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Thesis Abstract 

 

Magnetic bioseparations based on non-porous adsorbents offer a low-fouling 

alternative to the porous materials required by conventional adsorbent separation 

techniques.  Interest in magnetic bioseparations has been limited by the high cost 

of suitable magnetic absorbents. 

 

In this study a variety of techniques - including Ce(IV) initiation, surface ATRP and 

sulfonyl activation – were used to graft ion-exchanging polyelectrolyte surfaces on 

low cost non-porous polyvinyl alcohol-magnetite supports.  Grafting of poly(2-vinyl 

pyridine) and poly(methacrylic acid) was fully characterised using solid and liquid 

state FTIR.  Dense polyelectrolyte layers were seen, with Ce(IV) grafted layers 

accounting for up to 49% of grafted support mass.  Values for ATRP and tresyl 

activations were 41% and 25% of support mass respectively.  These included 

layers which correspond to the brush regime (2Rf/D > 8), as determined by Flory 

Radius calculations.   

 

The above matrices were subsequently analysed with bind and elute studies using 

a model mixture of acidic and basic proteins.  Switchable ion-exchange behaviour 

was demonstrated, with anion binding capacity >25 mg/g support at pH 5 and 

cation binding >25 mg/g seen for Ce(IV) grafted supports.  Improved elution by pH 

was also seen, with up to 73% of bound lysozyme removed during a single elution 

at pH 5. 
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1 Introduction 

1.1 Project overview 

 

Magnetic bioseparations are gaining popularity, with great interest being seen in 

their application to large scale biotech and bioprocess applications.  Development 

of magnetic separations has been hindered by a lack of economically viable 

functionalised supports available for use in bioseparations.  There is thus a 

demand for low cost, robust and reusable magnetic adsorbents.  The creation of 

Ion Exchange (IEX) supports with the aforementioned properties is preferred, due 

to the low cost of typical ion-exchange components and the high binding 

capacities possible with IEX techniques.  In order to achieve such surface 

modifications the field of surface science has been looked to, specifically the 

modification of solid surfaces with polymer brush nanotechnology. 

 

Against the above the main aims of this project/thesis have been to manufacture 

various types of mixed polyelectrolyte brush magnetic supports, able to perform 

both cation exchange (CEX) and anion exchange (AEX) protein separations.  The 

following sections provide an introduction to the principles behind magnetic 

bioseparations, polymer brush nanotechnology and how the two techniques may 

be combined to produce new ‗smart‘ materials for protein separations. 
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1.2 Magnetic separations 

1.2.1 History of magnetic research 

 

The following is a brief introduction to magnetic separations and the magnetic 

properties of materials which make this technique possible.  It should be noted that 

although magnetic principles are described here, no experiments have been 

performed during this study to investigate magnetic properties.  The discussion 

presented in this section is purely for background knowledge of magnetic 

separation techniques. 

 

Discovery of hematite artefacts from the Olmec people of Central America, 

radiocarbon dated to 1400-1000 B.C., suggest that humans may have been using 

the directional properties of magnetic materials for over 3000 years (Carlson, 

1975).  Lodestone is mentioned in Greek writings from the year 800 BC (Mattis, 

1965), with the first definite reference to its magnetic behaviour being made by 

Thales of Miletus in the 6th century B.C, who said that lodestone attracts iron 

―because it has a soul‖.  According to Carus (1st century B.C.) the word ‗magnetic‘ 

is derived from the region of Magnesia, where lodestone was mined.  Pliny the 

Elder, however, attributed the name and discovery of lodestone to the shepherd 

Magnes ―the nails of whose shoes and the tip of whose staff stuck fast in a 

magnetic field while he pastured his flocks‖ (Gilbert, 1600).   

 

Despite such early recognition of magnetic behavior in materials it was not until 

the publication of William Gilbert‘s De Magnete in 1600 that the study of 

magnetism truly began to advance.  His studies were based upon the interaction 

of a compass with the ‗terrela‘, a sphere that he had constructed from lodestone 

and which bore a magnetic north and south pole.  During these experiments 

Gilbert concluded that the earth also possessed magnetic properties and that 

these accounted for the directional behaviour of compass materials. 

 

In 1845 Michael Faraday coined the term ‗diamagnetism‘ after observing that a 

glass bar subject to a strong magnetic field would begin to orient itself 
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perpendicular to the field direction.  This was distinctly different from the 

‗paramagnetism‘ of an iron bar, which would tend to align itself with the direction of 

an applied magnetic field (Fisher, 2004).  This work was furthered by James Clerk 

Maxwell with his publication of a set of electromagnetic equations relating 

magnetic induction to factors such as magnetic field strength, electrical field 

strength and magnetic flux (Maxwell, 1861). 

 

Developments in magnetic theory were soon being exploited by the mineral 

industries.  Patents for devices capable of separating and handling magnetically 

susceptible solids were appearing by the beginning of the 20th century (Langguth 

et al, 1903; Kodera et al 1905; Gunther, 1909).  During the last 100 years 

magnetic separations have become an important part of the clay/mineral/nuclear 

processing and waste treatment industries. 

 

Magnetic carriers were first used for separations in the removal of organic 

impurities from waste water streams using electrostatic adsorption (Urbain & 

Steman, 1941) with the intended aims of reducing separation times; allowing 

removal of suspended matter from rapidly flowing water; and allowing the 

separation of suspended matter without first diluting the mixture.  These earlier 

magnetic carriers were simple suspensions of magnetite which were added to 

waste water streams alongside flocculants (figure 1.1). 

  

Figure 1.1. Impurities forming floc in the presence of flocculants 

 

Once the flocculant had formed colloidal structures with impurities in the water the 

magnetite would aid flocculation of the colloids under the influence of a magnetic 

field (figure 1.2). 
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Figure 1.2. Removal of floc from stream using magnetic particles 

 

1.2.2 Magnetic support separations 

 

From using magnetic particles to aid the separation of colloids containing organic 

compounds the next development in organic magnetic separations was to replace 

the coagulants with magnetically responsive supports (Robinson, 1973).  This 

development allows the convenient use of magnetic separations for primary 

product capture of desired products in impurity-containing feedstocks.  A mixture 

containing magnetic supports and non magnetic impurities can easily be 

separated into magnetic and non-magnetic phases by the application of magnetic 

fields.  The creation of adsorbent magnetic beads comprising magnetic particles 

inside a polymer matrix allowed the development of magnetic separation 

techniques in which stable magnetic particles can selectively bind product (figure 

1.3), followed by removal of the magnetic particles plus bound product from the 

bulk solution using a magnetic field (figure 1.4; Munro et. al 1977, Halling and 

Dunnill, 1979a, 1979b, 1980). 

 

 

Figure 1.3.   Target material adsorbed onto magnetic supports 
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Figure 1.4. Target loaded supports magnetically separated from stream 

 

Commerical availability of magnetic supports began during the late 1970‘s, with 

the appearance of the Enzacryl FEO-(M) and Magnogel products.  These were 

soon replaced by improved beads from manufacturers such as BioMag, 

Dynabeads and Estapor M, leading to increased interest in magnetic supports for 

a variety of applications including cell separation; immunnoassays; and the 

isolation of viruses and organelles.  Since then magnetic nanoparticles have found 

use in a variety of applications including protein separations based on ion-

exchange (Lee et al, 2003) and metal affinity methods (Ma et al, 2005). 

 

Magnetic nanoparticles have also been shown to have a number of biological 

uses.  For example, in MRI techniques for detection of specific enzymes and 

viruses (Perez et al., 2003; Perez et al., 2004); for in vivo detection of cancer cells 

(Huh et al., 2005; Song et al., 2005) and as agents to induce selective 

bioelectrocatalyses and amplify DNA detection (Katz and Willner, 2005; Katz et al., 

2004).   A variety of synthetic methods including for production of magnetic 

supports have been identified, including iron oxides mixed with silica (Liu et al, 

2004); agar (Tong and Sun, 2009); and emulsified polymers (Odabas, 2004). 

 

The potential of large scale protein separations based on magnetic supports has 

been demonstrated using the High Gradient Magnetic fishing method (HGMF) 

(Hubbuch and Thomas, 2002).  HGMF combines magnetic support properties with 
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the High Gradient Magnetic Separator (HGMS) techniques already available in 

mineral processing industries to achieve rapid separation of product-loaded 

supports from their suspending liquor.  Compared to similar techniques used in 

large-scale primary product capture such as Expanded Bed Adsorption 

chromatography (EBA), HGMF shows advantages in terms of product selectivity, 

processing speed and performance in the presence of suspended solids and 

foulants (Hubbuch et al, 2001). 

 

Developments in magnetic support separations lead to techniques which can 

avoid problems inherent to separations based on porous supports.  Binding on 

porous supports occurs by diffusion of soluble material into the pores, followed by 

binding.  Wash steps remove those materials which were too large to enter the 

support and which remain unbound, while elution steps are aimed at removing 

those materials which are bound within the pores (figure 1.5).   

 

Figure 1.5. Adsorption on porous supports 

 

The extensive framework of pores within each bead leads to a large surface area 

on which protein binding can occur.  As most of the surface area exists within the 

support the surface area is largely independent of the bead size.  Fouling in 

porous supports stems from a difficulty in removing materials which have diffused 

into the pore network.  Biological foulants and suspended solids can become 

lodged in pores, making cleaning and re-use of supports difficult (Halling and 

Dunnill, 1980).  Foulants trapped in pores are harder to remove than those which 

are adsorbed at the external surface of the beads.  Foulants are displaced by 
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interaction with the surrounding fluid and experience a much weaker fluid force 

within the pores than on an external surface (figure 1.6). 

 

 

Figure 1.6.  Fouling by insoluble contaminants by adsorption at an external surface 

(a) and by lodging within a pore (b). 

 

The absence of this pore contamination behaviour makes non-porous supports 

less prone to fouling than porous supports, and easier to clean after fouling (figure 

1.7.; O‘Brien et al. 1996). 

 

 

Figure 1.7. Adsorption on non-porous supports 

 

As only the external surface of the bead is involved in binding (figure 1.7), non-

porous supports have a lower surface area than the equivalent porous supports 

and a lower binding capacity for a certain bead size.  The surface area available 

on non-porous supports can be maximised by using smaller bead sizes (~ 1 m 

diameter), as smaller non-porous beads have greater surface area per unit mass.  

Supports of these dimensions create problems when used in fixed bed (high 
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pressure drops) and fluidised bed (particles are eluted too readily) techniques, so 

stirred tank methods must be used.  Unclarified industrial feedstocks will typically 

contain suspended biological solids and colloids of similar size to the protein-

loaded supports, making separation of the supports difficult using conventional 

methods.  The incorporation of magnetic properties into non-porous supports 

allows selective removal of support and bound protein from the bulk of non-

magnetic feedstock components.  In this way magnetic separation techniques offer 

a route to protein purifications with lower rates of support fouling than are possible 

when using conventional methods. 

 

 

1.2.3 Magnetic separation theory 

Magnetic separations rely upon interactions between magnetic supports and an 

applied magnetic field.  The theory of these interactions is described here.  The 

force due to magnetism, Fm, experienced between two parallel wires carrying 

currents with strength I1 and I2, is given by equation 1.1. 

 

Fm=
I1I2L

2r
 

Equation 1.1. 

 

Where L is the length of the wires, r is the distance between the wires and  is the 

permeability of the medium between the conductors.  In the case of solids within a 

suspension, this force can instead by expressed by equation 1.2 (Gerber and 

Birrs, 1983; Svoboda, 1987): 

 

Fm=
1

2
0 Vs(s-f)∇(H2) 

 

Equation 1.2. 

 

Where Fm is the magnetic force that a magnetic gradient, ∇(H2), places upon a 

solid of volume Vs and magnetic susceptibility s, in a fluid of susceptibility f.  In 
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the case of magnetic particles suspended in a non-magnetic fluid (s-f) is non-

zero for the supports and approximately zero for all other components.  This leads 

to a net force acting upon the magnetic particles, allowing their selective 

separation from the other fluid components.  

 

The magnetic flux density, B, experienced by a wire can be calculated from its 

length, L, combined with the current it carries, I, and the magnetic force which it 

experiences, Fm (equation 1.3). 

 

B = 
Fm

I.L
 

 

Equation 1.3. 

 

For a wire which has been coiled to form a cylinder the flux density inside the coil 

is given by equation 1.4 

 

B = 0.r.I
n

L
. 

 

Equation 1.4. 

 

where n is the number of windings, 0 is the permability of free space and r is the 

permeability of a vacuum.  The magnetic field intensity, H, is independent of 0 

and r and is defined by equation 1.5 

 

H = I
n

L
 

 

Equation 1.5. 

 

From this it can be seen the the flux density is related to the magnetic field 

strength, H, by equation 1.6 
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B = 0.r.H 

Equation 1.6. 

 

When a body is subjected to an external magnetic field, the difference between the 

flux density inside the body, Binside, and flux density outside the body, Boutside, is 

termed the magnetic polarisation, J. 

 

J = Binside - Boutside 

 

Equation 1.7. 

 

The difference between magnetic field strength inside the body, Hinside, and that 

outside, Houtside, is known as the magnetisation, M (equation 1.8). 

 

M = Hinside - Houtside 

 

Equation 1.8. 

 

Plots of magnetisation vs. applied magnetic field strength for different materials 

tend to show certain characteristic responses. (see figure 1.8). 

 

 

Figure 1.8:  Characteristic behaviour of the general magnetic material groups, 

showing relationship between: applied field strength (H); magnetic susceptibility of 
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material (); magnetisation (M); saturation magnetisation (Ms) and remnant 

magnetisation (Mrem). 

 

The relationship between M and Houtside is related to the magnetic susceptibility,  

of the material (equation 1.9), where the size of  determines the responsiveness 

of the material in a magnetic field.   

 

M = .Houtside 

 

Equation 1.9. 

 

This magnetic behaviour of materials stems from the magnetic moments of 

electrons within that material (West, 1988).  Diamagnetic materials typically 

posses a small, negative  value (-10-4 to -10-9), due to the magnetic moment 

created by paired electrons as they orient against the direction of an applied 

magnetic field.  Diamagnetic materials (e.g. water, carbon) are those which 

possess few unpaired electrons and appear non-magnetic in most situations, 

although they show repulsion in very strong magnetic fields (Simon and Geim, 

2000).  Paramagnetic materials have larger, positive  values (10-6 to 10-3) 

generated by unpaired electrons and their tendency to align with the applied 

magnetic field.  Paramagnetic materials (e.g. oxygen) contain localised unpaired 

electrons and exhibit more obvious magnetic behaviour, being attracted to applied 

magnetic fields. The localisation of unpaired electrons in paramagnetic materials 

means that magnetisation occurs by interaction of each electron with the applied 

magnetic field individually.  The unpaired electrons do not interact with one 

another and in the absence of the applied field their magnetic moments resume a 

random orientation. 

 

The magnetic susceptibilities of ferro and ferromagnetic materials are significantly 

larger in weak fields ( up to 105) but after a saturation point is reached  may 

reach values of less than 1.  In contrast to paramagnetic materials, the unpaired 

electrons in ferromagnetic materials do interact with one another, aligning not only 
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with the direction of an applied magnetic field but also with the magnetic moments 

of the unpaired electrons nearby.  On the macro-scale this leads to ferromagnetic 

materials forming magnetic domains within a particle within which there is a 

general alignment of the magnetic moment of electrons (figure 1.9). The overall 

magnetisation of the particle is a result of the combined magnetisation of all 

domains.  A change in the magnetisation of the particle by an applied field is 

caused by a movement of the domain boundaries.  Energetic considerations result 

in the domain boundaries retaining some of their new structure once the magnetic 

field has been removed.  This leads to a residual magnetisation effect, known as 

hysteresis (Ewing and Klaassen, 1893). 

 

 

Figure 1.9:  A ferromagnetic particle, containing a number of magnetic-alignment 

domains  

 

For application in magnetic supports, magnetic hysteresis is not desireable.  It is 

vital that magnetic adsorbents do not retain magnetisation, as otherwise 

permanent particle agglomeration would be unavoidable and desorption, cleaning 

and re-use of the adsorbents would be compromised.  In order to take advantage 

of the high magnetisation possible with ferromagnetic materials without hysteresis 

effects, superparamagnetic particles may be formed using ferromagnetic materials 

with nano-scale dimensions. 
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Figure 1.10: A superparamagnetic particle, containing only one domain. 

 

In nano-scaled, ferromagnetic materials the particle is only large enough to contain 

one domain (figure 1.10).  As a result there is no boundary movement on 

application of a magnetic field and no hysteresis (Elmore, 1938; Kittel, 1946; Bean 

et al., 1959), leading to superparamagnetic behavior.   

 

1.3 Adapting magnetic supports for bioseparations 

1.3.1 Polymer brush chemistry 

 

Polymer chains in solution adopt a randomly coiled conformation but when they 

are grafted with sufficient density to a surface the chains overlap and a stretched 

‗polymer brush‘ conformation is achieved (DeGennes, 1976; Milner 1991).  This 

conformation results from overlap and interaction between the grafted chains 

(Halperin et al., 1992; Jones et al, 1999) and gives the polymer brush layer 

significantly different behaviour to that seen for free polymers (Alexander, 1977; 

Klein et al., 1993;).  The properties of polymer brushes have led to them finding 

applications in surface lubrication (Klein et al., 1994) and colloid stabilization (Fritz 

et al., 2002).  For polymers grafted to a solid surface, three distinct types of 

polymer formation have been identified (figure 1.11.) 

 

Figure 1.11.  Mushroom, pancake and brush conformations of polymers attached 

at a surface (after Advincula et al, 2004). 

 

Mushroom Pancake Brush
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1. When the spacing between graft sites is much greater than the length of the 

grafted polymer, interaction between polymer chains is too small to create a 

stretched polymer brush layer.  In situations where polymer-surface 

interactions are favourable the polymer chains will flatten out in a ‗pancake‘ 

conformation across the surface.  If polymer-surface interactions are weak 

or unfavourable a ‗mushroom‘ conformation is seen instead. 

 

2. When the spacing between graft sites is signiticantly smaller than the 

polymer chain length the chains will stretch and extend away from the 

surface in order to minimise overlap with each other. 

 

The relationship between brush and non-brush formations can be expressed in 

terms of the free energy of the grafted polymer system.  The preferred polymer 

conformation is that which produces the lowest free energy state (Alexander, 

1977).  The overall free energy is a combination of the elastic energy Fel and the 

interaction energy Fint (equation 1.10).    

 

F = Fel + Fint 

Equation 1.10. 

 

Fel is higher in polymer brush formations, where the rigid, stretched chain 

conformation results in a loss of entropy.  Fint is higher for non-brush formations, 

where chain overlap has not been minimised.  As graft density and chain length 

increase so does the favourability of minimising Fint by adopting a brush formation. 

 

The Flory radius of a grafted polymer relates to the expected ‗random walk‘ of the 

polymer chain end from its point of attachment (Bartucci et al, 2002).  This radius 

can be calculated from the length of the chains in monomer units, L, the monomer 

size, Am, and the Flory exponent, v, which is dependent upon solvent-polymer 

interactions (equation 1.11). 

 

Rf ≈ AmL
v
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Equation 1.11. 

 

The transition from a collapsed structure begins as the value of 2Rf reaches that of 

the intergraft distance, D.  At this value it becomes possible for adjacent polymer 

chains to overlap with one another, promoting chain extension.  As the value of Rf 

rises compared to D chain overlap and extension increase, resulting in highly 

extended brush structures at values of Rf >> D (Unsworth et al., 2005) (figure 

1.12).  

 

 

 

Figure 1.12.  Relationship between grafted polymer structure, Rf and D (from 

Unsworth et al., 2005) 

 

 

1.3.2 Switchable behavior in polymer brushes 

 

D >> 2 Rf D ~ 2 Rf

D < 2 Rf D << 2 Rf

Rf

D
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Polymer brushes show height and density variations when exposed to different 

solvent conditions (Sidorenko et al, 1999; Minko et al., 2002).  The presence of a 

good solvent for a grafted polymer promotes extension of polymer chains, while 

the presence of a poor solvent promotes collapse of the chains (figure 1.13). 

 

 

Figure 1.13.  Polymer brushes may expand or collapse depending upon solvent 

conditions 

 

Mixed polymer brushes are those consisting of two or more different polymers 

grafted onto the same surface.  These polymers segregate laterally into 

nanoscopic phases across the surface (Draper and Luzinov, 2004).  Due to 

layered and lateral segregation effects mixed polymer brushes also show surface 

composition variations under different solvent conditions.  When exposed to a 

nonselective solvent, each type of polymer will be exposed on the top of the brush.  

In selective solvents a layered segregation may also be seen, with preferential 

segregation of one particular polymer to the top of the brush while another polymer 

segregates close to the grafted surface ((figure 1.14; Ionov, Houbenov et al, 

2004).  In this way the surface composition properties of a mixed brush can be 

controlled by altering its environment. 

Polymer-suitable

solvent

Polymer-unsuitable

solvent
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Figure 1.14.  Bird‘s eye view showing switching behavior on a mixed polymer 

brush grafted surface in selective (a, c) and non-selective (b) solvents. 

 

Mixed polymer brushes which can be controlled in a predictable way can be 

described as switchable polymer brushes.  These smart brushes are responsive to 

environmental changes such that a desired surface composition can be obtained 

by applying a certain environmental condition and then ‗switched‘ to a different 

surface composition by applying a different environmental condition.  For example, 

surfaces grafted with a mixed brush layer consisting of polystyrene (PS) and 

poly(2-vinyl pyridine) (P2VP) show a PS-rich surface layer following a toluene 

wash and P2VP-rich layer following an ethanol wash (figure 1.15; Draper and 

Luzinov, 2004). 

 

 

Figure 1.15. Switching behavior of PS/P2VP mixed polymer brush due to change 

in solvent. 

 

a) c)b)

Ethanol Toluene

P2VP

PS
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Using silica wafers as a grafting surface, electrolytic polymer brushes have been 

made which respond controllably to environmental effects such as pH or 

temperature (Ionov, Sidorenko et al., 2004; Balamurugan et al., 2003).  These 

include brushes formed with an acidic polymer such as poly(acrylic acid) (PAA) 

grafted beside a basic polymer such as poly(2-vinyl pyridine) (P2VP) creating a 

mixed polyelectrolyte brush layer. 

 

Switchable behaviour in the PAA/P2VP mixed brush results from the electrostatic 

repulsions which occur between the units in P2VP at low pH, or the repulsions 

between units in PAA at high pH.  Previous studies on mixed brushes composed 

of P2VP and PAA grafted at a silica surface (Houbenov et al, 2003) indicate that 

the mixed brush surface is predominantly P2VP below pH 3.2 and predominantly 

PAA above pH 6.7, with ellipsometric measurements showing that the brush layer 

is much thicker above pH 6.7 and below pH 3.2 than at the intermediary pH 

values.  This behaviour stems from the response of the P2VP and PAA polymer 

side-units to changing pH conditions. 

 

P2VP has a pKb of 7.1 (Imanishi et al., 1973) where Kb is give by equation 1.12: 

 

Kb=
 H+ [P2VP  neutral ]

[P2VP  protonated ]
 

Equation 1.12. 

 

 

NNH

+ Ka

+ H+

 

Fig 1.16.  Neutral and protonated forms of P2VP side group. 
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P2VP side groups become increasingly positively charged as the environmental 

pH is lowered, with protonation of P2VP side units approaching 100% at pH values 

below 7 (figure 1.16). 

 

PAA has pKa 4.5 (Govender et al., 1999), with Ka given by equation 1.13: 

 

Ka=
 H+ [PAA  deprotonated ]

[PAA  neutral ]
 

Equation 1.13. 

 

 

R R

+ H+

R R

O OH O O-

Ka

 

 

Figure 1.17.  Neutral and deprotonated forms of PAA side group. 

 

PAA side groups become deprotonated as the environmental pH increases, with 

deprotonation of the side units approaching 100% at pH values above 5. 

 

The combined effect of P2VP and PAA chains grafted in a mixed brush layer is 

that at pH 4.9 the positive charge on P2VP and the negative charge on PAA 

compensate for each other and create a surface with no overall charge (Houbenov 

et al, 2003).  At higher pH values a larger proportion of negatively charged PAA 

side groups are present.  The presence of more charged side groups causes the 

layer thickness to increase compared to pH 4.9, as repulsion between like-charged 

side groups cause the chains to expand (figure 1.18).  Similarly, at low pH values 

a higher propotion of positively charge P2VP side groups are present and the 

brush layer is thicker than at pH 4.9. 
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Figure 1.18: Mixed polymer consisting of P2VP (red lines) and PAA (green lines) 

showing brush expansion and collapse at different solvent pH values. 

 
 

 

 
 

1.3.3 Ion exchange 

 

Separation of proteins using ion-exchange (IEX) methods has been performed 

since the late 1940s (Janson and Ryden, 1998) and has since become, due to the 

prevalence of ion-exchange chromatography (IEC), the most commonly found 

technique in protein purification.  IEC is included in approximately 75% of 

purification protocols (Bonnerjea et al., 1986) and accounts for about 40% of all 

purification steps found in these protocols (Janson and Ryden, 1998).  This 

widespread usage of IEX methods stem from the high binding capacities, 

versatility and straightforward principles of operation. 

 

The principle of IEX is based upon competition between charged proteins and 

salts for binding sites on the ion exchange material.  The energy of these 

interactions can be approximated using Couloumb‘s law (equation 1.14). 

 

E ∝
ZAZBe2

rAB

 

Equation 1.14. 

 

where E is the energy difference in charge interactions between two point 

charges, ZA and ZB, when they are brought from points of infinite separation to a 

pH < 3.2 pH > 6.73.2 < pH < 6.7
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distance rAB from each other (Ladisch, 2001).  Couloumb‘s law indicates that the 

strength of binding is proportional to the charge on the molecule and for E to be 

favourable ZA and ZB must be oppositely charged.  In reality ion-exchange 

interactions are more complex than the simple model of Coulomb‘s law.  The 

protein and support are not point charges (Kopaciewwicz et al., 1983) and each 

charge interacts with a number of other charges simultaneously (Chicz and 

Regnier, 1988).  However, the overall principle of Couloumb‘s law is correct for 

ionic binding of proteins. 

 

The supports used for IEX separations are insoluble matrices with covalently 

attached charged groups.  The presence of charged groups allows the support to 

bind charged protein groups, with the binding behavior being dependent on the 

pKa of the support groups and pI of the protein.  A protein with a positive net 

charge will bind to a support containing carboxylate groups, or other anion-

generating groups which give the support a net negative charge (figure 1.19).  

Similarly, a protein with a negative net charge will bind to a support which has a 

net positive charge on its surface.  Supports which carry many cationic groups and 

have a strong positive charge at neutral pH are anion exchangers and can be 

used to separate anionic proteins from mixtures.  Supports with a strong negative 

charge at neutral pH are cation exchangers and can be used to separate cationic 

proteins (Haddad and Jackson, 2000). 
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Figure 1.19. IEX binding and salt elution principle 

 

IEX separations are based on charge-charge interactions between immobilized 

charges on an exchange support and charges found on the protein surface 

(Ladisch, 2001).  IEX can take the form of anion exchange, with a positively 

charged support binding negatively charged proteins; or cation exchange, with a 

negatively charged support binding positively charged proteins.  The protein 

mixture which is to be separated is adjusted to a suitable pH using a low ionic 

strength buffer.  The chosen pH is one at which the support and the desired 

protein are oppositely charged and will share an ionic attraction.  A binding step is 

followed by washing to remove weakly bound material and then elution stages 

designed to break charge-charge attractions between the protein and the support 

surface.  This elution can involve reversing the pH to make charge interactions 

between the support and protein unfavourable, or using an elution buffer with salt 

concentration suitable for causing the release of bound proteins (figure 1.20). 
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Figure 1.20. IEX binding and pH switching principle (pH switch during elution 

reverses charge on protein) 

 

 

 

 

 

1.3.4 Switchable polymer brushes as ion exchange surfaces 

 

Polyelectrolyte brushes grafted onto a surface are a source of IEX interactions 

(Ballauff and Borisov, 2006) with previous studies showing that charged polymer 

brushes can act as suitable ligands for protein binding by both cation and anion 

exchange (Kawai et al., 2003; Savina et al., 2006; Bayramoglu et al., 2007). 

 

By combining responsive polymer brushes with the currently available 

superparamagnetic adsorbents it may be possible to produce adsorbents which 

are capable of not only selectively binding proteins, but also of enhanced pH 

elutions and self-cleaning behaviour (figure 1.21). 
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Figure 1.21: Release of basic proteins from acidic, deprotonated polymer by 

increasing pH (neutralisation of acidic polymer and protonation of basic polymer). 

 

This elution technique is based around two properties of mixed polyelectrolyte 

brushes (Houbenov et al, 2003). 

 

1. Switching of pH results in collapse/extension behaviour of the polymer 

brush.  Under binding pH conditions, proteins at the surface undergo 

attractive interactions with the extended polymer brush layer.  Following a 

switch to elution pH conditions the charge repulsion between bound protein 

and polymer brush are accompanied by a physical ‗push‘ as the proteins 

uncounters a like-charged polymer brush extending out from the surface 

(figure 1.21). 

 

2. The presence of both basic and acidic polymers at the surface allows the 

adsorbent to carry a strong negative or strong positive charge, depending 

upon the pH.  This enhances the charge-repulsion aspect of pH elutions. 
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1.3.5 Synthesis of polymer brushes on magnetic supports 

 

Polymer brushes are generally tethered by either physisorption of covalent grafting 

techniques.  In physisorption methods the polymer may be tethered by a 

functionalized end-group or the polymer itself may be a diblock copolymer, in 

which one block adheres to the surface while the other block is extended (Belder 

et al., 1997).  The absence of chemical bonding between polymer and surface in 

physisorption techniques leads to the creation of polymer brushes which are 

unstable to both thermal and solvent effects. 

 

Covalent grafting techniques, on the other hand, form polymer brushes which 

display significantly higher stability.  Covalent grafting of polymer brushes can be 

performed using either a ‗graft to‘ or ‗graft from‘ approach.  ‗Graft to‘ involves the 

reaction of polymer chain end-groups with the surface leading to formation of a 

covalent bridge between the polymer and surface (Mansky et al., 1997).  This 

method allows for good control of the polymer chain structure, as the attached 

polymer is preformed prior to the grafting reaction.  Polymer brushes created by 

covalent graft-to methods typically have low grafting density and brush thickness.  

These limitations relate to the difficulty of large polymer chains to diffuse to 

sterically hindered reactive sites (figure 1.22). 

 

 
b)a)
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Figure 1.22.  ‗Graft-to‘ mechanism:  a)  Attack by reactive end-group at surface; b) 

Hinderance to further attack by surface grafted polymers. (Adapted from 

Advincula, et al., 2004) 

 

Degrafting of graft-to polymer brushes has been observed, due to low grafting 

density allowing small, reactive molecules to attack the brush grafting points (Tran, 

Auroy, 2001).  This problem can be overcome by using graft-to techniques which 

lead to the creation of a polymer-surface bond which is not susceptible to attack by 

nucleophiles or electrophiles.  For example the formation of stable ether, sulfonyl 

ether or amine links through attack by hydroxyl, sulfonyl or amine groups at 

surface carbon sites which have been activated to nucleophilic attack. 

 

‗Graft from‘ techniques involve synthesis of of the grafted polymer from an initiator 

on the grafting surface (figure 1.23; Manksky et al., 1997).  The iniation and 

subsequent synthesis can be based on radical, ionic or metathesis techniques.  As 

each step in a graft-from synthesis involves reaction of a small group with the 

surface or grafted polymer chain end the steric limitations are much less than 

those seen for graft-to methods, making higher graft densities possible (Advincula 

et al., 2004). 

