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ABSTRACT
Nuclear data uncertainties in the production of p nuclei in massive stars have been quantified
in a Monte Carlo procedure. Bespoke temperature-dependent uncertainties were assigned to
different types of reactions involving nuclei from Fe to Bi. Their simultaneous impact was
studied in post-processing explosive trajectories for three different stellar models. It was found
that the grid of mass zones in the model of a 25 M� star, which is widely used for investigations
of p nucleosynthesis, is too crude to properly resolve the detailed temperature changes required
for describing the production of p nuclei. Using models with finer grids for 15 and 25 M� stars
with initial solar metallicity, it was found that most of the production uncertainties introduced
by nuclear reaction uncertainties are smaller than a factor of 2. Since a large number of rates
were varied at the same time in the Monte Carlo procedure, possible cancellation effects of
several uncertainties could be taken into account. Key rates were identified for each p nucleus,
which provide the dominant contribution to the production uncertainty. These key rates were
found by examining correlations between rate variations and resulting abundance changes.
This method is superior to studying flow patterns, especially when the flows are complex, and
to individual, sequential variation of a few rates.

Key words: nuclear reactions, nucleosynthesis, abundances – stars: abundances – supernovae:
general.

1 IN T RO D U C T I O N

It is well established that the astrophysical origin of the majority of
nuclides beyond Fe requires at least two neutron-capture processes,
the s process and the r process (Burbidge et al. 1957; Cameron
1957). The abundances of a comparatively small number of nu-
clides, however, cannot be explained by those processes. While
older literature counted 35 nuclides, called the p nuclei, being prob-
lematic in the context of neutron-capture processes, more recent
work also suggests strong s-process contributions to 164Er, 152Gd,
and 180Ta (Arlandini et al. 1999), and combined s- and r-process
contributions to 113In and 115Sn (Nemeth et al. 1994). The nucleus
138La is produced by neutrino-induced reactions in core-collapse su-
pernova explosions of massive stars and also 180Ta may have some
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neutrino-induced contributions (Woosley et al. 1990). This leaves
the origin of 30 proton-rich isotopes to be explained.

For detailed explanations of the p nuclides and their possible
production in various astrophysical sites, see e.g. the reviews by
Arnould (2003), Rauscher et al. (2013), Pignatari et al. (2016), and
references therein. Here, only a brief account of the most important
facts is provided, as relevant to establish the context of our present
study.

Solar system p abundances have been derived from geological
and meteoritic data. Understanding the origin of the p nuclides is
challenging because they cannot be directly observed in stars and su-
pernova remnants, as their contribution to elemental abundances is
small and no element is dominated by a p isotope. Therefore, possi-
ble nucleosynthesis processes have to be studied in models without
the possibility of direct verification. Additionally, terrestrial and
meteoritic p abundances have to be derived from Galactic chemi-
cal evolution (GCE) models, integrating the production of different
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sites over the history of the Galaxy. Moreover, the solar compo-
sition may not follow the average galactic composition, which is
calculated in GCE models. Model uncertainties are introduced in
each simulation step but the initial uncertainties are due to the as-
trophysical reaction rates used in the nuclear reaction networks. It
is the aim of this work to quantify the contribution of nuclear un-
certainties to the production uncertainties of selected models. It is
useful for nucleosynthesis studies to directly see the uncertainties in
the abundances of modelled nucleosynthesis processes, as they will
guide theoretical and experimental nuclear scientists in improving
the knowledge of selected rates, and they can also be included and
propagated in GCE models. In order to obtain a quantification of
final abundance uncertainties, we apply a Monte Carlo method of
varying rates according to their nuclear uncertainties. The method
can be generally applied to any nucleosynthesis environment which
is studied with reaction networks and also allows identification of
key rates in a self-consistent and automatic manner. Here, we apply
it to the synthesis of p nuclei but will also study further processes
in subsequent papers.

