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Abstract 

Polystyrene (PS) and poly(vinyl alcohol) (PVA) nanofibers containing cellulose 

nanocrystals (CNCs) were successfully produced by electrospinning. Understanding the 

local orientation of CNCs in electrospun fibres is critical to understand and exploit their 

mechanical properties. The orientation of CNCs in these electrospun fibres was 

investigated using Transmission Electron Microscopy (TEM) and Raman spectroscopy. A 

Raman band located at ~1095 cm-1, associated with the C-O ring stretching of the cellulose 

backbone, was used to quantify the orientation of the CNCs within the fibres. Raman 

spectra were fitted using a theoretical model to characterise the extent of orientation. From 

these data it is shown that the CNCs have little orientation along the direction parallel to 

the axis of the fibres. Evidence for both oriented and non-oriented regions of CNCs in the 

fibres are presented from TEM images of nanofibres. These results contradict previously 

published work in this area and micromechanical modelling calculations suggest a uniform 

orientation of CNCs in electrospun polymer fibres. It is demonstrated that this explains 

why the mechanical properties of electrospun fibre mats containing CNCs are not always 

what would be expected for a fully oriented system. 
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Introduction 

Cellulose is the most abundant biopolymer on earth and exhibits the potential to be 

reshaped into an array of forms ranging from non-woven paper to high performance fibres 

[1]. In addition, cellulose offers an attractive alternative to synthetic polymers due its 

biodegradability, renewability and sustainability. Cellulose in the native state consists of 

both amorphous and crystalline regions, which can be isolated to form cellulose 

nanocrystals (CNCs) by a controlled acid hydrolysis process [2]. Cellulose nanocrystals 

can be derived from a myriad of source materials ranging from cotton to grape skin [3].  

CNCs are a potential reinforcement for other polymers due to their high aspect ratio, high 

elastic modulus (120-150 GPa) and excellent chemical and thermal properties [4]. CNCs 

have therefore attracted a lot of attention as a reinforcement for thin and functional polymer 

films [5] and nano- and micro- fibres [6, 7].  

 

CNCs have been utilized as reinforcement in composite nanofibres produced by 

electrospinning using an array of polymers. Peresin et al. [8] successfully electrospun 

CNC-reinforced poly(vinyl alcohol) fibres with improved morphological and 

thermomechanical properties. It was shown that increasing the CNC concentration in the 

fibres led to a significant enhancement of mechanical properties [9]. Electrospun 

poly(vinyl alcohol) (PVA) fibres have been extensively studied to understand the effects 

of molecular weight [10], concentration [9] and the presence of additives on mechanical 

properties and thermal stability [11]. Polystyrene (PS), another commodity polymer, has 

also been electrospun into fibres [12]. PS exhibits different chemical, phsyical and 

functional attributes to PVA because of the presence of aromatic groups. Rojas et al. [12] 
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have produced electrospun polystyrene (PS) fibres reinforced with CNCs, observing 

unique ribbon shapes and the presence of twists along the axes of the fibres. The 

incorporation of CNCs was found to increase the glassy modulus of the fibres due to their 

mechanical percolation, forming a stiff and continuous network held together by hydrogen 

bonding in a hydrophobic matrix environment.  

 

Understanding CNC-polymer interfaces and the orientation of CNCs within electrospun 

fibres is critical to explain and exploit mechanical properties. Strong matrix-filler 

interactions lead to efficient stress transfer within composite fibres and oriented CNCs 

along the fibre axis are expected to enhance anisotropic mechanical properties such as axial 

stiffness. There have been several studies on directing orientation of different forms of 

cellulosic materials during processing, via electric fields [13], magnetic fields [14] and 

conventional wet spinning [15]. However, little work has been published on the orientation 

of CNCs in fibres produced by electrospinning. Electrospinning is a robust technique of 

producing networks of composite nanofibres that offer advantages of higher aspect ratios 

and surface area to suit an array of end applications ranging from biomedical scaffolds to 

filtration membranes [16]. The possibility of orientating CNCs during electrospinning 

should be evaluated against the processing conditions and confinement effects. The nano-

scale confinement effects resulting from electrospun fibre diameters less than the length of 

