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Abstract

We extend a spatially explicit agent based model (ABM) developed previously to investigate entrainment
and control of the emergent behaviour of a population of synchronized oscillating cells in a microfluidic
chamber. Unlike most of the work in models of control of cellular systems which focus on temporal
changes, we model individual cells with spatial dependencies which may contribute to certain behavioural
responses. We use the model to investigate the response of both open-loop and closed-loop strategies,
such as proportional control (P-control), proportional-integral control (PI-control) and proportional-
integral-derivative control (PID-control), to heterogeinities and growth in the cell population, variations
of the control parameters and spatial effects such as diffusion in the spatially explicit setting of a
microfluidic chamber setup. We show that, as expected from the theory of phase locking in dynamical
systems, open loop control can only entrain the cell population in a subset of forcing periods, with a
wide variety of dynamical behaviours obtained outside these regions of entrainment. Closed-loop control
is shown instead to guarantee entrainment in a much wider region of control parameter space although
presenting limitations when the population size increases over a certain threshold. In silico tracking
experiments are also performed to validate the ability of classical control approaches to achieve other
reference behaviours such as a desired constant output or a linearly varying one. All simulations are
carried out in BSim, an advanced agent-based simulator of microbial population which is here extended
ad hoc to include the effects of control strategies acting onto the population.
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In Prindle et al. [19] E.coli cells were engineered to display global synchronised oscillations across physi-
cally disconnected, yet coupled via gaseous exchange, populations part of a microfluidics platform where
the spatial arrangement of populations was important to the waveforms observed. Notable examples
are also found outside the synthetic biology domain. For instance, upsetting the gradient of bicoid and
nanos proteins during the growth of a drosophila embryo results in incorrect topological formation of
the head and tail [2]. These examples illustrate that certain behavioural responses are dependent on
the spatio-temporal organisation of populations, a result also confirmed through theoretical work in
reaction-diffusion systems indicating that spatial structure affects qualitative behaviour [20].

Despite the importance of spatial dependence in certain systems, spatial aspects in models of control
have not been studied as widely, with limited examples available in the literature. In order to gain insight
into the mechanisms disrupting or promoting synchrony across coupled neuronal oscillators, Hauptmann
et al. [21] developed a time-delayed feedback control model of neurons that are uniformly distributed
over the area of a circle. Control was either applied locally, whereby each quadrant was affected using a
dedicated controller, or globally where all controllers could have a (weighted) contribution on the entire
cell population. Others have focused on continuum type spatial models and how control can be used
to obtain specific spatio-temporal patterns. For example, in Alhborn and Parlitz [22] a 2D Ginzburg-
Landau partial differential equation (PDE) model is presented [22] where the aim is to stabilize unstable
oscillatory behavior (periodic orbits) or create spatio-temporal chaos using global and local time-delayed
control input at different locations across the plane. Also, Ghosh [23] investigated global feedback control
of an activator/inhibitor reaction-diffusion system spatially extended in a 2D-plane, modelled with two
PDEs, in order to obtain stationary patterns in the plane.

The aim of this paper is to study the effect of control in a spatial setting by extending a previously
developed, spatially resolved ABM [24] and its implementation in the software platform BSim [25, 26].
As such, we expand the model [24] to include open loop (non-feedback/feed-forward) and closed loop
(feedback) control strategies. In the original model [24], which represented the experimental system of
Danino et al. [27], cells were considered as agents in a microfluidic chamber, had explicit spatial positions
and their intracellular dynamics were under the influence of an activation-inhibition type of GRN which
can lead to oscillatory behaviour [28–33]. The GRN, based on a quorum sensing (QS) architecture [34],
produced a small hormone molecule referred to as an autoinducer which was freely exchanged between
cells and their environment leading to an all-to-all coupling across members of the population. In Mina
et al. [24], we were able to convincingly illustrate that synchronised population-wide oscillations in the
metabolic states of cells were likely to be an emergent population property and that synchronisation was
dependent on the coupling between members of the population, which in turn depends on the cell density
as well as the concentration and spatial diffusivity of the secreted hormone in the microfluidic chamber.
By using as basis the model presented in [24] we take into account intracellular dynamics, as well as
explicit spatial dependencies of coupled cells to investigate the application of classical proportional (P),
proportional-integral (PI) and proportional-integral-derivative (PID) control strategies [1] to achieve
tracking and regulation of a cell population. Unlike other computational studies where the focus is on
the temporal aspects of a system [13, 14, 16], here we use BSim an agent based simulator of microbial
populations able to simulate both the spatial and temporal dynamics of the cells and the embedded
GRN [25,26].