As for the p nuclei, it was suggested that they can be produced by
photodisintegration reactions of pre-existing seed nuclei in the outer
shells of exploding massive stars (Burbidge et al. 1957; Cameron
1957; Arnould 1976; Woosley & Howard 1978; Rayet et al. 1995;
Rauscher et al. 2002). Although this γ process occurs naturally in
stellar explosions and thus is able to produce the bulk of p nuclides
within a single site, there are longstanding problems in obtaining
p abundances consistent with Solar system amounts for at least
two p-nucleus mass ranges: light ones with mass number A < 110,
heavier ones, in the mass range 150 ≤ A ≤ 165 (Rauscher et al.
2002). These deficiencies in p-nucleus production have triggered a
large number of investigations in astrophysics and nuclear physics,
both theoretically and experimentally. It is commonly assumed that
the underproduction in the heavier mass range may be cured by
improved nuclear physics input whereas a different astrophysical
site may be required for the light p nuclei. A promising alternative
site is the explosion of a mass-accreting white dwarf in a ther-
monuclear supernova (Howard, Meyer & Woosley 1991). It has
been shown that the full range of p nuclei could be produced in
such an explosion but a strong production of s-process seeds in
the accreting matter is required (Goriely et al. 2005; Kusakabe,
Iwamoto & Nomoto 2011; Travaglio et al. 2011). Currently, there
are no self-consistent simulations of the accretion, s-process en-
hancement, and explosion, but rather a high level of s-process seeds
has to be assumed.

In this work, we focus on the γ process in massive stars, which
depends on the assumed initial abundances and the stellar mass
(Rauscher et al. 2002, 2013). It is also influenced by the modelled
stellar evolution and explosion, and thus depends on the stellar
model code. To explore both of these dependences, we perform
production uncertainty analyses in two different basic stellar models
and for two progenitor masses. A similar analysis of the synthesis
of p nuclei in a 2D thermonuclear white dwarf explosion currently
is in progress and will be presented in a forthcoming publication.

In addition to the stable p nuclides, the γ process also produces
unstable isotopes with relatively long half-life (see e.g. Travaglio
et al. 2014). These are important in so far as a number of now
extinct radiogenic nuclides were present in the early Solar system.
In particular, signatures of the presence of 92Nb, 97, 98Tc, and 146Sm
have been found, detected as excess of their stable daughter isotopes.
For a detailed account of these measurements and their implication
for GCE, see e.g. chapter 4 of Rauscher et al. (2013). Because
of their importance, we also study the production of 92Nb, 146Sm,

and 97, 98Tc in our models and provide the resulting production
uncertainties in Section 3.3.

2 R E AC T I O N R AT E VA R I AT I O N

2.1 The Monte Carlo approach

The Monte Carlo (MC) method of using random number input to
numerical simulations has a long history in science and engineering.
It has been used relatively seldomly in astrophysical investigations
due to the demand on computation time per run in hydrodynam-
ical simulations (for application to nuclear astrophysics, see e.g.
Longland et al. 2010; Longland, Iliadis & Karakas 2012; Iliadis
et al. 2015). With the advent of fast computers and the use of post-
processing techniques it has become feasible, though, to perform a
statistically sufficient number of MC iterations even with reaction
networks containing several thousand nuclei.

Here, we employ a straightforward application of the MC method
by drawing sets of random numbers to simultaneously vary reaction
rates within predefined uncertainty limits. This is described in detail
in Sections 2.2 and 2.3. In this way, the initial nuclear uncertain-
ties are mapped on to uncertainties in the final abundances via the
reaction network.

Using such an MC approach allows the final uncertainties to be
quantified, even when many individual reactions contribute to the
abundance of a given nucleus. While the inspection of reaction flows
in flow plots may be sufficient when only few reactions contribute
within the range of a well-defined reaction path, the effect of com-
plex flow patterns – such as those arising in the high-temperature
environments of explosive nucleosynthesis – and the combined ac-
tion of uncertainties can only be addressed using an MC method.
The technique also makes possible the identification of those reac-
tions that give rise to the largest uncertainties in individual isotope
final abundances, as is presented in Section 2.4.

2.2 The PizBuin framework

Our MC framework PizBuin consists of an efficient reaction net-
work code and a parallelized MC driver providing random number
input with the possibility to choose the number of varied rates and
the random distributions to draw from. Another feature is the possi-
bility to define temperature-dependent uncertainty factors for each
rate individually. This is further explained in Section 2.3.2. Tools to
analyse the MC output complement the code suite.