the nanocrystal, may lead to orientation of nanocrystals along the fibre axis direction. In 

addition, large electrostatic fields, and the orientation of polymer chains during 

electrospinning, may influence the alignment of cellulose nanocrystals in the fibres.  
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X-ray diffraction (XRD) and Transmission Electron microscopy (TEM) are the most 

widely used techniques to assess the orientation of CNCs in fibres. Changsarn et al. [17] 

have utilized TEM to visualize the CNCs embedded within electrospun poly(ethylene 

oxide) (PEO) fibres of ~100 nm diameter. The absence of any protruding segments from 

fibres seen in TEM images suggested that the CNCs were indeed oriented along the fibres’ 

axes. Also, they suggest that CNCs are embedded in the core of the electrospun fibre with 

a high degree of uniaxial alignment. However, they were not able to investigate the 

orientation of CNC in fibres with larger diameters. Similarly, Raman spectroscopy has 

been reported as an essential tool in mapping the orientation of CNCs in polymeric matrices 

[14]; but to date not electrospun fibres. This approach utilizes the measurement of the 

intensity of a Raman peak related to the nanofiller as a function of rotation of the specimen 

with respect to the fixed axis of polarization. Using this technique, the polarization 

direction of the excitation laser is typically parallel to the main orientation direction of the 

polymer; for fibres this would be along their axes. The intensity of this band remains 

invariant with rotation angle for nanofillers with random in-plane orientations; however, 

this intensity changes dramatically for oriented nanofillers e.g. CNCs in a composite [18]. 

 

The present work utilizes both TEM and Raman spectroscopy techniques to examine the 

orientation of CNCs in electrospun fibres of CNC-reinforced poly(vinyl alcohol) and 

polystyrene. Both TEM images and Raman orientation maps indicate a lack of orientation 

of CNCs along the fibre axis direction. However, smaller regions with local orientations 

are found to be present in the fibres. This result contradicts previous work that has 

suggested uniform orientation of CNCs in electrospun polymer fibres. Some calculations 
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are given for the predicted mechanical properties of electrospun fibres published in the 

literature, which based on composite theory applied to the data, are lower than what would 

be expected for fully oriented systems. 

 

2. Materials and Methods 

Freeze dried CNCs were purchased from the Process Development Center at University of 

Maine. High molecular weight 87-89% hydrolyzed PVA was purchased from Alfa Aesar. 

Atactic PS with an average molecular weight of ~280,000 determined by GPC was 

purchased from Sigma Aldrich (Dorset, UK). Dimethylformamide [DMF (purity grade 

≥99%)] was purchased from Sigma Aldrich (Dorset, UK) and was used as received. 

 

Aqueous solutions of PVA with varying concentrations of CNCs (10 and 20 wt%) were 

created as follows. PVA in water was stirred at 80 °C until fully dissolved. Once the PVA 

solution cooled to room temperature, the CNCs were added and stirred for two days until 

a homogenously mixed PVA/CNC solution was obtained. The total concentration of PVA 

in the final solution was 10 (w/v) %. The CNC concentration (10 and 20 wt% of PVA) was 

calculated relative to the PVA weight in the solution. High wt% values of CNCs were used 

to ensure a strong signal from the Raman spectrometer emanating from the cellulosic 

component. Similarly, PS was dissolved in dimethylformamide (DMF) for 24 hours at 

room temperature to have a concentration of 25% (w/v). Once the PS was fully dissolved, 

CNCs were added to the solution and stirred for two more days at ambient temperature 

until homogenously dispersed. These colloidal solutions were then drawn into a syringe, 

which was attached to a pump in the electrospinning apparatus. Fibres were then 
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electrospun using the following conditions: flow rate of 1.0 mL/h, 20 kV, 15 cm tip to 

rotating collector distance (TCD) for PVA/CNC solution and 1.5 mL/h, 15 kV and 10 cm 

(TCD) for PS/CNC. These conditions produced the best electrospun fibres and they were 

chosen after trying out a range of spinning conditions. PS/CNC composite fibres were 

produced using an electrospinning instrument (Electrospinz ES1a) equipped with a 

custom-built rotating mandrel collector. PVA/CNC composite fibres were produced at a 

custom–built electrospinning set-up at the Materials Science Centre, University of 

Manchester. Similar rotational speeds were used to electrospin both PS and PVA fibres 

though different instruments were used. Once an electrospun mat of fibres was formed, it 

was removed from the collector.  