We study the effectiveness and performance of the control approaches and the effects of explicitly
considering the spatial dynamics with in silico cell populations of increasing sizes, starting with a small
number of 21 cells to make the computation easier and ending up with full scale simulations of several
thousand of cells. (We also consider intermediate population sizes of 60 and 100 cells to reduce the
computational cost and thus cover a greater range of values in control parameter space.) As an initial
condition, each population is uniformly distributed over the chamber (see SI), each cell component is
modelled with four non-linear ordinary differential equations (ODEs), and subject to control through
the manipulation of the small hormone chemical field, which is modelled with a PDE. Specifically, we
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investigate when entrainment of the population to a reference sinusoidal signal is possible in open and
closed loop and whether the spatially resolved population can track a time-varying reference signal. Since
we use an ABM approach, we also study the effect of cell-to-cell heterogeneity across the population,
as in a physical setting cell dynamics will tend to vary slightly even between members of the same
colony [2, 35, 36]. Finally, by extending BSim [25] to include cell death, we simulate a dynamic, motile
population where cells not only grow and divide but also die, to evaluate how the performance of the
control action is affected by an increasing and constantly varying population size.

Hence, we illustrate the model and extend the BSim simulation platform so as to provide an effective
in silico test-bed where cellular populations are simulated in a spatially explicit 3D-environment and
control strategies can be tested and validated via more realistic in silico experiments before their physical
implementation. In so doing, we uncover the dynamic behaviour of the average population response
and how it compares with the dynamics of individual cells, which are part of the model. We note that
a copy of the BSim simulation platform, along with the developed control functions, can be obtained
from the BSim repository [25,37].

Results and Discussion

The spatiotemporal model with control

Our aim is to simulate and control the output of a population of cells, whose metabolic states undergo
autonomous oscillations [27], by extending the spatially explicit agent-based model presented in Mina
et al. [24]. In the autonomous system presented in Danino et al. [27] a GRN comprised of three genes
was introduced into bacterial cells and allowed for oscillations to exist due to the presence of activation-
inhibition feedback loops part of the GRN [24,28–33]. As shown in figure 1 these genes are, luxI, aiiA
and yemGFP and all are under the influence of the same promoter, li-P [27]. The genes have a C-
terminal degradation tag sequence that shortens the half-life of their protein products considerably [38]
and are introduced into bacteria on separate plasmids [27]. The luxI gene encodes for the LuxI synthase
(LI), a protein that produces acyl homoserine lactone (AHL). AHL, also known as an autoinducer,
can interact with the constitutively expressed protein LuxR, the AHL autoinducer receptor (LR), to
form the LuxR:AHL complex (L:A) and activate the promoter li-P, allowing for the transcription of all
three genes [27]. The AHL molecule is removed from the system by interacting with the acyl homoserine
lactonase (aA) enzyme that degrades AHL. AHL can also freely diffuse across the cell membrane allowing
for communication, and hence coupling, between all cells in the population [27]. The ODEs used to
model the internal dynamics of each cell are given in the supplementary information of this manuscript,
as well as in reference [24].