A nuclear reaction network is a stiff set of coupled differen-
tial equations describing the temporal change Ẏi = dYi/dt in the
abundance of a given nucleus i. The network includes all reactions
affecting the abundance of a nucleus (Rauscher 2011),

Ẏi = 1

ρNA

⎧⎨
⎩

∑
j

1
i Kj iλ

∗
j +

∑
j

2
i Kj ir

∗
j

⎫⎬
⎭ , (1)

where NA is Avogadro’s number, 1 ≤ i ≤ m numbers the nucleus,
iλ

∗
j is the stellar jth rate for destruction or creation of the ith nucleus

without a nuclear projectile involved (this includes spontaneous
decay, lepton capture, photodisintegration), and i r

∗
j is the stellar

rate of the jth reaction involving a nuclear projectile and creating
or destroying nucleus i. The quantities 1

i Kj and 2
i Kj are positive or

negative integer numbers specifying the number of nuclei i produced
or destroyed, respectively, in the given process. Similarly, three-
body reactions can be included but they are not shown here because
they were not varied. As shown below, the stellar rates λ∗ and r∗
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contain the abundances of the interacting nuclei and depend on the
plasma temperature T. Furthermore, the abundance change depends
on the density ρ of the plasma. A post-processing trajectory defines
T and ρ as a function of time and thus the above reaction network
has to be solved in each timestep when following the evolution of
abundances through a nucleosynthesis process. This implies that an
m × m matrix has to be inverted in each timestep. The stiffness of the
set of differential equations requires small timesteps. The inversion,
however, can be made more efficient due to the fact that this is a
highly sparse matrix and sophisticated mathematical techniques can
be applied.

The two-body rate i r
∗
j = r∗

Aa for a reaction a + A between a
projectile a and the nucleus A is given by

r∗
Aa = YAYa

1 + δAa

ρ2N2
A〈σ ∗

Aav〉 , (2)

with 〈σ ∗
Aav〉 being the reactivity, i.e. the stellar cross-section (in-

cluding reactions on thermally populated excited states in A) folded
with the velocity distribution of the interacting particles.

Rates of two-body reactions including only leptons and pho-
todisintegrations can be expressed similarly to decays in a rate
iλ

∗
j = YiNAL∗

j . For simple decays, L∗ = (ln 2)/T ∗
1/2 is related to

the (stellar) half-life. It has to be noted that T ∗
1/2 depends on the

plasma temperature and thus L∗ is not always just a constant. For
photodisintegrations, L∗(T ) is derived from integrating the
stellar photodisintegration cross-section (including the effect of
thermally populated excited states) over a Planck distribution. Al-
ternatively, it can be derived from the capture rate as shown below in
equation (4). Rates for reactions with leptons (for example, electron
captures) can also be written in this form, with L∗(T , Ye) depending
on temperature and electron abundance Ye.

It is important to remember that forward and reverse rates are
connected by the reciprocity relation for nuclear reactions, also
called detailed balance. While for weak interactions the inverse
processes are not relevant in the current context, temperatures are
sufficiently high to allow competition between captures and pho-
todisintegrations as well as between forward and reverse channels
of other reactions. The existence of a reciprocity relation for stel-
lar rates is also important when applying multiplicative variation
factors because both reaction directions have to be changed by the
same factor. This can easily be seen when writing the reverse re-
activity (for the reaction F + b → a + A) in terms of the forward
reactivity of the reaction A + a → b + F,

〈σ ∗
F bv〉

〈σ ∗
Aav〉 = ga

gb

GA

GF

(
mAa

mBb

)3/2

e−QAa/(kBT ) , (3)

where QAa is the reaction Q-value of the forward reaction (Rauscher
2011). Similarly, photodisintegration C + γ → a + A is related to
capture A + a → γ + C through

L∗
γ

〈σ ∗
Aav〉 = ga

GA(T )

GC(T )

(
mAakBT

2π�2

)3/2

e−QAa/(kT ) . (4)

These equations make use of the spin factors gx = 2Jx + 1 of pro-
jectile and ejectile, respectively, and of the partition functions G(T)
of the participating nuclei, also depending on the plasma temper-
ature T. The nuclear partition function G(T) is defined, e.g. in
Rauscher & Thielemann (2000). The reduced mass of projectile
and target nucleus is denoted by mAa and kB is the Boltzmann con-
stant. The above relations only apply to stellar reactivities, not to
those derived from cross-sections only including ground states (g.s.)
of target nuclei. Thus, they do not apply to reactivities derived from
experimental cross-sections, unless reactions on excited states do

not contribute. A criterion for this will be discussed and used in
Section 2.3.