 

The PVA and the CNCs are thought to hydrogen bond to each other in the solid state via 

the primary alcohol groups present on their respective polymer backbones. In the aqueous 

state CNCs (produced using sulphuric acid) are known to possess negative surface charge 

due to the presence of sulfate half-ester groups [2]. These aid their dispersion in PVA. 

 

Raman spectra were recorded using a Renishaw 1000 Raman imaging microscope 

equipped with a thermoelectrically cooled CCD detector. A near-IR laser with a 

wavelength of 785 nm was used to record spectra from oriented electrospun scaffold 

samples using an exposure time of 30s and two accumulations. The laser beam was focused 

using a 40× objective lens onto a few fibres contained within the electrospun mat. Care 

was taken to focus onto fibres in fully oriented regions of the mats. For orientation mapping 

experiments, one or a few fibres parallel to the polarization direction of the laser were 
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chosen. The incident and scattered light radiation was polarized parallel to the principle 

axis of the Raman spectrometer. The polarization direction of the incident light was rotated 

using a half-wave plate, and a polarizer was used to maintain the polarization direction of 

scattered light parallel to the macroscopic orientation direction of the electrospun fibres. 

The intensities of a Raman band located at ~1095 cm-1 were recorded as a function of the 

rotation angle of the incoming polarizer with respect to the axis of the fibres, and a 

Lorentzian function was used to fit this Raman peak.  

 

TEM samples were prepared by embedding the electrospun mats in an epoxy resin (TAAB 

Low Viscosity Resin Hard from TAAB Laboratories Equipment LTD, UK.). These 

samples were microtomed into thin sections of thickness ~100 nm, both parallel and 

perpendicular to the fibre axis. Samples were imaged using a TEM (JEM-2100 LaB6) using 

a voltage of 100 kV. 

 

SEM samples were sputter coated with gold to a thickness of ~10 Å. The samples were 

imaged using a SEM (HITACHI S3200N SEM-EDS) with a voltage of 20 kV.  

 

3. Results and Discussion 

3.1. Orientation and Morphology of Nanofibres 

To achieve macroscopic alignment of fibres, a rotating mandrel was utilized as the 

grounded collector during electrospinning. The orientation of both PVA and PS fibres was 

found to increase with the rotational speed of the mandrel. We utilized a rotational speed 

of ~1500 rpm for all the experiments to produce aligned fibres. As shown in Figure 1, the 
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PS/CNC and PVA/CNC fibres were observed to be oriented parallel to the rotation 

direction. The fibre surface appeared to be smooth and very few ‘beads’ were observed. 

Fibre diameter distributions were produced (Figure 2) and they show that the diameters of 

fibres in the mats have normal distributions. The mean fibre diameters of PS/CNC mats 

(3.00 ± 0.12 μm for 10% CNCs and 2.83 ± 0.09 μm for 20% CNCs) were significantly 

higher than the PVA/CNC fibre mats (0.29 ± 0.01 μm for 10% CNCs and 0.36 ± 0.01 μm 

for 20% CNCs). These differences in fibre diameter can be attributed to the differences in 

electrospinning conditions, solvents, chemical structures and tacticity of the polymers 

used. Either single fibres or electrospun oriented fibres were deemed necessary for Raman 

analysis since filament axes needed to be placed parallel to the polarization direction of the 

laser. Attempts to obtain isolated single fibres were unsuccessful and thus oriented fibres 

were utilized for analysis under the Raman spectrometer. 