To remain consistent with the experimental setup of Danino et al. [27] we define a three dimensional
coordinate system, the (x, y, z)-plane, where x ∈ [x0, xn], y ∈ [y0, yn] and z ∈ [z0, zn]. The subscript n
in the axes coordinates represents the maximum distance of each coordinate from the origin, labelled
with the subscript 0, in micrometers. As illustrated in figure 1, this defines the boundaries of the
microfluidic chamber. We set z0 = 0 and zn = 1 to model a one cell thick microfluidic chamber as in
Danino et al. [27]. Thus, we can restrict ourselves to spatial coordinates on a two-dimensional plane
(here the x and y coordinates) and the concentration of external AHL, say [Ã], can be described using
the reaction-diffusion PDE:

∂ [Ã](x, y, t)

∂t
= DÃ∇

2[Ã](x, y, t)
︸ ︷︷ ︸

brownian diffusion

+

N∑

i=0

ηenv([A]i(t)− [Ã](x, y, t))

︸ ︷︷ ︸

AHL exchange

− τÃ[Ã](x, y, t)
︸ ︷︷ ︸

degradation

, (1)
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Open loop control

To investigate the feasibility of controlling an increasing population size in silico using a feedforward
(open-loop) mechanism, we model a static (non-dividing) population and modulate the concentration
of the external autoinducer chemical field, [Ã], using the time-varying input, rsin(t) (equation (S18)).
Specifically, the external chemical field equation becomes:

∂ [Ã]

∂t
(x, y, t) = DÃ∇

2[Ã](x, y, t) +
N∑

i=0

ηenv

(

[A]i(t)− [Ã](x, y, t)
)

− τÃ[Ã](x, y, t) + korsin(t), (3)

where ko, the open loop gain, is set one and we examine the effects on the population output when
varying the parameters c, α and Tf which determine the constant offset, the amplitude and the period
of the input signal, as given in equation (S18). An example of a similar setup, where there is controlled
chemical flow of an inducer molecule in a sinusoidal manner, can be found in Mondragon et al. [40].

We first investigate the effect of varying parameter c of the sinusoidal signal, by fixing the external
force frequency Tf at a value away from Tn, the period that the cell population output illustrates
when only constant forcing is considered and is in the range of approximately 360-370 minutes for the
combination of c-values and population sizes examined in this manuscript. Results indicate that the
population is completely entrained above a certain threshold for c. This is true even for small values of
the amplitude, α. Specifically, when setting Tf to 250 minutes (this value is actually input in seconds
in BSim) and α to 1, complete entrainment occurs when c is greater than 1.5 for 21 cells, 3.4 for 60 cells
and 8.4 for 100 cells. An example of the 60 cells response in the (c, α)-plane, when Tf is fixed at 250
minutes, is shown in figure 4 (a). As such, for each investigated population we fix c at a value lower
than this threshold in order to investigate the effects of varying the forcing period, Tf , and amplitude, α.
The values of the control parameters used are given in the respective figures where results are illustrated
and in the main text where results are described.

As shown in figure 4 (b), a 21 cell population subject to variation of external AHL in the two
parameters of amplitude and period (α, Tf ) shows regions of entrainment in the (Tf/Tn, α)-plane, close
to multiples of the natural period, Tn. The value of the natural period, Tn, for a 21 cell population
is approximately 368 min (c = 1.0). The increasing value of the amplitude α allows the system to be
entrained to the forcing period even at values away from the natural frequency Tn, a behaviour typical
of two distinct coupled oscillators [41]. Note that near Tf/Tn ≈ 1, a minimal amplitude, α, of the
external input is sufficient to entrain the population (see also supplementary figure S3). Regions of
entrainment are also found near Tf/Tn ≈ 2, albeit at higher amplitude values. Phase diagrams of the
system in the ([aA],[LI])-plane constructed from stroboscopic sections of the system’s output illustrate
the presence of quasi-periodic oscillations outside the entrained regions whilst a limit cycle exists within
the entrained regions (see supplementary figure S4).

The same features observed in populations of 21 cells are also detected when larger populations are
simulated. Qualitatively similar diagrams of the (α, Tf/Tn)-plane for both 60 and 100 cells are shown
in the supplementary figure S5 where broad areas of entrainment near the natural period of the
cell population can be seen. This natural period is approximately 360 minutes for both 60 and 100 cell
populations (c = 3.2 and 5.0 respectively).