 

 

 

Figure 1.23.  Graft from synthesis by propogation from a surface initiator site 

 

 ‗Graft from‘ synthetic techniques include free radical polymerisation (Zhao and 

Brittain, 2000), in which a radical is generated on a group at the surface leading to 

propagation from the surface by reaction with vinyl or allyl monomers.  ‗Living‘ 

radical polymerisation methods, such as reversible addition-fragmentation transfer 

M

M

M

M
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(RAFT) (Tsujii et al., 2001) and atom transfer radical polymerisation (ATRP) (Ejaz 

et al., 1998), offer a route to higher monodispersity of grafted chains through 

control of radical concentration.  In the case of RAFT this involves exchange of 

radicals between propagating polymer chains and a dithioester compound.  For 

ATRP this exchange is performed by a copper halide catalyst. 

 

Non-radical graft from techniques such as cationic (Jordan and Ulman, 1998), 

anionic (Advincula et al., 2002) and ring-opening metathesis polymerisation 

(ROMP) (Weck et al., 1999) have also been used to create surface tethered 

polymer layers with dimensions well within the brush regime. 

 

 

1.3.6 Characterisation of polymer brushes 

 

A variety of characterization techniques have been applied to polymer brushes 

synthesized on flat surface.  These include: 

 

Infrared (IR) spectroscopy, which can be used to monitor IR responsive functional 

groups, even at monolayer thickness (Kawaguchi et al., 1988). 

 

X-ray and neutron diffraction, used to find the distance between polymer graft 

points at the surface (Mendelsohn et al., 1995; Levy et al., 1998). 

 

X-ray and neutron reflectometry, to find the thickness of grafted polymer brush 

layers (Kawaguchi et al., 1988). 

 

UV-vis spectroscopy, which allows polymer film build-up to be followed (Advincula 

et al., 2004).  Fluorescence spectroscopy is also suitable for following the build-up 

of polymer brushes which contain fluorescent probes. 

 

X-ray photoelectron spectroscopy: has been used to monitor abundances and 

oxidation states of atoms within the polymer brush (Kong et al., 2001). 
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Ellipsometry is commonly used to find the polymer brush layer thickness and can 

be used to estimate the molecular weight of graft-from polymer brush chains 

(Habicht et al., 1999: Jordan eta al. 1999). 

 

Scanning electron microscopy (SEM), atom force microscopy (AFM), optical 

microscopy and scanning tunneling microscopy (STM) can be used to characterize 

polymer brushes by mapping the topology and morphology of the surface (Iwata et 

al., 1997); identifying polymer phase segregations and patterning (Boyes et al., 

2002); measuring surface forces (Yamamoto et al., 2000) and estimating 

molecular weights of grafted chains (Al-Maawali et al., 2001). 

 

Contact angle measurements allow analysis of surface energy, providing 

information on surface morphology, composition and wetting behavior 

(Julthongpiput et al., 2003). 

 

Electrochemical methods can be used to determine the redox activity and ion 

mobility within the polymer brush (Anne and Moiroux, 1999). 

 

These techniques are well suited to the investigation of polymer brushes on flat, 

fixed surfaces.  The application of such techniques to polymer brushes on 

suspended magnetic particles such as those used in magnetic separations is 

limited.  Microscopy, reflectometry and diffraction techniques rely upon the base 

material being held in place, which is not possible for microscale magnetic 

particles.  On-support characterisation of polymer brush layers Is largely limited to 

techniques which can identify and quantify the presence of certain functional 

groups.  The low vis/UV absorbance by the graft polymers of interest 

(P2VP/PTBMA) in comparison to higher absorbances from typical magnetic 

particles and other reagants which may be used in grafting, makes vis/UV analysis 

ineffective.  Due to various other limitations, the most obvious technique for 

characterizing the composition of polymer brush grafted magnetic particles is 

Infrared spectroscopy. 
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The term infrared describes a region of the electromagnetic spectrum with 

frequencies lower than those of visible light but higher than those of microwave 

radiation (figure 1.24). 

   

Figure 1.24. The electromagnetic spectrum 

 

 

 

 

Infrared radiation can be further divided into three subsections; near-, mid- and far- 

infrared, so called because of their proximity to the visible spectrum.  Near-infrared 

(14000-4000 cm-1) is highest in energy and is useful for spectral analysis of 

overtone or harmonic vibrations in chemical bonds (Blanco et. Al, 2002; Shilli et 

al., 2002); mid-infrared  is in the region 4000-400 cm-1 and can be used to identify 

fundamental vibrations in chemical groups (figure 1.25; Su et al, 2002; Bajaj et al., 

1996); and far-infrared (400-100 cm-1) measures the rotational spectrum of a 

sample (Bershtein and Ryzhov, 1994). 

 



35 
 

 

 

Figure 1.25. Vibrational modes which contribute to mid-IR spectra. 

 

Infrared radiation can interact with molecules to cause rotations and vibrations 

within those molecules.  Different molecules have different specific frequencies at 

which they will rotate or vibrate.  These frequencies correspond to discrete 

vibrational/rotational energy levels which are specific to the structure and 

composition of the molecule (figure 1.26). 

 

Figure 1.26.  Absorbance of IR radition leads to discrete electronic energy level 

shifts, with the difference in energy between ground state and excited state 

matching the energy of the absorbed photon. 
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For a vibrational mode to absorb infrared radiation the vibrational motion must be 

associated with a change in a permanent dipole.  For this reason, vibrational 

modes typically indicate the presence of heteroatomic functional groups containing 

an electronegative atom.  The resulting vibrational frequency will be related to both 

the strength of the bond and the mass of the atoms at either end.  This means that 

bond frequencies can be assigned to particular bond types.  Through infrared 

spectroscopy the specific frequencies at which a molecule absorbs can be found 

and from this vibrational modes and the chemical groups which cause them can 

be identified. 

 

In Fourier Transform IR spectroscopy (FTIR) a spectrum is collected by passing 

pulses of infrared radiation through a sample and onto a detector.  These pulses, 

called interferograms, are created by the out-of-phase combination of two infrared 

beams split from the same source.  An interferogram contains all infrared 

frequencies in the range of interest and once passed through the sample, the 

beam and the original interferogram are used by a Fourier Transform program to 

calculate the infrared spectra of the sample.  This spectra contains all of the 

frequencies from which the original interferrogram was created.  This fast ‗pulsing‘ 

approach to obtaining an IR spectra allows multiple scans to be taken for each 

sample within a short timescale. 

 

Quantification of sample composition can be performed using FTIR by comparing 

samples absorbance to the absorbance of calibration samples.  The Beer-Lambert 

law relates the absorption of light following a certain path to the properties of the 

material it passes through on that path (figure 1.27). 

 

𝐼

𝐼0
=  10−𝛼𝑐  
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Figure 1.27.  According to the Beer-Lambert law (above) the relationship between 

light intensity going into (I0) and coming out of (I) a substance depends upon the 

concentration of the absorbing species (c) and the absorption coefficient of the 

absorbing species (). 

 

When passing radiation through samples containing a known set of absorbing 

materials with known absorption coefficients, it is possible to calculate the 

concentration of the materials based on the Beer-Lambert law.  If extended to 

FTIR samples, the Beer-Lambert law suggests that quantification of polymer or 

monomer concentrations in FTIR samples can be determined by analysis of peak 

heights/areas using IR extinction coefficients obtained from samples containing 

known polymer or monomer concentrations. 

 

Previous studies (Chen et al, 1998; Painter, 1981) have indicated that FTIR can be 

used for quantitative analysis of both liquid and solid samples.  Grinding samples 

with KBr and pressing into discs allows each sample to be measured 

homogenously, so that path lengths are consistent and the Beer-Lambert law can 

apply.  Similarly, a liquid sample measured with an Attenuated Total Reflectance 

(ATR) method has a fixed path length in a given solvent so the Beer-Lambert law 

is also appropriate here.  This method has been demonstrated to be useful in the 

quantification of polymer groups in samples (Johnck et al., 2000; Xu et al., 2001) 

 

 

1.4 Choice of support 
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One suitable choice of non-porous beads for surface modification is M-PVA, 

available from Chemagen.  These supports are available in large quantities at an 

affordance price.  M-PVA consists of nano-sized magnetite/maghemite 

(Fe3O4/Fe2O3) particles encapsulated within a PVA matrix to form monodisperse, 

stable beads with a diameter of approximately 2 m (figure 1.28).    

 

 

 

Figure 1.28. M-PVA: magnetite encapsulated in a PVA matrix. 

. 

Magnetite (the scientific name for lodestone) is an iron oxide with the chemical 

formula Fe3O4.  The atoms of magnetite are arranged in a spinel structure, which 

supports the presence of both the Fe(II) and Fe(III) states within the same crystal 

(figure 1.29). 

 

Figure 1.29: crystal structure of magnetite showing tetrahedral Fe sites (A), 

octahedral sites (B) and oxygen sites (green circles) (after Banerjee and 

Moskowitz, 1985) 
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Magnetite is a ferrImagnetic material.  The properties of ferrimagnetic materials 

are largely the same as ferromagnetic materials, displaying high  values when 

subjected to a low external magnetic field and saturation behaviour at higher 

magnetic fields.  As with ferromagnetic materials, magnetite displays hysteresis 

behaviour, with multi-domain particles maintaining a residual magnetisation in the 

absence of a magnetic field.  The nanosized particles used in M-PVA are sub-

domain sized and do not display hysteresis effect.  This gives the encapsulated 

particles superparamagnetic behaviour giving M-PVA a strong, hysteresis-free 

response to applied magnetic fields.  

 

Poly(vinyl alcohol) (PVA) is a polymer consisting of a C-C bond backbone and 1 

hydroxyl side group for every 2 backbone carbons.  Although composed of vinyl 

alcohol subunits, PVA is not formed by polymerization of vinyl alcohol.  Vinyl 

alcohol generally exists as its more stable keto tautomer, acetaldehyde (figure 

1.30; Clayden et al., 2001) and is unsuitable for use in polymerisation reactions. 

 

OH O

ENOL KETO  

Figure 1.30.  Tautomerisation of vinyl alcohol (enol) and acetaldehyde (keto). 

 

PVA is instead synthesized via polymerization of vinyl acetate to produce 

poly(vinyl acetate) (figure 1.31). 
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Figure 1.31.  Synthesis of poly(vinyl acetate) 

 

The ester side groups of poly(vinyl acetate) are then hydrolysed, producing PVA 

(figure 1.32). 
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Figure 1.32.  Hydrolysis of poly(vinyl acetate) to give poly(vinyl alcohol) 

 

The typical FTIR spectra of PVA shows the presence of some remaining acetate 

groups, as this hydrolysis process does not achieve 100% conversion (figure 

1.33). 
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Figure 1.33. FTIR spectra of PVA between 1800 and 800 cm-1. 

 

The simple chemical structure of PVA makes it attractive as a basis for stable 

emulsions, as is the case with M-PVA.  The number of possible side reactions 

which can occur from the surface secondary hydroxyls are relatively small and the 

carbon-carbon linked backbone is mostly unreactive.  This unreactive behaviour 

makes M-PVA difficult to functionalise using conventional methods, posing a 

challenge for the synthesis of polymer brushes at the M-PVA surface. 

 

 

1.5 Outline of thesis 

 

Against all this, the subsequent chapters describe the methods used to 

manufacture M-PVA with polyelectrolyte homopolymer and heteropolymer mixed 

brush grafted surfaces.  As mentioned in section 1.4, non-porous M-PVA particles 

are comparatively cheap, readily available and good properties in terms of 

magnetism, stability and resistance to fouling compared to other magnetic 

adsorbents.  In order to improve the binding properties of these particles a number 

of polymer grafting methods have been investigated, with the intention of grafting 
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P2VP and PMAA polyelectrolytes to the typically unreactive M-PVA surface, 

ultimately leading to the creation of adsorbents with ‗switchable‘ ion-exchange 

surfaces. 

 

Chapter 2 describes how cerium (IV) initiation of the M-PVA surface has been 

used to achieve a free-radical ―graft from‖ polymerization to form polyelectrolyte 

homopolymer and heteropolymer layers at the M-PVA surface with suitable 

dimensions for brush behavior.  In Chapter 3 the synthesis of polyelectrolyte 

brushes is performed using a ―graft to‖ method via sulfonyl activation of M-PVA, 

with calculated polymer brush dimensions distinctly different to those produced by 

cerium (IV) initiation.  Chapter 4 cover the partial activation of the M-PVA surface 

with brominated sites, which are then used as activators in ATRP ―graft from‖ 

brush syntheses and ―graft to‖ reactions involving bromine substitution by 

nucleophilic polymer end-groups. 

 

Chapter 5 covers binding studies performed on the modified M-PVA supports 

produced in Chapters 2 to 4.  These binding studies use a model protein system 

consisting of acidic, neutral and basic proteins to identify the cation exchange and 

anion exchange properties of each support type under a range of pH conditions.  

The composition and brush properties of modified M-PVA surfaces are then 

compared to their binding behavior and response to salt and pH based elutions.   

 

Further areas of research, based on the results of this study, are suggested in 

Chapter 6. 
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2 Polymer grafting by Ce(IV) initiated „graft from‟ 

2.1 Introduction 

The ―graft from‖ method of polymer brush synthesis involves synthesis of a 

polymer from an initiator attached to a surface.  This generates a polymer which is 

attached to the surface through the initiator group.  Graft from synthesis is an 

attractive route to the creation of ion exchange (IEX) polymer brushes, as the high 

brush density possible with graft from techniques translates to higher densities of 

charged polymer subunits within the brush and hence to improved ionic binding 

capacity and binding strength.  In addition, the intergraft distance, D, seen at 

higher brush density results in more pronounced brush behaviour for chains of a 

given Flory Radius, Rf.   This follows from the condition for brush behavior defined 

for Rf and D values (equation. 2.1) (Unsworth et al., 2005). 

 

2Rf

D
≫1 

Equation 2.1 

 

For the creation of IEX ligands with switchable brush behaviour, the combination 

of high charge density and low D values make ‗graft from‘ polymerisation a very 

useful technique. 

 

One ‗graft from‘ technique of interest is the Ce(IV) initiated free-radical 

polymerisation of vinyl and allyl monomers (Mino and Kaizermann, 1958).  Salts of 

Ce(IV) show high reactivity as initiators of free-radical vinyl polymerisations in the 

presence of reducing agents such as alcohols, aldehydes, ketones, acid and 

amines (Nagarajan and Srinivsasan, 1994).  Previous studies in to Ce(IV) initiation 

have shown it to be a useful method for the generation of radicals on polymer 

hydroxyl sites, providing a route to the synthesis of graft-polymers by a free-radical 

mechanism (Reddy et al., 1995; Lagos et al., 1992; Tsubokawa et al., 1988; Vera-

Pacheco et al., 1993).  Of particular interest are studies which have shown the 

ability of Ce(IV) to initiate radical polymerisation from the PVA backbone (Odian 

and Kho, 1970; Story and Goff, 1989; Müller, 1986).  The behaviour of PVA as a 
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free-radical initiator in the presence of Ce(IV) leads to the possibility of free-radical 

graft from polymerisation from the PVA matrix of M-PVA.  Previous studies have 

shown that ‗graft from‘ polymerisation by free-radical Ce(IV) activation can be used 

to improve protein binding capacities on chromatography supports (Muller, 1990), 

poly(vinyl acetate-divinyl benzene) particles (Guan et al., 2005) and PVA surfaces 

(Pitfield, 1992). 

 

Initiation by Ce(IV) occurs through complex formation between Ce(IV) and the 

reducing agents, followed by single electron transfer from the reducing agent to 

the ceric ion.  This result in reduction of Ce(IV) to Ce(III) and the production of a 

free radical functionality on the reducing agent.  Mechanisms of PVA oxidation by 

Ce(IV) have been studied in the presence of polymerisable monomers (Mino and 

Kaizermann, 1958; Iwakura and Imai, 1966; Ogiwara and Uchiyama, 1969; Narita 

et al., 1969) and in their absence (Mino et al, 1959). 

 

Initiation of PVA by Ce(IV) occurs at hydroxyl sites, with interaction between the 

hydroxyl group and ceric ion allowing radical initiation to occur from the adjacent 

carbon atom.  The major product of PVA synthesis is isolated hydroxyl units, 

formed by head-to-tail reaction between vinyl acetate groups (figure 2.1). 

 

Polymerisation

O

COCH3

Poly(vinyl acetate)
Head-to-tail subunit

O

O

Vinyl acetate

R

R Hydrolysis

OH

R

R

Isolated hydroxyls subunit

O

COCH3

OH

 

Figure 2.1. Head-to-tail reaction between vinyl acetate monomers leading to PVA 

isolated hydroxyls subunit 

 

Reaction between isolated hydroxyl groups and Ce(IV) leads to initiation from the 

hydroxyl carbon site with loss of a hydrogen atom (figure 2.2). 
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+ Ce4+ + Ce3+ + H+

HO H

R R R R

OH

 

Figure 2.2. Oxidative initiation of hydroxyl subunit by Ce(IV) 

 

1-2% of subunit linkages in PVA are in the form of diol groups, formed by head-to-

head reaction between vinyl acetate monomers (figure 2.3; Finch, 1973). 
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Figure 2.3.  Head-to-head reaction between vinyl acetate monomers leading to 

PVA diol subunit 

 

Initiation from the PVA diol subunit occurs at a significantly faster rate than 

reaction from isolated hydroxlys (Iwakura and Imai, 1966).  The mechanism for 

initiation at diol sites results in cleavage of the C-C bond which joins the two 

hydroxyl groups (figure 2.4).  This produces a terminal alcohol radical and an 

aldehyde.  Subsequent polymerisation reactions can occur from the terminal 

radical group. 

 

OH

R

R

OH

+ Ce4+

O

R
R

H

+ + Ce3+

OH

+ H+

 

 

Figure 2.4. Oxidative initiation of diol subunit by Ce(IV) 

 

Ce(IV) oxidations are typically performed in the presence of nitric acid, as acidic 

conditions favour the more reactive Ce4+ form.  In neutral solution Ce(IV) is found 
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as (Ce-O-Ce)6+ and CeOH)3+, the presence of which correspond to significantly 

reduced rates of initiation (Odian and Kho, 1970). The kinetics of reduction of 

Ce(IV) by PVA have been investigated and the progress of Ce(IV) reduction by 

PVA proposed as a three stage process, with three different rates of reduction 

(Ogiwara and Uchiyama, 1969).  Initially, a rapid reduction of Ce(IV) by 1,2-diols is 

seen.  This is followed by a second stage of slower rate and a third stages with 

very slow rate.  Chain cleavage of PVA is observed during the first stage, with 

polymerization from the radicals here producing a block copolymer between PVA 

and the polymerizing monomer.  The second and third stages involve radical 

generation at isolated hydroxyl sites along the PVA backbone and involve no 

cleavage.  Polymerizations which are initiated by uncleaved PVA units produce 

true graft polymers. 

 

Radical polymerisations initiated from the M-PVA surface with Ce(IV) have the 

advantage of being ‗one pot‘ procedures.  This makes the adjustment of reagent 

conditions for optimum grafting easier than for polymerisation techniques which 

require multiple activation steps.  Grafted polymers are attached to the M-PVA 

surface by a covalent C-C bond, leading to grafted layers which are resistant to 

most forms of chemical attack.  As the amount of complexed Ce(IV) present 

directly effects the extent of initiation it is possible to control the extent of surface 

initiation by the use of controlled amounts of Ce(IV).  In this way modification of M-

PVA surfaces by grafting two polymer species to form a ‗mixed brush‘ grafted 

surface may be achieved through two consecutive partial initiation/polymerisation 

steps (figure 2.5). 
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Figure 2.5. Overall synthetic route for mixed brush grafting by Ce(IV) initiation. 

 

This method may be used to create a mixed polyelectrolyte grafted layer with 

switchable polymer brush properties (Houbenov et al., 2003).  Such a brush 

composed of basic polymers grafted alongside acidic polymers can lead to a 

dense surface charge, capable of IEX binding followed by elution assisted by pH 

change wherein both the sign of the surface charge and the surface-dominating 
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polymer are switched (figure 2.6).  Elution in this case can occur by both charge 

repulsion and the physical push of expanding polymer chains. 

 

Figure 2.6. Release of basic proteins from acidic polymer by increasing pH. 

 

Work by Houbenov et al. (2003) showed that a polymer brush layer comprised of 

P2VP and PAA exhibits switchable behaviour with full expansion of P2VP below 

pH 3.2 and expansion of PAA above pH 6.7.  For this brush the minimum charge 

and layer expansion exists at pH 4.9.  However, as this pH value is lower than the 

desired binding range of pH 5-8 (see Chapter 5) a more suitable choice of acidic 

polymer may be PMAA, whose pKa of 5.5 (Ryan et al., 2005) may result in the 

uncharged state of a PMAA/P2VP mixed brush layer being at a higher pH than is 

seen for a PAA/P2VP mixed brush layer.  For comparison, the pKa of PAA is 4.5 

(Govender et al., 1999). 

 

The synthesis of mixed polyelectrolyte layers as described by Houbenov et al. 

(2003) involves the grafting of P2VP and poly(tert-butyl acrylate) (PTBAA).  

PTBAA is a protected form of PAA containing ester side groups.  This grafting is 

followed by a hydrolysis of the PTBAA chains to produce the PAA carboxylic acid 

side groups (figure 2.7).  The acidic polymer here is grafted in its protected form to 

reduce interaction between acidic and basic polymer chains during the grafting 

reactions. 
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Figure 2.7.  Grafted P2VP/PBAA mixed brush undergoes hydrolysis to form 

P2VP/PAA mixed brush. 

 

In the case of grafting a P2VP/PMAA mixed brush with a Ce(IV) initiated ―graft 

from‖ method, the same principle involves the use of the protected tert-butyl 

methacrylate (TBMA) monomer alongside 2-vinyl pyridine (2VP).  Surface initiated 

polymerisation of TBMA and 2VP produces a grafted layer composed of P2VP and 

poly(tert-butyl methacrylate) (PTBMA).  This layer can then be hydrolysed to give 

a mixed PMAA/P2VP grafted surface. 

 

Against the above, the following sections describe the development of a technique 

for creating a mixed brush layer composed of both P2VP and PMAA chains via 

Ce(IV) intiated grafting of 2VP and TBMA monomers.  This includes with a 

discussion of the layer dimensions calculated from FTIR data and the implications 

of these dimensions for potential brush properties. 
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2.2 Materials and methods 

2.2.1 Materials used 

M-PVA (batch R2-0105096; Vm; 3.4 cm3/g; specific surface area 59.2 m2 per g) 

was obtained from Chemagen (Baesweiler, Germany).  t-butyl methacrylate (CAS 

585-07-9); 2-vinyl pyridine (CAS 100-69-6); 4-ethnoxyphenol (CAS 622-62-8); 

dimethyl sulfoxide (CAS 68-78-5); acetone (67-64-1); ammonium cerium (IV) 

nitrate, Ce(NH4)2(NO3)6 (CAS 16774-21-3); HCl solution (CAS 7647-01-0); nitric 

acid (CAS 7697-37-2); acetic acid (CAS 64-19-7); sodium sulphate (CAS 7757-82-

6); sodium chloride (CAS 7657-14-5); sodium hydroxide (CAS 1310-73-2); 

potassium bromide (CAS 7758-02-3); and methanol (CAS 67-56-1) were obtained 

from Sigma Aldrich (Poole, Dorset). 

 

Cuvettes, 2 ml screw-cap micro test tubes, 15 ml screw-cap centrifuge tubes and 

50 ml screw-cap centrifuge tubes were obtained from Sarstedt (Leicester, UK).  

1.5 ml hinged-lid micro test tubes were obtained from Eppendorf (Cambridge, UK). 

All unheated mixing was performed with a VM20 vortex mixer or a IKA Vibrax VXR 

basic mixer with attachments for 15 ml centrifuge tubes and micro test tubes.  

Heated mixing was performed in a Grant OLS water bath with shaker rack.  

Samples were dried on watchglasses in a Gallenkamp size 2 hotbox oven.  

Chemicals were weighed on Mettler AE160 and AT261 balances.  Pipetting was 

performed with 20 ml, 200 ml, 1 ml and 5 ml adjustable pipettes. 

 

2.2.2  Base matrix preparation 

 
M-PVA stock was washed thoroughly before use to remove potential 

contaminants.  1.5 g M-PVA was washed in a succession of solvents (30 ml, 60 s) 

these were: water; 50% acetone in water; 100% acetone; 50% acetone / 50% 

methanol; 100% methanol; 50% methanol in water; water (x2); 1 M NaCl in water; 

water (x3).  The washed M-PVA was then suspended in water (30 ml). 
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2.2.3 Quenched Ce(IV) polymer grafting 

The effect of an additional radical quenching agent, 4-ethoxylphenol, upon Ce(IV) 

initiated graft from was tested (figure 2.8). 

 

OH

O

O•

O

R

CH2•

R

CH3+ +

DMSO, 4-ethoxyphenol

RT, 60 s

 

Fig 2.8. Quenching of radical chain by 4-ethoxylphenol 

 

For the first grafting step a degassed solution of nitric acid (150 l, 2 M) containing 

ammonium cerium (IV) nitrate (ACN) was added to a degassed suspension of M-

PVA (50 mg) in dimethyl sulfoxide (DMSO, 5 ml).  The mixture was mixed under 

nitrogen (600 s).  Degassed monomer was then added and the mixture was kept 

under nitrogen for (3 h) with good mixing.  With the system still under nitrogen the 

supernatant was removed and the supports were mixed (60 s) with DMSO (5 ml) 

containing 4-ethoxylphenol (10 mg).  The reaction was then opened to the air and 

washed (60 s, 2 ml) with the following solvents: 0.2 M Na2SO3 in 10% (v/v) acetic 

acid; DMSO (x 2); 1 M NaCl(aq); water; DMSO. 

 

For mixed brush synthesis a second grafting step was used.  A degassed solution 

of nitric acid (75 l, 2 M) containing ACN was added to a a degassed suspension 

of DMSO (2.5 ml) containing half of the total product from the first grafting step 

(assumed to include 25 mg of M-PVA).  The mixture was mixed under nitrogen 

(600 s).  The second monomer (degassed) was then added and the mixture was 

kept under nitrogen with good mixing (3 h).  With the system still under nitrogen 

the supernatant was removed and the supports were mixed (60 s) with water (2.5 

ml) containing 4-ethoxylphenol (5 mg).  The reaction was then opened to the air 

and washed (60 s, 1 ml) with the following solvents: 0.2 M Na2SO3 in 10% (v/v) 

acetic acid; DMSO (x 2); 1 M NaCl(aq); water; DMSO. 
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2.2.4 Unquenched Ce(IV) polymer grafting 

Grafting was performed as described in 2.2.3, without the 4-ethoxylphenol wash 

step. 

 

2.2.5 Ce(IV) mixed polymer grafting without second initiation 

Quenched and unquenched Ce(IV) initiated polymerisations were performed as in 

method 2.2.3 and 2.2.4, without a second addition of ACN/nitric solution before the 

second monomer grafting step.  These reactions were performed to identify 

diblock copolymer formation from unterminated polymer end groups produced 

during the first grafting stage. 

 

2.2.6 Hydrolysis of PTBMA grafted products 

Supports grafted with PTBMA brushes were hydrolysed using a 50/50 (v/v) 

aqueous solution of trifluoroacetic acid (TFA, see appendix 7.1 for details of this 

reagent choice). 

 

PTBMA grafted single and mixed brush supports were reacted with a 50/50 (v/v) 

mixture of TFA and water (5 ml, 60oC, 24 h) followed by washing with water (5 ml, 

60s, x 2). 

 

2.2.7  FTIR solid analysis 

For solid samples an aliquot of aqueous particle suspension was pipetted onto a 

watchglass and dried in an oven (100 oC, 2 h).  A portion of the dry sample was 

taken and ground with 300 mg of KBr until a fine, homogenous powder was 

produced.  Using a Specac 15 ton manual press the KBr-sample powder was 

pressed in a 13 mm die to a pressure of 10 bar, producing FTIR suitable discs.  

Samples were run on a Thermo Nicolet 380 FTIR in direct beam mode for 64 

scans per sample at a resolution of 2 cm-1. 

 

FTIR samples were prepared from reaction supernatants and quantified as 

described in Appendix 7.2.  FTIR samples were analysed using a Nicolet Smart 
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Orbit diamond ATR apparatus at a resolution of 2 cm-1, with 50 l aliquots of the 

sample liquid pipetted onto the ATR crystal. 

 

 

 

2.3 Results 

2.3.1 FTIR peak assignments for grafted polymers 

Peak assignments for ungrafted P2VP are expected to show wavenumbers values 

similar to grafted P2VP.  An awareness of the expected peak values for P2VP 

allows identification of grafted P2VP through the presence of new peaks in the 

FTIR spectra of M-PVA beads.  As a basis for grafted support analysis, spectra of 

solid P2VP and PTBMA were obtained (figure 2.9). 

 

Fig 2.9. Spectra. FTIR spectra for pure P2VP (a) and PTBMA (b)  

 

Based upon these spectra, wavenumbers were assigned to the various bonds 

which are expected in each polymer (Tables 2.1 and 2.2). 
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Table 2.1.  FTIR peak assignments for P2VP (Clayden et al., 2001;  Solomons and 

Fryhle, 2007) 

Wavenumber 

(cm
-1

) 

Assignment 

1588 Aromatic C-C 

1567 Aromatic C-C 

1472 Aromatic C-C 

1433 Aromatic C-C 

1301 Methyl, CH3 

1147 Pyridine C-N 

787 Aromatic C-H 

746 Aromatic C-H 

 

Table 2.2.  FTIR peak assignments for PTBMA (Clayden et al., 2001;  Solomons 

and Fryhle, 2007) 

 

Wavenumber 

(cm
-1

) 

Assignment 

1727 Carbonyl group (ester) 

1478 Methylene, -CH2- 

1460 Methylene, -CH2- 

1393 Methyl, -CH3 

1367 Methyl, -CH3 

1251 Methyl, -CH3 

1139 C-O, (ester) 
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2.3.2 Ce(IV) initiated homopolymer brush grafting 

The presence of P2VP following ACN activation and reaction with 2VP monomer 

was confirmed using FTIR spectroscopy on solid samples (figure 2.10). 

 

 

Figure 2.10. a) M-PVA;  b) M-PVA (50 mg) following activation with 4 mg ACN and 

237 ml 2VP in DMSO  

 

Following P2VP grafting new peaks are seen 1590 and 1570 cm-1 accompanied 

by a noticeable increase in peak heights at 1490 and 1430 cm-1. These indicate 

presence of the 2VP aromatic C-H bonds on the supports and show that grafting 

was successful.  FTIR of supernatant for the reactions (figure 2.11) also indicate 

consumption of 2VP, with loss in peak height is observed at all 2VP wavenumbers 

(1590, 1570, 1480 and 1430 cm-1) 
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Figure 2.11. Supernatant a) before and b) after reaction of 50 mg M-PVA with 4 

mg ACN and 237 ml 2VP in DMSO 

 

Brush dimensions were compared for graft reactions which used varied amounts 

of Ce(IV) per g M-PVA and consistent amount of monomer (44 mmol 2VP per g M-

PVA), showing a maximum yield of 8.75 mmol polymer units grafted per g M-PVA 

when 294 mmol Ce(IV) initiator per g M-PVA was used (Table).  The total mass of 

P2VP grafted at this point is 0.92 g P2VP per g M-PVA, which means that 48% of 

the final support mass is P2VP.  This means that although the average radius of 

the M-PVA bead is approximately 1 m the grafted support mass is concentrated 

in the outermost 10 nm, where the polymer brush layer is found. 