 

Figure 1. SEM images of oriented fibres of PS/CNC (a) 10% (b) 20%, and PVA/CNC (c) 

10% (d) 20%. 
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Figure 2. Fibre diameter histograms for PS/CNC (a) 10%, (b) 20% and PS/CNC (c) 10%, 

(d) 20% 

 

3.2. Raman Spectroscopic Characterization of CNC Orientation 

Raman spectra of CNC-reinforced PVA and PS fibres are shown in Figure 3. A Raman 

peak characteristic of cellulose (and not present for either pure PS or PVA) is located at 

~1095 cm-1. This peak can be clearly observed in nanocomposite fibres with 10 and 20 

wt.% of CNCs; below this CNC concentration we were not able to observe CNCs. The 

Raman laser spot size of 1-2 μm was focused on one or two fibres in a PS/CNC mat and a 

few fibres in PVA/CNC electrospun mats. There may be a small error involved in the 

measurements on the PVA/CNC sample due to a few fibres possibly lying in directions  
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Figure 3. Typical Raman spectra of (left) PVA/CNC (right) PS/CNC. 

 

(Figure 1c & 1d) other than the polarization direction of the laser. The intensity of the 

Raman peak located at ~1095 cm-1 is found to increase with an increase in the CNC 

concentration. For orientation mapping experiments, the oriented fibre mat was placed 

under the lens of the Raman microscope in such a way that the polarization of the incident 

laser was parallel to the longitudinal axis of either a single fibre or a group of aligned fibres. 

The scattered radiation was sent through a parallel polarization filter. The intensity of the 

Raman band located at ~1095 cm-1 was recorded as a function of rotation angle (0 to 360°). 

The most intense peak recorded was fitted with a Lorentzian function to determine the 

maximum intensity from which a normalization of other intensities was performed. As 

shown in Figure 4, polar plots of the intensity as a function of the rotational angle are 

presented for the evaluation of the orientation of CNCs in the fibres. The Raman band  
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Figure 4. Polar plots of the normalized intensity of the Raman band located at ~1095 cm-1
 

as a function of rotation angle of the polarization with respect to the fibre axis showing 

the orientation CNCs in composite nanofibres of PS/CNC (a) 10% (b) 20%, and 

PVA/CNCs (c) 10%, (d) 20%. The solid line represents a fit of 𝐼 = 𝑟 + 𝑡 ∗ 𝐶𝑜𝑠4𝜃   

 

intensity remained approximately constant with rotation angle for both PS/CNC and 

PVA/CNC based composite fibres. Previous research has shown that more ellipsoidal 

shapes are obtained for these polar plots when orientation of the cellulose occurs, be it in 

chain form or emanating from CNCs [18, 19]. This suggests a lack of orientation of CNCs 

in both PS and PVA fibres. However, at a higher concentration of CNCs of 20%, both 

PS/CNC and PVA/CNC fibres appear to exhibit some orientation of the reinforcing phase, 

as evidenced by the slightly ellipsoidal shape of the data points in the polar plot. The ratio 
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of the intensity of the band at 90° to the band at 0° (I90°/I0°) can be used to characterize the 

degree of alignment of CNCs along the fibre axis. The values of I90°/I0° are 0.84 and 0.71 

for 10% and 20% of CNCs in PS fibres, and I90°/I0° are 0.86 and 0.75 for 10% and 20% 

CNCs in PVA fibres. These values suggest that both PS/CNC and PVA/CNC fibres with 

20% CNCs exhibit a slight orientation of CNCs along the fibre axis direction. These data 

were fitted using the equation 

 

𝐼 = 𝑟 + 𝑡 ∗ 𝐶𝑜𝑠4𝜃         (1) 

 

where r and t are fitting parameters, θ is the rotation angle and I is the intensity. 

 

The values of these fitting parameters for these polar plots are given in Table 1. Equation 

1 has been previously used to fit orientation data for graphene oxide nanocomposites [20]. 

 

Table 1. Parameter values for fits of equation to orientation data in Figure 4. 

