lbest := {pM+1, ..., pN} and define

dmatched
best :=∞. Also define an iteration limit, jlim.

2. Use munkres to find a set of indicies that provide the best match between Pj
and Q and so write Pj = Kj ∪ Lj where Kj is a set of N points that matched

best and Lj is the set of M −N that match worst.

3. Define a flag, stop := is(Lbest = Lj or j ≥ jlim)?

4. Define a distance from the unmatched points to the target set and a distance

from the matched points to the target set, respectively:

dunmatched
j :=

∑
l∈Lj ,p∈Q

d(l, q) and dmatched
j :=

∑
k∈Kj ,p∈Q

d(k, q).

If

dmatched
j < dmatched

best

then

dmatched
best := dmatched

j , dunmatched
best := dunmatched

j ,Kbest := Kj,Lbest := Lj.

5. Find the direct Procrustes optimal isometry given by a pair denoting the linear

isometry and a translation, (Rj, τj), between Kj andQ and set Pj+1 := Rj[Pj]+
τj.

6. If j ≥ 1 and stop is false, set j := j + 1 and return to (2).

At this point Kbest is the set of best approximating points derived fromQ through

a linear, direct isometry that and Lbest are the image of the points in P under this

isometry that we have rejected. The algorithm has also produced two notations of

distance, one taken over the points that match and one that adds to this number

the distance taken over all the remaining points that do not match.

This algorithm is applied to an artificial dataset shown in Figure D.2(a) and the

results presented in Figure D.2(b): a discrete ‘figure 8’ is matched to a larger and

randomly perturbed version of the same shape (larger by two α-carbons, analogous

to having two single base-pair insertion mutations). By the green circles Figure

D.2(b) illustrates that the algorithm correctly identifies the two additional carbons.

The larger dataset is shown as a set of blue dots and black lines are used to indicate

the largest matches (here greater than 3.5% of the total matched protein distance)

to the smaller dataset, the latter shown as red circles.
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Fig. D.2: (a) This shows two different views of the matched data, one from above
on the left, and one from the side on the right. The algorithm described in the text
determines matched points and identifies two ‘homologous’ subsets in each dataset,
it identifies the remaining two points in the larger protein that cannot be matched
and the worst matched pairs are then indicated with a black line. (b) Two 3-d
datasets are shown, one is a figure ‘8’ comprised of 32, 3-vectors representing α-
carbon positions, the other is a similar figure ‘8’ to which noise has been added,
a rigid motion applied and two additional points added to make a new dataset of
34, 3-vectors. We seek the best match between these two fictitious ‘proteins’ with
respect to a set (ie. Hausdorff) metric based on the Euclidean norm.

D.2 Supplementary Data

For completeness we sought a relationship between each strain’s competitive ability

measured using a standard relative fitness phenotype and phage resistance, but we

saw no correlation, just as there is no correlation between resistance and lag, rate

or yield. Data supporting this absence of correlation is shown in Figure D.3.
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Fig. D.3: Three vegetative growth traits (rate, yield and lag) measured in
laboratory conditions are plotted against their respective library phage
susceptibilities. (a) This data indicates no evidence to support a trade-off hy-
pothesis that rate, yield or lag are traded by the bacteria for phage resistance. (b)
This statement is supported by a second dataset whereby E.coli relative fitnesses
are plotted against phage susceptibility. The fitness are shown in the main plot,
(b-inset) then shows the relationship between relative fitness and mean phage sus-
ceptibility for each bacterial strain. Relative fitness is defined by growth rate for
this plot.
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Appendix E

Chapter 6: Appendix

E.1 Materials and Methods

Strains

E.coli strains AG100, AG100A and MG1655 were cultured overnight in M9 minimal

media, (per litre, 1.75g K2HPO4, 0.5g KH2PO4, 0.15g Na3C6H5O7, 0.25g NH4NO3,

0.025g MgSO4) supplemented with 0.2% glucose and 0.1% casamino acid. Cultured

cells were taken from single colonies isolated on LB agar from stocks stored at -

80◦C. Soft agar (5g/L agar) was made with the same proportion of M9 salts, and

inoculated with 5% overnight culture (∼109 cells). Later studies were conducted

in the same manor but using a range of glucose concentrations from 0.05% to 2%.

Overnight inocula were grown at the same glucose concentration as was to be used

experimentally. Casamino acid concentration was kept constant at 0.1% regardless

of glucose level. Strains were kindly provided by Stuart Levy (Tufts) and Tobias

Bergmiller (IST) respectively.

Plate construction

150mm square petri dishes were filled with 50ml of soft agar, excluding a circular area

in the center of the plate, kept free of agar using a small petri dish. Once the agar

was set, the small dish was removed using forceps, and was filled subsequently with

the same agar as above, containing no bacteria, but the appropriate concentration

of Doxycycline (10µg/ml). This methods was chosen, rather than the traditional

paper-disk diffusion method, as it allows an equal diffusion of nutrient and drug

across an entirely homogenous media plate. The use of soft agar to aid image

capture also necessitated the use of a drug containing region where diffusion would

not be biased to the surface of the plate. The plates were grown at 30◦C for 48

hours, photographed at zero, 24 and 48 hours in a custom built automated imaging

system (BioBox - see supplementary materials).
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Imaging

Images were recorded automatically in a miniature custom built dark-room, using a

Canon EOS 1100D digital SLR, (f=0.4, ISO=100, exp.=1.2 seconds) controlled by

an Arduino controller. Perspective correction was performed using Adobe Lightroom

software, and the images were subsequently analysed in MATLAB to obtain pixel

intensity as a proxy for cell density.

Bio-Box

The BioBox is a desktop darkroom, custom built to automatically take photos,

either under white light or using filters for fluorescent imaging. The box is tem-

perature controlled to provide a consistent environment for multiple day time lapse

video capture. The camera and associated servo arm for positioning the filters

(two excitation/emission filters pairs can be used, currently for CFP and YFP) are

controlled by an Arduino, programmed by Michael Seiber and Rafael Pena-Miller.

Programming was later modified by myself and Sam Gardner to optimise settings

including exposure time and focus depth. Since being used to generate the images

seen in chapter 5, the box has been modified to change the angle of image capture

(reducing glare, and removing the need to for perspective correction).
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