 

Intergraft spacing (D) was calculated from the molar quantity of Ce(IV) initiator 

present and the M-PVA surface area (59.2 m2 g-1).  The intergraft distance along 

the bead surface is predicted to be the same as the ‗true‘ distance between 

adjacent graft sites (see appendix 7.10), so relevant intergraft distances can be 

calculated directly from the M-PVA surface area.  Rf for each graft product was 

calculated from equation 2.2 using a monomer size, Am, of 0.67 nm for P2VP (Seo 

et al., 2004) and chain length, L, calculated by dividing the molar quantity of Ce(IV) 

by the molar quantity of grafted monomer).  The Flory exponent, v, was taken to 

be 0.6 (Katao and Wadati, 2007). 
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Rf ≈ AmL
v
 

Equation 2.2 

 

Values of 2Rf/D were also calculated from this data.  These values are important in 

predicting the behaviour of tethered polymer layers, as the relationship between 

2Rf and D determines the extent of overlap between neighbouring polymer chains.  

When 2Rf is in excess of D there will be significant overlap between chains and 

extended brush behaviour will be favoured.  Hence the relationship for expecting a 

brush phase is 2Rf/D >> 1 (Unsworth et al., 2005). 

 

Table 2.3.  Comparison of grafting yield to Ce(IV) initiator presence (50 mg m-

PVA, 2.2 mmol 2VP) 

Polymer 

grafted 

Ce(IV) 

(mol) per 

g M-PVA 

Monomer 

presented (mmol) 

per g M-PVA 

Monomer 

grafted (mmol) 

per g M-PVA 

Yield 

(%) 

D 

(nm) 

Rf 

(nm) 

2Rf/D n(poly)/ 

n(init) 

P2VP 36.8 43.96 0.61 1.4 16.36 3.60 4.4 16.6 

P2VP 73.5 43.96 2.91 6.6 11.57 6.09 10.5 39.6 

P2VP 110.3 43.96 4.23 9.6 9.44 5.98 12.7 38.3 

P2VP 147.0 43.96 5.77 13.1 8.18 6.06 14.8 39.3 

P2VP 183.8 43.96 5.87 13.4 7.32 5.36 14.6 31.9 

P2VP 220.5 43.96 6.20 14.1 6.68 4.96 14.9 28.1 

P2VP 257.3 43.96 7.08 16.1 6.18 4.90 15.8 27.5 

P2VP 294.0 43.96 8.75 19.9 5.78 5.13 17.7 29.8 

P2VP 330.8 43.96 8.62 19.6 5.45 4.74 17.4 26.1 

P2VP 367.5 43.96 8.51 19.4 5.17 4.41 17.1 23.2 

P2VP 404.3 43.96 8.23 18.7 4.93 4.09 16.6 20.4 

P2VP 441.0 43.96 8.52 19.4 4.72 3.96 16.8 19.3 

 

Higher Rf values tend to be reached with lower amounts of Ce(IV) added, which is 

as expected.  The use of a constant monomer concentration means that the 



58 
 

number of units available per initiator is much higher when [Ce(IV)] is lower.  

Values of 2Rf/D suggest extended brush behaviour for all grafted layers, with the 

maximum 2Rf/D value of 17.7 at 294 mmol Ce(IV) per g M-PVA corresponding to 

the maximum grafting yield (figure 2.12). 

 

Figure 2.12.  Comparison of 2VP grafted to Ce(IV) initiator presence (50 mg m-

PVA, 2.2 mmol 2VP) 

 

The same set of experiments was performed with TBMA grafting by Ce(IV) 

activation. The presence of PTBMA on M-PVA following Ce(IV) intiated reaction 

with tBmA was confirmed using FTIR (figure 2.13). 
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Figure 2.13. a) M-PVA; b) M-PVA (50 mg) following reaction with ACN (4 mg) and 

TBMA (301 l) in DMSO 

 

Large increases in peak height at 1720 (carbonyl), 1390 (methyl), 1370 (methyl), 

1250 (methyl) and 1140 (ester C-O) cm-1 indicate the presence of grafted PTBMA 

following ACN initiated grafting.  Similarly, FTIR spectra of supernatants for the 

PTBMA grafting reaction (figure 2.14) show consumption of TBMA monomer. 

 

 

Figure 2.14.  Supernatant a) before and b) after reaction of 50 mg M-PVA with 4 

mg ACN and 301 ml TBMA in DMSO 
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As with P2VP grafting, ACN initiation procures larger graft-polymer peaks in the 

support FTIR spectrum than tresyl-initiated grafting, indicating a larger number of 

tBmA subunits compared to the tresyl grafting product.  The comparison of brush 

dimensions following reaction of varied amounts of Ce(IV) and consistent amount 

of monomer (37 mmol TBMA per g M-PVA)  with M-PVA showed an increase in 

polymer yield with increasing Ce(IV) addition, until a maximum monomer 

consumption of 9.25 mmol per g M-PVA was achieved with Ce(IV) addition of 

330.8 mol per g M-PVA (table 2.4, figure 2.15).  As with P2VP grafted chains this 

represents a concentration of mass in the grafted layer, with 1.32 g PTBMA per g 

M-PVA grafted (69% of total grafted support mass).  Following hydrolysis, this 

becomes 0.80 g PMAA per g M-PVA (44% of total grafted support mass). 

 

Figure 2.15.  Comparison of TMBA grafted to Ce(IV) initiator presence (50 mg m-

PVA, 1.85 mmol TBMA) 

 

D values were calculated as described for P2VP grafted supports.  Calculation of 

Rf used a monomer size of 0.33 nm for PMAA (Hester et al., 2002).  Although 

quantification data was based upon analysis of PTBMA, the monomer size of 
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PMAA was used in Rf calculations as it is the brush properties of the hydrolysed 

polymer product which are of most interest for IEX behavior (figure 2.16). 

 

Figure 2.16. a) M-PVA (50 mg) following reaction with ACN (4 mg) and TBMA (301 

l) in DMSO; b) PTBMA grafted support following hydrolysis with TFA solution 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



62 
 

Table 2.4.  Comparison of grafting yield to Ce(IV) initiator presence (50 mg m-

PVA, 1.85 mmol TBMA) 

Polymer 

grafted 

Ce(IV) 

(mol) per 

g M-PVA 

Monomer 

presented (mmol) 

per g M-PVA 

Monomer 

grafted (mmol) 

per g M-PVA 

Yield 

(%) 

D 

(nm) 

Rf 

(nm) 

2Rf/D n(poly)/ 

n(init) 

PMAA 36.8 37.04 1.61 4.3 16.36 3.18 3.9 43.8 

PMAA 73.5 37.04 2.82 7.6 11.57 2.94 5.1 38.4 

PMAA 110.3 37.04 4.28 11.6 9.44 2.97 6.3 38.8 

PMAA 147.0 37.04 5.89 15.9 8.18 3.02 7.4 40.1 

PMAA 183.8 37.04 6.23 16.8 7.32 2.73 7.5 33.9 

PMAA 220.5 37.04 7.63 20.6 6.68 2.77 8.3 34.6 

PMAA 257.3 37.04 8.01 21.6 6.18 2.60 8.4 31.1 

PMAA 294.0 37.04 9.08 24.5 5.78 2.58 8.9 30.9 

PMAA 330.8 37.04 9.25 25.0 5.45 2.44 8.9 28.0 

PMAA 367.5 37.04 9.01 24.3 5.17 2.25 8.7 24.5 

PMAA 404.3 37.04 8.76 23.7 4.93 2.09 8.5 21.7 

PMAA 441.0 37.04 8.73 23.6 4.72 1.98 8.4 19.8 

 

Calculated Rf values achieved during PMAA grafting are lower than those seen for 

P2VP grafting.  This is because of the much greater size of P2VP units (0.67 nm) 

than PMAA units (0.33 nm).  In terms of average number of units per chain the 

PMAA result is similar to that for P2VP, suggesting that tBmA and 2VP share 

similar abilities as propagating monomers under these conditions.  The lower Rf 

values seen for PMAA grafted products and the corresponding lower 2Rf/D 

indicate that the surfaces of these supports will show weaker brush behaviour than 

the analogous P2VP grafted surfaces. 

 

2.3.3 Ce(IV) initiated mixed polymer brush grafting 

Following reaction of TBMA with 2VP grafted M-PVA and ACN, new support peaks 

were visible at 1390 cm-1 and 850 cm-1.  Peaks at 1720 and 1140 cm-1 also 

became noticeably larger.  These results suggest successful grafting of tBmA, with 
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the clear presence of PTBMA groups alongside M-PVA and P2VP peaks (figure 

2.17). 

 

 

Figure 2.17. a) M-PVA (50 mg) following reaction with ACN (4 mg) and 2VP (237 

l) in DMSO, followed by quenching with 4-ethoxyphenol; b) P2VP grafted support 

(50 mg) following reaction with ACN (2 mg) and tBmA (150.5 l) in DMSO then 

quenching. 

 

Hydrolysis of the mixed brush product with TFA led to loss of characteristic t-butyl 

ester peaks while P2VP peaks were retained (figure 2.18). 
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Figure 2.18.  a) P2VP grafted support (50 mg) following reaction with ACN (2 mg) 

and TBMA (150.5 l) in DMSO; b) P2VP + PTBMA grafted support following 

hydrolysis with TFA 

 

Mixed brush synthesis by polymerisation of 2VP from the PTBMA grafted support 

was also successful, with the appearance of new P2VP peak in the product 

spectrum at 1590 and 1570 cm-1 (aromatic C-H) and a significant peak increase at 

1430 cm-1 (figure 2.19).  A new peak is also seen at 990 cm-1 which may 

correspond to C-H on the P2VP backbone.  These results indicate the successful 

grafting of 2VP onto PTBMA grafted M-PVA using the ACN activation method. 
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Figure 2.19. a) M-PVA (50 mg) following reaction with ACN (4 mg) and TBMA (301 

l) in DMSO, with quenching; b) PTBMA grafted support (50 mg) following reaction 

with ACN (2 mg) and 2VP (118.5 l) in DMSO then quenching 

 

The effect of quenching by 4-ethoxyphenol upon the addition of the second brush 

during a mixed-polymer brush synthesis was quantified (tables 2.5 and 2.6; figure 

2.20).  It was observed that in the absence of both a quenching step and new 

activation with Ce(IV) some polymerisation was seen between a 2nd monomer and 

the homopolymer grafted support (samples 5 and 6, table 2.6 and figure 2.20).  

Such polymerisation was not seen when quencher was used after 1st grafting with 

no subsequent activation step (samples 7 and 8).  This indicates the continuation 

of a radical functionality in the absence of a quenching step.  As this radical 

functionality is likely to exist at the chain ends of the 1st grated polymer, it is vital 

that a quenching step is included in mixed-polymer synthesis to avoid the creation 

of diblock copolymers incorporating the 1st and 2nd monomer types. 
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FTIR quantification for the mixed brush support reaction (table 2.5), showed that 

up to 9.74 mmol of monomer was grafted per g of M-PVA.  This was equivalent to 

1.167 g of P2VP/PTBMAA per g M-PVA (54 % of total support mass), or 0.951 g 

P2VP/PMAA per g M-PVA (49% of total support mass). 

 

As shown in table 2.6 average Rf values for the mixed brush [(P2VP)x + (PMAA)y] 

layers were calculated from values of Rf for the component P2VP and PMAA 

grafts using equation 2.3.  The background to this calculation is explained in 

Appendix 7.7. 

 

Rf av = 
Rf P2VP 2.N P2VP + Rf PMAA  2.N PMAA  

Rf(P2VP).N P2VP + Rf(PMAA ).N PMAA  
 

 

Equation 2.3.  

 

Rf(P2VP) and Rf(PMAA) are the Flory radii of P2VP and PMAA chains respectively 

and N(P2VP) and N(PMAA) refer to the number of grafted chains present, which 

are calculated from the amount of Ce(IV) used during grafting. 

 

Average Rf values for support 5 and 6 in table 2.6 were calculated using the 

assumption that without a second addition of Ce(IV) initiators the grafting of a 

second polymer species will occur from the chain ends of polymers grafted during 

the first stage.  The Rf value here (equation 2.4) was derived from the average 

monomer size, A, the total chain length of (P2VP + PTBMA), L, and the molar 

quantities of monomer grafted to the support, n. 

 

Rf av =  
A P2VP .n P2VP  +  A PMAA .n PMAA 

n P2VP + n PMAA 
 . L P2VP .L(PMAA) 0.6  

 

Equation 2.4 

 

The presence of diblock copolymers is ignored for Rf calculations on supports 1-4 

(table 2.5) for simplicity.  This simplification assumes that the number of radical 
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PVA sites created during the second Ce(IV) addition is much higher than the 

number of radical functionalities remaining at the ends of grafted chains.  This is 

reasonable, as the relatively low monomer conversion (typically 10-15% during the 

first graft step) indicates that most radical chain ends have been terminated by the 

end of the first graft stage.  Rf calculations for supports 5 and 6 are based upon 

initiation from all grafted chain ends, as the extent of termination is not known.  In 

this case the individual Rf values of chains grafted to 5 and 6 are expected to have 

a large deviation from this average, with a small number of long diblock chains 

extending beyond the polymers grafted during the first graft step. 

 

Calculated values of 2Rf/D indicate that all grafted layers fall within the brush 

regime.  Mixed brush layers show higher Rf values for P2VP than PMAA in all 

cases, as a result of larger P2VP monomer size.  This indicates that the maximum 

extension of P2VP chains in the mixed brush is greater than that of PMAA.  As the 

calculated Rf values do not factor for charge-charge interactions it is likely that the 

effective Rf values are considerably higher than those tabulated.  Repulsion 

between charge sidegroups within the polymer chains will lead to more extended 

chain behaviour, rather than the ‗random walk‘ seen for uncharged polymers 

chains.  In this case it may be expected that electrostatic effects outweigh the 

influence of sterics on chain extension, leading to more similar effective Rf values 

for P2VP and PMAA chains. 

 

The efficiency of Ce(IV) activation also has an effect upon the properties of the 

polymer layer.  Lower Ce(IV) efficiencies lead to a lower number of activation sites 

and hence a lower number of grafted chains, with a longer average chain length 

for a given polymer grafting yield.  Previous studies have indicated that Ce(IV) 

activation from PVA has an efficiency of 70% (Gupta and Sahoo, 2001), which 

would correspond to 147 mol Ce(IV) leading to initiation from 103 mol of PVA 

sites.  An example of the effect of this grafting efficiency upon mixed brush 

properties can be given using support 3 in Table 2.5.  100% Ce(IV) efficiency 

would give calculated values of D = 0.58 nm, Rf = 4.55 nm and 2Rf/D = 15.7 for 

the mixed brush, whereas 70% Ce(IV) efficiency gives D = 0.69 nm, Rf = 5.64 nm 
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and 2Rf/D = 16.3.  2% Ce(IV) efficiency has also been reported (Hrictu et al., 

1999), which would correspond to D = 4.09 nm, Rf = 47.59 and 2Rf/D = 23.3.  In 

both cases it can be seen that lower Ce(IV) activation efficiencies correspond to 

longer polymer chains, higher 2Rf/D values and hence the expectation of more 

pronounced brush regime behavior. 

 

 

2.4 Conclusions 

 

The work described in this chapter demonstrates the relevance of Ce(IV) as a 

method for creating tethered polymers at the M-PVA surface.  Successful grafting 

of polyelectrolytes constituting up to 49% of the total product mass shows Ce(IV) 

initiation can be used to create a dense, chargeable polymer layer on the M-PVA 

surface, with dimensions indicating brush behavior  (2Rf/D >15).  The direct 

initiation mechanism of Ce(IV) based grafting methods gives some control of 

surface grafting density. This allows synthesis of mixed polymer brush layer by 

sequential Ce(IV) grafting steps, separated by a quenching step to prevent diblock 

polymer formation. 
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Table 2.5.  M-PVA mixed brush grafting with 147 mmol Ce(IV) added per g M-PVA before each polymer addition.   

Prior to second graft step, quenching was performed on support 3 and 4 

 

 

Support Stage Polymer grafted Ce(IV) 

(mol) per 

g M-PVA 

Quench Monomer 

presented (mmol) 

per g  M-PVA 

Monomer 

grafted (mmol) 

per g  M-PVA 

Yield 

(%) 

D 

(nm) 

Mol % 

P2VP 

Mol % 

PTBMA 

Rf 

(nm) 

2Rf/D n(pol)/ 

n(init.) 

1 Step 1 P2VP 147 No 43.96 5.89 13.4 0.82   6.13 15.0 80.1 

1 Step 2 PMAA 147 No 37.04 3.85 10.4 0.82   2.34 5.7 52.4 

1 Finished [(P2VP)x + (PMAA)y]    9.74  0.58 60 40 5.09 17.6  

2 Step 1 PMAA 147 No 37.04 5.41 14.6 0.82   2.87 7.0 73.6 

2 Step 2 P2VP 147 No 43.96 3.47 7.9 0.82   4.47 10.9 47.2 

2 Finished [(P2VP)x + (PMAA)y]    8.88  0.58 39 61 3.84 13.3  

3 Step 1 P2VP 147 Yes 43.96 4.88 11.1 0.82   5.48 13.4 66.4 

3 Step 2 PMAA 147 Yes 37.04 4.56 12.3 0.82   2.59 6.3 62.0 

3 Finished [(P2VP)x + (PMAA)y]    9.44  0.58 52 48 4.55 15.7  

4 Step 1 PMAA 147 Yes 37.04 6.11 16.5 0.82   3.09 7.6 83.1 

4 Step 2 P2VP 147 Yes 43.96 3.34 7.6 0.82   4.36 10.7 45.4 

4 Finished [(P2VP)x + (PMAA)y]    9.45  0.58 35 65 3.84 13.3  
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Table 2.6. M-PVA grafting with 147 mmol Ce(IV) added per g M-PVA before first polymer addition, but no Ce(IV) present during 

second polymer addition, leading to formation of potential diblock polymers.  Prior to second graft step, quenching was performed 

on support 7 and 8. 

Support Stage Polymer grafted Ce
4+

 

(mol) per 

g  M-PVA 

Quench Monomer 

presented (mmol) 

per g M-PVA 

Monomer 

grafted (mmol) 

per g M-PVA 

Yield 

(%) 

D 

(nm) 

Mol % 

P2VP 

Mol % 

PTBMA 

Rf 

(nm) 

2Rf/D n(pol)/ 

n(init.) 

5 Step 1 P2VP 147 No 43.96 5.98 13.6 0.82   6.19 15.1 81.4 

5 Step 2 PMAA 0.0 No 37.04 1.41 3.8 -   1.28 -  

5 Finished [(P2VP)x + (PMAA)y]    7.39  0.82 81 19 6.35 21.9  

6 Step 1 PMAA 147 No 37.04 5.82 15.7 0.82   3.00 7.3 79.2 

6 Step 2 P2VP 0.0 No 43.96 1.05 2.4 -   2.19 -  

6 Finished [(P2VP)x + (PMAA)y]    6.87  0.82 15 85 3.84 9.4  

7 Step 1 P2VP 147 Yes 43.96 5.89 13.4 0.82   6.13 15.0 5.89 

7 Step 2 PMAA 0.0 Yes 37.04 0.00 0 -   - -  

7 Finished [(P2VP)x + (PMAA)y]    5.89  0.82 100 0    

8 Step 1 PMAA 147 Yes 37.04 6.04 16.3 0.82   3.07 7.5 6.04 

8 Step 2 P2VP 0.0 Yes 43.96 0.00 0 -   - -  

8 Finished [(P2VP)x + (PMAA)y]    6.04  0.82 0 100    
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Figure 2.20.  Monomer grafting results for supports as described in tables 2.5 and 

2.6.  Supports 1-4 have Ce(IV) addition before both polymer additions.  Supports 5-8 

have Ce(IV) addition before first polymer addition only.  Supports 3, 4, 7 and 8 have 

polymerisation quenched by 4-ethoxyphenol addition after 3 hours.  Black bars 

represent P2VP, grey bars represent PTBMA/PMAA. 
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3. Polymer grafting sulfonyl chloride activated „graft to‟ 

3.1 Introduction 

 

 ―Graft to‖ polymer brush syntheses are based upon traditional techniques for ligand 

attachment to solid surfaces, with a nucleophilic or electrophilic polymer end group 

being used to graft that polymer by reaction with a surface site.  Graft to techniques 

offer various benefits over graft from methods.  As polymerisation in graft to 

techniques is performed before the grafting stage, polymerisation reactions for graft 

to products are not constrained by grafting conditions.  This means that the grafting 

reaction does not need optimisation to produce polymers of specific Mw and 

composition, as this is controlled during the pre-grafting polymerisation step.  

Another benefit of graft to techniques is the possibility of synthesising a mixed 

polymer brush through a ―one-pot‖ grafting step, in which two polymer species are 

present and participate in graft to reactions simultaneously.  This technique is not 

possible with most graft reactions as the presence of two monomer species will 

typically result in creation of grafted copolymers. 

 

One suitable route to graft to synthesis on hydroxyl bearing surfaces is hydroxyl 

activation with sulfonyl chlorides.  Sulfonyl chlorides are derivatives of sulfonic acid 

which contain a SO2Cl functional group attached to an aromatic or aliphatic 

molecule.  Attack by a hydroxyl group upon a sulfonyl chloride group leads to 

replacement of the chlorine atom by the hydroxyl, leading to formation of a sulfonyl 

ester group (figure 3.1; Hermanson et al., 1992).  The improved performance of this 

reaction in the presence of pyridine was first noted in 1944 (Tipson, 1944) and this 

improvement contributed to the wide use of sulfonyl esters as leaving groups in 

organic syntheses. 

 

OH O

Acetone, pyridine

+ F3C
H2
C S

O

O

Cl F3C
H2
C S

O

O

Tresyl Chloride  

Figure 3.1. Activation of hydroxylated surface with tresyl chloride 
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Reaction between nucleophiles and sulfonyl activated surfaces leads to the creation 

of stable, covalent bonds between the nucleophile and surface (figure 3.2).  .   

 

OF3C
H2
C S

O

O

H2N
+NH3

 

Figure 3.2.  Nucleophilic attack upon tresyl activated surface. 

 

2,2,2-trifluoroethanesulfonyl chloride (tresyl) chloride chloride (Oesterling, 1961; 

Truce and Norell, 1963) is one of the most commonly used sulfonyl chloride 

activating agents.  The use of tresyl chloride as an agent for nucleophilic 

substitutions was first reported in 1971 (Crossland et al., 1971).  Many subsequent 

studies have used tresyl esters as a route to couple nucleophilic ligands onto 

hydroxyl-bearing supports (Mosbach and Nilsson, 1981; Demiroglou et al, 1994).  

These studies have shown tresyl chloride to be an effective agent for activating 

surfaces for the coupling of nucleophilic ligands.  An alternative sulfonyl chloride 

activation route is with the use of 4-toluenesulfonyl (tosyl) chloride (Hermanson et 

al., 1992).  Tosyl chloride activation works by the same principles as tresyl chloride 

activation but the tosyl chloride reagent is considerably lower in cost than tresyl 

chloride. 

 

The preparation of polymer brushes on the hydroxylated M-PVA surface can be 

performed using the sulfonyl chloride activation technique mentioned above.  

Polymer chains bearing nucleophilic end groups can be attached to the bead via 

reaction of the polymer end groups with the activated surface (figure 3.3). 

 

OF3C
H2

C S

O

O NH2

R

CO2tBu

+
N
H

R

CO2tBu

Tresyl activated PVA
Poly(t-butyl methacrylate)

(ptBmA) with terminal
amine group

Grafted ptBmA

 

Figure 3.3. Grafting of nucleophile terminated polymer to tresyl activated surface 
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This method can be extended to the creation of mixed polymer brush surfaces.  

Grafting of two separate polymer species may be achieved by a two-step synthesis 

involving reaction of one polymer species with a limited number of surface sites, 

followed by reaction of a second polymer species with the remaining surface sites 

(figure 3.4). 

 

Figure 3.4. Consecutive grafting of polymer species to form a mixed polymer brush 

layer 

 

Alternatively, a mixed polymer layer may be generated by the simultaneous coupling 

of two polymer species from the same mixture (figure 3.5). 
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Figure 3.5. Simultaneous grafting of polymer species to form a mixed polymer brush 

layer 

 

Against the above, this chapter describes sulfonyl activation techniques as applied to 

the surfaces of M-PVA beads.  This includes initial tests of the reactivity of tresyl and 

tosyl ester surface groups to ammonia and polymer end group, to find a suitable 

approach for controlled grafting of polymer.  These tests were followed by the 

synthesis of polymer brush layers composed of both P2VP and PMAA chains via 

intiated grafting of P2VP and PTBMA amine-terminated polymers.  The choice of 

these two polymers is explained in more detail in Chapter 2.  Grafted polymer layers 

are analysed by FTIR including a discussion of the calculated layer dimensions and 

the implications of these dimensions in potential brush properties. 
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3.2 Materials and methods 

 

3.2.1 Materials used 

M-PVA (batch R2-0105096; Vm; 3.4 cm3/g; specific surface area 59.2 m2 per g) was 

obtained from Chemagen (Baesweiler, Germany).  Amine-terminated poly(2-vinyl 

pyridine) (Mw = 113,100; Mw = 14,800) and amine-terminated poly(t-butyl 

methacrylate) (Mw = 143,400; Mw = 14,500) were purchased from Polymersource inc. 

(Montreal, Canada).  Tosyl chloride (CAS 98-59-9); 2,2,2-Trifluoroethanesulfonyl 

chloride (CAS 1648-99-3); pyridine (CAS 110-86-1); acetone (67-64-1); HCl solution 

(37%, CAS 7647-01-0); sodium hydroxide (CAS 1310-73-2); ammonia solution 

(37%, CAS 1336-21-6); monobasic sodium phosphate (NaH2PO4, CAS 7558-80-7); 

dibasic sodium phosphate (Na2HPO4, CAS 7558-74-9); picrylsulfonic acid (1M, CAS 

2508-19-2)); sodium tetraborate (Na2B4O7, CAS 1330-43-4); potassium bromide 

(CAS 7758-02-3); and methanol (CAS 67-56-1) were obtained from Sigma Aldrich 

(Poole, Dorset). 

 

Cuvettes, 2 ml screw-cap micro test tubes, 15 ml screw-cap centrifuge tubes and 50 

ml screw-cap centrifuge tubes were obtained from Sarstedt (Leicester, UK).  1.5 ml 

hinged-lid micro test tubes were obtained from Eppendorf (Cambridge, UK). 

 

All unheated mixing was performed with a VM20 vortex mixer or a IKA Vibrax VXR 

basic mixer with attachments for 15 ml centrifuge tubes and micro test tubes.  

Heated mixing was performed in a Grant OLS water bath with shaker rack.  Samples 

were dried on watchglasses in a Gallenkamp size 2 hotbox oven.  Chemicals were 

weighed on Mettler AE160 and AT261 balances.  Pipetting was performed with 20 

ml, 200 ml, 1 ml and 5 ml adjustable pipettes. 

 

3.2.2 Solvent testing 

A range of solvents were tested for usefulness in the graft to synthesis.  It was 

necessary for the reaction solvent to suspend M-PVA well and to dissolve both P2VP 

and PTBMA fully. 
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Solubility tests were carried out for each sample as follows:  5 ml of solvent was 

pipetted into a 15 ml screw cap tube and 10 mg of polymer was then added to the 

tube.  This mixture was mixed on a vortex mixer at RT for 15 seconds.  If all polymer 

was dissolved at this point, step i) was followed.  If some polymer remained 

undissolved, step ii) was followed. 

i) A further 20 mg of polymer was added and the mixture mixed for 2 minutes.  If 

the extra polymer was fully dissolved a ―*****‖ value was assigned, if not a 

―****‖ was assigned. 

ii) If all polymer was not dissolved during step i), the mixture was mixed on a 

vortex mixer at RT for 2 more minutes.  If all polymer was dissolved at this 

point, the table was marked with a ―***‖ value.  If there had been a significant 

decrease in the amount of precipitated polymer, the table was marked with a 

―**‖ value.  If the amount of precipitated polymer had decreased only a small 

amount the table was marked with a ―*‖ value.   If there had been no visible 

solvation of polymer the table was marked with a ―0‖ value. 

 

3.2.3 Base matrix preparation 

Prior to experimentation M-PVA stock was washed thoroughly to remove 

contaminants from the support manufacture.  1.5 g M-PVA was washed (30 ml, 60 s) 

with: water; 50% acetone in water; 100% acetone; 50% acetone / 50% methanol; 

100% methanol; 50% methanol in water; water (x2); 1 M NaCl in water; water (x3).  

The washed M-PVA was then suspended in water (30 ml). 

 

3.2.4 Tresyl chloride activation 

Following a method described by Hermanson et. al. (1992), tresyl chloride was 

added to suspensions of M-PVA (5 mg) in acetone (1 ml) with pyridine (50 l) and 

mixed for 600 s at RT.  Supports were then separated from the solution and washed 

four times in washing solutions made of, respectively, 30%, 50%, 70% and 100% 1 

M aqueous HCl in acetone.  Particles were then stored in 1 ml of 1 mM HCl at 4°C. 
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OH O+ F3C
H2
C S

O

O

Cl F3C
H2
C S

O

O

Acetone, pyridine

RT, 600 s

 

Figure 3.6. Activation of M-PVA hydroxyl sites by tresyl chloride 

 

3.2.5 Tosyl chloride activation 

Following Hermanson et. al. (1992), tosyl chloride was added to suspensions of M-

PVA (5 mg) in acetone (1 ml) with pyridine (50 l) and mixed for 1 hour at RT.  

Supports were then separated from the solution and washed four times in washing 

solutions made of, respectively, 30%, 50%, 70% and 100% 1 M aqueous HCl in 

acetone.  Particles were then stored in 1 ml of 1 mM HCl at 4°C. 

 

OH O

Acetone, pyridine

+ S

O

O

Cl S

O

O
RT, 1 h

 

Figure 3.7. Activation of M-PVA hydroxyl sites by tosyl chloride 

 

3.2.6 Amination of tresylated particles 

Tresyl activated support (5 mg) was reacted with conc. ammonia solution (50 l) in 

acetone (1 ml, 24 h).  Supports were then separated from the supernatant and 

washed (1 ml, 60s) with water; 50% acetone in water; 100% acetone; 100% 

methanol; water (x2). 

OF3C
H2
C S

O

O

H2N

Acetone, ammonia

RT, 24 h

 

Figure 3.8. Amination of tresylated M-PVA sites with ammonia 

 

3.2.7 Amination of tosylated particles 

Tosyl activated support (5 mg) was reacted with conc. ammonia solution (50 l) in 

acetone (1 ml, 24 h).  The supports were then separated from the supernatant and 

washed (1 ml, 60s) with water; 50% acetone in water; 100% acetone; 100% 

methanol; water (x2).   
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H2NOS

O

O

Acetone, ammonia

RT, 24 h

 

Figure 3.9. Amination of tresylated M-PVA sites with ammonia 

 

3.2.8 TNBS assay of polymer grafted supports 

Sulfonyl activated M-PVA particles (5 mg) were mixed with a solution of amine-

terminated polymer in acetone (1 ml, 24 h).  Supports were then washed with 

acetone (1 ml, 60 s, x2) followed by reaction with conc. ammonia solution (50 l) in 

acetone (1 ml, 24 h).  The supports were then separated from the supernatant and 

washed (1 ml, 60s) with water; 50% acetone in water; 100% acetone; 100% 

methanol; water (x2). 