Composite Fibre ‘r’ ‘t’ ‘R2’ 

PS/CNC 10% 0.84 0.11 0.71 

PS/CNC 20% 0.77 0.24 0.88 

PVA/CNC 10% 0.85 0.09 0.82 

PVA/CNC 20% 0.76 0.15 0.74 
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We acknowledge that misorientation of the fibres could affect the values obtained via 

Raman spectroscopy. Image analysis was therefore used to calculate the fibre orientation 

parameter f based on the following equation 

 

2

1cos3 2 



f          (2) 

 

where  represents the angle between the fibres’ axes and the orientation direction; f = 1 

corresponds to perfect alignment of the fibres, f = 0 to a lack of preferred orientation and f 

= -1/2 to perpendicular orientation. Equation 2 has been previously used to assess the 

orientation of electrospun fibres [21]. We obtained values of 0.94 and 0.95 for PS/CNC 10 

and 20 wt.% mats, and 0.94 and 0.67 for PVA/CNC 10 and 20 wt% mats respectively. 

These values suggest that there is a high degree of orientation of fibres in our fibre mats. 

We do note however that a value of 0.67 for the 20 wt% sample would suggest some degree 

of misalignment. 

 

To further elucidate the orientation of CNCs in the fibres, TEM characterization was 

performed on thin sections of fibres embedded in a supporting matrix. The fibres were 

sectioned to have a thickness of ~100 nm suitable for viewing in the TEM. Sections were 

taken along and plane perpendicular to the electrospun fibre axis. CNCs were stained using 

uranyl acetate before imaging. This staining agent applies a passive outline for CNCs. 

Several attempts were made to image the PS/CNC fibres using this approach (Figure 5). 

However, CNCs were not clearly visible in the fibres (darker regions in the fibres suggest 

their presence), possibly due to lack of contrast between CNCs and PS. 
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Figure 6 shows a cross-sectional image of a PVA/CNC 10% nanofibre exhibiting clearly 

randomly oriented CNCs perpendicular to the direction of the fibre axis; a few CNCs were 

found to be oriented along the fibres’ axis (also Figure 6). The aspect ratios of our CNCs 

have been measured and found to be ~18 (lengths 109 ± 34.5 nm and widths 6.0 ± 1.9 nm) 

with some variability. It is noted that our electrospun fibres are much wider than the 

average length of a CNC, and so little protrusion of the CNCs is observed. It is 

acknowledged that microtoming using a glass knife may have assisted the orientation of 

CNCs in the cutting direction due to the application of shear forces. If this were the case 

however, we might have expected to see dominant orientation perpendicular to the fibre 

axis in one particular direction. This was not observed in the images we obtained. 

Microtoming was also carried out at room temperature, well below the glass transition of 

PVA (~88 °C) [22]. Therefore the PVA was thought to be in the glassy state, which, with 

the supporting epoxy resin, should offer significant resistance to the movement of CNCs 

within the PVA during the microtoming process. Attempts to microtome fibres at sub-zero 

temperatures were not successful due to the complete embrittlement of the resin. 

 

Overall, these results combined with Raman spectroscopic results give evidence for a lack 

of orientation of CNCs along the axis of the fibres. This has been true for both PS/CNC 

and PVA/CNC fibres regardless of the differences in electrospinning conditions and fibre 

diameters. Previous work has shown that single-walled carbon nanotubes (SWNTs) can be 

oriented in electrospun PVA fibres [23–25]. Given that the size of CNCs and SWNTS are 

similar, it is surprising that orientation is not achieved with the  
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Figure 5 Typical TEM images showing the orientation of CNCs in PS/CNC 10% fibres. 

Left – image showing CNCs present (darker regions) along the axis of the electrospun 

fibre, in the plane of the page; Right – image showing CNCs (darker regions) with the axis 

of the electrospun fibre out of the plane of the page. 

 

 

Figure 6. Typical TEM images showing the orientation of CNCs in PVA/CNC 10% 

fibres. Left – image showing CNCs orientation with the axis of the electrospun fibre in 

the plane of the page; Right – image showing CNCs orientation with the axis of the 

electrospun fibre out of the page. 
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present system. However, different hydrophobic/hydrophilic characteristics of SWNTS 

and CNCs and their interfacial interactions with the polymer matrix may play a role in 

dictating orientation. The lack of orientation of CNCs should result in lower axial 

mechanical properties than would be expected for the electrospun fibres.  