We also investigate the effect of heterogeneity by simulating a population of 60 cells and varying the
production and degradation rates of the metabolic variables of each cell part of the population. To do
so, we model the parameters (δ1, δ2, τA, τLA, kpLI

, kpaA , a0L , a0A ; see SI for further details) as random
variables of a Gaussian distribution. The values are obtained using a random number generator which
samples for each parameter a Gaussian distribution with mean value being the one given in table S1 and
standard deviation is a percentage of this value. Because of cell division in a controlled environment,
we assume that cells will only vary slightly [35]. As such, starting from a homogeneous population
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Closed loop control

As seen in the previous section, and as expected from the literature [42], open loop control can only
entrain a bacterial population of oscillating cells within a limited range of the control parameter values
α and Tf . Specifically, entrainment is only possible near the natural frequency of the population,
Tf/Tn ≈ 1, for small values of α, and as α increases so does the range of entrainment frequencies around
this natural frequency (see figure 4). Also, there is entrainment near Tf/Tn ≈ 2 subject however to
the signal’s amplitude value (α ≥ 1.20). Finally, increasing variability in the population causes cells to
become less synchronised. Thus, we proceed to check whether closed loop control performs better in
entraining the output of a population of oscillating cells to a desired forcing signal.

In contrast to open loop control, closed loop control continually adjusts the input to the system based
on feedback from the system’s current state. We implement P-control, PI-control and PID-control by
adjusting the external chemical field equation as follows:

∂ [Ã]

∂t
(x, y, t) =DÃ∇

2[Ã](x, y, t) +
N∑

i=0

ηenv

(

[A]i(t)− [Ã](x, y, t)
)

− τÃ[Ã](x, y, t)

+kpe(t)
︸ ︷︷ ︸

P-control

+kI

∫ t

0
e(τ)dτ

︸ ︷︷ ︸

PI-control

+kD
de(t)

dt

︸ ︷︷ ︸

PID-control

(4)

where kp, kI and kD are the gains for the proportional, integral and derivative control action respectively
and e(t) is the instantaneous error defined in equation (2). Thus, the control input fluctuates the
concentration of external AHL in the microfluidic chamber, based on the value of e(t), which in turn
affects the internal metabolic states of the cells such that the reference signal r(t) is matched. Setting
kD to zero allows us to investigate PI-control only and setting both kD and kI to zero allows us to
investigate P-control only. Note that in classical control applications PID controllers are known to be
effective to control the output of a system of interest to a constant reference signal. Here, because
of the simplicity of their implementation, we also explore their ability to control the population onto
a time-varying reference signal. Better performance could be certainly obtaining by considering more
advanced control techniques such as model predictive control which has also been used in the literature
on the control of biological systems [14]. In all simulations reported next, the control gains were selected
empirically and chosen to give an acceptable performance. We firstly identified via simulation the value
of control parameter kp, giving an acceptable P-control performance. The process was repeated for
control parameter kI , where the previously identified value of kp was fixed and kI was varied until an
acceptable PI-control performance was obtained. Finally, the procedure was repeated for kD, where
kp and kI were fixed at their identified values, and kD was varied until an acceptable PID-control
performance was obtained. The closed loop controller values used are reported, where appropriate,
along with the results.

We start by simulating a homogeneous population of 21 cells under the influence of P-control. We
vary the amplitude and period of the reference signal rsin(t) by changing the parameters α and Tf

(equation (S18)), to match the values of the (α, Tf/Tn)-plane presented in figure 4 (b). The constant
offset, c, is fixed at the same value as for the open loop control of this population size (c = 1.0). As
shown in figure 7, P-control can entrain the population over all amplitude and period values.

Furthermore, we assess the effect of the closed loop controller (P-control) with increasing levels of
heterogeneity, as we did with open loop control. Figure 8 shows the population response when 2%,
4% and 6% heterogeneity is introduced in the population (the homogeneous case, i.e. 0% heterogeneity,
is presented in supplementary figure S8). As seen when comparing figure 8 with figure 5 the
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behaviours to be expected.
More specifically, in this paper we adapted the spatiotemporal model presented in Mina et al. [24] to

include open and closed loop strategies to assess if a population of oscillating cells can be entrained to a
different input. We studied whether the cellular population can be forced to change dynamic behaviour
by following various reference signals using linear methods of control, specifically open loop and classical
feedback-based interventions (P-control, PI-control and PID-control), since in a physical setting these
can be executed using real-time computation due to the simplicity of the underlying mathematics. In
order to study the parameter dependence of the system’s behaviour, we focused initially on studying
small-sized populations.