OF3C
H2

C S

O

O

NH2

R

CO2tBu
+

N
H

R

CO2tBu

Acetone, RT, 24 h

  

Figure 3.10. Reaction of amine terminated polymer at sulfonated surface site 

 

Following a method described by Halling and Dunnill (1979), an aqueous mixture 

comprising picrylsulfonic acid (TNBS, 1 M, 10 l) and Na2B4O7 (0.05 M, 1.5 ml) was 

added to a sample of aminated support (5 mg).  The suspension was heated with 

mixing (70oC, 600 s) then allowed to cool to room temperature (600 s).  The supports 

were then separated from the supernatant and washed (1 ml, 60s) with water; 50% 

acetone in water; 100% acetone; water (x2).   

NH2 + O2N SO3H

NO2

NO2

Water, borax, TNBS

70oc, 600 s

NH +O2N

NO2

NO2

H2SO3

 

Figure 3.11. Coupling of picrylsulfonic acid to aminated M-PVA sites 

 

The supports were then suspended in 5 ml of NaOH(aq) solution (1 M, 5 ml) and 

heated to 70oc with mixing.  The suspension was heated with mixing (70oC, 600 s) 

then allowed to cool to room temperature (600 s).  A sample of the supernatant 
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containing no particle was then taken and its absorbance read at 410 nm.  Samples 

were calibrated against standards containing picric acid in 1 M NaOH. 

NH2NHO2N

NO2

NO2

Water, NaOH, 70oc, 600 s

HO NO2

O2N

O2N

+

 

Figure 3.12. Release of picric acid (absorbance at 410 nm) 

 

3.2.9  Homopolymer brush grafting of tresylated supports 

50 mg of tresyl activated M-PVA was reacted with amine-terminated polymer (8 mg) 

in acetone (5 ml, 24 h).  Supports were then washed with acetone (5 ml, 60 s, x3). 

 

3.2.10  Mixed polymer brush grafting of tresylated supports 

25 mg of tresyl activated, single-brush grafted M-PVA was reacted with a second 

amine-terminated polymer (30 mg) in acetone (2.5 ml, 24 h).  Supports were then 

washed with acetone (2.5 ml, 60 s, x3). 

 

3.2.11  Hydrolysis of grafted PTBMA chains 

Hydrolysis of PTBMA grafted supports to give PMAA chains was achieved using a 

50/50 (v/v) aqueous solution of trifluoroacetic acid (TFA, see appendix 7.1 for details 

of this reaction and reagent choice).  PTBMA grafted single and mixed brush 

supports were reacted with a 50/50 (v/v) mixture of TFA and water (5 ml, 60oC, 24 h) 

followed by washing with water (5 ml, 60s, x 2). 

 

3.2.12  FTIR analysis 

Dry solid samples were pressed with KBr to form 13 mm discs as described in 

Chapter 2.  Samples discs were analysed using a Thermo Nicolet 380 FTIR with 64 

scans per sample at a resolution of 2 cm-1. 

 

Liquid FTIR samples were prepared from supernatant and quantified as described in 

Appendix 7.4.  FTIR samples were run on a Nicolet Smart Orbit diamond ATR 

apparatus, using 50 l aliquots of the sample liquid at a resolution of 2 cm-1. 
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3.3 Results 

3.3.1 Solvent testing 

Solubility tests for P2VP and PTBMA samples with long (Mr ~100,000) and shorter 

(Mr ~15,000) polymer chain lengths showed that for all samples pure acetone 

solubilised polymers to a significantly greater extent than water, DMSO or mixtures 

of these solvents 3.1.  The noticeable change in polymer solubility between 100% 

acetone solvent and 80% acetone/20% water solvent also indicated that addition of 

aqueous components to a solution of polymer in acetone should be avoided if 

polymer solvation is to be maintained. 

 

Table 3.1. Solubility tests on short chain P2VP (Mw: 14,800), short chain PTBMA 

(Mw: 14,500), long chain P2VP (Mw: 113,100), long chain P2VP (Mw: 143,400).  0 

indicates poor polymer solubility, **** indicates complete solvation of polymer under 

the experimental conditions (see method 3.2.2 for further details). 

Solvent Composition. p2VP,        

short chain. 

Solubility 

ptBmA, 

short chain. 

Solubility 

p2VP,    

long chain. 

Solubility 

ptBmA, 

long chain. 

Solubility 

Water * * 0 0 

20% Acetone/ 80% Water ** * * 0 

50% Acetone/ 50% Water **** *** *** * 

80% Acetone/ 20% Water **** *** *** * 

100% Acetone ***** ***** **** *** 

50% DMSO/  50% Water * 0 0 0 

100% DMSO *** ** *** * 

 

 

3.3.2 Studies on sulfonyl activation in acetone 

In order to achieve mixed brush grafting using a graft to method it is especially 

important not to saturate the surface with grafted polymer during the first step, as this 

will result in the a second polymer species being unable to reach the surface due to 

hinderance from the previously grafted polymers.  One method investigated for 

controlling sulfonyl activated mixed brush graftings was partial sulfonyl activations, 



82 
 

with the intention of using two separate activation steps in which the initial grafting 

produces a graft with low enough density to allow a second activation and graft step 

with space for the second polymer species to graft at the surface. 

 

To test the relationship between sulfonyl chloride concentration and density of 

surface activation surfaces samples of M-PVA were activated using a range of tresyl 

chloride concentrations.  These tresyl activated samples were then reacted with 

ammonia and the results assayed using the TNBS method.  A plot of tresyl chloride 

concentration vs. extent of amination shows that tresylation followed by amination is 

not a stoichiometric reaction (figure 3.13).  From these results the maximum number 

of sites activated to amine attack using tresyl ester was calculated as 57.8 mols per 

g of support. 

 

 

Figure 3.13. Test for amination of activated M-PVA vs. tresyl chloridepresent during 

activation (TNBS assay) 

 

Samples of M-PVA were also activated using a range of tosyl chloride 

concentrations in the original tresylation step.  The activated samples were reacted 

with ammonia and the results assayed using the TNBS method (figure 3.14).   
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Figure 3.14. Test for amination of activated M-PVA vs. tosyl chloridepresent during 

activation (TNBS assay) 

 

The plot of tosyl chloride concentration vs. extent of amination shows similar 

behaviour to that for tresyl chloride activation.  The maximum tosyl activation to 

amine attack was calculated as 49.4 mols per g of support.  Tresyl chloride appears 

to be a slightly better activator for nucleophilic attack with a greater maximum 

amination value.  The relationship between amount of sulfonyl chloride added and 

the activation as measured by the TNBS assay indicates that controlling graft density 

through measured use of sulfonyl chloride would be extremely difficult.  For 

simplicity, all subsequent grafting experiments were based around a maximum 

sulfonyl chloride activation with control of graft density through the polymer 

concentration used. 

 

3.3.3 Single polymer brush grafting 

Grafting was attempted with both long-chain (P2VP Mw: 113,100; PTBMA Mw: 

143,400) and short-chain (P2VP Mw: 14,800; PTBMA Mw: 14,500) polymers.  

Although grafting of long-chain polymers was successful, interactions between the 

grafted particles resulted in clumping of the supports.  In the case of P2VP the 

Tosyl chloride ( mol) added per g of support
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product was a single continuous mass of M-PVA which could not be broken down 

without loss of magnetic properties.  This behaviour may be attributed to interactions 

between the grafted polymer chains on separate M-PVA beads leading to chain 

entanglement and other formed of physical bonding between beads.  Consequently, 

all subsequent grafting experiments and brush syntheses were performed with the 

short-chain polymers.  

 

The presence of P2VP following activation with tresyl and tosyl chlorides was 

confirmed using FTIR spectroscopy on solid samples (figure 3.15). 

 

 

Figure 3.15. a) Tresyl activated M-PVA; b) Tresyl activated m-PVA following reaction 

of support (50 mg) with P2VP (5 mg) in ACETONE 

 

Peaks for P2VP are clearly visible following graft-to reaction, New peaks appear 

between 1600 and 1400 cm-1, corresponding to the presence of additional aromatic 

C-H bonds.  This indicates the presence of 2-pyridine groups due to grafted P2VP on 

the M-PVA.  A similar spectra was obtained following P2VP reaction with the tosyl 

activated support. 

 

P2VP grafting reactions followed by amination and TNBS assay was performed over 

a range of initial polymer solution concentrations, in order to show how the presence 
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of grafted P2VP affects further amination at sulfonated surface sites.  Picric acid 

release during the TNBS assay was plotted against P2VP concentration in the 

polymer grafting step (figure 3.16). 

 

Figure 3.16. TNBS test results on support reacted with ammonia after tresyl chloride 

led reaction with amine-terminated P2VP. 

 

Increased P2VP concentration in the polymer grafting step corresponds to a 

decreased availability of activated surface sites in the subsequent ammonia attack 

stage.  It was estimated that consumption of 50% of the originally available sites 

(23.9 moles per g of support) requires a polymer concentration of approximately 

160 mg per g of support.  This was based on the observation that 50% amination 

(based on TNBS assay, compared to 100% amination with the ungrafted, sulfonated 

surface) was possible when reacted with tresylated M-PVA which had been reacted 

with 160 mg P2VP per g of support.  For stepwise addition of binary mixed brush 

polymers, 50% consumption of sites is desired at the first step followed by maximum 

consumption of the remaining sites during the second step.  Similar behaviour was 

seen for reaction of P2VP with the tosyl activated support (figure 3.17). 
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Figure 3.17. TNBS test results on support reacted with ammonia after tosyl chloride 

led reaction with amine-terminated P2VP. 

 

As can be seen for figures 3.16 and 3.17, some degree of error may be present in 

this assay due to interaction of the P2VP chain with TNBS.  In particular steric 

hindrance of TNBS reaction at, and release from, the aminated surface is expected 

due to the presence of P2VP chains. 

 

Liquid spectra for these reactions showed consumption of P2VP from the reaction 

supernatant, with a significant decrease in polymer peak heights when low polymer 

concentrations were used (figure 3.18).  This is indicative of a high conversion from 

free polymer to grafted form at lower grafting densities. 
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Figure 3.18. Supernatant FTIR sample from before (a) and after (b) reaction of tresyl 

activated M-PVA (50 mg) with P2VP (5 mg). 

 

 

The presence of PTBMA following activation with tresyl and tosyl chloride was 

confirmed using FTIR spectroscopy on solid samples (figure 3.19). 

 

 

Figure 3.19. a) Tresyl activated M-PVA; b) Tresyl activated M-PVA following reaction 

of support (50 mg) with PTBMA (5 mg). 
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Peak changes between the two spectra indicate the presence of anchored PTBMA 

following graft to reaction.  A significant increase in peak height at around 1720 cm-1 

is observed, corresponding to the additional carbonyl bonds provided by ptBmA 

ester groups.  Small peaks at 1480 cm-1 and 1460 cm-1 indicate the addition of 

methylene groups, associated with grafted polymer backbone.  A sharp methyl C-H 

peak visible at around 1370 cm-1 is not present in the ungrafted M-PVA and is 

probably due to the multiple methyl groups present on the graft polymer t-butyl 

esters.  These new peaks were also visible in solid spectra following reaction of the 

tosyl activated supports with PTBMA.  Increases in peak heights at 1250 (additional 

methyl groups) and 1140 cm-1 (ester C-O) also give evidence of successful grafting, 

although similarly placed peaks were already present prior to grafting. 

 

PTBMA grafting reactions followed by amination and TNBS assay were performed 

over a range of initial polymer solution concentrations.  Picric acid release during the 

TNBS assay was plotted against PTBMA concentration in the polymer grafting step 

(figure 3.20). 

 

Figure 3.20. TNBS test results on support reacted with ammonia after tresyl chloride 

led reaction with amine-terminated PTBMA. 
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Picric acid release in the final step showed no clear relationship to initial polymer 

graft solution concentration.  This may be due to reaction between ammonia and 

butyl ester side groups, leading to interference with the TNBS assay.  Concentrated 

ammonia may engage in nucleophilic attack upon butyl ester groups to create amide 

groups, which may in turn interfere with later stages in the assay either directly or by 

releasing ammonia when conditions are altered. 

 

Due to interference in the TNBS assay of PTBMA graft products it was assumed that 

the consumption of activated sites during PTBMA grafting followed a similar pattern 

to sulfonyl site consumption with the amount of polymer required for 50 % sulfonyl 

sites consumption (160 mg polymer per g tresyl activated M-PVA; 200 mg polymer 

per g tosyl activated M-PVA) and 100 % site consumption (1200 mg polymer per g 

tresyl activated M-PVA; 1500 mg polymer per g tosyl activated M-PVA) during P2VP 

grafting were assumed to be correct for PTBMA grafting for the purpose of mixed 

brush syntheses.   

 

Liquid spectra results showed loss of PTBMA from reaction supernatants (figure 

3.21), as evidenced by the loss in height for all PTBMA absorbance peaks. 

 

Figure 3.21. Supernatant FTIR sample from before (a) and after (b) reaction of tresyl 

activated M-PVA (50 mg) with PTBMA (5 mg). 
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These results show that tresyl and tosyl activations are both suitable methods for 

grafting amine-terminated polymers to the M-PVA surfaces.  Based upon the higher 

activation densities seen with tresyl activation (see section 3.3.2) it was decided to 

pursue tresyl activation as a route for mixed brush grafting.  The higher activation 

densities seen with tresyl grafting are expected to lead to higher polymer grafting 

densities than would be possible with tosyl activation.  Although tresyl chloride is a 

considerably more expensive reagent than tosyl chloride the improvements in 

grafting properties are expected to make tresyl chloride the more desirable reagent 

for polymer grafting in this case. 

 

3.3.4 Mixed polymer brush grafting 

Reaction of polymer grafted M-PVA (tresyl route) with a second polymer was 

performed to create supports with mixed brush surfaces. Spectra of the product 

following P2VP then PTBMA grafting indicate that a mixed polymer P2VP/PTBMA 

layer has been successfully grafted, with the appearance of a new peak at 1390 cm-1 

and significant increases in peak height at 1720, 1370 and 1140 cm-1, corresponding 

to PTBMA addition on the P2VP grafted surface (figure 3.22) 

 

 

Figure 3.22. a) Tresyl activated M-PVA (50 mg) following reaction with P2VP (5 mg);  

 b) P2VP grafted support (25 mg) with PTBMA (30 mg) 
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Mixed brush grafting of PTBMA then P2VP producted similar results (figure 3.23). 

 

Figure 3.23. a) Tresyl activated M-PVA (50 mg) following reaction with PTBMA (5 

mg); b) PTBMA grafted support (25 mg) with P2VP (30 mg) 

 

The appearance of new peaks at 1590 and 1570 cm-1 (aromatic C-H) and an 

increase in the peak height at 980 cm-1 are good evidence of P2VP addition in the 

second grafting step.  Peaks at 1470 and 1430 cm-1 are also expected for grafted 

P2VP, however absorbance at these wavelengths already has contributions from the 

M-PVA/PTBMA support and the additional P2VP peaks are not clearly visible.  

Similar results were seen for supports grafted by simultaneous addition of P2VP and 

PTBMA, with peaks for both polymers appearing following the combined polymer 

grafting stage. 

 

Following mixed brush grafting, hydrolysis of the supports with TFA solution led to 

loss of characteristic PTBMA peaks at 1370, 1250 and 850 cm-1 (figure 3.24).  These 

peaks correspond to methyl C-H peaks found in the t-butyl alcohol group which is 

removed during hydrolysis. 
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Figure 3.24. a) P2VP grafted support (25 mg) with PTBMA (30 mg) in acetone; b) 

P2VP + PTBMA grafted support following hydrolysis with TFA solution 

 

Mixed graft products were quantified for M-PVA and graft polymer composition by 

liquid state FTIR analysis of the reaction supernatants, as shown in table 3.2.  Brush 

spacing for graft-to methods was calculated from the grafted polymer yield plus the 

polymer chain lengths as given by polymersource and an M-PVA surface area of 

59.2 m2 per g.  Rf and 2Rf/D values for homopolymer and mixed brush layer were 

calculated using the method described in Chapter 2, with an average Rf value 

calculated for the mixed brush from the Rf values of its component P2VP and PMAA 

phases.  Rf values remained consistent for each species, as is obvious for graft to 

approaches using known polymer chain lengths. 
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Table 3.2. Quantification results for supports modified by tresyl graft-to grafting technique, using consecutive addition of polymers 

(supports 1 and 2) and simultaneous addition of polymers (supports 3 and 4). 

 

Support Stage Polymer grafted Monomer 

presented (mmol) 

per g  M-PVA 

Monomer 

grafted (mmol) 

per g  M-PVA 

Yield 

(%) 

D (nm) Mol % 

P2VP 

Mol %  

PMAA 

Rf 

(nm) 

2Rf/D n(poly)/ 

n(init.) 

1 Step 1 P2VP 1.52 1.35 88.8 3.20   13.04 8.1 141 

1 Step 2 PMAA 4.22 1.81 42.9 2.36   5.29 4.5 102 

1 Finished [(P2VP)x + (PMAA)y]  3.16  1.90 43 57 9.72 10.2  

2 Step 1 PMAA 1.13 0.94 83.2 3.26   5.29 4.1 102 

2 Step 2 P2VP 5.71 2.44 42.7 2.38   13.04 11.0 141 

2 Finished [(P2VP)x + (PMAA)y]  3.39  1.92 72 28 11.66 12.1  

3 Step 1 P2VP 1.52 0.93 61.2 3.85   13.04 6.8 141 

3 Step 1 PMAA 1.13 0.77 68.1 3.62   5.29 2.9 102 

3 Finished [(P2VP)x + (PMAA)y]  1.70  2.64 55 45 10.59 8.0  

4 Step 1 P2VP 5.71 1.92 33.6 2.68   13.04 9.7 141 

4 Step 1 PMAA 4.22 1.34 31.8 2.73   5.29 3.9 102 

4 Finished [(P2VP)x + (PMAA)y]  3.26  1.91 59 41 10.86 11.3  
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A maximum grafting of 3.39 mmol polymer was seen, equivalent to 25 % of the total 

mass of final hydrolysed support (0.399 g polymer per g M-PVA).  This value is low 

in comparison to Ce(IV) grafted mixed brush product, in which up to 49 % of support 

was graft polymer, but still represents a high density of chargeable groups at the 

support surface. 

 

2Rf/D > 1 for all products from the tresyl graft to reactions.  Support 3 shows a 

comparatively low Rf/D value (2Rf/D = 2.9) for the grafted PMAA phase, although the 

overall Rf/D value of 8.0 for this mixed brush product suggests that brush behaviour 

will be seen.  All other supports also show lower 2Rf/D values for PMAA chains, but 

values for the mixed brush which suggest significant brush behaviour.  By 

comparison with Ce(IV) grafing products from Chapter 2 it is predicted that tresyl 

grafted products from this chapter will display weaker brush responses, resulting 

from lower 2Rf/D values.  However, the much higher Rf values seen for tresyl grafted 

products suggest that height variations seen during brush switching will be much 

more significant for tresyl grafted products than for those grafted by Ce(IV). 

 

Total grafted amounts are low in comparison with Ce(IV) initiated grafting, with a 

maximum of 3.39 mmol (0.391 g) polymer grafted per g M-PVA.  This is equal to 

28% of total product mass.  Graft density for simultaneous grafting was similar to that 

achieved with consecutive grafting steps when a higher polymer concentration was 

used for both polymers in the simultaneous grafting mixture (table 3,2/figure 3.25 

support 4).  When both polymers were at concentrations suitable for partial polymer 

addition (table 3.2/figure 3.25 support 3) a lower graft density was achieved.  This 

indicates the requirement for a higher polymer concentration in order to produce 

extra grafting at a heavily grafted surface.  
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Figure 3.25.  Polymer grafting results for supports as described in table 3.2.  Black 

bars represent P2VP, grey bars represent PTBMA/PMAA. 

 

3.4 Conclusions 

Synthesis based upon sulfonyl chloride activation has been shown to be a useful 

method for the grafting of amine-terminated polymers to M-PVA.  Successful 

activation of the M-PVA surface to nucleophilic attack has been achieved using tresyl 

and tosyl chloride activating agents.  Of these two methods tresyl chloride shows 

superior activating ability, with activation of 57.8 mol of sites per g M-PVA.  Grafting 

density can be controlled by limiting the concentration of polymer during the graft to 

reaction, which has allowed the successful synthesis of mixed brush surfaces on M-

PVA by limiting polymer concentration during the first grafting step.  Equal success 

has been achieved with the simultaneous addition of higher polymer concentrations, 

showing that both simultaneous and consecutive grafting methods are suitable for 

tresyl activated mixed brush formation.  Comparison with Ce(IV) initiated techniques 

described in Chapter 2 indicate that sufonyl activation produces lower overall grafting 

than Ce(IV), with tresyl activated mixed brush grafting giving a maximum of 0.338 g 
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polyelectrolyte per g M-PVA (25 % of total support mass), compared to 0.951 g per g 

M-PVA for CE(IV) initiation.  Flory radius calculations for tresyl grafted products 

indicate brush behavior, with mixed brush 2Rf/D values > 10 produced when higher 

polymer concentrations are used during the grafting reaction. 
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4 Polymer grafting via AGE activation 

4.1 Introduction 

4.1.1 Controlled surface activation by partial bromination 

A requirement for the successful synthesis of a mixed polymer brush is the ability to 

distribute potential graft sites between two polymer species.  During sequential 

addition of polymers, too high a grafting density of one polymer may lead to a low 

presence of the other polymer species.  In the case of mixed polyelectrolyte brushes 

this behaviour is undesirable if switchable surface properties are to be achieved, as it 

must be possible for either polymer species to dominate at the surface under 

appropriate conditions (Sidorenko et al., 1999 Houbenov et al., 2003; Ionov et al., 

2005). 

 

As shown in the previous chapters, an even distribution of polymer graft sites may be 

attempted by inferring activation behaviour from overall polymer yields (Chapter 2) or 

by controlling the concentration of polymer in the grafting mixture (Chapter 3).  

However, there are also possibilities for more direct stoichiometric creation of 

activated surface sites for both graft from and graft to techniques.  One such 

possibility is partial bromination of surface allyl groups followed by ATRP graft from 

synthesis or polymer graft to based on bromide substitution reactions. 

 

Partial bromination is based upon electrophilic addition controlled amounts of Br2 to 

a surface containing allyl double bonds, for example an M-PVA surface activated 

with allyl glycidyl ether (AGE).  In non-nucleophilic solvents this leads to the 

formation of brominated sites (figure 4.1). 

O

OH

O

Br2

O

OH

OBr

Br

Non-nucleophilic
solvent

 

Figure 4.1.  Dibromination of allyl sites on AGE activated M-PVA. 

 

This reaction is stoichiometric and under suitable conditions all Br2 present in a 

mixture containing allyl groups will participate in electrophilic addition at the allyl 

sites.  This means that the number of brominated sites is expected to be roughly 

equal to the amount of Br2 added until all allyl groups are consumed.  Hence it is 
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possible to achieve a controlled partial bromination of the allyl groups containing 

surface in which only a proportion of the C=C bonds undergo electrophilic addition of 

Br2 (figure 4.2). 

 

Figure 4.2.  Partial bromination of an AGE activated surface using a controlled 

amount of Br2. 

 

By combining partial bromination techniques with approaches for grafting at 

brominated sites it is possible to create polymer brushes with greater control of graft 

density.  Two techniques which are suitable for grafting through brominated sites are 

Atom Transfer Radical Polymerisation (ATRP) (Matyjazewski and Spanswick, 2005), 

a radical graft from technique, and alkyl bromide substitution, a graft to technique.  

These two techniques are described in the following pages. 

 

4.1.2 Polymer “graft from” by ATRP 

Atom transfer radical polymerisation (ATRP) is a living polymerisation technique 

which is based on the generation of a carbon-based radicals by the interaction of a 

halogenate initiator with a transition metal-halide catalyst (Wang and Matyjazewski, 

1995; Matyjazewski and Xia, 2001).  It can be used to create polymers with specific 

compositions and functionalities as it allows a controlled amount of radical to be 

created in equilibrium with an added catalyst system.  The concentration of radicals 

generated can be controlled by altering both the concentration and type of catalyst 

system used.  ATRP can be used with a wide range of functional monomers and 

does not require harsh or impractical reaction conditions (Jeyaprakash, 2002).  

ATRP has been regularly used as a technique for synthesis of polymer brushes.  

ATRP initiation from surfaces has been used to graft polymers for biological 

application (Kurosawa, 2004; Xu, 2001) and for making polymer layers with 

switchable brush (Wang et al., 2008) and ion-exchange (Singh et al., 2005) 

capacities. 
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The ATRP mechanism involves an inner sphere electron transfer with exchange of a 

halide atom between a halogenated alkyl site and a transition metal complex in its 

low oxidation state (figure 4.3).  This exchange produces a radical group and a 

transition metal complex in a higher oxidation state with an extra coordinated halide 

(Singleton et al., 2003). 

 

BrR
+ CuBr

R

CH2•
+ CuBr2  

 

Figure 4.3.  ATRP initiation/deinitiation through equilibrium reaction of copper 

bromide with alkyl bromide and alky radical sites 

 

In the presence of monomer this radical can create a propogation reaction, 

generating a polymer grafted at the original alkyl initiator site (figure 4.4). 
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Figure 4.4. Propagation reaction following initiation by CuBr. 

 

As polymerization occurs the concentration of propagating radical is controlled 

through continued exchange of halide atoms between propagating chains and the 

transition metal complex (figure 4.5). 

 

R

CH2•

X

+ CuBr2 R + CuBr2

X

Br

 

Figure 4.5.  Exchange of bromine atom between polymer chain and copper bromide, 

leading to deactivation or initiation. 
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The concentration of radicals is a function of both the concentration of initiator and 

the concentration of catalyst.  Low concentrations of radical are beneficial in many 

polymerisation reactions, as higher concentrations lead to higher rates of 

termination.   Radical termination occurs through coupling or disproportionation 

reactions, as well as through equilibrium reactions between the radical and catalyst.  

Coupling involves the direct reaction of two radicals on separate polymer chains with 

each other (figure 4.6), leading to loss of radical reactivity from both chains and the 

formation of a covalent C-C bond between the two chains. 

 

 

R

R

R

RCoupling

 

 

Figure 4.6. Coupling reaction between two radical end groups. 

 

Disproportionation involves transfer of a hydrogen atom from one radical chain to the 

other (figure 4.7).  This lead to loss of two radical groups and the creation of a new 

allyl group on one of the chains.  Unlike coupling reactions , disproportionation does 

not involve the creation of a new C-C bond between the two chains. 

R

R

H

Disproportionation

RR
+

 

Figure 4.7. Disproportionation reaction between two radical end groups. 

 

The equilibria which exist between catalyst, halogenated end-groups and radical 

chains leads to the constant presence of a low radical concentration in a so-called 

‗persistent radical effect‘ (Fischer, 1999).  Lowering the concentration of radical sites 

causes a decrease in rate of termination which is greater than the accompanying 

decrease in rate of polymerization.  This is because the rate of termination in free 

polymerisation is proportional to [radical]2, whereas the rate of propagation is 
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proportional to [radical].  In effective ATRP reactions the continual low concentration 

of radicals leads to high polymer yields and  low polydispersity (Patten, 1996). 

 

An ATRP catalyst is a transition metal complex comprising of a low oxidation state 

metal, complexing ligands and halogen counterions.  Copper is the most common 

choice of metal, forming versatile complexes which work in a range of environments.   

A variety of other transition metals have been used in successful ATRP catalysts, 

including molybdenum, rhenium, ruthenium, iron and palladium (Matyjaszewski and 

Xia, 2001).  An important feature of these mid and later transition series metals is 

their ability to expand their coordination spheres and increase their oxidation number 

in order to accomodate extra halide atoms during catalysis (Braunecker and 

Matyjaszewski, 2006) . 

 

For a group to be a suitable ATRP initiator it must contain a halogenated carbon 

which is able to lose its halogen atom to the catalyst in order to produce a radical 

(Mayjasweski and Xia, 2001; Wang and Matyjazewski, 1995).  The efficiency with 

which a group is able to undergo dehalogenation is important as this determines the 

total number of chains from which initiation can occur.  For an initiator to be suitable 

for use in ATRP its reaction with the ATRP catalyst must have an apparent rate 

constant greater than that of the radical propagation reaction.  This ensures that the 

polymer chains are all initiated early in the reaction, with no ‗runaway‘ propagations 

occurring while other initiators remain unreacted.  Initiation of ATRP systems can be 

encouraged by the presence of groups which can participate in inductive or 

resonance stabilization with the alkyl halide group. 

 

During ATRP synthesis the original initiator alkyl group is incorporated at one end of 

the polymer, making ATRP an obvious method for the preparation of surface-grafted 

polymers.  The synthesis of polymer brush layers from ATRP macroinitiators at a 

solid surface has been demonstrated on numerous occasions, with ATRP 

polymerisation from a variety of surface types.  These include silicon wafers (Ejaz et 

al., 1998), gold surfaces (Kim et al., 2000), dendrimers (Leduc et al., 1996), colloids 

(Zhang et al., 2006), latexes (Guerrini et al., 2000) and a variety of polymers (Beers 

et al., 1998; Cheng et al., 2001; Boerner et al., 2002).  Polymers grafted using ATRP 

have been shown to have potential for biochemical application including protein 
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adsorption (Feng et al., 2004; Feng et al., 2005) and enzyme immobilization (Tugulu, 

2005). 

 

4.1.3 Polymer “graft to” by alkyl bromide substitution 

Alkyl bromide groups are commonly used in syntheses as alkylating agents for 

molecules containing nucleophilic groups (Hardcastle et al., 2001; Jannasch and 

Wesslen, 2003).  Reaction of amine groups with alkyl bromides are a simple route to 

higher orders of alkylation, with no additional reagents required to achieve amine 

attack at the brominated site (Wakeman et al., 1965; Sanchez et al., 2000).  As with 

sulfonyl ester activation, the presence of alkyl bromide groups at a surface offers a 

route to the grafting of nucleophile terminated polymers by attack of polymer end 

groups at alkyl bromide surface sites (figure 4.8). 

+ tBmA with terminal
amine group

R

CO2tBu

HN

O

OH

OBr

Br

O

OH

OBr

 

 

Figure 4.8. Grafting of nucleophile terminated polymer following activation of surface 

with AGE and bromination 

 

4.1.4 Routes to mixed brushes using partial bromination 

As both ATRP an alkyl bromide substitution may afford polymer grafting at 

brominated sites, the possibility of creating mixed polymer brushes by combining 

partial bromination of AGE activated M-PVA with either technique can be explored.  

Examples of routes to mixed brushes utilising these techniques include two-stage 

ATRP synthesis of mixed brush with generation of new surface initiator by partial 

bromination before each stage (figure 4.9). 
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Figure 4.9.  ATRP mixed brush synthesis by sequential partial brominations of M-

PVA surface 

 

A similar technique can be used to create a grafted layer by a combination of graft 

from and graft to.  For example, partial bromination can followed by ATRP from the 

brominated sites then another bromination stage and graft to of amine terminated 

polymers at the second set of brominated sites (figure 4.10).  Similarly, sequential 

partial brominations can be used to achieve graft to then ATRP, or graft to then a 

second graft to. 
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Figure 4.10.  Mixed brush synthesis by ATRP then GT through sequential partial 

bromination of M-PVA surface. 