From equations (3) and (4), it is directly seen that multiplying
the stellar reactivity 〈σ ∗

Aav〉 by a given factor will also increase
the reactivity of the reverse reaction by the same factor. There-
fore, the variation factors derived from the output of the MC driver
(see Section 2.3.2) are applied to both reaction directions in each
MC iteration and the final abundances calculated by following the
trajectories in the reaction network with modified rates.

The MC driver passes a vector vz to the network code. This vector
contains z random numbers between 0 and 1 for the variation of the
chosen z rates to be varied (out of the n reactions). The random
values are drawn from preset random distributions. It is possible to
choose a different distribution (uniform, normal, lognormal, ...) for
each rate. When calculating a reaction rate for a trajectory timestep,
the network code then maps the random numbers to a variation factor
for each rate. Again, the mapping can be different for each rate,
depending on preselected choices but also on plasma temperature.
Details are given in Section 2.3.2.

Each MC iteration consists of running all available trajectories
(see Section 3.1). At the end of each trajectory run, the final abun-
dances of selected nuclei are recorded. For the present application
to the γ process, these are the ones of the p nuclei and of a few long-
lived radioactivities. The combined final abundance data are finally
analysed to find the abundance variations, and thus the production
uncertainties based on nuclear uncertainties, caused by the variation
of the reaction rates. These are the results presented in Section 3.2.
A correlation analysis of the data is also used to identify key rates,
as explained in Section 2.4, with the results shown in Section 3.4.

It should be kept in mind that the required computational time is
largely independent of the number of varied reaction rates. Rather,
it is determined by the time taken to follow the reaction network
through a given trajectory, the number of trajectories, and the num-
ber of MC iterations required to obtain statistical significance. The
solution time for the network is determined by the network size, i.e.
the number m of nuclei considered and the number n of reactions
connecting them. Each MC iteration initially sets up the vector vz

for the variation and then runs the trajectory. That means that in
each run all z rates are varied. Choosing a sufficiently large num-
ber of iterations ensures that the space of possible combinations is
largely sampled with a comparatively small number of variations.
Using test calculations, we confirmed that 10 000 variations, i.e.
MC iterations, are sufficient. This also means that each rate is var-
ied 10 000 times. With a given reaction network and trajectory, this
requires always the same time, regardless of the size of z.

2.3 Uncertainties

2.3.1 Definitions

It is not straightforward to define the uncertainties inherent in model
calculations. This goes even beyond the distinction between statis-
tical and systematic errors as used, e.g. in assigning error bars to
measurements. This has been discussed, e.g. in Rauscher (2012a).
Two main sources of errors can be identified, the model itself and
its input. Whenever input is derived from experimental data it will
carry their statistical and systematic errors, which will be propagated
through the model and into the final results. The error introduced
by the choice of model, on the other hand, is difficult to quantify
as the associated error is not statistical. Rather, the underlying as-
sumptions have to be examined and an estimation has to be made
about the inherent uncertainty. This estimate can be checked, to
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a certain extent, by comparison of the final results to further data
but in principle it is impossible to ascertain the validity of a model
completely (Popper 1934). The case is complicated by the fact that
some of the input may not be measured properties but will also
come from a theoretical treatment within further models.

The usual approach for obtaining model uncertainties is to ig-
nore possible errors in the main model and focus on the error prop-
agation of input uncertainties. In this work, we follow a similar
strategy, propagating uncertainties in the nuclear input, i.e. in the
astrophysical reaction rates, through a given post-processing model.
Additionally, however, we compare the results from two different
stellar evolution and explosion treatments. This also provides clues
on the underlying model uncertainties.

Concerning uncertainties in stellar reaction rates, it is unavoid-
able to again combine experimental and theoretical uncertainties.
This is partly due to the fact that cross-sections of many of the re-
actions involved in the γ process have not been measured, because
either the target nuclei are radioactive or the Coulomb barrier pre-
vents an experimental determination at the relevant, low energies.
Even if a reaction cross-section is measured, however, it still may
have to be supplemented by predictions in order to arrive at a stel-
lar cross-section σ ∗ and thus a stellar reactivity 〈σ ∗v〉 as required
in equations (1)–(4). Current laboratory measurements of reaction
cross-sections can only address target nuclei in their g.s. and thus
reactions proceeding on their excited states have to be treated in a
reaction model. (This is not to say that experimental information
on certain transitions leading to excited states or to test a reaction
model cannot be extracted but theory has to be invoked to cast these
data into an astrophysical reaction rate.)