 

3.3. Micromechanical Modeling of Tensile Modulus of Composite Fibres 

Tensile moduli of CNC-reinforced composite fibres can be predicted using the rule of 

mixtures [26] and the Cox model [27]. This model was developed based on the classical 

shear-lag theory and has been commonly used to predict the tensile moduli of randomly 

oriented short fibre composites [27]. Several assumptions are required to apply this model 

to composite fibres; (i) both fibre and matrix undergo elastic deformation, (ii) fibre ends 

bear no axial loads and (iii) the presence of a fully-bonded fibre-matrix interface [26, 27]. 

In this case, CNCs are assumed to behave as nanoscale fibres, which are embedded in a 

polymer matrix to form the larger composite fibres. 

 

The rule of mixtures model, with added efficiency factors (according to Cox), is governed 

by the equation 

 

𝐸fibre = 𝜂L ∗ 𝜂o
CNC ∗ 𝐸CNC ∗ 𝑉CNC + 𝐸polymer(1 − 𝑉CNC)   (3) 

 

where Efibre, ηL, 𝜂𝑜
𝐶𝑁𝐶, ECNC, VCNC, Epolymer represent composite fibre modulus, fibre length 

efficiency factor (according to Cox theory), orientation factor for CNCs (again according 
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to Cox), the modulus of the CNCs, CNC volume fraction and the elastic modulus of the 

polymer matrix, respectively. Equation 3 predicts the modulus of one electrospun fibre 

with a volume fraction of misoriented CNCs. Electrospun fibre mats that are considered in 

this study are mostly themselves randomly oriented and therefore modulus of the fibre mat 

can be calculated by using a fibre orientation factor of 1/3 according to Cox’s theory1 

 

       𝐸c = 𝜂o
fibre ∗  𝐸fibre        (4) 

 

where 𝐸c and 𝜂o
fibre are the modulus of the mat and fibre orientation factor, respectively. 

The orientation factors (𝜂o
fibre

 or  𝜂o
CNC) are equal to 1 for highly oriented fibres or CNCs 

and is taken as 1/3 if either is randomly oriented. It is worth noting that Cox derived his 

theory [27] for fibrous networks (in this case paper). We note that electrospun networks 

can be very porous, and perhaps there are fewer interactions between fibres than for a 

network of hydrogen bonded fibres (for paper). Therefore there could be some influence 

of the porosity of the networks. Evidence for this comes from the data presented in Table 

2 for electrospun fibre networks. Data for single electrospun fibres is scarce in the 

literature, but one study has reported tensile moduli of ~120 MPa for single PCL fibres 

[30]. A value of 6 MPa for the PCL networks [6] (it is noted that this value is with fillers) 

is much lower than 1/3 of 120 MPa (40 MPa) and so it is reasonable to assume that Equation 

4 may make some over-prediction of the mat modulus. We have considered two 

possibilities of fibre arrangement electrospun fibres: (i) fibres are randomly oriented 

(𝜂o
fibre = 1/3) in the mats and CNCs are perfectly oriented (𝜂o

CNC = 1) along the electrospun  

                                                        
1 Krenchel [28] uses a factor of 3/8 - which is close to 1/3 – for randomly oriented fibres. 
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Figure 7. A comparison between experimental and theoretical values of Young’s moduli 

electrospun polymer/CNC fibre mats with different polymeric matrices; (a) only CNCs are 

highly oriented (ηo=1/3) (b) both fibres and CNCs are randomly oriented. Theoretical 

values were calculated using the equation (3 and 4). Experimental values were taken from 

references [6, 8, 17, 29]. 

 

fibres’ axes (Figure 7a) and (ii) both electrospun fibres and CNCs (within the fibres) are 

randomly oriented (𝜂o
fibre = 1/3 and 𝜂o

CNC = 1/3) (Figure 7b). Upper and lower limits of ηL 

are considered for the calculation for (i) high aspect ratios nanofibres (ηL=1) and (ii) low 

aspect ratio nanofibres as ηL=0.1 (an estimate for short fibres [31]). Figures 7a and 7b 

compare experimental values and theoretical values of Young’s moduli for 4 different 

CNC-reinforced electrospun fibre systems. All experimental Young’s moduli values have 

been obtained from mechanical data reported for electrospun fibre webs (Table 2) [6, 8, 

17, 31]. The aspect ratios of the CNCs used for the studies used in this analysis were ~30 

for PVA, PAA, PCL, and ~100 for PEO fibres. Further, all electrospun fibres in the studies 

we focused on were reported to be randomly oriented, except for PEO electrospun fibres; 
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however, the SEM images presented in this paper [17] show a few unoriented fibres as 

well. A Young’s modulus of the CNCs is taken as 57 GPa [32].  