 

Finally, mixed brush grafting at a brominated surface may be achieved by the graft to 

approach shown in Chapter 2, with sequential or simultaneous additions of controlled 

amounts of polymer to a brominated surface without the need for additional 

bromination steps (figure 4.11). 
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Figure 4.11.  Mixed brush synthesis through controlled addition of amine terminated 

polymers to a fully brominated M-PVA surface 

 

Against all of the above, the following chapter describes the preparation and 

quantification of brominated sites on the M-PVA surface, followed by grafting of 

brush surfaces with polyelectrolyte brushes composed of P2VP and PMAA (as 

described in Chapter 2).  These brushes are synthesised via ATRP reactions of 2VP 

and TBMA and GT of amine terminated P2VP and PTBMA, with the reaction 

progress and resultant brush properties being quantified using FTIR techniques. 
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4.2 Materials and methods 

4.2.1 Materials used 

M-PVA (batch R2-0126067; Vm; 3.3 cm3/g; specific surface area 56.7 m2 per g) was 

obtained from Chemagen (Baesweiler, Germany).  Allyl glycidyl ether (CAS 106-92-

3); sodium borohydride (CAS 16940-66-2); sodium sulfate (CAS 7757-82-6); sodium 

hydroxide (CAS 1310-73-2); bromine (CAS 7726-95-6); bromide-bromate solution 

(0.1 N in H2O); dimethyl sulfoxide (CAS 68-78-5); copper(I) bromide (CAS 778-70-4) 

and 2,2-bipyridine (CAS 366-18-7) were obtained from Sigma Aldrich (Poole, 

Dorset).  Cuvettes, 2 ml screw-cap micro test tubes, 15 ml screw-cap centrifuge 

tubes and 50 ml screw-cap centrifuge tubes were obtained from Sarstedt (Leicester, 

UK).  1.5 ml hinged-lid micro test tubes were obtained from Eppendorf (Cambridge, 

UK). 

 

All unheated mixing was performed with a VM20 vortex mixer or a IKA Vibrax VXR 

basic mixer with attachments for 15 ml centrifuge tubes and micro test tubes.  

Heated mixing was performed in a Grant OLS water bath with shaker rack.  Samples 

were dried on watchglasses in a Gallenkamp size 2 hotbox oven.  Chemicals were 

weighed on Mettler AE160 and AT261 balances.  Pipetting was performed with 20 

ml, 200 ml, 1 ml and 5 ml adjustable pipettes. 

 

4.2.2 Absorbent preparation (washing regime) 

M-PVA stock was washed before use to minimize reaction contamination.  1.5 g M-

PVA was washed in a succession of solvents (30 ml, 60 s): water; 50% acetone in 

water; 100% acetone; 50% acetone / 50% methanol; 100% methanol; 50% methanol 

in water; water (x2); 1 M NaCl in water; water (x3).  Following washing, M-PVA was 

suspended in water (30 ml). 

 

4.2.3 AGE activation 

M-PVA (2000 mg) was washed twice with water (20 ml).  Water (10 ml) containing 

NaOH (16.0 g), NaBH4 (333 mg) and Na2SO4 (8.93 g) was added and the 

suspension was allowed to react with stirring (50oC, 1 h, 150 rpm). 
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OH O-

Water, NaBH4, NaOH, Na2SO4

50oC, 1 h
 

Figure 4.12. Deprotonation of M-PVA hydroxyls 

 

The temperature was then lowered (40oC), AGE (10 ml) was added and the reaction 

continued (15 h, 170 rpm).   

 

-:O O-

OH

O

Water, AGE, 40oC, 15 h
O

O

 

Figure 4.13. Reaction of AGE at deprotonated hydroxyl sites 

 

Following reaction the supports were allowed to cool to room temperature and 

washed with 20 ml aliquots of water, ethanol (70 %) and water.  Beads were then 

suspended in water (10 ml) and stored at 4oC. 

 

4.2.4 Acidified Bromine assay 

The acidified bromine assay allows calculation of the number of C=C bonds present 

in a sample.  It is based upon a rapid stoichiometric reaction between Br2 and C=C 

double bond, in which one Br2 molecule is consumed per C=C double bond present.  

Br2 molecules absorb strongly at 410 nm, allowing calculation of the amount of Br2 

consumed by measuring A410 in the bromine solution during reaction. 

 

An acidified KBr/KBrO3 stock solution was prepared by mixing KBr/KBrO3 solution 

(0.1 M, 2.5 ml) with dilute sulphuric acid (0.2 M, 5 ml, 120 s) and taking its 

absorbance at 410 nm.  A sample of this stock solution (150 l) was mixed with 

H2SO4 (0.18 M, 1.35 ml, 5 s).  The absorbance of this solution was then taken at 410 

nm.  Samples were taken until a constant absorbance value was seen for successive 

samples, corresponding to a stable Br concentration in the stock. 

 

6 H+ + 4 Br- + 2 BrO3
- 3 Br2 + 3 H2O 

Figure 4.14.  Release of Br2 by acidification of BrO3/Br- solution 
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A sample of the stable acidified mixture (1.5 ml) was mixed with dried support (5 mg, 

10 s).  A sample of the resulting supernatant (150 l) was mixed with H2SO4 (0.18 M, 

1.35 ml, 5 s).  The absorbance of this solution was then taken at 410 nm.  Following 

reaction of the stock with samples a final reading was taken for the stock solution to 

confirm the stability of its absorbance during the experiment. 

 

4.2.5 Controlled bromination study 

Dibromo surface groups were synthesised on AGE activated M-PVA by reaction with 

Br2 in DMSO.  In non-nucleophilic solvent, Br2 reacts across a C=C bond to create a 

cationic bromonium intermediate (Clayden et al, 2001) with simultaneous release of 

a bromide ion (figure 4.15).   

 

O

OH

O

Br2, DMSO

O

OH

O
Br+

 

Figure 4.15.  Formation of bromonium ion intermediate by electrophilic addition at 

allyl group 

 

The two carbon atoms of the bromonium group are susceptible to nucleophilic attack 

and undergo rapid reaction with a nucleophile.  In the absence of other nucleophilic 

groups this results in nucleophilic attack by bromide ions and the creation of a 

dibromide group (figure 4.16). 
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Figure 4.16.  Formation of bromonium ion intermediate by electrophilic addition at 

allyl group 

 

The creation of a controlled amount of dibromo groups at the AGE activated M-PVA 

surface was tested by mixing a dilute solutions of Br2 in DMSO (1 ml) with AGE 

activated M-PVA (5 mg, 60 s).  The acidified bromine assay was then performed on 

the dibrominated supports to test for the presence of unreacted C=C groups. 
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4.2.6 ATRP mixed brush synthesis 

ATRP syntheses of grafted brushes were performed on halogenated M-PVA 

surfaces produced by dibromination of AGE sites (figure 4.17).   

 

O
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O

DMSO, Br2, RT, 60 s

O

OH

OBr

Br

 

Figure 4.17. Dibromination of AGE allyl group by Br2 in DMSO 

 

Masses of catalyst and monomer were scaled according to the amount of bromine 

used during the M-PVA dibromination step.  For 50% activation of 50 mg M-PVA a 

volume of 31 l Br2 was used during the activation step, followed by ATRP reaction 

using 9.7 mg CuBr, 23.1 mg dipyridyl and 0.727 ml 2VP or 1.096 ml tBmA.  

Quantities of Br2, catalysts and monomer were scaled according to the percentage 

activation and mass of M-PVA used, with the ratio Br2:catalyst:monomer remaining 

constant for all subsequent ATRP reactions. 

 

AGE modified M-PVA (50 mg) was mixed with the desired concentration of bromine 

in DMSO (60 s), followed by washing 5 times in DMSO (5 ml, 60 s).  The brominated 

supports were then suspended in 5 ml solvent and purged with nitrogen (0.5 h).  

CuBr and dipyridyl catalysts were added to a 15 ml eppendorf tube and the tube was 

purged with nitrogen (300 s).  The M-PVA/monomer mixtures were then added to the 

degassed tube under a nitrogen blanket.  The tube was then sealed and allowed to 

react under mixing (12 h).  The component steps of this ATRP reaction are shown in 

figures 4.18-4.20, with the overall reaction described by figure 4.21. 
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Figure 4.18.  Initiation of ATRP system by CuBr catalyst 
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Figure 4.19.  Propogation of initiated ATRP system 
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Figure 4.20.  Termination of radical by CuBr catalyst 
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Figure 4.21.  Overall ATRP reaction 

 

Following reaction the supernatant was separated under a nitrogen blanket and 

mixed with 4-ethoxyphenol(aq) (5 ml, 0.3 M, 60 s).  The supports were washed twice 

with DMSO (5 ml), twice with water (5 ml) and then mixed with NaOH(aq) (1M, 5 ml, 

1 h).  Following NaOH reaction, supports were washed three times with water (5 ml). 
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Figure 4.22.  Substitution of bromide sites by hydroxide during capping reaction 

 

Single brush grafted M-PVA supports (25 mg) were mixed with the desired 

concentration of bromine in DMSO (60 s), followed by washing 5 times in DMSO (2.5 

ml, 60 s).  The brominated support were then suspended in solvent (2.5 ml) and 

purged with nitrogen (0.5 h).  CuBr and dipyridyl were added to a 15 ml eppendorf 

tube and the tube was purged with nitrogen (300 s).  The M-PVA/monomer mixtures 

were then added to the degassed tube under a nitrogen blanket.  The tube was then 

sealed and allowed to react under mixing (12 h).  Following reaction the supernatant 

was separated under a nitrogen blanket and 4-ethoxyphenol(aq) (2.5 ml, 0.3 M) 

solution was added followed by mixing for 1 minute.  The supports were washed 

twice with DMSO (2.5 ml), twice with water (2.5 ml) and then mixed with NaOH(aq) 

(1M, 2.5 ml, 1 h).  Following NaOH reaction, supports were washed three times with 

water (2.5 ml). 
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4.2.7 Preparation of halohydrin surface groups 

In an aqueous bromine solution bromonium groups will react with water, leading to 

the creation of halohydrin groups.  (figures 4.23 and 4.24; Clayden et al, 2001).  In 

the case of reaction with AGE the halohydrin formed will typically have a bromine 

atom on the terminal carbon. This is because charge stabilisation within the 

bromonium group means that small nucleophiles prefer to attack at the more 

substituted carbon. 
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Figure 4.23.  Formation of halohydrin by water attack on bromonium ion 
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Figure 4.24.  Overall halohydrin formation reaction 

 

AGE activated M-PVA (5 mg) was activated with Br2 (0.31 l) in water (1 ml) for 60 s 

at RT.  The activated supports were then washed 5 times with DMSO (1 ml) followed 

by reaction with NH2 terminated polymer (6 mg) in acetone (1 ml, RT, 24 h). 
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Figure 4.25.  Attack by amine terminated polymer on halohydrin brominated site 
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4.2.8 Preparation of epoxide surface groups 

Under alkali conditions deprotonation of the halohydrin reagent leads to a slow 

intramolecular nucleophilic attack of the hydryoxyl group upon the adjacent bromide 

site and subsequent formation of an epoxide group (figure 4.26; Clayden et al., 

2001). 

 

O
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O O
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HO:
Water, NaOH, RT, 24 h

  

Figure 4.26.  Deprotonation of halohydrin group leading to epoxide formation under 

basic conditions 

 

AGE activated M-PVA (5 mg) was activated with Br2 (0.31 l) in water (1 ml) for 60 s 

at RT.  The activated supports were then washed twice with DMSO (1 ml) and twice 

with water (1 ml) before being mixed with an aqueous solution of NaOH for 24 h at 

RT.  Supernatant was then removed and the supports reacted with amine-terminated 

polymer (6 mg) in acetone (1 ml, RT, 24 h). 
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Figure 4.27.  Attack by amine terminated polymer on epoxide site 

 

4.2.9  Simultaneous bromination and polymer attack 

When Br2 addition across a double bond is performed in the presence of amine-

terminated polymer the intermediate bromonium ion provides a possible site for 

graft-to attack by the polymer end group.  
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Figure 4.28.  Attack by amine terminated polymer on bromonium ion 

 

AGE activated M-PVA (5 mg) was reacted with Br2 (0.31 l) and amine-terminated 

polymer (3 mg) in acetone (1 ml, 24 h).  Supports were then washed twice with 

acetone (1 ml) and twice with water (1 ml). 
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4.2.10  Mixed brush grafting using two graft-to steps 

AGE activated M-PVA (50 mg) was activated with Br2 (6.2 l) in DMSO (5 ml).  The 

activated supports were then washed 5 times with DMSO (5 ml) followed by reaction 

with 8 mg amine terminated in acetone (5 ml, 24 h) and two acetone washes (5 ml, 

60 s, x 3). 

 

Single brush graft M-PVA was then reacted with a 30 mg of the second amine-

terminated polymer in acetone (2.5 ml) followed by washing with acetone (2.5 ml, 60 

s x 3). 

 

4.2.11  Mixed brush grafting using graft-to then ATRP 

AGE activated M-PVA (50 mg) was activated with Br2 (3.1 l) in DMSO (5 ml).  The 

activated supports were then washed 5 times with DMSO (5 ml) followed by reaction 

with 8 mg amine terminated polymer in acetone or DMSO solvent (5 ml). 

 

ATRP single brush grafted M-PVA (25 mg) was activated with Br2 (1.55 l) in DMSO 

(2.5 ml) and then washed 5 times with DMSO (2.5 ml).  The supports were then 

suspended in 2.5 ml water and purged with nitrogen (0.5 h).  CuBr (4.84 mg) and 

dipyridyl (11.56 mg) were added to a 15 ml eppendorf tube and the tube was purged 

with nitrogen (300 s).  The M-PVA/monomer mixtures were then added to the 

degassed tube under a nitrogen blanket.  The tube was sealed and allowed to react 

under mixing (12 h).  Following reaction the supernatant was separated under a 

nitrogen blanket and 4-ethoxyphenol(aq) (2.5 ml, 0.3 M) solution was added followed 

by mixing for 1 minute.  The supports were washed twice with DMSO (5 ml), twice 

with water (2.5 ml) and then mixed with NaOH(aq) (1M, 2.5 ml, 1 h).  Following 

NaOH reaction, supports were washed three times with water (2.5 ml). 

 

4.2.12  Mixed brush grafting using ATRP then graft-to 

AGE activated M-PVA (50 mg) was activated with Br2 (1.55 l) in DMSO (5 ml) and 

then washed 5 times with DMSO (5 ml).  The supports were then suspended in 5 ml 

water and purged with nitrogen (0.5 h).  CuBr (9.68 mg) and dipyridyl (23.11 mg) 

were added to a 15 ml eppendorf tube and the tube was purged with nitrogen (300 
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s).  The M-PVA/monomer mixtures were then added to the degassed tube under a 

nitrogen blanket.  The tube was sealed and allowed to react under mixing (12 h).  

Following reaction the supernatant was separated under a nitrogen blanket and 4-

ethoxyphenol(aq) (5 ml, 0.3 M) solution was added followed by mixing for 1 minute.  

The supports were washed twice with DMSO (5 ml), twice with water (5 ml) and then 

mixed with NaOH(aq) (1M, 5 ml, 1 h).  Following NaOH reaction, supports were 

washed three times with water (5 ml). 

 

ATRP single brush grafted M-PVA (25 mg) was activated with Br2 (7.2 l) in DMSO 

(2.5 ml).  The activated supports were then washed 5 times with DMSO (2.5 ml) 

followed by reaction with 30 mg amine terminated polymer in acetone or DMSO 

solvent (5 ml). 

 

4.2.13  Hydrolysis of PTBMA chains 

PTBMA brushes were hydrolysed using a 50/50 (v/v) aqueous solution of 

trifluoroacetic acid.  Supports were reacted with a 50/50 (v/v) mixture of TFA and 

water (5 ml, 60oC, 24 h) followed by washing with water (5 ml, 60s, x 2). 

 

4.2.14  FTIR analysis 

Dry solid samples were pressed with KBr to form 13 mm discs as described in 

Chapter 2.  Samples discs were analysed using a Thermo Nicolet 380 FTIR with 64 

scans per sample at a resolution of 2 cm-1. 

 

Liquid FTIR samples for graft to reactions were prepared and quantified as described 

in Appendix 7.4, while liquid samples from ATRP reactions used the method 

described in Appendix 7.3.  FTIR samples were run on a Nicolet Smart Orbit 

diamond ATR apparatus, using 50 l aliquots of the sample liquid at a resolution of 2 

cm-1. 
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4.3 Results 

4.3.1 Activation of M-PVA with AGE 

M-PVA supports before and after activation with AGE were assayed using the 

bromine water method and FTIR spectroscopy. Reduction of carbonyl groups on the 

M-PVA surface during the initial reaction with sodium borohydride resulted in a 

change on the FTIR spectrum, with disappearance of carbonyl peak at 1720 cm-1.  

Activation of the reduced surface with AGE did not produce a visible change in the 

FTIR spectrum (figure 4.28). 

 

Figure 4.28. a) Unmodifited M-PVA; b) AGE activated M-PVA: c) AGE activated M-

PVA following dibromination 

 

Although the sodium borohydride reduction reaction and the AGE attachment 

reaction both occur at the M-PVA surface, only the reduction reaction is visible in 

FTIR spectra (disappearance of peak at 1720 cm-1).  The reduction reaction appears 

to reduce almost all of the carbonyl groups present.  As it is unlikely that the sodium 

borohydride reacts throughout the structure of the non-porous M-PVA support it may 

be assumed that the carbonyl peaks on the umodified M-PVA supports are found at 

the support surface.  These carbonyl groups were generated by oxidation of hydroxyl 

groups on the M-PVA surface during or after synthesis of the supports. 

 

Alternatively, as residual carbonyl groups are expected following the synthesis of M-

PVA from poly(vinyl acetate) it is possible that the emulsification process used 
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positions the unhydrolysed acetate groups at the support surface.  This is likely as 

the main interatomic force holding together the M-PVA matrix is expected to be 

hydrogen bonds between the PVA hydroxyl groups and the presence of acetate 

groups within the matrix is unfavourable.  Acidified bromine assays upon the same 

three samples indicated the presence of 2.97 mmol double bonds per g support for 

the AGE reacted sample.  The unreacted M-PVA and the reduced samples both 

showed ~0 mols of double bond per g support. 

 

4.3.2 Dibromination of AGE activated supports 

AGE activated supports were partially brominated and then assayed using the 

bromine water method to assess the number of double bonds remaining following 

partial bromination (figure 4.29).  It it assumed that disappearance of double bonds is 

caused by bromine attack at double bonds, leading to the formation of dibromo 

groups at the double bond site. 

 

Figure 4.29. Formation of dibrominated groups vs. mols Br2 added in controlled 

bromination 

 

Dibromination of surface double bonds occurred in an approximately stoichiometric 
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approximately one mol of double bond to create one mol of dibromo groups.  

Saturation of C=C addition was seen with addition of 2.70 mmol bromine added per 

g of support. 

 

The corresponding minimum spacing of dibromo groups at the M-PVA surface was 

found to have a minimum distance of 1.86 Angstroms (figure 4.30).  For polymer 

grafting purposes, this value would be the minimum intergraft distance which might 

be possible although in reality the intergraft distance may be considerably greater. 

 

Figure 4.30. Spacing of dibrominated groups vs. mols Br2 added in controlled 

bromination. 

 

 

4.3.3 Homopolymer brush grafting by ATRP 

Grafting of single-brush layers following ATRP reaction was observed using FTIR 

spectroscopy.  The appearance of new peaks corresponding to grafted P2VP were 

both observed in FTIR spectra following reaction of M-PVA with 2VP under ATRP 

conditions (figure 4.31). 
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Figure 4.31. a) AGE activated M-PVA; b) AGE activated M-PVA following 50% 

dibromination and ATRP reaction with 2VP. 

 

Small peaks at 1590 and 1570 cm-1 are seen, along with a small increase in the 

peak height and sharpness at 1430 cm-1.  This is evidence of P2VP grafting on M-

PVA, although peak heights suggest that the total mass of 2VP grafted per g of M-

PVA is lower for ATRP than that achieved with ACN initiated grafting. A related 

consumption of 2VP monomer was seen in the supernatant spectrum, with losses in 

height seen for all 2VP peaks (figure 4.32). 
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Figure 4.32. a) ATRP supernatant before grafting 2VP to 50% activated M-PVA 

(quantification spec.); b) ATRP supernatant after grafting 2VP to 50% activated M-

PVA (quantification spec). 

 

Likewise, the appearance of PTBMA peaks was observed in the solid FTIR spectra 

of M-PVA supports following ATRP reaction with tBmA (figure 4.33). 

 

Figure 4.33. a) AGE activated M-PVA; b) AGE activated M-PVA following 50% 

dibromination and ATRP reaction with tBmA. 
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The presence of new peaks at 1720, 1370 and 850 cm-1 and an increase in peak 

height at 1140 cm-1 indicated successful grafting of PTBMA by ATRP.  The presence 

of a carbonyl peak at 1720 cm-1 is a particularly useful indicator for ATRP grafting of 

PTBMA, as AGE activation removes the carbonyl peak from the ungrafted support 

spectra.  The presence of a new peak at this wavenumber corresponds to t-butyl 

ester groups on the grafted polymer.  This was accompanied by consumption of the 

tBmA monomer in the liquid FTIR spectra (figure 4.34).  All tBmA peaks showed 

some loss of peak height following ATRP reaction, although the total consumptions 

were low compared to the total amount of monomer used.  

 

 

Figure 4.34. a) ATRP supernatant before grafting TBMA to 50% activated M-PVA 

(quantification spec.); b) ATRP supernatant after grafting TBMA to 50% activated m-

PVA (quantification spec.) 

 

4.3.4 Homopolymer brush grafting by dibromination graft to 

Grafting of single-brush layers by graft to reaction at dibrominated sites was 

observed using FTIR spectroscopy.  The disappearance of carbonyl peaks from 

reaction with borohydride and the appearance of new peaks corresponding to 

grafted polymers were both observed in FTIR spectra of the solid products (figures 

4.35 and 4.36). 
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Figure 4.35. a) AGE activated M-PVA; b) AGE activated M-PVA following 100% 

dibromination and graft-to with P2VP. 

 

Peaks in figure 4.35 spectrum b) appear at 1590 and 1570 cm-1, along with a small 

increase in the peak height and sharpness at 1430 cm-1.  No other major peak 

changes are noticeable.  The presence of aromatic C-H peaks is evidence of P2VP 

grafting on M-PVA by the AGE/Br2 graft-to method. 

 

Figure 4.36. a) AGE activated M-PVA; b) AGE activated M-PVA following 100% 

dibromination and graft-to with PTBMA. 
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The presence of new peaks at 1720 and 850 cm-1 in figure 4.36 and the increase in 

peak height at 1140 cm-1 indicates successful grafting of PTBMA by AGE/Br2 graft-

to.  A small peak is also seen at 1370 cm-1. 

 

4.3.5 Homopolymer grafting by other graft to approaches 

Grafting reactions with P2VP upon halohydrinated supports showed no polymer 

grafting under otherwise identical conditions to those which achieved polymer 

grafting for dibrominated supports, with the appearance of no characteristic P2VP 

peaks in the solid spectra (figure 4.37, spectrum b). 

 

Figure 4.37. a) AGE activated M-PVA; b) P2VP/halohydrin reaction product; c) 

P2VP/NaOH epoxidation reaction product; d) P2VP/Br2 simultaneous reaction 

product. 

 

No significant changes were seen in the products from the NaOH epoxidation 

method or the simultaneous Br2/polymer attack method, indicating that neither 

approach is effective for P2VP grafting.  A similar set of results were seen for 

PTBMA reactions (figure 4.38.).  Appearance of a new peak at 1720 cm-1, as seen 

in fig spectra, is characteristic of PTBMA addition.  However, the absence of any 

other characteristic PTBMA peaks suggests that this peak is not due to PTBMA 
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addition.  Results from the liquid spectra support this, with no significant loss of 

PTBMA peak heights observed following reaction. 

 

Figure 4.38. a) AGE activated M-PVA; a) PTBMA/halohydrin reaction product; b) 

PTBMA/ epoxidation reaction product; c) PTBMA/Br2 simultaneous reaction product. 

 

4.3.6 Mixed polymer brush grafting by ATRP 

The dibromination method was chosen as a route to mixed brush synthesis.  

Dibrominations of the AGE activated surfaces for mixed brush grafting were 

performed in two stages.  Initial dibrominations were performed using the mass of 

bromine required to brominate 10, 20, 30, 40 and 50% of the available AGE groups.  

The first polymer grafting was then performed and the products analysed using 

FTIR. 

 

A second bromination step was then performed on the grafted products, using the 

mass of bromine required to brominate the unbrominated AGE groups.  It was 

assumed at this point that the presence of grafted polymers would not interfere with 

the dibromination reaction.  Following the second dibromination step, a second 

polymer grafting was performed and the final mixed brush support was analysed 

using FTIR. 
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FTIR spectra of solid products show the presence of new polymer peaks 

corresponding to PTBMA and P2VP, indicating successful grafting of a mixed brush 

by the ATRP method (figures 4.39). 

 

 

Figure 4.39. a) AGE activated M-PVA following 50% dibromination and ATRP 

reaction with 2VP; b) 2VP grafted support following 50% dibromination and ATRP 

reaction with TBMA. 

 

Reaction of PTBMA with 2VP grafted M-PVA using the AGE/Br2 method leads to the 

appearance of new peaks at 1720, 1390 and 850 cm-1 (figure 4.39).  These results 

suggest successful grafting of tBmA to create a mixed polymer layer on the support 

surface.   
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Figure 4.40. a) AGE activated M-PVA following 50% dibromination and ATRP 

reaction with TBMA; b) TBMA grafted support following 50% dibromination and 

ATRP reaction with 2VP. 

 

Small peaks appear at 1590 and 1570 cm-1 (aromatic C-H) indicating the grafting of 

some P2VP onto the PTBMA grafted support (figure 4.40). 

 

Hydrolysis of ATRP grafted mixed brushes resulted in conversion of t-butyl ester side 

chains to give PMAA, as evidenced by FTIR spectra of the hydrolysed product 

(figure 4.41).  Loss of peaks at 1720, 1390, 1250 and 850 is observed, indicating 

removal of the t-butyl alcohol group during hydrolysis. 
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Figure 4.41. a) 2VP grafted support following 50% dibromination and ATRP reaction 

with TBMA; b) P2VP + PTBMA grafted support following hydrolysis with TFA 

solution. 

 

Quantification of product compositions was calculated via liquid state FTIR analysis 

of the reaction supernatants (tables 4.1 and 4.2).  Intergraft spacing, D, was 

calculated from the amount of Br2 used during initiation and an M-PVA surface area 

of 56.7 m2 per g.  Brush length was calculated from the monomer consumption 

divided by the amount of Br2 used during initiation and from this the Flory Radius, Rf, 

of each brush was found.  Average Flory Radii for mixed brushes were calculated as 

described in Chapter 2.  From these values 2Rf/D values were also calculated to 

allow estimation of the extent of brush behaviour that will be seen in the grafted 

layer. 

 

Total grafting yields for mixed brush synthesis were <4%, which is far less than 

expected for an ATRP ‗living radical‘ polymerisation.  This may result from the poor 

solubility of 2VP and TBMA monomers in the water solvent which is required to 

dissolve the ATRP catalyst system alongside well suspended M-PVA supports.  A 

higher number of brominated sites during the first graft step leads to a higher grafting 

yield.  This behaviour is not seen during the second graft step, leading to a maximum 
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polymer grafting of 0.887 g polymer per g M-PVA (41 % of total mass) with 1.35 

mmol Br2 added per g M-PVA for each step. 

 

Calculated Rf values for ATRP grafted polymers are low (<2.3) but due to very small 

values of D (<0.59 nm) the values of 2Rf/D calculated for mixed brushes are similar 

to those seen for tresyl grafted supports in Chapter 3 and are suitable for brush 

behaviour.  The very low values of Rf suggest a low brush height, which may limit the 

switchable steric behaviour hoped for with these mixed brushes.   

 

It is worth noting that previous studies (Wu et al., 2008) have indicated that ATRP 

initiation is might only be expected on ~16% of activated surface sites.  Based upon 

that information, it might be expected that both the D and Rf values calculated here 

are much smaller than the real values.  2Rf/D values calculated from this revised 

model would be higher, leading to increased brush behaviour. 

 

 

 

 

 

 

 

 

 

 

 



128 
 

Table 4.1. ATRP grafting of mixed polymer brushes from M-PVA following partial bromination (100% = 2.7 mmol Br2 per g M-PVA). 

 

Support Stage Polymer grafted % 

bromination 

Monomer 

presented (mmol) 

per g  M-PVA 

Monomer 

grafted (mmol) 

per g  M-PVA 

Yield 

(%) 

D 

(nm) 

Mol % 

P2VP 

Mol % 

PTBMA 

Rf 

(nm) 

2Rf/D n(poy)/ 

n(init.) 

1 Step 1 PMAA 10 27 1.69 6.3 0.59   0.99 3.4 6.3 

1 Step 2 P2VP 90 243 3.29 1.4 0.20   0..80 8.2 1.4 

1 Finished [(P2VP)x + (PMAA)y]   4.99  0.19 34 66 0.83 8.9  

2 Step 1 PMAA 20 54 1.91 3.5 0.42   0.70 3.4 3.5 

2 Step 2 P2VP 80 216 3.07 1.4 0.21   0.83 7.9 1.4 

2 Finished [(P2VP)x + (PMAA)y]   3.07  0.19 62 38 0.81 8.6  

3 Step 1 PMAA 30 81 2.33 2.9 0.34   0.62 3.6 2.9 

3 Step 2 P2VP 70 189 3.63 1.9 0.22   0.99 8.9 1.9 

3 Finished [(P2VP)x + (PMAA)y]   5.96  0.19 39 61 0.91 9.8  

4 Step 1 PMAA 40 108 2.84 2.6 0.30   0.59 4.0 2.6 

4 Step 2 P2VP 60 162 3.69 2.3 0.24   1.10 9.1 2.3 

4 Finished [(P2VP)x + (PMAA)y]   6.53  0.19 57 43 0.91 9.8  

5 Step 1 PMAA 50 135 3.40 2.5 0.26   0.59 4.0 2.5 

5 Step 2 P2VP 50 135 3.84 2.8 0.26   1.10 9.1 2.9 

5 Finished [(P2VP)x + (PMAA)y]   7.24  0.19 53 47 0.96 10.3  
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Table 4.2. ATRP grafting of mixed polymer brushes from M-PVA following partial bromination (100% = 2.7 mmol Br2 per g M-PVA). 

Support Stage Polymer grafted % 

bromination 

Monomer 

presented (mmol) 

per g  M-PVA 

Monomer 

grafted (mmol) 

per g  M-PVA 

Yield 

(5) 

D 

(nm) 

Mol % 

P2VP 

Mol % 

PMAA 

Rf 

(nm) 

2Rf/D n(poy)/ 

n(init.) 