Firstly, an open loop controller was implemented computationally by creating a sinusoidal flux of
the extracellular coupling chemical, Ã, through the microfluidic chamber. With increasing levels of
heterogeneity, open loop control of the system resulted in loss of clustering between coupled cells as
well as a diminished individual cell response in terms of amplitude (see figure 5). This is important as
oscillatory biological mechanisms are known to operate within defined frequencies and signal strengths
[44, 45] and any deviation away from these may be considered as biochemical noise and subsequently
ignored by the system [36, 46]. As such, any signal obtained through control using open loop methods
may be ineffective in initiating further response in the system of interest.

With open loop control, entrainment over populations of varying size was possible in a subset of
the amplitude and forcing periods as shown in figure 4 (b). As expected from the theory of phase
locking in dynamical systems [41, 42], entrainment occurred near the natural periods of the oscillating
population. Analysis of the model output showed that rich periodic behaviour can be found around
entrainment regions with the system changing qualitative behaviour across the entrainment boundary as
shown in figure 6 and S4. Unexpected periodic behaviour could be of significance in biological systems
as they may have a suboptimal response away from specific frequencies or amplitude thresholds [45,47]
or may result in different responses [44, 48]. For example, a system may have an additional GRN that
responds to the same chemical input but only when this input is characterised by a specific oscillatory
waveform which may appear during open loop control and subsequently lead to unexpected behaviour.

We note that the triangular regions of entrainment stemming from Tf/Tn ≈ 1 in figures 4 (b) and
S5 are reminiscent of Arnold tongues, areas of synchronisation in the (Tf , α)-plane bounded by two arcs
that intersect the α = 0 line [42]. In Arnold tongues, these arcs define a boundary of saddle-node type
bifurcations [41], i.e. a change of the system from a stable to an unstable steady state. Such qualitative
change of the system’s behaviour across this boundary is shown in figure S4 where phase diagrams are
produced by varying the control parameter Tf . Phase diagrams of the system in the ([aA],[LI])-plane,
constructed from stroboscopic sections of the system’s output, illustrate the change from an unstable
quasi-periodic oscillation to an attractor point in the phase plane, indicative of a stable limit cycle.

Also, according to linear oscillator theory such triangular regions of synchronisation (i.e. the Arnold
tongues) appear at rational multiples of the system’s natural frequency [42], here denoted as Tn, and
when the forcing is not too strong. As can be seen from inspection of figures 4 (b) and S5 there is also
synchronisation at Tf/Tn ≈ 2, although this does not touch the horizontal axis, i.e. when α = 0. It is
to be noted however that Arnold tongues, according to linear oscillator theory, get thinner (i.e. the arcs
come closer together) as we move away from Tf/Tn ≈ 1 [41,42], so perhaps it is difficult to visualise in
full such synchronised regions especially when using our brute-force method. Finally, we note that our
system is far from linear and that we do not prove that the regions of synchronisation seen in figures
4 (b) and S5 are indeed Arnold tongues. Such proof is beyond the scope of this paper but could be
the subject of future work.

Physical implementations of similar controller apparatus have been shown possible. For example,
in Mondragon et al. [40], a population of uncoupled oscillating cells is successfully entrained at regions
near the system’s natural frequency using an autoinducer which activates cells but is not responsible
for cell-cell communication. As such, it would be very interesting to investigate experimentally whether
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application of the open loop controller presented here, where cell-cell communication exists, creates
areas of synchronisation confined to integer multiples of the system’s natural frequency, as seen through
our results. However, we note that in the context of our study, we consider a scenario where the
controller action does not upset the system in terms of cell density or by the creation of chemical
gradients. This is important, as both cell density and spatial dispersion of the coupling chemical can
affect the synchrony of oscillations across the population [24]. For example, higher values of the Brownian
diffusion coefficient which allow for rapid travel of AHL in the chamber promote synchrony across the
population by disallowing the formation of local chemical gradients, whereas for smaller values of the
diffusion constant the converse is true [24]. Thus, if the physical implementation of such a controller is
inconsistent with the presented model, such as for example by forcing fluid through the chamber in a
manner which upsets cell density and chemical gradients, we may end up with unexpected behaviour.