Excited state contributions to the stellar rate depend on the plasma
temperature and the spectroscopic properties of the involved nuclei.
In general, a higher intrinsic nuclear level density in a nucleus will
lead to a higher importance of excited state contributions but the
presence of low-lying excited states, a few tens of keV above the
g.s., may render them important even in nuclei with otherwise low-
level density. While for light nuclei with their large-level spacings
and high particle separation energies, excited state contributions
are sizeable only for a limited number of cases, the inclusion of
reactions on thermally populated target states has been shown to be
important in all nucleosynthesis environments for the production of
nuclei beyond Fe (Rauscher et al. 2011; Rauscher 2012b).

The total contribution Xexc of reactions on thermally excited states
of a nucleus can be quantified as Xexc = 1 − X0, where X0 is the g.s.
contribution (Rauscher et al. 2011; Rauscher 2012b)

X0 = 2J0 + 1

G(T )

〈σ g.s.
Aa v〉

〈σ ∗
Aav〉 . (5)

Here, σ g.s. is the reaction cross-section for the target nucleus in
the g.s. (this is the usual laboratory cross-section) and J0 is its g.s.
spin. It is very important to note that this definition of the g.s.
contribution is different from the simple ratio of g.s. and stellar
rates, respectively. Exhaustive tables of g.s. contributions are found
in Rauscher (2012)a,b.

An important application of g.s. contributions is the determi-
nation of rate uncertainties. Laboratory measurements of reaction
cross-sections only constrain σ g.s. and the contributions of excited
states to the stellar rate have to be determined from theory. Depend-
ing on X0, the measured cross-section will contribute more or less
to the stellar rate. Likewise, the uncertainty in the stellar rate will be
more or less dominated by the experimental error. Rauscher (2012b)
has shown that for a number of intermediate and heavy nuclei, X0

is small already at s-process temperatures. In explosive conditions,

such as for the γ process with typical temperatures between 2 and
3.5 GK, X0 will be small for most nuclei. Therefore, it is necessary
to construct an uncertainty that varies with temperature, according
to the varying contributions of g.s. and excited states. Following
Rauscher (2012b, 2014), an experimental uncertainty factor Uexp

for the reaction cross-section of a target nucleus in the g.s. and a
theoretical one Uth for the prediction of reactions with the target
nucleus being excited can be combined to a total uncertainty u∗ of
the stellar rate, with

u∗(T ) = Uexp + (Uth − Uexp)Xexc(T )

= Uexp + (Uth − Uexp)(1 − X0(T )) , (6)

assuming Uth > Uexp. When there is no measurement, obviously the
above equation trivially reduces to just the theory uncertainty.

As discussed in Rauscher (2012b,a), the predicted g.s. contribu-
tions themselves carry an uncertainty and it would be possible to
include it in the above equation. As was also shown, however, it is
small and does not affect the main impact, i.e. within their errors
small contributions remain small, large ones remain large, and the
overall uncertainty u∗ is not largely changed. Therefore, we have
ignored the uncertainty in X0 when constructing our temperature-
dependent uncertainties.

2.3.2 Variation factors

The PizBuin MC framework offers several ways of treating uncer-
tainties. The possibility of using temperature-dependent errors has
already been mentioned above. In addition, the uncertainties can
be asymmetric around a given ‘standard’ rate and the upper and
lower envelopes can be set independently to any desired function
of temperature. Random values can be drawn from three possible
distributions: the uniform distribution, Gaussian distribution, and
lognormal distribution. An individual uncertainty can be chosen for
each rate although in practice it will often be the case that cer-
tain types of rates are assigned similar uncertainties in a region of
nuclides.

When setting up the MC runs, uncertainties have to be chosen
and the trajectories provided for the network calculation. During the
actual runs, in each MC iteration a set of variation factors vz for the
z rates to be varied is randomly generated according to the preset
variation type. A trajectory is processed with the factors applied
to the rates (and applying the same factor to forward and reverse
rate as explained in Section 2.3.1) and the resulting abundances are
stored. Then, a new iteration is started with a newly chosen set of
variation factors.