6 Step 1 P2VP 10 27 2.05 7.6 0.59   2.26 7.7 7.6 

6 Step 2 PMAA 90 243 2.67 1.1 0.20   0.35 3.5 1.1 

6 Finished [(P2VP)x + (PMAA)y]   4.73  0.19 43 57 1.15 12.3  

7 Step 1 P2VP 20 54 2.59 4.8 0.42   1.72 8.2 4.8 

7 Step 2 PMAA 80 216 3.00 1.4 0.21   0.40 3.8 1.4 

7 Finished [(P2VP)x + (PMAA)y]   5.58  0.19 46 54 1.08 11.6  

8 Step 1 P2VP 30 81 3.20 3.9 0.34   1.53 9.0 4.0 

8 Step 2 PMAA 70 189 2.83 1.5 0.22   0.42 3.8 1.5 

8 Finished [(P2VP)x + (PMAA)y]   6.02 3.6 0.19 53 47 1.09 11.7  

9 Step 1 P2VP 40 108 3.86 1.7 0.30   1.44 9.7 3.6 

9 Step 2 PMAA 60 162 2.76  0.24   0.45 3.8 1.7 

9 Finished [(P2VP)x + (PMAA)y]   6.62 3.0 0.19 58 42 1.12 12.0  

10 Step 1 P2VP 50 135 4.03 2.0 0.26   1.29 9.8 3.0 

10 Step 2 PMAA 50 135 2.67  0.26   0.50 3.8 2.0 

10 Finished [(P2VP)x + (PMAA)y]   6.70  0.19 60 40 1.07 11.5  
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Figure 4.42 (above).  Grafting results for ATRP route supports as described in table 

4.1.  Black bars represent P2VP grafted, grey bars represent PTBMA/PMAA. 

 

 

Figure 4.43 (above).  Grafting results for ATRP route supports as described in table 

4.2.  Black bars represent P2VP grafted, grey bars represent PTBMA/PMAA. 
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The effect of ATRP solvent upon TBMA and 2VP grafting was also investigated by 

performing ATRP synthesis of homopolymer brush grafted supports in three different 

solvent systems: water; water/DMSO 50/50 mix; and DMSO.  This experiment 

followed the observation that TBMA and 2VP monomers both showed better 

miscibility in DMSO than water, whereas the solubility of the CuBr/dipy catalyst and 

dispersion of M-PVA were better in water. It was observed that ATRP grafting in 

DMSO and water/DMSO solvent led to grafting yields that were lower than those 

achieved with water as solvent (table 4.3) 

 

Table 4.3.  Grafting yield following ATRP reaction with 50% brominated M-PVA (50 

mg, 1.35 mmol Br2 per g M-PVA) in a variety of solvents. 

 

Use of an acidified water solvent during ATRP grafting of 2VP was investigated in a 

similar manner.  Increased acidity leads to an increased concentration of the 

protonated form of 2VP, which is more favourably solvated in water than the neutral 

form (table 4.4). 

 

 

 

 

 

Support Polymer 

grafted 

Solvent Monomer 

presented 

(mmol) per g 

M-PVA 

Monomer 

grafted 

(mmol) per g 

M-PVA 

Yield 

(5) 

D 

(nm) 

Rf 

(nm) 

2Rf/D 

1 PMAA Water 135 3.40 2.5 0.26 0.57 4.3 

2 P2VP Water 135 4.03 3.0 0.26 1.29 9.8 

3 PMAA Water/DMSO 

50/50 

135 2.19 1.6 0.26 0.44 3.3 

4 P2VP Water/DMSO 

50/50 

135 2.64 2.0 0.26 1.00 7.6 

5 PMAA DMSO 135 0.28 0.2 0.26 0.13 1.0 

6 P2VP DMSO 135 0.85 0.6 0.26 0.51 3.8 



132 
 

Table 4.4.  Grafting yield following ATRP reaction with 50% brominated M-PVA (50 

mg, 1.35 mmol Br2 per g M-PVA) in aqueous HCl solutions at pH 0-4. 

 

 

Improved ATRP grafting of 2VP is not seen under acidified conditions.  Although full 

solvation of 2VP was observed at lower pH values, it is likely that these conditions 

also interfere with the ATRP reaction. 

 

4.3.7 Mixed polymer brush grafting by dibromination graft to 

The dibromination method was chosen as a route to mixed brush synthesis.  

Consecutive grafting steps were tested, with grafting onto a 100% dibrominated 

support followed by full dibromination and grafting of the second polymer.  FTIR 

spectra of the solid products and reactions solutions show that grafting was 

successful for both polymer types in all of the dibromination techniques, showing the 

presence of new polymer peaks corresponding to PTBMA and P2VP (figures 4.44 

and 4.45).   

 

Support Polymer 

grafted 

Solvent 

pH 

Monomer 

presented 

(mmol) per g 

M-PVA 

Monomer 

grafted 

(mmol) per g 

M-PVA 

Yield 

(5) 

D 

(nm) 

Rf 

(nm) 

2Rf/D 

1 P2VP 0 135 1.54 1.1 0.26 0.73 5.5 

2 P2VP 1 135 1.18 0.8 0.26 0.62 4.7 

3 P2VP 2 135 2.91 2.2 0.26 1.06 8.0 

4 P2VP 3 135 2.48 1.8 0.26 0.97 7.3 

5 P2VP 4 135 2.70 2.0 0.26 1.02 7.7 
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Figure 4.44. a) AGE activated M-PVA following 100% dibromination and graft-to 

reaction with P2VP; b) P2VP grafted M-PVA following graft-to reaction with PTBMA. 

 

Reaction of PTBMA with 2VP grafted M-PVA using the AGE/Br2 method leads to the 

appearance of new peaks at 1720, 1390 and 850 cm-1 (figure 4.42).  Peak height at 

1140 cm-1 also is seen to increase.  These results suggest successful grafting of 

TBMA to create a mixed polymer layer on the support surface. 
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Figure 4.45. a) AGE activated M-PVA following 100% dibromination and graft-to 

reaction with PTBMA; b) PTBMA grafted M-PVA following graft-to reaction with 

P2VP. 

 

New peaks are visible at 1590 and 1570 cm-1 (aromatic C-H) and peak height at 

1430 cm-1 increases, indicating the grafting of P2VP onto the PTBMA grafted 

support (figure 4.45). 

 

Brush quantification and dimensions were calculated as for tresyl graft to supports 

(Chapter 3), with mixed brush average Rf values calculated as described in Chapter 

2.  Total polymer grafted was slightly less than observed for tresyl graft to (table 4.5), 

with up to 0.280 g polyelectrolyte present per g M-PVA (22 % of final product mass).  

This indicates that alkyl bromide substitution is a less effective activation method for 

amine-terminated polymer graft to. This may be surprising as the total number of 

brominated sites (2.7 mmol per g M-PVA) is much higher than the calculated number 

of tresylated sites (57.8 mols per g M-PVA) and indicates the effectiveness of the 

tresyl activation described in Chapter 3 as a precursor to nucleophilic attack. 
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Table 4.5  Grafting yield following graft-to reaction between amine terminated polymer and 100% brominated M-PVA (50 mg, 1.35 

mmol Br2 per g M-PVA) in acetone. 

 

 

 

 

 

 

 

 

 

 

 

Support Stage Polymer grafted Monomer 

presented (mmol) 

per g M-PVA 

Monomer 

grafted (mmol) 

per g  M-PVA 

Yield 

(5) 

D (nm) Mol % 

P2VP 

Mol % 

PMAA 

Rf (nm) 2Rf/D n(poly)/ 

n(init.) 

1 Step 1 P2VP 1.52 1.18 77.6 3.35   13.04 7.8 141 

1 Step 2 PMAA 4.22 1.25 29.6 3.56   5.29 3.0 102 

1 Finished [(P2VP)x + (PMAA)y]  2.43  2.44 49 51 11.00 9.0  

2 Step 1 PMAA 1.13 0.67 59.3 4.87   5.29 2.8 102 

2 Step 2 P2VP 5.71 2.11 37.0 2.51   13.04 10.4 141 

2 Finished [(P2VP)x + (PMAA)y]  2.78  2.23 76 24 12.30 11.0  
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Figure 4.46.  Grafting results for graft-to supports as described in table 4.5.  Black 

bars represent P2VP grafted, grey bars represent PTBMA/PMAA. 

 
 

4.3.8 Mixed polymer brush grafting by a combining ATRP and graft to 

A third route to mixed brushes via dibromination involved using one graft-to step and 

one ATRP step on the same supports.  For example, AGE activated supports 

underwent 50% bromination and graft-to reaction of P2VP at the surface.  The 

remaining AGE groups of these P2VP grafted supports were then brominated and 

ATRP was performed with tBmA to produce supports with mixed P2VP/PTBMA 

brush layers.  FTIR analysis shows the presence of both P2VP and PTBMA on all 

final products (figures 4.47-4.50). 
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Figure 4.47. a) AGE activated M-PVA following 50% dibromination and ATRP 

reaction with 2VP; b) 2VP grafted M-PVA following 50% dibromination and graft-to 

reaction with PTBMA. 

 

The appearance of new peaks at 1720, 1370 and 850 cm-1 and increase in peak 

height at 1140 cm-1 indicate the presence of PTBMA on the support following ATRP 

grafting (figure 4.47).  Comparison of grafted P2VP peaks in the solid spectra here 

(figure 4.47) suggest that ATRP grafting of P2VP has been more successful than the 

previous P2VP-ATRP graft shown in figure 4.31.  However, liquid spectra 

quantification does not suggest any such difference (see tables 4.2 and 4.6) which 

suggests that the difference in solid spectra may result from variation between solid 

FTIR samples.  In the case of figure 4.44 it is likely that a ‗P2VP rich‘ portion has 

been used leading to larger P2VP peaks than would be expected from the liquid 

data.  This result suggests that a certain degree of localization is to be seen within 

the grafted M-PVA samples, with some beads being far richer in P2VP and others 

richer in PMAA. 
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Fig 4.48. a) AGE activated M-PVA following 50% dibromination and ATRP reaction 

with TBMA; b) TBMA grafted M-PVA following 50% dibromination and graft-to 

reaction with P2VP. 

 

The appearance of new peaks at 1590, 1570 and 1430 cm-1 indicate successful 

grafting of P2VP using ATRP (figure 4.48) 

 

Fig 4.49. a) AGE activated M-PVA following 50% dibromination and graft-to reaction 

with P2VP; b) P2VP grafted M-PVA following 50% dibromination and ATRP reaction 

with TBMA. 
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The appearance of new peaks at 1720, 1370 and 850 cm-1, and a significant 

increase in peak height at 1140 cm-1, show that grafting of PTBMA using AGE/Br2 

activated graft-to has been successful (figure 4.49). 

 

Fig 4.50. a) AGE activated M-PVA following 50% dibromination and graft-to reaction 

with PTBMA; b) PTBMA grafted M-PVA following 50% dibromination and ATRP 

reaction with 2VP. 

 

New peaks can be seen at 1590, 1570, 1490 and 1430 cm-1, indicating the presence 

of grafted P2VP following AGE/Br2 activated graft-to (figure 4.50). 

 

Mixed brush quantification and dimension calculations were performed as described 

for the previous ATRP and graft to methods, with Rf averaging as described in 

Chapter 2 (table 4.6).  As seen for previous supports, all 2Rf/D values indicate some 

degree of brush regime behaviour.  Average 2Rf/D values for the mixed brush may 

be misleading, as these are influenced by the high Rf values of the graft to brushes 

and low D values of the ATRP brushes, meaning that the expected brush behaviour 

is unlikely to be more strict than for the mixed brushes synthesised by graft to or 

ATRP alone.  The differences in D and Rf between the two methods do suggest that 

this method produces grafted polymer layers composed of tightly spaced, short 

ATRP-grafted chains between longer, less tightly packed graft to chains. 
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Table 4.6. Grafting yield following graft-to and ATRP reactions between amine terminated polymer and 50% brominated M-PVA (50 

mg, 1.35 mmol Br2 per g M-PVA) in acetone. 

Support Stage Method Polymer grafted Monomer 

presented (mmol) 

per g  M-PVA 

Monomer 

grafted (mmol) 

per g  M-PVA 

Yield 

(5) 

D 

(nm) 

Mol % 

P2VP 

Mol %  

PMAA 

Rf (nm) 2Rf/D n(poly)/ 

n(init.) 

1 Step 1 ATRP P2VP 135 2.88 2.1 0.26   1.06 8.0 2.1 

1 Step 2 Graft-to PMAA 4.22 1.86 44.1 2.92   5.29 3.6 102 

1 Finished  [(P2VP)x + (PMAA)y]  4.75  0.26 61 39 1.33 9.3  

2 Step 1 ATRP PMAA 135 2.69 2.0 0.26   0.50 3.8 2.0 

2 Step 2 Graft-to P2VP 5.71 2.43 42.6 2.33   13.04 11.2 141 

2 Finished  [(P2VP)x + (PMAA)y]  5.12  0.26 48 52 3.64 27.8  

3 Step 1 Graft-to P2VP 5.71 1.97 34.5 2.60   13.04 10.1 141 

3 Step 2 ATRP PMAA 135 2.53 1.9 0.26   0.48 2.7 1.1 

3 Finished  [(P2VP)x + (PMAA)y]  4.50  0.26 44 56 3.23 24.6  

4 Step 1 Graft-to PMAA 4.22 1.34 31.7 3.44   5.29 3.1 102 

4 Step 2 ATRP P2VP 135 3.12 2.3 0.26   1.11 8.4 2.3 

4 Finished  [(P2VP)x + (PMAA)y]  4.46  0.26 70 30 1.29 9.3  
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Figure 4.51.  Grafting results for graft-to supports as described in table 4.6.  

Black bars represent P2VP grafted, grey bars represent PTBMA/PMAA. 

 

 

4.4 Conclusions 

Partial brominations of M-PVA surface sites have been achieved through AGE 

activation followed by quantitative Br2 addition to AGE double bonds, with a 

maximum Br2 consumption of 2.7 mmol per g of AGE activated M-PVA.  This 

technique has allowed controlled generation of sites suitable for polymer graft 

to and graft from synthetic techniques.  Using these sites successful synthesis 

of mixed polymer brush layers has been achieved through ATRP graft from; 

amine terminated polymer graft to; and combinations of the two techniques.  

Total grafted masses for ATRP techniques (up to 0.696 g polelectrolyte per g  

M-PVA) are higher than those seen for the tresyl graft to method described in 

Chapter 3, but lower than the Ce(IV) initiated graft from described in Chapter 

2.  Masses grafted using nucleophilic attack by amine-terminated polymers 

(up to 0.280 g per g M-PVA) were lower than those achieved with tresyl 

activated graft to reactions.  This is as expected, given the lower reactivity of 

alkyl bromides than sulfonyl chlorides to nucleophilic substitution reactions 
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and the typical requirement for significant excesses of (even small) 

nucleophile required to achieve successful substitutions at alkyl bromide sites.  

The use of a combined ATRP/graft from approach has led to the possibility of 

mixed brushes composed of short, tightly packed polymers past which a 

separate species of much longer, more widely spaced polymer chains 

extending from the same surface.  All techniques produced grafted layers with 

Flory Radius values of 2Rf/D > 10, indicating brush regime behavior. 

 

Overall, the patterned activation possible by partial bromination to the M-PVA 

surface is of great interest, although the graft masses seen here for partial 

bromination methods are lower than those achieved using with the analogous 

Ce(IV) and tresyl grafting approaches. 
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5. Binding Studies on Grafted Beads 

5.1 Introduction 

Ionic exchange (IEX) constitutes one of the most commonly applied protein 

separation techniques, being used in about 75% of protein purification 

protocols, compared to affinity (60%) and gel (50%) separation methods 

(Bonnerjea et al., 1986). 

 

IEX is widely used for a number of reasons, these include. 

 

1) High binding capacities. 

2) High resolving power for proteins with different pI values. 

3) Easy process to operate and adapt, based on simple binding 

principles (Janson and Ryden, 1998). 

 

Polyelectrolyte grafted magnetic supports, as described in Chapters 2-4, have 

potential IEX applications due to the chargeable nature of their graft polymer 

sideunits.  Supports grafted with a mixed brush comprising P2VP and PMAA 

may display both cation and anion binding behaviour, depending upon the pH 

of operation.  At low pH values the positive charge of P2VP chains is 

expected to lead to a positive surface charge (Houbenov et al., 2003), which 

is associated with anion binding behaviour.  At higher pH values the negative 

charge on PMAA sideunits is expected to dominate, leading to cation binding 

behaviour (figure 5.1). 

 

Figure 5.1.  Switchable charge properties of a PMAA/P2VP mixed brush 

grafted surface. 
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The dominant protein binding behaviour of a surface can be tested with the 

used of a model protein solution containing a selection of proteins with known 

isolectric point (pI).  The availability of proteins with a variety of pI values 

means that cationic and anionic binding of proteins can be tested over a 

range of pH (Table 5.1). 

 

Table 5.1.  Molecular weight values, Mw, and isoelectric points, pI, of proteins 

of interest. 

 

 

A suitable technique for use in analysis of protein binding is reducing SDS-

PAGE, a form of gel electrophoresis (Laemmli, 1970).  During gel 

electrophoresis sample protein solutions are prepared and loaded onto a gel 

through which an electrical current is passed.  Sample preparation involves 

treatment with sodium dodecyl sulphate (SDS) and -mercaptoethanol to 

denature the protein structures (Weber and Osborn, 1969; Huggins et al., 

1950).  The presence of SDS also leads to each protein acquiring a negative 

charge proportional to its mass.  Under an electric field, the molecules move 

towards the anode at a rate proportional to their mass.  For a protein solution 

containing proteins of different sizes, this results in the separation of the 

proteins according to their molecular weight.  In addition, proteins of the same 

molecular weight will travel at approximately the same rate through the gel 

and resolve into distinct bands which correspond to the most common 

molecular weights in the gel.  Visualisation of SDS-page gels is achieved 

Protein pI Mw (kDa) Reference 

Lysozyme 

LPO 

Myoglobin 

Carbonic Anhydrase 

-lactoglobulin 

BSA 

Ovalbumin 

11.0 

9.8 

6.9 

6.6 

5.3 

5.1 

4.7 

14.4 

77 

17 

29.5 

18.6 

66.3 

45 

(Ekstrand, 1989) 

(Ekstrand, 1989) 

(Graf and Watzig, 2004) 

(Righetti, 1976) 

(Dumetz et al., 2008) 

(Kinsella and Whitehead, 1989) 

(Moritz & Simpson, 2005) 
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through the use of protein stains.  Protein stains contain dye molecules which 

can bind specifically to proteins and allow the protein distribution on the gel to 

be visualised (figure 5.2).   

 

 

Fig 5.2. SDS-page loaded with samples from table 4.1. Lane 1: SeeBluePlus2 

Marker.; Lane 2: LPO.; Lane 3: BSA.; Lane 4: Ovalbumin.; Lane 5: Carbonic 

anhydrase.; Lane 6.: -lactoglobulin.; Lane 7: Myoglobin.; Lane 8: Lysozyme. 

 

Computer based imaging and quantification of these dyed gel bands are then 

possible with the use of scanning methods.  In the past scanning 

densitometery was the method of choice (Andrews, 1986), however, recent 

developments such as the US National Institute of Health‘s ImageJ computer 

program allow analysis of band intensities from high-resolution gel images 

(Girish and Vijayalakshmi, 2004).  The wide availability of high-resolution 

scanners has resulted in the rapid uptake of the ImageJ technology for use in 

bioscientific research (Hausera, 2007; Le Saux et al., 2008) due to its cost 

effectiveness and convenience.  As with a densitometer, the ImageJ program 

measures band intensity within designated lanes.   Output data is plotted as 

lane distance vs. intensity, with protein bands appearing as peaks.  The area 

under each such peak is proportional to the gel band intensity.  As band 

intensity is proportional to the amount of protein present, protein loads of 

individual bands can be calculated by comparing band intensities. 
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Against the above, this Chapter describes protein binding studies based upon 

a selection of polyelectrolyte grafted M-PVA supports (table 5.3).  CE-AX is 

M-PVA grafted with PMAA and CE-CX is M-PVA grafted with P2VP, both 

synthesized using Ce(IV) activation.  These supports are presented for 

comparison with mixed brush supports created using Ce(IV), ATRP and tresyl 

graft-to methods.  Of these mixed brush supports CE-MX1/CE-MX2 have 

been grafted using Ce(IV) activation; TR-MX1/TR-MX2 using tresyl activation 

and AT-MX1/AT-MX2 using ATRP from dbirominated AGE groups at the M-

PVA surface.  For more details on these methods see chapters 2-4 of this 

study, and for the specific order of polymer grafting and brush composition 

see table 5.3. 

 

The studies in this chapter utilize a model protein binding mixture containing 

the following proteins (table 5.2) and include basic, neutral and acidic species 

with distinct Mw values.   

 

Table 5.2. Component proteins for model protein mixture. 

 

 

 

 

 

 

 

 

This model protein system is used in conjunction with SDS-PAGE and ImageJ 

gel analyses to obtain qualitative and quantitative information about the nature 

of IEX protein binding behaviour on P2VP and PMAA grafted supports under 

a range of pH conditions.  Finally, the relationship between brush composition 

and dimensions is discussed in terms of the observed protein binding 

properties. 

 

 

 

Protein pI Mw 

Ovalbumin 

Carbonic Anhydrase 

-lactoglobulin 

Lysozyme 

4.7 

6.6 

5.3 

11.0 

45 

29.5 

18.6 

14.4 
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Table 5.3. Data for polyelectrolyte grafted supports.  Table shows name as used in this chapter, grafting method, order of polymer 

grafting and amount of polymer per g of M-PVA.  Graft dimensions are also shown, these are: Chain length, L; Intergraft distance, 

D; and a ratio of Flory Radius to intergraft distance, 2Rf/D.   

Name Method Graft 

order 

P2VP 

(mol/g) 

P2VP 

Rf (nm) 

P2VP 

D (nm) 

P2VP 

2Rf/D 

n(P2VP)/ 

n(init.) 

PMAA 

(mol/g) 

PMAA 

Rf (nm) 

PMAA 

D (nm) 

PMAA 

2Rf/D 

n(PMAA)/ 

n(init.) 

MIX 

Rf (nm) 

MIX 

D (nm) 

MIX 

2Rf/D 

CE-AX Ce(IV) 

(Ch. 2) 

P2VP 

only 

4.88 5.48 0.82 13.4 66.4 - - - -  - - - 

CE-CX Ce(IV) 

(Ch. 2) 

PMAA 

only 

- - - -  6.11 3.09 0.82 7.6 83.1 - - - 

CE-MX1 Ce(IV) 

(Ch. 2) 

1.P2VP 

2.PMAA 

4.88 5.48 0.82 13.4 66.4 4.56 2.59 0.82 6.3 62.0 4.55 0.58 15.7 

CE-MX2 Ce(IV) 

(Ch. 2) 

1.PMAA 

2.P2VP 

3.34 4.36 0.82 15.1 45.4 6.11 3.09 0.82 7.6 83.1 3.84 0.58 13.3 

TR-MX1 Tresyl 

(Ch. 3) 

1.P2VP 

2.PMAA 

1.35 13.04 3.20 8.1 141 1.81 5.29 2.36 4.5 102 9.72 1.90 10.2 

TR-MX2 Tresyl 

(Ch. 3) 

1.PMAA 

2.P2VP 

2.44 13.04 2.38 11.2 141 1.50 5.29 3.26 4.1 102 11.66 1.92 12.1 

AT-MX1 ATRP 

(Ch. 4) 

1.P2VP 

2.PMAA 

3.84 1.10 0.26 9.1 3.0 3.40 0.59 0.26 4.0 2.0 0.96 0.19 10.3 

AT-MX2 ATRP 

(Ch. 4) 

1.PMAA 

2.P2VP 

2.67 1.29 0.26 9.8 2.9 4.03 0.50 0.26 3.8 2.5 1.07 0.19 11.5 
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5.2.  Materials and methods 

5.2.1 Materials used 

 

Modified M-PVA supports were obtained from the syntheses described in Chapters 

2-4.  Citric acid (CAS 5949-29-1); sodium citrate (CAS 18996-35-5); sodium 

phosphate (CAS 7558-80-7); sodium carbonate (CAS 497-19-8); trizma 

hydrochloride (CAS 1185-53-1); trizma base (CAS 77-86-1) and sodium chloride 

(CAS 7647-14-5) were obtained from Sigma Aldrich (Poole, Dorset).  Cuvettes, 2 ml 

screw-cap micro test tubes, 15 ml screw-cap centrifuge tubes and 50 ml screw-cap 

centrifuge tubes were obtained from Sarstedt (Leicester, UK).  1.5 ml hinged-lid 

micro test tubes were obtained from Eppendorf (Cambridge, UK). Deionised water 

was re-filtered using 0.2 m Minisart filters obtained from Sartorius (Epsom, UK). 

 

All unheated mixing was performed with a VM20 vortex mixer or a IKA Vibrax VXR 

basic mixer with attachments for 15 ml centrifuge tubes and micro test tubes.  

Electrophoresis samples were heated in a Grant GP3 heating rack.  Chemicals were 

weighed on Mettler AE160 and AT261 balances.  Pipetting was performed with 20 

ml, 200 ml, 1 ml and 5 ml adjustable pipettes.  All proteins were obtained from 

Sigma-Aldrich (Poole, Dorset). 

 

Electrophoresis was performed using precast polyacrylamide Tris-HCl gels (15% 

gels and 4-20% gradient gels) obtained from Bio-Rad (California, US).  

Electrophoresis samples were prepared with laemmeli sample buffer (Bio-Rad, US) 

and -mercaptoethanol (Sigma-Aldrich, CAS 60-24-2).  Electrophoresis tank and 

MP-250V power pack were purchase from Cleaver Scientific (Rugby, Warwickshire).  

Protein molecular weight standards were provided by Seeblue Plus 2 prestained 

protein standard mixture (Invitrogen, UK).  Gel staining was performed using 

Seeblue Safestain or Novex Colloidal Blue stain kit (Invitrogen, UK). 
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5.2.2 Electrophoresis sample preparation 

Protein composition in binding and elution solutions was performed using reducing 

SDS-PAGE (Laemmli, 1970).  Running buffer was prepared from laemmli sample 

buffer (975 l) and -mercaptoethanol (25 l).  Each protein solution (25 l) was 

mixed with running buffer (25 l, heated (70oC, 600 s) and then allowed to cool (RT, 

600 s). 

 

5.2.3 Running electrophoresis samples 

Electrophoresis samples (10 l) were loaded onto gels alongside the prestained 

protein standard mixture.  Samples were ran in a refrigerated room (6oC) at lowered 

voltage (45 V, 60 mA, 0.5 h) until all samples has passed through the stacking 

phase.  Following the stacking phase the voltage was increased and samples 

allowed to pass through to the end of the gel (80 V).  Electrical current was removed 

once running buffer colour had exited the far end of the gel. 

 

The gel was then removed from the electrophoresis setup and shaken in water (25 

ml, 5 min, x 3).  The water was removed and the gel was shaken in Simply Blue Safe 

Stain solution (25 ml, 1h).  The staining solution was then removed and the gel was 

washed in water (25 ml, 5 min, x 2).  The gel was then washed with NaCl solution 

(25 ml, 1M, 24 h, x 2) before being stored in ammonium sulphate solution (25 ml, 

10% (w/v), 4oC).   

 

Prior to scanning the gels were washed in water (25 ml, 1 min).  Washing solvent 

was removed and the damp gel was scanned at 2400 dpi using a high-resolution HP 

ImageJet scanner. 

 

 

5.2.4 Acidic/basic protein binding with salt elution  

The ability of supports to bind selections of basic and acidic proteins was analysed in 

buffered solutions at pH 5, 6, 7 and 8.  Buffer solutions (20 mM) were prepared at 

the experimental pH and the same buffer pH was used throughout each experiment.  

Citrate buffer was used at pH 5; sodium phosphate buffer at pH 6 and 7; Tris-HCl 

buffer at pH 8. Binding solution comprised of buffer (20 mM) plus ovalbumin (CAS 
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9006-59-1); carbonic anhydrase (CAS 9001-03-0); -lactoglobulin (CAS 9045-23-2) 

and lysozyme (52219-07-5).  Each protein was present at 0.25 mg/ml, making a total 

protein conc. of 1 mg/ml. 

 

1 mg of support was washed twice with buffer solution (20 mM, 100 l, 0.25 h).  The 

supports were then separated and mixed with binding solution.  (100 l, 0.25 h).  

Binding supernatant was stored for analysis.  The supports were then washed twice 

with buffer (100 l, 0.25 h).  After washing protein was eluted from support by mixing 

with a solution of NaCl in buffer (1 M, 100 l, 0.25 h).  Binding and elution 

supernatants were tested by electrophoresis using 15 % polyacrylamide gels.  

 

 

5.2.5 Protein binding at pH 5 with elution by pH switch  

The ability of supports to bind selections of basic and acidic proteins was analysed in 

buffered solutions at pH 5.  Buffer solutions were prepared as in section 5.2.4 and 

used to make binding solution comprising of pH 5 buffer (20 mM) plus ovalbumin; 

carbonic anhydrase; -lactoglobulin and  lysozyme with each protein present at 0.25 

mg/ml.  1 mg of support was washed twice with pH 5 buffer solution (20 mM, 100 l, 

0.25 h).  The supports were then separated and mixed with binding solution  (1 

mg/ml, 100 l, 0.25 h).  Binding supernatant was stored for analysis.  The supports 

were then washed twice with pH 5 buffer (100 l, 0.25 h).  After washing proteins 

were eluted from support by mixing in buffers at pH 6, 7 or 8 (100 l, 0.25 h).  

Binding/elution gels were obtained by running electrophoresis samples of binding 

and elution supernatants on 15 % polyacrylamide gels. 

 

5.2.6 Protein binding at pH 8 with elution by pH switch  

The method described for pH elution in section 5.2.5 was adapted by using 

binding/washing solutions buffered at pH 8 and elution buffers at pH 5, 6 and 7.  All 

concentrations and conditions were otherwise the same. 
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5.3 Results 

5.3.1 Binding studies on ungrafted supports 

Binding and salt elution behaviour of the 4 protein mixture (ovalbumin; carbonic 

anhydrase; -lactoglobulin; lysozyme) was first studied for unmodified M-PVA 

supports over the range pH 5-8.  Neither binding nor elution were observed on 

unmodified M-PVA supports (figure 5.3; table 5.4) 

 

 

Figure 5.3.  Binding of 4 protein solution on unmodified M-PVA, with salt elution. 

Lane 1: Challenge; Lanes 2 to 5: Binding supernatants at pH 5-8;  

Lanes 6 to 9.  Elution supernatants at pH 5-8. 

 

Table 5.4. Binding study for unmodified M-PVA with salt elution 
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Binding and elution studies performed on the ungrafted M-PVA beads showed no 

binding or elution of proteins under any of the conditions tested.  Although the 

hydroxyl groups of PVA might be expected to become deprotonated and gain cation 

exchange properties at higher pH values, the pH ranges required for this behaviour 

are more basic than those tested here. 

 

 

5.3.2 Binding studies on homopolymer grafted supports 

 

Prior to analysis of anion-exchanger grafted supports, the binding and elution 

behaviour of the unhydrolysed PTBMA grafted supports was tested.  These supports 

had been synthesised as described in Chapter 2, by reaction of 50 mg M-PVA with 4 

mg ACN and 301 l tBmA and without a subsequent hydrolysis step.  As with 

unmodified supports, binding and elution on PTBMA grafted supports were not 

observed under any of the conditions used (figure 5.4; table 5.5). 

 

 

Figure 5.4.  Binding of 4 protein solution on unhydrolysed PTBMA (ACN) grafted M-

PVA, with salt elution. Lane 1: Challenge; lanes 2 to 5: Binding supernatants at pH 5-

8; lanes 6 to 9.  Elution supernatants at pH 5-8. 

 

 

 

 

 

 

1

Ovalbumin

Carb. An.

-LG

Lysozyme

2 3 4 5 6 7 8 9
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Table 5.5. Binding study for PTBMA grafted M-PVA with salt elution 

 

 

Band intensities showed that protein concentration in binding supernatants 

decreased slightly as the binding pH was increased, indicative of protein binding at 

higher pH.  The changes were, however, consistent for all proteins in solution which 

suggests that the change is due to experimental error in gel loading or quantification 

although this was not verified.  The lack of binding is further evidenced by the 

absence of eluted protein in the salt elution supernatants. 