If the objective is to entrain a population of oscillators to a specific periodic behaviour then a
closed loop strategy is preferable as shown in figure 7, since open loop control is only successful in
entraining the system of interest near multiples of its natural frequency, Tn. Also, the model revealed
that during open loop control cell-to-cell variability resulted in loss of clustering in the forced population
as shown in figure 5 but this level of variability was minimised for the closed loop controller as seen in
figure 8. Furthermore, if we wish to stabilise the population around a specific value then PID-control
action is preferred as it maintains a minimal standard error and allows to reach the reference value
in the least amount of time (see figures 9–10). This is better understood when inspecting equation
(4). Even though most of the control effort is contributed by P-control (see figure 9), a standard
error is maintained between the reference value and the system’s steady state [1]. A contribution to
the control effort given by the integral control term generally eliminates the error in the presence of a
constant reference signal but may cause overshooting as error correction is based on accumulation of past
errors [1]. Finally, the settling time is minimised since the derivative control acts as a linear predictor
for the system by estimating the rate of change of the error and contributes to minimising it based on
this rate [1]. However, even with a simple closed loop controller one cannot control an ever growing
population with fixed control gains as illustrated by the results shown in figure 11. This suggests the
possible usage of more advanced control strategies such as adaptive controllers, where the control gain
parameters are time-varying and adapted from the system’s input/output response in conjunction with
the reference signal [49].

In conclusion, testing control methods computationally may provide insight to which physical imple-
mentations of control would likely be more successful for harnessing a biological system. Furthermore,
such testing may give insight to the dynamic behaviours to be expected in the presence of spatial dynam-
ics that cannot be neglected, such as high periodic oscillatory behaviour seen near areas of entrainment,
which may cause a biological system to have undesirable output [44,45,47,48]. As shown here, a breadth
of responses may manifest depending on the strategy employed (e.g. open vs closed loop) and using
agent based models one can quickly and inexpensively (when compared to the physical implementation
of the controller) indicate the most promising strategies since both the average population response and
the individual cell response may be retrieved from the model.

Methods

Numerical methods in BSim

As in Mina et al. [24], we implement the model in BSim [26] an open software platform [25] developed
using the Java programming language [50] to study bacterial populations in silico. BSim is a 3D
framework for simulating bacterial populations [25, 26] and has numerical solvers for both ODEs and
partial differential equations (PDEs). We used the Runge-Kutta order four-to-five ODE solver when
solving the system of ODEs presented in equations (S4)–(S7) in the supplementary information section.
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A simple finite-differences scheme is used to solve for the reaction-diffusion PDE presented in (1).
Depending on the population size modelled, a time-step of 0.01 or 0.05 seconds was used and time-series
data of the variables were output every 50 or 100 seconds of the simulation. The bigger time-step is used
when simulating the bigger population size to reduce the computational time. The spatial aspect of the
model, i.e. the 200× 50× 1 µm3 microfluidic chamber, was discretised into 5× 5× 1 µm3 elements as
this was shown to be the smallest element that did not cause the finite-difference scheme to be unstable
during numerical solution of the model.