In a Gaussian distribution, the function values Y are normally
distributed, while in a lognormal distribution log (Y) are normally
distributed. While historically the Gaussian distribution has been
mostly used in statistical error analysis, recently the lognormal
distribution is viewed as being a more appropriate choice for nat-
ural processes, especially when many unknown factors are acting
together (Jaynes 1982; Limpert, Stahel & Abbt 2001). Where Gaus-
sian distributions are added and therefore account for addition of
contributing terms, lognormal distributions are multiplied and stem
from multiplication of contributing factors. Nowadays, the lognor-
mal distribution is used in many different fields, from biology to
finance (Limpert et al. 2001). For experimental errors and variation
of rates and cross-sections, it has the beneficial feature that it im-
plicitly forbids the results to assume unphysical, negative values.
We will see in Section 3.2 that abundance uncertainties assume
distributions very close to lognormal distributions even when the
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Table 1. Theory uncertainty factors assumed for various re-
action types; for the upper limit, the rate is multiplied by
Uhi

th , for the lower limit it is divided by U lo
th . For measured

g.s. cross-sections, these uncertainties were combined with
the experimental error to derive a temperature-dependent un-
certainty factor as shown in equation (6). Note that forward
and reverse rates, e.g. captures and photodisintegrations, are
modified by the same factor.

Reaction Uhi
th U lo

th

(n,γ ) 2.0 2.0
(p,γ ) 2.0 3.0
(p,n) 2.0 3.0
(α,γ ) 2.0 10.0
(α,n) 2.0 10.0
(α,p) 2.0 10.0

uncertainties in the input were not lognormally distributed. This
arises from the error multiplication effect when several reactions
are contributing to the total uncertainty.

Gaussian and lognormal distributions are related but a determina-
tion of the usually used (Gaussian) confidence intervals is compli-
cated and non-trivial for the general case of a lognormal distribution.
One approach is to extract confidence limits from the underlying
normal distribution and convert them to (asymmetric) ones of the
lognormal distribution. A straightforward approach only works if
the derived confidence interval does not include zero or negative
values. For a sample recipe, see e.g. Smith & Naberejnev (2004).

In astrophysics, sensitivity studies usually vary rates by a certain
factor smaller or larger than unity, to check how the abundance
of a nuclide produced in a nucleosynthesis process depends on a
rate. This would also be an appropriate way to test dependence on
theoretical models, which cannot be assumed to be drawn from a
statistical distribution but rather exhibit only systematic uncertain-
ties (Rauscher 2012a). Such a variation can be modelled by using
variation factors drawn from a uniform distribution, which gener-
ates values with equal probability between two limits. Since in this
first application of our MC code we want to combine experimental
and theoretical errors, we also assumed such uniform distributions
for experimental errors. Gaussian errors on measured values were
converted by taking 2σ confidence intervals to define the boundaries
of the value range for the uniform distribution.

The theoretical uncertainties should include realistic assump-
tions for the uncertainties introduced by the input for a stellar rate
calculation, as well as for the systematic uncertainty by the applica-
tion of specific models to treat input and cross-section calculations.
These were motivated by comparisons between experimental and
predicted g.s. cross-sections across the nuclear chart and are shown
in Table 1.

For example, Rauscher, Thielemann, & Kratz (1997) found an
average deviation of 30 per cent for 30 keV neutron captures along
stability but also show systematic deviations of up to a factor of 2
in certain mass regions, especially close to magic numbers where
the Hauser–Feshbach model reaches its limit. Although this limi-
tation is at least partially lifted at higher plasma temperatures, we
nevertheless assumed a factor of 2 uncertainty in predicted (n,γ )
rates.

On the other hand, recent experiments have shown that the stan-
dard rates by Rauscher & Thielemann (2000) systematically over-
estimate (α, γ ) rates (see e.g. Rauscher et al. 2013, and references
therein). The deviations found are between factors 1.0 and 0.1. Ac-
cordingly, we use an asymmetric error for such rates, allowing only

limited variation to higher values but setting the lower bound to 0.1
of the standard rate.

Recent investigations have found that the proton widths at low
energy predicted using the optical potential of Jeukenne, Lejeune
& Mahaux (1977) in the version of Lejeune (1980), as in the stan-
dard theoretical rate set used here, may be slightly overpredicted. A
modification of the optical potential leads to a better reproduction
of experimental data (Kiss et al. 2008; Rauscher et al. 2009; Netter-
don et al. 2016). To account for this, we introduce an asymmetric
uncertainty also for reactions involving protons in the entrance or
exit channel and allow for a larger variation towards lower values
of the reaction rate.