 

Table 2. Summary of data utilized in the calculation of theoretical moduli 

Matrix 

Polymer 

CNC % Young’s 

Modulus (MPa) 

Average Fibre 

Diameter (nm) 

Aspect ratio 

of CNCs 

Reference 

PVA 10 89 235 27 [8] 

PAA 10 224 141 30 [28] 

PCL 7.5 6 200 30* [6] 

PEO 10 267 448 100 [17] 

* The reported values of CNC dimensions are 3-10 nm for diameter and 100-250 nm for 

length.  

 

When modeling, we have considered the possibility that the electrospun fibres and the 

CNCs can either both be oriented or non-oriented and variants of both. Non-oriented 

electrospun fibres in a mat, containing oriented low aspect ratio CNCs would give an 

efficiency factor of 1/3 (and 0.1 for the fibre length efficiency). This is expected to give 

good agreement between theoretical and experimental data. Indeed this is evidenced by the 

results shown in Figure 5a. This suggests that CNCs could be oriented within the fibres for 

all electrospun fibre webs considered in the studies in the literature. Further, we have 

examined the experimental Young’s moduli and theoretical values when both fibres and 

CNCs are randomly oriented. As expected, for higher aspect ratio fibres (ηL=1), the 

theoretical values were always higher (Figure 5a) than experimental moduli due to the fact 

that CNCs typically have low aspect ratios (<100). This was also observed for PEO/CNC 
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fibres where the CNC aspect ratio was higher (~100). We do note again that Equation 4 

could over-predict the modulus of a mat of fibres, due to the influence of significant 

porosity in the networks. If this is the case then better agreement with the upper set of 

predicted data in Figure 7 (represented in each case by solid circles) and experimental data 

is expected. 

 

Further, if we assume that the PEO/CNC fibres are highly oriented (with 𝜂o
fibre=1) then the 

theoretical moduli will be even higher than experimental values. However, when a lower 

aspect ratio of CNCs (ηL = 0.1) was used, with random orientation of both the CNCs and 

fibres, there is again agreement with the experimental moduli (Figure 5b). It may therefore 

be true that low aspect ratio CNCs (such as cotton) remain unoriented in the fibres, in 

agreement with our own experimental evidence. Overall, these micromechanical modeling 

data suggests that CNCs could indeed be oriented along the fibre axis direction. It is likely 

that the real situation will be some way between these two extreme cases, with some 

misorientation remaining. Indeed we have shown that orientation of the CNCs can occur, 

although it appears that random orientation can also remain in the fibres. Further work is 

required to carefully control the spinning procedure therefore to ensure a more uniform 

orientation. 

 

4. Conclusions 

PS and PVA nanofibers containing CNCs were successfully produced by electrospinning. 

PS/CNC fibres were observed to have larger fibre diameters in the range of ~3 μm when 

compared to PVA/CNC fibres (~0.3μm). Raman spectroscopic analysis of oriented fibres 
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within mats showed some evidence for a lack of orientation of CNCs in the polymer fibres. 

Slightly ellipsoidal shapes to the polar intensity maps and a lower value for the intensity 

ratio I90°/I0 indicates that CNCs were slightly oriented in polymer fibres with a 20% volume 

fraction.. TEM images of CNC-reinforced polymer fibres confirmed the random 

orientation of CNCs in PVA fibres with local regions of oriented CNCs in the cross section 

and a few CNCs oriented along the axis of the fibre. These data are expected to provide a 

vital insight into the orientation of CNCs in polymer fibres produced by electrospinning. 

The strong electric fields and confinement effect associated with electrospinning may not 

necessarily induce full orientation of CNCs. A comparison of mechanical data from 

previously published work and theoretical calculations using the rule of mixtures also 

seems to suggest that this is possibly the case.  
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