To ensure that results obtained from the model are numerically correct, solutions obtained from
BSim were confirmed with the numerical solutions produced from other software. Specifically, the ODE–
PDE coupling was momentarily uncoupled and the numerical solution of the separate components was
compared with results obtained from XPPAUT [51] and MATLAB [52]. Results obtained and presented
in the main text when solving the system of equations (S4)–(S7), presented in the supplementary
information, in BSim using the Runge-Kutta order four-to-five ODE solver, were compared against the
respective schemes of XPPAUT [51] (Runge-Kutta) and MATLAB [52] (ode45). The validity of the
PDE solver was checked by introducing a fixed quantity of extracellular AHL in the environment, in the

absence of cells, in order to obtain a degradation profile time-series (i.e. ∂[Ã]
∂t

= DÃ∇
2[Ã]− τÃ[Ã]). This

time-series was compared with results obtained when the equivalent ODE, d[Ã]
dt

= −τÃ[Ã], was solved
in XPPAUT [51] and MATLAB [52].

Extending BSim to include open and closed loop control

In order to implement and test the open and closed loop controllers described in the main text we
added the necessary functionality to the BSim source code by (i) extending the BSimChemicalField()
class into the BSimChemFieldExt() class to include methods for open loop control and (ii) creating the
ControlMethods() and RefSignals() classes to allow for the implementation of closed loop control
methods and reference signals, respectively, in the BSim environment. The classes are summarised in
table 1. For clarity, in the description that follows the parameters found within the brackets of each
class or method correspond to the quantities defined in the main text.

The BSimChemFieldExt() class inherits all methods and constructors from the chemical field class
already implemented in BSim, BSimChemicalField(). With the BSimChemFieldExt() class a chemical
field is constructed in the BSim environment that can be manipulated with two extra methods not avail-
able in the BSimChemicalField() class. The extConstantAdd(c)method is used to add a fixed amount,
c, of chemical in the field at each time-step as in rc(t) (equation (S17)). The extModSignal(Tf , α, c, ts)
class is used to modify the chemical field with the sinusoidal function rsin(t) (equation (S18) in SI). The
amount to be added at each time-step, calculated according to the respective equations, is divided into
equal parts according to the number of discretised elements of the chemical field. Then each fraction is
added to each discretised element even though in experimental setups there are limited entry and exit
points providing access to the chamber [12,53], as illustrated in figure 2 of the main text.

We also note that directional fluid flow is only considered at the chamber exit, as per the boundary
conditions of the PDE, where autoinducer is cleared from the chamber by a fixed amount, cÃ. Variation
of cÃ did not affect results (see figure S10 in SI). Thus, if addition of extra autoinducer in the chamber
produces negligible flux, such as for example the volume of added chemical is comparable to the volume
of chemical cleared at the chamber exit and that the chemical is not forced through the chamber,
then the physical setting and our modelling implementation should not produce conflicting results as
the amount added to the chamber via the controller diffuses almost instantly throughout the whole
chamber as shown in supplementary figure S2. It is also worth noting that the external AHL spatial
profile remains uniform in space throughout the autonomous oscillations of the population (i.e. in the
absence of control) as illustrated in the supplementary figure S1.

For closed loop control, relevant methods are implemented with the RefSignals() and
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ControlMethods() classes. The RefSignals() class creates the reference signals rc(t), rsin(t) and
rrmp(t) presented in equations (S17)–(S19) of the SI. rc(t) is created with the refSignalConst(c)
method, rrmp(t) with the refSignalRamp(sim,ymax, ymin, ts, t1, t2, te) method and rsin(t) with the
refSignalSin(sim,Tf , α, c) method. The ControlMethods(kp, ǫ, Ii, Di,chmfield,ts, te) class creates
an object (where object refers to the Java technical term) that acts on the chemical field chmfield.
The integral and derivative control gains are calculated as kI = kp/Ii where Ii is known as the integral
time and kD = kpDi where Di is known as the derivative time and kp is the P-control gain. Control can
be switched off when the standard error (the difference between the target value and the current value
of the system) is equal to ǫ. For these simulations we set ǫ = 0. Three closed loop control methods are
available, PIDCtrl(),PICtrl(),PCtrl() for PID-control, PI-control and P-control respectively.