 

The hydrolysed equivalent, CE-CX, showed effective binding of lysozyme (figure 5.5; 

table 5.6).  This demonstrates cationic binding abilities resulting from the grafted 

PMAA in the pH 5-8 range, as lysozyme (pI > 10) is positively charged at those pH 

values. 
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Fig 5.5  Binding of 4 protein solution on CE-CX, with salt elution. Lane 1: Challenge; 

lanes 2 to 5: Binding supernatants at pH 5-8; lanes 6 to 9.  Elution supernatants at 

pH 5-8. 

 

Table 5.6. Binding study data for CE-CX, with salt elution.  Values show band 

intensity as a percentage of intensity seen in challenge band. 

 

 

All lysozyme present in the challenge was bound at pH 5-8, which corresponds to a 

cationic binding capacity of at least 25 mg/g.  Elution values show that the amount of 

lysozyme released during the 1 M NaCl elution step is some way below 25 mg/g.  

This indicates that either some lysozyme is released during the wash steps before 

elution due to this lysozyme being weakly bound, or that some lysozyme is too 

strongly bound to be released during the salt elution. 

1 2 3 4 5 6 7 8 9

Ovalbumin

Carb. An.

-LG

Lysozyme
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For CE-CX, pH shift following protein binding at pH 5 produced no protein elution 

(figure. 5.6; table 5.7).  Although binding supernatants show that all lysozyme is 

bound at pH 5, no bound lysozyme is eluted on shifting to pH 6-8.  This is to be 

expected as it has already been demonstrated that the CE-CX have a lysozyme 

binding capacity of over 25 mg/ml for pH 6-8. 

 

Fig 5.6.  Binding of 4 protein solution on CE-CX, with pH elution. Lane 1: Marker; 

lane 2: Challenge; lanes 3 to 5: Binding supernatants at pH 5; lanes 7 to 9: Elution 

supernatants at pH 6-8. 

 

Table 5.7.  Binding study data for CE-CX, with pH elution.  Values show band 

intensity as a percentage of intensity seen in challenge band. 

 

 

Ovalbumin

Carb. An.

-LG

Lysozyme

1 2 3 4 5 6 7 8
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The P2VP grafted CE-AX supports showed some binding of -lactoglobulin (-LG) 

and ovalbumin at pH 5, while binding of >25 mg/g was seen for both proteins at pH 

6-8 (figure. 5.7; table 5.8).  No significant carbonic anhydrase or lysozyme binding 

was observed under these pH conditions.  This agrees with the expected anionic 

binding properties of the grafted P2VP layer, as -LG (pI = 5.3) and ovalbumin (pI = 

4.7) are negatively charged at pH 6-8.  Salt elutions show that both proteins are 

eluted to similar extents.  As with elution from CE-CX the mass of protein eluted is 

lower than original mass bound, suggesting that loss during washing or retention due 

to strong binding is occurring. 

 

Figure 5.7.  Binding of 4 protein solution on CE-AX, with salt elution.  

Lane 1: Challenge; lanes 2 to 5: Binding supernatants at pH 5-8; lanes 6 to 9.  

Elution supernatants at pH 5-8. 
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Table 5.8. Binding study data for CE-AX, with salt elution.  Values show band 

intensity as a percentage of intensity seen in challenge band. 

 

 

For CE-AX, pH shift following protein binding at pH 8 produced varying degress of 

ovalbumin elution (fig. 5.8; table 5.9).  Shifting to pH 5 produced a large amount of 

ovalbumin elution, the mass eluted being similar to that seen during salt elution.  

Shifting to pH 6 or 7 resulted in comparatively little ovalbumin elution.  No -LG 

elution was observed following pH shift. 

 

Fig. 5.8. Binding of 4 protein solution on CE-AX, with pH elution.  Lane 1: Marker; 

lane 2: Challenge; lanes 3 to 5: Binding supernatants at pH 8; lanes 7 to 9: Elution 

supernatants at pH 5-7. 

 

 

1

Ovalbumin

Carb. An.

-LG

Lysozyme

2 3 4 5 6 7 8
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Table 5.9. Binding study data for CE-AX, with pH elution.  Values show band 

intensity as a percentage of intensity seen in challenge band. 

 

 

 

5.3.3 Binding studies on mixed brush products from Ce(IV) initiation 

method 

 
CE-MX1 showed a lysozyme binding (>25 mg/g) at pH 7-8, indicating cation binding 

properties at these pH values (figure. 5.9; table 5.10). 

 

Figure 5.9.  Binding of 4 protein solution on mixed brush grafted CE-MX1 with salt 

elution. Lane 1: Challenge; lanes 2 to 5: Binding supernatants at pH 5-8; lanes 6 to 

9.  Elution supernatants at pH 5-8. 

Table 5.10. Binding study data for CE-MX1, with salt elution.  Values show band 

intensity as a percentage of intensity seen in challenge band. 

1

Ovalbumin

Carb. An.

-LG

Lysozyme

2 3 4 5 6 7 8 9
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Lysozyme binding was slightly lower at pH 6 and not seen for pH 5.  Some binding of 

-LG and ovalbumin was seen at pH 5 (anionic binding) and binding of carbonic 

anhydrase was measured at pH 7.  For this experiment elution data is perhaps 

clearer.  Salt elution after binding at pH 5 released a significant amount of -LG and 

ovalbumin and salt elution at pH 8 released lysozyme.  This indicates that CE-MX1 

supports can behave as anion or cation exchangers, with the observed behaviour 

depending upon pH conditions.  This agrees with CEX and AEX properties seen for 

P2VP/PAA mixed brushes in previous studies (Uhlmann et al., 2007). 

 

At pH 6-7 all 4 proteins were observed to varying degrees in the elution supernatant.  

As salt elutions follow two washing steps, these results may suggest that both cation 

and anion exchange behaviour is present at pH 6 and 7.  This is suggested because 

-LG and ovalbumin are anionic species at pH 6-7, while lysozyme is cationic yet all 

are bound.  As the cation or anion exchange properties of mixed brush grafted M-

PVA should depend upon the number of charged P2VP and PMAA groups on the 

surface.  An uneven distribution of P2VP and PMAA groups between individual 

supports may lead to a mix of cation and anion exchange supports being present at 

certain intermediate solution pH values.  At lower pH values more anion exchange 

groups would be expected while at higher pH values more cation exchange groups 

would be expected, as is seen at pH 5 and 8 here respectively. 
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pH elution from CE-MX1 showed improved protein release compared to 

homopolymer grafted brushes (figure. 5.10; table 5.11).   Binding at pH 5 followed by 

shift to pH 7-8 resulted in release of -LG and ovalbumin.  Binding at pH 8 followed 

by shift to pH 5-7 resulted in release of lysozyme.   

 

 

Figure 5.10.  Binding of 4 protein solution on mixed CE-MX1 with pH elution. Lane 1: 

Challenge; lanes 2 to 5:  Binding at pH 5 (lane 2), elution at pH 6-8 (lanes 3 to 5). 

lanes 6 to 9:  Binding at pH 8 (lane 6), elution at pH 5-7 (lanes 7 to 9). 

 

Table 5.11. Binding study data for CE-MX1, with pH elution.  Values show band 

intensity as a percentage of intensity seen in challenge band. 

 

 

The mass of protein eluted increased when larger pH shifts were used (shifting from 

pH 5 to 8 and from pH 8 to 5 released the most bound protein).  This is expected as 

a larger pH shift moves the system further away from original binding conditions.  

1

Ovalbumin

Carb. An.

-LG

Lysozyme

2 3 4 5 6 7 8 9



162 
 

Within the switchable charged polymer brush model a larger pH shift would result in 

a larger change in electrostatic forces between polymer subunits, leadings to a more 

pronounced switch and the potential for a greater steric push against bound proteins.   

 

Alongside these potential steric effects, a larger shift in pH is more likely to disrupt 

the charge compatibility between the support surface and bound proteins.  Using the 

example of lysozyme elution by pH shift, lysozyme is a cationic species at pH values 

below 11.  At all experimental pHs used here lysozyme will only engage in ionic 

binding with cation exchangers.  Lysozyme binding is seen at pH 8, indicating the 

presence of cation exchangers.  Lysozyme binding is not seen at pH 5, which 

indicates the absence of cation exchangers as the conditions are otherwise the 

same as those at pH 8.  Furthermore, the elution seen with binding at pH 8 and 

elution at pH 5 indicates a significant presence of positively charged groups at pH 5.  

The changing number of cation and anion exchangers between pH 5 and 8 can be 

explained as a change in the charge on the support surface.  For example at pH 8 

positively charged P2VP groups still exist on the mixed polymer surface but a greater 

number of negatively charged PMAA groups are present, resulting in an overall 

negative charge.  Switchable behaviour is also seen for CE-MX2, with strong 

lysozyme binding evident at pH 6-8 and binding of ovalbumin and -LG at pH 5 

(figure 5.11; table 5.12). 

 

 

Figure 5.11.  Binding of 4 protein solution on CE-MX2 with salt elution. Lane 1: 

Challenge; lanes 2 to 5: Binding supernatants at pH 5-8; lanes 6 to 9. Elution 

supernatants at pH 5-8. 
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Table 5.12. Binding study data for CE-MX2, with salt elution.  Values show band 

intensity as a percentage of intensity seen in challenge band. 

 

 

 

 

pH elution from CE-MX2 shows elution of lysozyme following pH shift from 8 to 5-7 

(figure 5.12; table 5.13).  This behaviour is similar to CE-MX1. 

 

 

Fig 5.12.  Binding of 4 protein solution on CE-MX2 with pH elution. Lane 1: 

Challenge; lanes 2 to 5:  Binding at pH 5 (lane 2), elution at pH 6-8 (lanes 3 to 5); 

lanes 6 to 9:  Binding at pH 8 (lane 6), elution at pH 5-7 (lanes 7 to 9). 

 

Table 5.13. Binding study data for CE-MX2, with pH elution.  Values show band 

intensity as a percentage of intensity seen in challenge band. 
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Both mixed brush supports grafted by ACN show similar behaviour.  Binding of 

lysozyme is effective at higher pH although elution of the bound lysozyme is not 

complete.  At pH 7-8 complete binding of lysozyme is observed, with a larger mass 

of lysozyme being salt eluted from the support bound at pH 8.  This is unexpected as 

the binding supernatants indicate that the same amount of lysozyme was bound at 

pH 7 and 8.  In this case less elution would be expected at pH 8 due to a higher 

negative charge on the support surface.  Binding behaviour of -LG and ovalbumin 

to CE-MX2 differs to that seen with CE-MX1.  Binding of these proteins to CE-MX2 

at pH 5 appears to be stronger than binding to CE-MX1 although the final eluted 

amounts are similar. 

 

CE-MX1 and CE-MX2 both display cation and anion binding properties under 

suitable conditions, indicating the presence of a polyelectrolyte brush layer with a 

‗switchable‘ net charge.  CE-MX2 in particular displays the ability to bind > 25 mg 

lysozyme at pH 8 and to bind > 25 mg of both ovalbumin and -lactoglobulin at pH 5, 

indicating switchable behavior which sees it act as an anion exchanger at lower pH 

values and cation exchanger at higher values.  In terms of mass eluted, pH elution of 

lysozyme appears more successful than the equivalent elution of acidic proteins.  

One explanation for this phenomenon is the stricter brush behaviour expected from 

the grafted P2VP chains, as 2Rf/D values for the P2VP phase in CE-MX1/CE-MX2 

are higher than those for the PMAA phase.  Higher 2Rf/D values relate to more 
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pronounced brush behaviour with higher forces involved in brush extension etc.  The 

higher level of brush behaviour expected for grafted P2VP in CE-MX1/CE-MX2 may 

translate to a great steric ‗push‘ behind the elution of lysozyme when pH is 

decreased. 

 

 

5.3.4 Binding studies on mixed brush products from tresyl activation 

method 

TR-MX1 showed some binding of lysozyme at pH 6-8 with the highest binding at pH 

8.  No other binding was seen, however, the salt elutions which followed binding at 

pH 6-7 released some carbonic anhydrase.  Salt elution also released lysozyme from 

products bound at pH 6-8 (figure 5.13; table 5.14). 

 

 

Figure 5.13. Binding of 4 protein solution on TR-MX1, with salt elution.  Lane 1: 

Challenge; Lanes 2 to 5: Binding supernatants at pH 5-8; Lanes 6 to 9.  Elution 

supernatants at pH 5-8. 

 

Table 5.14. Binding study data for TR-MX1, with salt elution.  Values show band 

intensity as a percentage of intensity seen in challenge band. 
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Binding at pH 5 followed by switch to pH 6-8 resulted in no protein elution (figure 

5.14; table 5.15).  Binding at pH 8 followed by switch to pH 5-7 resulted in lysozyme 

elution at pH 5 and 6.  This data shows only cation binding, with no anion binding 

behaviour demonstrated over the pH 5-8 range. 

 

Fig 5.14.  Binding of 4 protein solution on TR-MX1 with pH elution.  Lane 1: 

Challenge; lanes 2 to 5:  Binding at pH 5 (lane 2), elution at pH 6-8 (lanes 3 to 5); 

lanes 6 to 9:  Binding at pH 8 (lane 6), elution at pH 5-7 (lanes 7 to 9). 
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Table 5.15. Binding study data for TR-MX1 with pH elution.  Values show band 

intensity as a percentage of intensity seen in challenge band. 

 

 

TR-MX1 showed binding of -LG and ovalbumin for pH 5-7, with some ovalbumin 

also being bound at pH 8.  Lysozyme binding occurred at pH 8.  No other binding 

was seen.  Salt elution released -LG and ovalbumin at pH 5-7 and lysozyme at pH 

8. 

 

Binding to TR-MX2 indicated weaker lysozyme binding behaviour than had been 

observed with the other mixed brush supports (figure 5.15; table 5.16).  Binding of -

LG and ovalbumin is seen at pH 5 and 6, with some binding of ovalbumin also seen 

at pH 7 and 8. 
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Figure 5.15.  Binding of 4 protein solution on TR-MX2 with salt elution.  Lane 1: 

Challenge;  Lanes 2 to 5: Binding supernatants at pH 5-8;  Lanes 6 to 9.  Elution 

supernatants at pH 5-8. 

 

Table 5.16. Binding study data for TR-MX2 with salt elution.  Values show band 

intensity as a percentage of intensity seen in challenge band. 

 

 

The amount of P2VP grafted to the TR-MX2 surface (2.54 mmol P2VP per g M-PVA) 

is higher than the amount of PMAA present (1.50 mmol PMAA per g m-PVA).  This 

may explain the appearance of anion binding behaviour on the TR-MX2 surface. 

 

Binding at pH 5 followed by a shift to pH 6-8 produced elution of -LG and ovalbumin 

at pH 8 (figure 5.16; table 5.17).  The amount eluted with this pH shift was similar to 
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the amount released during salt elution.  Binding at pH 8 followed by a shift to pH 5-7 

gave elution of lysozyme for all three pH values. 

 

Figure 5.16.  Binding of 4 protein solution on TR-MX2 with pH elution.  Lane 1: 

Challenge; Lanes 2 to 5:  Binding at pH 5 (lane 2), elution at pH 6-8 (lanes 3 to 5);  

Lanes 6 to 9:  Binding at pH 8 (lane 6), elution at pH 5-7 (lanes 7 to 9). 

 

Table 5.17. Binding study data for TR-MX2 with pH elution.  Values show band 

intensity as a percentage of intensity seen in challenge band. 

 

 

The lack of anion binding behaviour in TR-MX1, when compared to the presence of 

anion binding in TR-MX2, appears to come from the lower proportion of P2VP and 

higher proportion of PMAA on the TR-MX1 surface.  TR-MX1 contains 1.35 mmol 

P2VP and 1.81 mmol PMAA per g m-PVA.  This indicates a prevalence of PMAA 

groups at the surface.  TR-MX2, one the other hand, has a prevalence of P2VP with 
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2.54 mmol P2VP compared to 1.50 mmol PMAA per g M-PVA.  This higher 

proportion of P2VP may allow TR-MX2 to participate in anion exchange behavior. 

 

5.3.5 Binding studies on mixed brush products from ATRP method 

AT-MX1 showed binding of ovalbumin and -LG at lower pH values and binding of 

lysozyme at higher pH, indicating that AT-MX1 possesses switchable binding 

properties (figure 5.17; table 5.18). 

 

Fig 5.17.  Binding of 4 protein solution on AT-MX1 with salt elution. Lane 1: 

Challenge; lanes 2 to 5: Binding supernatants at pH 5-8; lanes 6 to 9.  Elution 

supernatants at pH 5-8. 

 

Table 5.18. Binding study data for AT-MX1, with salt elution.  Values show band 

intensity as a percentage of intensity seen in challenge band. 
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Maximum ovalbumin and -LG binding was seen at pH 6.  Lysozyme binding was 

seen at pH 7-8 with some binding at pH 6.  Salt eluted masses were considerably 

smaller than those expected from the binding values.  This effect was larger than 

was seen for ACN grafted supports.  pH elution from AT-MX1 showed some elution 

of ovalbumin and -LG following binding at pH 5 and shift to pH 8 (figure 5.18; table 

5.19).  No elution was seen on shifting to pH 6 or 7.  This is as expected, as the 

cationic binding properties expected at pH 8 are unsuitable for binding the anionic 

ovalbumin and -LG groups.  Binding at pH 8 followed by pH shift to pH 5-7 resulted 

in released of lysozyme at all three elution pH values, with the most protein eluted 

after shifting to pH 5.  This result is also as expected.   

 

Figure 5.18.  Binding of 4 protein solution on AT-MX1 with pH elution.  Lane 1: 

Challenge; lanes 2 to 5:  Binding at pH 5 (lane 2), elution at pH 6-8 (lanes 3 to 5); 

lanes 6 to 9:  Binding at pH 8 (lane 6), elution at pH 5-7 (lanes 7 to 9). 
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Table 5.19. Binding study data for AT-MX1, with pH elution.  Values show band 

intensity as a percentage of intensity seen in challenge band. 

 

 

AT-MX1 showed binding of lysozyme at pH 7-8 with some binding at pH 6 (fig 5.19; 

table 5.20).  Binding of of ovalbumin and -LG was was not seen at any pH value.  

Salt elution showed release of lysozyme from supports bound at pH 6-8 and elution 

of small amount of carbonic anhydrase at pH 6-7. 

 

Figure 5.19. Binding of 4 protein solution on AT-MX2 with salt elution.  Lane 1: 

Challenge; lanes 2 to 5: Binding supernatants at pH 5-8; lanes 6 to 9.  Elution 

supernatants at pH 5-8. 

 

Table 5.20. Binding study data for AT-MX2, with salt elution.  Values show band 

intensity as a percentage of intensity seen in challenge band. 
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Protein binding at pH 5 followed by shifting to pH 6-8 produced no elution (figure 

5.20; table 5.21).  Binding at pH 8 followed by shifting to pH 5-7 produced elution of 

lysozyme at pH 5-6, with more lysozyme eluted at pH 5.  These results suggest that 

AT-MX2 is a cation exchanger at pH 6-8 and is neither a cation or anion exchanger 

at pH 5. 

 

Figure 5.20.  Binding of 4 protein solution on mixed AT-MX2 with pH elution.  Lane 1: 

Challenge; lanes 2 to 5:  Binding at pH 5 (lane 2), elution at pH 6-8 (lanes 3 to 5); 

lanes 6 to 9:  Binding at pH 8 (lane 6), elution at pH 5-7 (lanes 7 to 9). 
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Table 5.21. Binding study data for AT-MX2, with pH elution.  Values show band 

intensity as a percentage of intensity seen in challenge band. 

 

 

 

The switchable binding behaviour displayed by AT-MX1 can be compared with the 

lack of anion binding behaviour seen in AT-MX2.  This may be expected from the 

relative amounts of P2VP and PMAA on each support.  AT-MX1 has 3.84 mmol of 

P2VP and 3.40 mmol PMAA grafted per g M-PVA, which gives a slight prevalence of 

P2VP on the surface.  In contrast, AT-MX2 has 2.67 mmol P2VP and 4.03 mmol 

PMAA per g M-PVA.  The higher proportion of PMAA on AT-MX2 predisposes it to 

cation binding behavior, whereas the more balanced proportion of P2VP and PMAA 

on the AT-MX1 surfaces appears to allow it to behave as either a cation or anion 

exchanger. 

 

5.3.6 Summary of binding data for supports modified with Ce(IV), ATRP 

and tresyl grafted methods 

The results described in this chapter indicate that synthetic procedures carried out 

during Chapter 2-4 have produced mixed polyelectrolyte grafted supports capable 

switchable mixed charge brush behaviour.  Although all mixed polyelectrolyte 

brushes used in this chapter possess a combination of basic and acidic proteins 

capable of anion and cation binding respectively some supports, namely TR-MX1 

and AT-MX2, did not display significant anion binding behaviour (Table 5.22).  It is 
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worth noting that these two supports have a low amount of P2VP grafted compared 

to PMAA, and it is P2VP which is responsible for anion binding behaviour in the 

supports.  By comparison, support TR-MX2 has a low amount of PMAA grafted 

compared to P2VP but displays cation binding behaviour at pH 8.  Under the 

conditions used, these results indicate a general bias towards cation binding 

behaviour for the P2VP/PMAA mixed brush system.  Higher 2Rf/D values for the 

P2VP brush components also favour pH elution of bound anions. This is evidenced 

by the comparatively high mass of lysozyme eluted during pH elutions on mixed 

brushes.  pH elutions of bound cations (ovalbumin and -LG) were typically less 

effective.  This may result from a weaker steric push from the PMAA brush 

components, which showed lower 2Rf/D values compared to P2VP components and 

are thus expected to show weaker brush behaviour. 

 

Table 5.22.  Summary of observed binding behaviours in M-PVA beads.   Switchable 

charge behaviour is noted for those beads which possess both cation and anion 

binding modes. 

Support Anion 

binding 

Cation 

binding 

Switchable? 

Unmodified M-PVA No No No 

TBMA grafted M-PVA No No No 

CE-AX Yes No No 

CE-CX No Yes No 

CE-MX1 Yes Yes Yes 

CE-MX2 Yes Yes Yes 

TR-MX1 No Yes No 

TR-MX2 Yes Yes Yes 

AT-MX1 Yes Yes Yes 

AT-MX2 No Yes No 

 

Ce(IV) grafted mixed brushes display a superior lysozyme binding ability, which may 

be expected due to the higher amounts of PMAA grafted on these supports (6.11 

mmol PMAA per g M-PVA for CE-MX2).  Although Ce(IV) grafted supports also have 
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comparatively large amounts of P2VP grafted, this does not lead to significantly 

improved ovalbumin or -LG binding behaviour. 

 

Mixed brushes grafted using ATRP and tresyl activation methods also display 

lysozyme binding behaviour, with ATRP grafted products binding more lysozyme 

than tresyl products at pH 6-8.  This is as expected, as the ATRP products contain 

considerably more PMAA groups per g of M-PVA (3.40 mmol for AT-MX1 compared 

to 1.81 mmol for TR-MX1).  The presence of a higher number of cation-binding 

groups in ATRP supports predictably leads to better cation binding behaviour.  The 

higher binding capacities of Ce(IV) and ATRP grafted supports may also be due to 

the shorter chain lengths (see n(poly)/n(init) values in table 5.2 and figure 5.21) of 

polymers grafted using these methods compared to those added during tresyl graft-

to synthesis.   

 

 

Figure 5.21.  A single-scale representation of the relative brush densities and heights 

expected for supports used in chapter 5, based upon tabulated D and n-(poly)/n(init) 

values.  The extended chain structure here is not accurate, but is used to clearly 

show chain lengths and intergraft distances. 

CE(IV) route mixed brush

grafted (CE-MX1 / CE-MX2)

CE(IV) route single brush

grafted(CE-AX / CE-CX)

Tresyl route mixed brush

grafted (TR-MX1 / TR-MX2)

ATRP route mixed brush

grafted (AT-MX1 / AT-MX2)

Scale (nm)
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The tresyl graft-to method produced graft polymers which are up to 50 times longer 

than those produced by the ATRP method.  Intergraft spacing for tresyl route 

products is around 10 times higher than for ATRP route products.  The longer, more 

widely spaced polymer brushes created by the tresyl method will have a lower 

maximum charge density than the denser brushes created using ATRP.  According 

to Coulomb‘s law (see equation 1.14) the force experienced between charged 

diminishes as the distance between charges increases.  Hence, proteins which sit at 

the ATRP brush surface are expected to experience a larger proportion of the 

brush‘s overall charge than proteins at the tresyl brush surface due to this difference 

in charge density and the associated distances between surface-bound proteins and 

charged units within the brush. 

 

Comparison of pH elution abilities between brushes indicates that pH elution is more 

effective in Ce(IV) route products.  Comparison between tresyl and ATRP route 

products shows little difference in pH elution results, in terms of mass of protein 

eluted.  Considering that binding is more effective in ATRP products, with more 

protein bound, this suggests that the tresyl route products have superior pH elution 

properties.  This superior elution ability may stem from the much longer chain 

lengths (see n(poly)/n(init) values in table 5.2) of tresyl products), leading to more a 

pronounced ‗switch‘ in brush height/composition/surface-charge when the pH is 

altered, resulting in more effective protein elution. 

 

In relation to the effects of brush expansion as it relates to pH elution it should also 

be noted that although ellipsometric studies of P2VP/PAA mixed brushes have 

shown significant changes in the heights of brush components on switching between 

extreme pH values, at pH values closer to neutral the brush arrangements are more 

complicated.  Hinrichs et al. (2009) identified a variety of distinct structures for 

P2VP/PAA mixed brushes (figure 5.22), the behavior of which are expected to be 

similar to that of the P2VP/PMAA mixed brush system used in this study.  In the 

P2VP/PAA system it was found that at pH 2 an ionized, extended P2VP phase 

existed alongside collapsed PAA chains.  At pH 10 the reverse was true, with 

negatively charged PAA extending from the surface above uncharged P2VP chains.  

At intermediate pH values these extensions were less pronounced and of most 
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interest.  At pH 5 a ‗mixed‘ phase was seen where the bottom part of the P2VP/PAA 

brush is rich in both P2VP and PAA, while the top part contains P2VP and water 

from the aqueous buffer.  At pH 7 a similar ‗mixed‘ phase structure is seen, with a 

P2VP/PAA phase at the bottom of the brush and PAA and water at the top.  At pH 6 

the brush exists as a uniform ‗complex‘ phase of both P2VP and PAA and it is at this 

pH that the brush has its lowest net charge. 

 

Between pH 5 and 7 the brush height remains largely unchanged (in Hinrich et al. 

2009 the brush height at pH 5-7 is identified as 11 nm, compared to 23 nm at pH 2 

and pH 10).  In terms of creating a physical ‗push‘ during the elution stage this lack 

of height change may limit elution efficiency, although a change in brush height does 

occur for the two individual polymer species between pH 5 and 7.  The same 

relationship between brush structure and pH may be expected for the P2VP/PMAA 

system, albeit with slightly different pH values for the structures described. 
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Figure 5.22.  Structures of P2VP/PAA brush, including  ‗Mixed‘ phases at pH 5 and 7 

and ‗complex‘ phase at pH 6 (after Hinrichs et al. 2009). 
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5.4 Conclusions 

Ce(IV), tresyl and ATRP (Chapters 2-4) led grafting of P2VP and PMAA onto M-PVA 

supports are all suitable for producing products capable of binding proteins by 

charge interactions.  PMAA grafted M-PVA and P2VP grafted M-PVA show greater 

cationic and anionic binding properties respectively than supports grafted with mixed 

polymer brushes, but the presence of two polymer species at the M-PVA surface 

leads to switchable charge properties.  These switchable properties were evidenced 

by binding studies which show acidic proteins binding to the support at lower pH 

values and basic proteins binding to the same support at higher pH values.  The 

results indicate that the support switches between anion and cation binding behavior 

as the pH is altered.  pH elution studies support this switchable charge model, and 

also give some support to the idea of polymer chains pushing proteins from the 

surface as they extend. 
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6 Conclusions and future work 

The growth of chargeable polymer species from the surface of M-PVA (polyvinyl 

alcohol-magnetite composite) particles via Ce(IV) or ATRP led polymerization and 

the ability of amine terminated polymers to graft onto the surfaces of sulfonyl ester or 

alkyl bromide activated M-PVA particles were demonstrated in this study. 

 

These techniques were successfully applied in the synthesis of homopolymer and 

heteropolymer/mixed polyelectrolyte brush layers on M-PVA supports.  The ability of 

mixed polyelectrolyte surfaces to switch between cation and anion binding modes 

was comprehensively demonstrated in bind-elute experiments with models mixtures 

of acidic, neutral and basic proteins.  The switchable behavior of the mixed 

polyelectrolyte brush surfaces allowed elution based on change in pH.  The charge 

effects behind pH elution were possibly enhanced by physical brush expansion 

behaviour of the mixed polyelectrolyte surface, whose dimensions lay within those 

needed for brush behaviour. 

 

The findings of this project may be furthered by comparative studies of ion exchange 

capacities and binding behaviour for single brush vs. mixed brush grafted supports 

and the economic relevance of producing mixed brush modified supports for large 

scale work.  This includes application of the grafting techniques to other support 

types, especially chromatography supports.   

 

Study of the properties of supports modified with single brush surfaces vs. those 

modified with mixed brush surfaces can indicate the value of the extra cost involved 

in a second grafting stage.  In the case of ―graft to‖ techniques, the grafting of a 

second polymer typically requires a large excess of polymer, making this stage 

considerably more costly than the first graft.  For ―graft from‖ techniques a second 

graft stage does not require such an excess of grafting reagent to achieve a balance 

mixed brush grafting, so in terms of processing cost the second graft stage may be 

similar to the first.  In both cases additional graft stages adds extra cost to the 

support manufacturing process. 

 



182 
 

These extra costs may be weighed against the improvement seen in processing 

ability when using a mixed brush modified support for protein separations.  Although 

mixed brush supports may present certain advantages vis a vis pH based elution, 

these advantages might be offset by a potential loss in achievable protein binding 

capacities.  For example, a mixed brush PMAA/P2VP grafted support operating as a 

cation exchanger at pH 8 may be expected to have a lowered cation binding capacity 

due to presence of P2VP alongside the cation-exchanging PMAA chains.  Some of 

this effect may be due to the presence of positively charged P2VP sideunits, which 

weaken the overall negative charge desired at a cation binding surface.  In terms of 

binding capacity, the more important issue may be that grafting of P2VP alongside 

PMAA requires the sacrifice of surface sites which could instead be used to graft 

more PMAA.  In the context of cation exchange behaviour grafting less PMAA would 

be expected to result in lower binding capacity.  The use of mixed brushes thus can 

be predicted to impose certain limitations on the binding capacity of supports 

compared to the analogous binding on single brush modified supports.  Clearly 

further studies on binding capacity and specificity of mixed brush vs. single species 

ion exchangers is required. 

 

In order to compare the extra expense and capacity limitations expected for mixed 

brush supports with the benefits of using these supports, further research into 

comparative binding properties would be necessary.  Other studies which would give 

useful information about the economics of single and mixed brush products are 

repeated bind and elute studies, with measurement of the binding/elution properties 

of beads following successive bind and elute steps.  The magnetic susceptibility of 

supports following grafting and binding/elution can also be measured.  By combining 

bind/elute and magnetic data for supports the lifetime of these supports, and hence 

their value, can be predicted.  Additionally, the value of enhanced pH elutions seen 

in mixed brushes may be tested by further comparison with other elution methods 

(e.g. temperature elutions) and different combinations of proteins in the binding 

mixture. 