Briefly, we describe the PIDCtrl() method. PIDCtrl(sim,chmfield,r(t),avg) adds PID-control
to the simulation environment sim that holds the chemical field chmfield. The controller action is
calculated accordingly for proportional, integral and derivative action from the instantaneous error e(t),
using the PCtrlRtnVal(avg,r(t)), ICtrlRtnVal(sim,avg,r(t)), DCtrlRtnVal(sim,avg,r(t)) meth-
ods. These methods first calculate the instantaneous error by finding the difference between the average
population response avg and the reference value r(t) where r(t) can be any of the defined reference sig-
nals given in equations (S17)–(S19) of the SI. The amount of chemical that needs to be added or removed
from the field is carried out by the distribchem(sim,chemicalinput) method where chemicalinput
is the total amount calculated by the controller and retrieved using the getchemfluxinput() method.
The adjustment is carried out by adding or removing fractions from the discretised elements of the
chemical chamber as explained earlier with the extModSignal() method. The PI-control and P-control
methods work in similar fashion taking into account their respective controller actions.

Assessing periodic behaviour with Poincare stroboscopic sections

Depending on the population size, a time-step of 0.01 or 0.05 sec was used and time-series data of the
variables were output every 50 or 100 sec of the simulation. The average response of the population was
calculated during the BSim simulations based on the population size and the variables presented in the
ODE equations (S4)–(S7) and the PDE equation (3) presented in the main text. As already mentioned,
BSim uses a Runge-Kutta 45 algorithm to solve the ODEs of the intracellular dynamics and a finite
difference scheme is used to solve for the chemical field PDE.

Each BSim simulation was run for a prolonged time such that transient behaviour had died out
prior to assessing the periodicity of the system’s output when subject to control. Post-simulation the
periodic behaviour was assessed by creating a Poincare section of the average population response using
the final entries of the generated time-series. The procedure is outlined below.

Depending on the length of simulation time, the last 12000-20000 entries of the output data were
used. Stroboscopic sections of this truncated series were generated by assessing the average response
output at multiples of the forcing period, Tf . A linear interpolator between two time-segments was
used when the stroboscopic section did not coincide with a 50 or 100 sec increment. The result of this
processing was the generation of a Poincare time series of the average population response at multiples
of the forcing period Tf . This post-simulation processing was carried out in MATLAB [52] using custom
written software.

The Poincare time-series was then assessed for periodic behaviour using MATLAB’s fast fourrier
transform (FFT) algorithm [52] and generating a power spectrum. If more than one frequency was
present, the most powerful was selected as the one to be used in the plotting of the (α, Tf )-plane. If the
strongest frequency present in the power spectrum was below a 5E − 3 threshold then the output was
considered to be entrained to the forcing period.
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Method name Description

BSimChemFieldExt()

extModSignal() Modulates chemical field with sin signal for open loop control.

extConstantAdd() Adds constant amount of chemical into chemical field.

ControlMethods()

updateerrorlog() Updates vector with the standard error of the last two timesteps.

distribchem() Adjusts the chemical field according to the control law action.

PCtrlRtnVal() Calculates amount of chemical required according to P-control.

ICtrlRtnVal() Calculates amount of chemical required according to I-control.

DCtrlRtnVal() Calculates amount of chemical required according to D-control.

PIDCtrl() Implements PID-control in the simulation environment.

PICtrl() Implements PI-control in the simulation environment.

PCtrl() Implements P-control in the simulation environment.

getPctrlval() Returns the value calculated by PCtrlRtnVal().

getIctrlval() Returns the value calculated by ICtrlRtnVal().

getDctrlval() Returns the value calculated by DCtrlRtnVal().

getchemfluxinput() Returns the value calculated by the controller.

RefSignals()

refSignalConst() Creates a constant reference signal as in rc(t).

refSignalRamp() Creates a trapezoid reference signal as in rrmp(t).

refSignalSin() Creates a sinusoidal reference signal as in rsin(t).

getrefsignal() Returns the value of the reference signal at the current timestep.

Table 1. Java classes added to the BSim source code for implementing control methods.
The methods have been split into the three implemented classes. The BSimChemFieldExt() class is for
open loop control and the ControlMethods() and RefSignals() classes for closed loop control.

Supporting Information

The supporting information contains the model derivation, the supplementary figures/tables and the
supplementary equations referred to in the main text.
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