 

In terms of translating the finding of this study to industry, another area of interest 

would be the modification of chromatography beads using the grafting techniques 

described.  Chromatography beads are typically porous in structure, with a primary 
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concern being difficulty with elution and fouling due to weak fluid movement within 

the pore network.  The grafting of polelectrolyte brushes on chromatography support 

surfaces may be used as an aid in elution/cleaning processes.  One avenue of 

research could be the use of single brush basic or acidic polymers within cation or 

exchange matrices respectively, using physical expansion properties of the polymer 

brush at low or high pH to force trapped species out of the support. 

 

Of the specific grating techniques employed in this work, the Ce(IV) graft from 

initiation described in Chapter 2 appears most suitable for future modifications of 

supports for protein recovery as it has produced the highest grafting yields.  These 

translate to improved binding capacities (see Chapter 5) and it would also be 

expected that Ce(IV) grafting is the cheapest grafting method of those studied, 

requiring only one reaction step before quenching/washing and utilizing 

comparatively cheap materials for the grafting reactions. 
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7. Appendix 

7.1 Testing hydrolysis of PTBMA chains 

7.1.1 Background 

Poly(tert-Butyl methacrylate) (PTBMA) is a protected form of poly(methacrylic acid) 

(PMAA).  Reactions between the acidic MAA/PMAA groups and 2-vinyl pyridine 

groups are predicted during grafting reactions.  In order to avoid these acid-base 

reactions syntheses were devised which allowed the grafting of PTBMA and poly(2-

vinyl pyridine) (P2VP) brushes followed by acid hydrolysis or saponification (Clayden 

et al., 2001) of grafted PTBMA to produce a PMAA brush (figure 7.1). 

 

O O

C(CH3)3

RR

H+ or OH-

H2O

O O

H

RR

 

 

Figure 7.1  Hydrolysis/saponification of t-butyl ester side group to give carboxylic 

acid. 

 

Conversion of t-butyl ester side-groups has been previously demonstrated for free 

polymers (Melenevskaya, 1993) and polymer brush layers (Houbenov, 2003) but had 

not been shown for polymers grafted onto small particles.  Experimentation to 

identify and demonstrate the conversion of t-butyl groups to carboxylic acid groups 

was necessary. 

 

7.1.2 Method 

A series of hydrolysis/saponification reactions were performed and analysed using 

FTIR to find the best conditions for removal of ester sidegroups.  PTBMA grafted 

supports (5 mg) were suspended in hydrolysis/saponification solution and mixed with 

heating (1 ml, 1 h, 60oC).  The mixtures were then allowed to cool to RT and the 

supernatant was removed.  Supports were washed with water (1 ml, x3), dried and 
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analysed using FTIR.  Conversion was observed by disappearance of peaks 

associated with the t-butyl group. 

 

7.1.3 Results 

Hydrolysis reactions were attempted using p-toluenesulfonic acid (Houbenov et al., 

2003; Bruening et al., 1997) and trifluoroacetic acid as catalysts.  Saponification was 

attempted using sodium hydroxide (Clayden et al., 2001).  A range of concentration 

conditions were used, with milder hydrolysis conditions being prefable for the 

integrity of the support. 

 

 

Figure 7.2. a) PTBMA grafted M-PVA; b) PTBMA grafted M-PVA following hydrolysis 

with 1 M p-tol in DMSO 

 

Following a ―graft from‖ synthesis with Ce(IV) activation, PTBMA grafted m-PVA (5 

mg) was reacted with a solution of p-tol in DMSO (1 M, 1 ml, 60oC, 24 h).  No new 

FTIR peaks were seen following reaction with the acid, indicating that hydrolysis of 

the ester group had not occurred (figure 7.2).  The same result was seen in reactions 

2-8 (table 7.1), performed with the same mass of support and same volume of 

solution but with varied concentrations of acid/base.  Reaction with 50/50 TFA/water 

solution, however, led to loss of the characteristic t-butyl ester peaks alongside 

retention of some CH3 and carbonyl peaks.  This resulted would be expected for a 

successful hydrolysis reaction (figure 7.3). 
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Figure 7.3. a) PTBMA grafted M-PVA; b) PTBMA grafted M-PVA following hydrolysis 

with 50% TFA(aq). 

 

Loss of peaks at 1390, 1370, 1250 and 850 cm-1 are observed following reaction with 

TFA.  These wavenumbers correspond to methyl groups, primarily found on the t-

butyl ester group which is lost during hydrolysis.  

 

The carbonyl peak at 1720 cm-1 remains after hydrolysis but has become smaller 

and broader, reflecting a change from the localised ester C=O of t-butyl ester to the 

more delocalised carboxylic acid C=O of the methanoic acid side-group.  Similarly, 

the original C-O peak at 1140 cm-1 is also seen to broaden and lose height for the 

same reasons. The success of this hydrolysis method is also evident during Chapter 

5, with cationic binding behaviour absent in the PTBMA grafted support prior to 

hydrolysis but present following hydrolysis.  This indicates the successful production 

of PMAA. 
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Table 7.1.  Results for hydrolysis of Ce(IV) grafted M-PVA with acid or base 

catalysis. 

Hydrolysis 

Number 

Catalyst Solvent Catalyst 

conc. 

Loss of t-butyl 

peaks 

1 p-tol DMSO 1M No 

2 TFA DMSO 1M No 

3 p-tol 90% DMSO 

10% water 

1M No 

4 TFA 90% DMSO 

10% water 

1M No 

5 NaOH Water 1M No 

6 p-tol Water 1M No 

7 TFA Water 1M No 

9 TFA Water 50/50 (v/v) Yes 

 

 

7.1.4 Conclusion 

Of the conditions tested, only 50/50 (v/v) TFA solution in water produced hydrolysed 

grafted polymers.  Hydrolysis reaction catalysis does not involve the whole TFA or p-

toluenesulfonic acid molecule, using only the dissociated protons/hydronium ion 

components.  As catalysis only involves these small molecules, the low conversion 

under these conditions is unlikely to be due to steric hinderance by adjacent polymer 

chains.  The more likely cause is steric and electronic effects of the methyl group 

which is attached to the polymer backbone.  This methyl group hinders nucleophilic 

attack at the carbonyl carbon both sterically and by inductive effects, lowering the 

reactivity of this carbon to nucleophiles. 
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7.2 Calibration charts of monomers in DMSO (Ce(IV) 

reaction quantification) 

 

7.2.1 Method: 

Liquid samples for FTIR analysis and quantification were taken directly after reaction 

and compared to a solution containing the same proportions of monomer, nitric acid 

and DMSO as the initial reaction solution.  Spectra were scanned with background 

substitution for DMSO + nitric acid without monomer, resulting in final spectra 

showing the absorbance of monomer under these solvent conditions.  It was found 

that the presence of experimental concentrations of ACN had no immediate effect on 

monomer absorbance values, so ACN was omitted from quantification/calibration 

samples for simplicity.  Quantification was performed by multiplying the difference in 

supernatant absorbance, A, for a chosen wavenumber range by the gradient, M, 

obtained from a calibration plot of monomer volume vs. A.  (equation 7.1; table 7.2; 

figures 7.4 -7.6) 

 

V monomer = 
A(monomer) 

M
 

Equation 7.1. 

 

Table 7.2. Calibration gradients (cm-1.mg-1) chosen for quantification of monomers in 

2 ml DMSO + 150 l nitric acid. 

Monomer Wavenumber 

range (cm
-1

) 

Gradient 

(M) 

TBMA 1188-1121 3.56 x 10
-3

 

2VP 1484-1444 8.45 x 10
-4

 

 

This value for the volume of monomer consumed during reaction, V, was then used 

to calculate the number of polymer units grafted per g of M-PVA during reaction.  

The assumption that number of graft sites was equal to the number of Ce(IV) 

initiators used allowed calculation of both the intergraft spacing and, following from 

V, the average polymer chain length. 
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Figure 7.4. FTIR calibration graph for monomers in DMSO (2 ml) + nitric acid (150 

ml, 2 M) 
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Figure 7.5. FTIR spectra of DMSO (2 ml) + nitric acid (150 ml, 2 M) containing TBMA 

monomer:  a) 100 l; b) 200 l; c) 300 l; d) 400 l; e) 500 l. 
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Figure 7.6. FTIR spectra of DMSO (2 ml) + nitric acid (150 ml, 2 M) containing 2VP 

monomer:  a) 100 l; b) 200 l; c) 300 l; d) 400 l; e) 500 l. 
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7.3 Calibration charts of monomers from water into 1-butanol 

(ATRP) 

 

7.3.1 Method:  

Liquid samples for FTIR analysis and quantification were prepared by mixing the 

entire supernatant with 1-butanol (6 ml) and NaOH solution (10 M, 1 ml) for 60 s 

after ATRP reaction and then allowing the mixture to separate for 0.5 h.  The organic 

phase was then analysed with FTIR, using the organic phase from a two phase 

mixture containing 1-butanol (6 ml), NaOH (10 M, 1 ml) and water (5 ml). 

 

A(monomer) values for the supernatant following ATRP reaction were found by 

comparing a liquid sample of the final supernatant with a liquid sample containing the 

same reagent quantities as the starting supernatant.  Calibration samples were 

prepared by mixing monomer with 1-butanol (6 ml), NaOH solution (10 M, 1 ml) and 

water (5 ml) for 60 s, then leaving to settle for 0.5 h and analysing the organic phase 

with FTIR (figures 7.7-7.9; table 7.3).  A values and calibration gradients were then 

used to calculate monomer consumption, mass of graft polymer per g of M-PVA and 

average polymer chain lengths as with Ce(IV) grafted products (see appendix 7.2). 

 

Table 7.3. Calibration gradients (cm-1.mg-1) chosen for quantification of monomers in 

1-butanol. 

 

Monomer Wavenumber 

range (cm
-1

) 

Gradient 

TBMA 1377-1357 1.48 x 10
-1

 

2VP 1600-1575 4.17 x 10
-1
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Figure 7.7. FTIR calibration graph for monomers in 1-butanol (6 ml) 
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Figure 7.8. FTIR spectra of 1-butanol (6 ml) containing TBMA monomer:  a) 1 ml; b) 

2 ml; c) 3 ml; d) 4 ml; e) 5ml 
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Figure 7.9. FTIR spectra of 1-butanol (6 ml) containing 2VP monomer:  a) 1 ml; b) 2 

ml; c) 3 ml; d) 4 ml; e) 5ml 
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7.4 Calibration charts of „graft to‟ polymers from acetone into 1-

butanol  

 

7.4.1 Method:  

 

Liquid samples for FTIR analysis and quantification were taken directly after reaction 

and acetone was removed by evaporation (70 oc, 3 h).  The unevaporated polymer 

was then mixed with 1-butanol (1ml, 600 s) and this solution was analysed using 

FTIR.  Peak absorbances were compared to liquid samples prepared from the 

unreacted graft-to starting reagent (figures 7.10-7.12; table 7.4).  Calibration data 

from samples of polymer in 1-butanol was then combined with A values for the 

graft-to reaction supernatants to find polymer consumption and mass of polymer 

grafted per g M-PVA.  This data was combined with polymer molecular weight data 

to calculate intergraft spacing values for the grafted polymers. 

 

Table 7.4. Calibration gradients (cm-1.mg-1) chosen for quantification of monomers in 

1-butanol. 

Monomer Wavenumber 

range (cm
-1

) 

Gradient 

TBMA 1740-1680 3.97 x 10
-3

 

2VP 1610-1580 1.27 x 10
-3
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Figure 7.10. FTIR calibration graph for polymers in 1-butanol (1 ml) 
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Figure 7.11. FTIR spectra of 1-butanol phase (1 ml) containing PTBMA.   

a) 2 mg; b) 4 mg; c) 6 mg; d) 8 mg; e) 10mg. 
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Figure 7.12. FTIR spectra of 1-butanol phase (1 ml) containing P2VP.  

a) 2 mg; b) 4 mg; c) 6 mg; d) 8 mg; e) 10mg. 



200 
 

7.5 Comparison of bromine decay in DMSO to bromine decay in 

water – acidity of bromine in DMSO 

 

7.5.1 Background 

Br2 and DMSO undergo an equilibrium reaction with one another (Aida et al., 1976).  

This reaction forms a -bromo-sulfoxide and bromic acid (figure 7.13). 

 

S O

H3C

H3C

+ Br2 S O

H3C

BrH2C

+ HBr

 

Figure 7.13.  Reaction between DMSO and Br2, with production of bromic acid. 

 

Production of bromic acid leads to acidification of the solution, with the extent of 

acidficiation dependent upon the concentration of Br2 and DMSO.  For partial 

bromination of AGE sites in DMSO, consumption of Br2 during this reaction may 

pose a problem for quantitative creation of dibrominated sites.  The extent of Br2 

consumption prior to reaction with the surface allyl group may have a significant 

effect on the success and control of partial bromination reactions.  For this reason 

bromic acid production and Br2 absorbance decay were monitored for solutions of 

Br2 in DMSO. 

 

7.5.2 Method 

Distilled DMSO (20 ml) was placed in a 50 ml conical flask and its pH measured.  An 

aliquot of Br2 (5 l) was added to the DMSO with mixing (60 s) and the solution pH 

was re-measured.  This process was repeated until a total of 80 l Br2 had been 

added. 

 

7.5.3 Results 

As Br2 is added to DMSO, the acidity of the solution increases (figure 7.14).  This 

indicates the production of bromic acid through reaction between DMSO and Br2, as 

expected from the literature. 



201 
 

 

Figure 7.14.  pH change of DMSO solution following addition of bromine. 

 

The formula [H+] = 10(-pH) gives the concentration of protons in the Br2/DMSO 

solution at each stage (figure 7.15).  This calculation does not take into account the 

extra volume provided by bromine. 
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Figure 7.15.  Acid production as Br2 is added to DMSO solution. 

 

 [H+] and Br2 addition show a clear linear relationship.  The molar ratio Br2 added:H+ 

released is approximately 5:1, indicating that most bromine is not converted into 

bromic acid within the timescale of this experiment. 
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7.6 Comparison of bromine decay in DMSO to bromine decay in 

water – A410 of bromine in DMSO 

 

7.6.1 Background 

Br2 has a characteristic absorbance at 410 nm.  Progression of the Br2/DMSO 

reaction over time was followed by measuring A410 decay, allowing analysis of the 

effect of mixing time on the partial bromination solution. 

 

7.6.2 Method 

Br2 (2 l) was pipetted into water (10 ml) and mixed (15 s).  Timing started once 

mixing of Br2 began.  An aliquot (1 ml) of the Br2/DMSO solution was then 

transferred to a cuvette and its absorbance measured at 410 nm at 30 seconds 

intervals, over a period of 600 seconds.  The cuvette was covered with a plastic film 

to minimise evaporation of bromine to the surroundings. 

 

7.6.3 Results 

 

Figure 7.16.  Decay of characteristic Br2 absorbance in bromine-DMSO solution. 
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Some variation in A410 is seen during the experiment (figure 7.16).  Preparation of 

the Br2/DMSO solution and addition to M-PVA during partial bromination is typically 

performed within a timescale of 120 s.  Figure 7.13 indicates that Br2 loss during 120 

s equates to 

  

 0.86-0.83 ×100

0.86
 = 3.5 % 

Equation 7.2. 

 

3.5% of total bromine added under these conditions.  As DMSO is in excess, the rate 

of this reaction is expected to be first-order with respect to Br2 in a DMSO solvent.  

This means that the figure of 3.5 % total bromine consumed during 120 s can be 

expected for all of the dilute solutions of Br2 in DMSO used for partial bromination.  

As the partial bromination reaction leads to consumption of Br2 it is expected that the 

rate of Br2 reaction with DMSO slows following mixing with M-PVA.  It is also likely, 

following Le Chatelier‘s principle, that following removal of Br2 from solution by the 

partial bromination reaction bromic acid and -bromo-sulfoxide will react together to 

produce more Br2.  Hence the expected loss of Br2 for use in partial brominations is 

no more the 3.5 % by reaction with DMSO, and probably much less due to the 

reverse reaction of bromic acid and -bromo-sulfoxide to produce Br2. 
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7.7 Comparison of bromine decay in DMSO to bromine decay in 

water – acidity of bromine in water 

 

7.7.1 Background 

Reacok.ction between water and bromine in an aqueous bromine solution produces 

hydrobromous and bromic acids, leading to a decreased Br2 concentration and 

increased acidity (figure 7.14). 

 

+ Br2 + HBrH2O HBrO  

Figure 7.14. Reaction between water and bromine producing bromic and 

hydrobromous acids 

 

7.7.2 Method 

Distilled water (20 ml) was placed in a 50 ml conical flask and its pH measured.  An 

aliquot of Br2 (5 l) was added to the DMSO with mixing (60 s) and the solution pH 

was re-measured.  This process was repeated until a total of 80 l Br2 had been 

added. 

 

7.7.3 Results 

As Br2 is added to water, the pH of the solution decreases due to production of 

bromic/hydrobromous acids (figure 7.17) 
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Figure 7.17. pH change of aqueous solution following addition of bromine. 

 

The formula [H+] = 10(-pH) gives the concentration of protons in the Br2/water solution 

at each stage.  This calculation does not take into account the extra volume provided 

by bromine. 
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Figure 7.18.  Acid production as Br2 is added to aqueous solution. 

 

[H+] and Br2 addition show a clear linear relationship (figure 7.18).  The molar ratio 

Br2 added:H+ released is approximately 5:1, indicating that 10% of Br2 added is 

converted into bromic/bromous acid during the timescale of this experiment (approx. 

0.5 h). 
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7.8 Comparison of bromine decay in DMSO to bromine decay in 

water – A410 of bromine in water 

 

7.8.1 Background 

As with DMSO/Br2 reaction, the disappearance of Br2 can be followed with 

spectrophotometry by monitoring the decrease in the characteristic absorbance by 

Br2 at 410 nm. 

 

7.8.2 Method 

Br2 (2 l) was pipetted into water (10 ml) and mixed (15 s).  Timing started once 

mixing of Br2 began.  An aliquot (1 ml) of the Br2/water solution was then transferred 

to a cuvette and its absorbance measured at 410 nm at 30 seconds intervals over a 

period of 600 seconds.  The cuvette was covered with a plastic film to minimise 

evaporation of bromine to the surroundings. 

 

7.8.3 Results 

 

Figure 7.19.  Decay of characteristic Br2 absorbance in bromine-water solution. 
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Very little variation in A410 is seen during the experiment, with the total loss of initial 

Br2 being calculated as (equation 7.3) 

 

 0.51-0.50 ×100

0.86
 = 1.0 % 

Equation 7.3. 

 

As with the DMSO/Br2 solution, the effective loss of available Br2 for partial 

bromination is probably less due to reverse reaction production of Br2.  So for partial 

halohydrin formation reactions it is expected that over 99 % of the inital Br2 added is 

available for electrophilic addition. 
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7.9 Calculation of average Rf for mixed brushes 

 

7.9.1 Background 

Estimations of the overlap between brushes grafted at the M-PVA surface and their 

extent of their subsequent brush behaviour can be performed by calculating the 

relationship between Flory Radius, Rf, and intergraft spacing, D.  When the condition 

2Rf/D > 1 is met extended brush behaviour is expected, with higher values of 2Rf/D 

indicating significant brush behaviour.  Average Flory Radius for a set of grafted 

polymers can be calculated using equation 7.4 where 0.6 is a standard value for the 

Flory Exponent (Katao and Wadati, 2007), L is the length of the average chain in 

monomer units and Am is the monomer size. 

 

Rf ≈ AmL
0.6

 

Equation 7.4. 

 

For a mixed brush a complication arises due to the presence of more than one 

monomer species, leading to more than one Am value.  In order to calculate an 

average Rf value, and hence an average 2Rf/D value for the entire mixed brush, it is 

necessary to find Rf with respect to the average Am value.  In this case Am is not 

simply the average of the monomer sizes for all species present, but is the average 

monomer size when the proportion of each monomer species in the brush layer is 

taken into account. 

 

7.9.2 Method 

Three techniques for obtaining an average Rf were used, based upon 

i) Averaging Rf in relation to the number of monomer units of each 

species present in the grafted polymer layer. 

ii) Taking overall Rf as a number average of the Rf values calculated for 

each grafted polymer species, with Rf being averaged according to the 

number of polymer chains of each species present. 

iii) Calculating overall Rf as a ‗weighted‘ average of the Rf values 

calculated for each polymer species and the number of chains of each 



211 
 

species present, with the average weighted towards chains with higher 

Rf values. 

 

Method i) was based upon equation 7.5 

Rf av = 
Rf P2VP .n P2VP + Rf(PMAA).n PMAA  

n P2VP + n PMAA  
 

Equation 7.5 

 

Where Rf(P2VP) and Rf(PMAA) are the Flory radii of P2VP and PMAA chains 

respectively while n(P2VP) and n(PMAA) are the number of monomer units of each 

species grafted. 

 

Method ii) used equation 7.6 

Rf av = 
Rf(P2VP).N P2VP + Rf(PMAA).N PMAA  

N P2VP + N PMAA  
 

Equation 7.6 

 

Where N(P2VP) and N(PMAA) are the number of chains of each species grafted, 

estimated from the number of initiator groups used in ‗graft from‘ methods and the 

mass of polymer grafted in ‗graft to‘ methods. 

 

And method iii) used equation 7.7 

Rf av = 
Rf P2VP 2.N P2VP + Rf PMAA  2.N PMAA  

Rf(P2VP).N P2VP + Rf(PMAA ).N PMAA  
 

Equation 7.7 

 

Equations 7.6 and 7.7 were based upon number weight and molecular weight 

averaging methods as used in describing polymer molecular weights. 

 

7.9.2 Results 

Average Rf values were calculated for all supports for which quantification 

information was available.  The two most interesting sets of results are shown here.  

Table 7.5 describes the supports used in binding studies (Chapter 5), while table 7.6 

shows values for supports synthesised using a combination of ATRP and graft to at 
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brominated sites (Chapter 4).  These results demonstrate that 2Rf/D values are 

reasonably consistent for all averaging techniques when Rf and D values for the two 

grafted species are similar.  However, when Rf and D values for the two species 

differ, the three averaging techniques  can produce vastly different results.   

 

In the case of technique i) averaging with respect to number of monomers present 

can results in unrealistically high values of 2Rf/D for the mixed brush (e.g. an 

average mixed brush 2Rf/D value of 49.2 when the component brushes have values 

of 3.8 and 11.2 respectively).  In the case of Table 7.6 this is due to the average Rf 

value being heavily influenced by the long GT chain length while the D value is more 

representative of the small ATRP intergraft spacings.   

 

For technique ii) Table 7.6 once again shows unrealistic 2Rf/D values, with supports 

3 and 4 showing average 2Rf/D values that are lower than one of their components.  

These values cannot be correct as mixed brushes are certain to involve more steric 

crowding, and hence higher 2Rf/D values, than the grafted component species. 

 

Due to the unrealistic results obtained from averaging with methods i) and ii) the 

technique chosen for Rf averaging was iii), which produced much more realistic Rf 

values for the mixed brush ATRP/GT products. 
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Table 7.5. Data for polyelectrolyte grafted supports (see Chapter 5, Table 4.2).  Rf values obtained using method i) averaging 

according to number of monomer units; ii) averaging according to number of polymer chains with equal weighting; iii) averaging 

according to number of polymer chains, weighted towards those with higher Rf. 

 

 

Name 

 

P2VP 

(mol/g) 

 

P2VP 

Rf 

(nm) 

 

P2VP 

D 

(nm) 

 

P2VP 

2Rf/D 

 

PMAA 

(mol/g) 

 

PMAA 

Rf 

(nm) 

 

PMAA 

D 

(nm) 

 

PMA 

2Rf/D 

Method i) Method ii) Method iii) 

MIX 

Rf 

(nm) 

MIX 

D 

(nm) 

MIX 

2Rf/D 

MIX 

Rf 

(nm) 

MIX 

D 

(nm) 

MIX 

2Rf/D 

MIX 

Rf 

(nm) 

MIX 

D 

(nm) 

MIX 

2Rf/D 

CE-MX1 4.88 5.48 0.82 13.4 4.56 2.59 0.82 6.3 4.08 0.58 14.1 4.03 0.58 14.0 4.55 0.58 15.7 

CE-MX2 3.34 4.36 0.82 15.1 6.11 3.09 0.82 7.6 3.54 0.58 12.2 3.73 0.58 12.9 3.84 0.58 13.3 

TR-MX1 1.35 13.04 3.20 8.1 1.81 5.29 2.36 4.5 8.60 1.90 9.1 8.01 1.90 8.4 9.72 1.90 10.2 

TR-MX2 2.44 13.04 2.38 11.2 1.50 5.29 3.26 4.1 10.88 1.92 11.3 10.35 1.92 10.8 11.66 1.92 12.1 

AT-MX1 3.84 1.25 0.26 9.5 3.40 0.57 0.26 4.3 0.94 0.19 10.0 0.91 0.19 9.8 1.04 0.19 11.2 

AT-MX2 2.67 1.29 0.26 9.8 4.03 0.50 0.26 3.8 0.98 0.19 10.4 0.89 0.19 9.6 1.07 0.19 11.5 
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Table 7.6.  Grafting yield following graft-to and ATRP reactions between amine terminated polymer and 50% brominated M-PVA 

(see Chapter 4). Rf values from method i) averaging by number of monomer units; ii) average from number of polymer chains with 

equal weighting for Rf values; iii) averaging according to number of polymer chains, weighted towards those with higher Rf. 

 

Support 

 

Stage 

 

Method 

 

Polymer grafted 

Method i) Method ii) Method iii) 

D 

(nm) 

Rf 

(nm) 

2Rf/D D 

(nm) 

Rf 

(nm) 

2Rf/D D 

(nm) 

Rf (nm) 2Rf/D 

1 Step 1 ATRP P2VP 0.26 1.06 8.0 0.26 1.06 8.0 0.26 1.06 8.0 

1 Step 2 Graft-to PMAA 2.27 5.29 4.7 2.27 5.29 4.7 2.27 5.29 4.7 

1 Finished  [(P2VP)x + (PMAA)y] 0.26 2.72 20.7 0.26 1.11 8.5 0.26 1.33 10.1 

2 Step 1 ATRP PMAA 0.26 0.50 3.8 0.26 0.50 3.8 0.26 0.50 3.8 

2 Step 2 Graft-to P2VP 2.33 13.04 11.2 2.33 13.04 11.2 2.33 13.04 11.2 

2 Finished  [(P2VP)x + (PMAA)y] 0.26 6.46 49.2 0.26 0.66 5.0 0.26 3.64 27.8 

3 Step 1 Graft-to P2VP 2.60 13.04 10.0 2.60 13.04 10.0 2.60 13.04 10.0 

3 Step 2 ATRP PMAA 0.26 0.48 3.6 0.26 0.48 3.6 0.26 0.48 3.6 

3 Finished  [(P2VP)x + (PMAA)y] 0.26 5.97 45.5 0.26 4.6 4.6 0.26 3.23 24.6 

4 Step 1 Graft-to PMAA 2.67 5.29 4.0 2.67 5.29 4.0 2.67 5.29 4.0 

4 Step 2 ATRP P2VP 0.26 1.11 8.4 0.26 1.11 8.4 0.26 1.11 8.4 

4 Finished  [(P2VP)x + (PMAA)y] 0.26 2.37 18.0 0.26 1.15 8.7 0.26 1.29 9.8 
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7.10 Effect of bead curvature on intergraft distances 

 

7.10.1 Theory 

 
The effect of bead curvature on intergraft spacing can be modelled by a circle (figure 
7.20). 

 
Figure 7.20.  Intergraft distances in an M-PVA bead modelled as circle. 

 

Where the distance between between graft sites along the particle surface, dradius (as 

used in chapters 2-5) can be compared to the distance between graft sites as 

described by the minimum chord length between sites, dchord.  From figure 7.18 the 

surface and chordal intergraft distances can be related to the circumference 

(dcircumference) radius (dradius) and angle between the two graft points ( radians) by 

equations 7.8-7.10. 

Dchord = 2.Dradius.sin 
θ

2
  

Dcircumference = 2..Dradius 

Dsurface

Dcircumference

 = 
θ

2.
 

Equations 7.8-7.10 

 

By combining these equations 7.8-7.10 it can be seen that 

 

D
chord

D
circumference

D
radius



D
surface
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Dchord=2.Dradius.sin  
Dsurface

2.Dradius

  

Equation 7.11 

 

For the M-PVA beads used in this project r = 1000 nm which means that equation 

7.11 can be simplified to give equation 7.12. 

Dchord=2000.sin  
Dsurface

200
  

Equation 7.12. 

 

From this the relationship between Dsurface and Dchord can easily be calculated for the 

grafted M-PVA beads. 

 

 

7.10.2 Results 

 

Re-calculation of the intergraft distances for the supports used in chapter 5 gives the 

values seen in table 7.7.  For the intergraft spacings seen during this study, chordal 

(Dchord) and surface (Dsurface) distances are effectively the same.  This results from 

the much larger value of Dradius, leading to very little curvature of the surface between 

adjacent graft points.  A significant difference between Dchord and Dsurface will only be 

expected when the scale of intergraft distances is closer to that of Dradius. 

 
 
 
 
 



217 
 

Table 7.7.  Calculation/comparison of surface and chordal distances for the supports used in chapter 5.  Note that surface 

and chordal values are the same for the distances used here. 

  Surface distance 

(Dsurface) 

Chordal distance 

(Dchord) 

 Surface distance 

(Dsurface) 

Chordal distance 

(Dchord) 

Name Method Graft 

order 

P2VP 

Rf (nm) 

P2VP 

D (nm) 

P2VP 

2Rf/D 

P2VP 

D (nm) 

P2VP 

2Rf/D 

PMAA 

Rf (nm) 

PMAA 

D (nm) 

PMAA 

2Rf/D 

P2VP 

D (nm) 

P2VP 

2Rf/D 

CE-AX Ce(IV) 

(Ch. 2) 

P2VP 

only 

5.48 0.82 13.4 0.82 13.4 - - -   

CE-CX Ce(IV) 

(Ch. 2) 

PMAA 

only 

- - - - - 3.09 0.82 7.6 0.82 7.6 

CE-MX1 Ce(IV) 

(Ch. 2) 

1.P2VP 

2.PMAA 

5.48 0.82 13.4 0.82 13.4 2.59 0.82 6.3 0.82 6.3 

CE-MX2 Ce(IV) 

(Ch. 2) 

1.PMAA 

2.P2VP 

4.36 0.82 15.1 0.82 15.1 3.09 0.82 7.6 0.82 7.6 

TR-MX1 Tresyl 

(Ch. 3) 

1.P2VP 

2.PMAA 

13.04 3.20 8.1 3.20 8.1 5.29 2.36 4.5 2.36 4.5 

TR-MX2 Tresyl 

(Ch. 3) 

1.PMAA 

2.P2VP 

13.04 2.38 11.2 2.38 11.2 5.29 3.26 4.1 3.26 4.1 

AT-MX1 ATRP 

(Ch. 4) 

1.P2VP 

2.PMAA 

1.10 0.26 9.1 0.26 9.1 0.59 0.26 4.0 0.26 4.0 

AT-MX2 ATRP 

(Ch. 4) 

1.PMAA 

2.P2VP 

1.29 0.26 9.8 0.26 9.8 0.50 0.26 3.8 0.26 3.8 
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