We included rates on target nuclei from Fe to Bi in our variations,
including all unstable nuclei involved in the γ process. The full
network thus included about 3800 nuclei, each involved in several
reaction types. Although the assigned uncertainties were motivated
by comparisons for stable nuclei, the γ -process does not involve
nuclei far from stability and thus it is a reasonable assumption that
the same theory uncertainties also apply, especially because we
already chose conservative limits on those.

Uncertainties for reactions involving the weak interaction – β−,
β+, and electron captures – also included a temperature dependence
but this was treated slightly differently than described in equation (6)
because X0 is not available for these reactions. The theory uncer-
tainty for predicting weak reactions on excited states was assigned
a value βUth = βU hi

th = βU lo
th = 10 and the temperature-dependent

uncertainty u∗
β was computed with

u∗
β = (2J0 + 1) βUg.s.

G(T )
+ βUth

(
1 − 2J0 + 1

G(T )

)
, (7)

where βUg.s. is either the uncertainty of a measured half-life or a
factor 1.3. Thus, these rates become more uncertain with increasing
temperature. Uncertainties in half-lives do not play a crucial role in
the γ process. They are important, however, in the main and weak
s process and are further discussed, e.g. in Nishimura et al. (2016).

Having chosen the uncertainty range [r∗
0 (T )/u∗

lo(T ), r∗
0 (T )u∗

hi(T )]
as described above and the probability distribution for each reaction
to be varied, the random value vz → j supplied by the MC driver is
mapped to an actual variation factor fj(T) of the j-th rate according
to

fj (T ) = 1

u∗
lo

+ vz→j

(
u∗

hi − 1

u∗
lo

)
. (8)

This means that the rate value r∗
new(T ) used in the reaction network

is given by r∗
new(T ) = fj (T )r∗

0 (T ), where r∗
0 (T ) is the original, un-

changed stellar rate as given in the reaction rate library.

2.4 Correlations to identify key rates

In past variation studies, key reactions were identified manually by
inspection of nuclear flows and by comparing the impact of the
variation of a few reactions on final abundances. This is not pos-
sible with complicated flow patterns and many contributing rates.
Moreover, the impact of reactions can be modified when accounting
for the uncertainties of all involved reactions because variations in
apparent key reactions can be partially or fully suppressed by com-
bined variations of other rates. Therefore, limiting the investigation
to a few reactions may be misleading.

The stored MC data allow for a more comprehensive approach
and a fully automated search for actual key rates. Since the variation
factors for each rate are found in the stored variation vectors vz, it
can be tested whether there is a correlation between the variation
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of a rate and the resulting change in abundance. The correlation
will be larger the fewer reactions contribute to the uncertainty of a
given abundance. There are various definitions for correlations in
the literature. We employ a widely used correlation coefficient, the
Pearson product–moment correlation coefficient (Pearson 1895)

rPearson =
∑k

i=1 (x̃i − x) (ỹi − y)√∑k
i=1 (x̃i − x)2

√∑k
i=1 (ỹi − y)2

(9)

for samples of two data sets x̃i , ỹi of k values, with the sample

means of x =
(∑k

i=1 x̃i

)
/k, y =

(∑k
i=1 ỹi

)
/k. In our case, x̃i

are variation factors and ỹi abundances. The number of variation
factors, i.e. the number of MC iterations is denoted by k.

Since we are interested in key rates which globally affect the
final abundances and not just those in one trajectory, it was neces-
sary to modify equation (9) to provide a weighted average over all
trajectories used. Thus, our weighted correlation rcorr is given by

rq
corr =

∑
ij

qw2
j

(
fij − f j

) (
qYij − qY j

)
√∑

ij
qw2

j

(
fij − f j

)2
√∑

ij
qw2

j

(
qYij − qY j

)2
. (10)

Here, the trajectory is given by j and the iteration by i, with variation
factor fij of the rate and final abundance qYij of nuclide q resulting
from this variation. To connect all rates to all abundances of interest,
z weighted correlation factors have to be computed for each nuclide
of interest. The weight of each trajectory is calculated from the
relative abundance change

qwj = |qY std
j −q Y ini

j |∑
j |qY std

j −q Y ini
j | (11)

for each nuclide q with initial abundance qY ini
j in trajectory j. The

final abundances obtained with the standard rate set are denoted by
qY std

j . The summations in equation (10) can be made more economi-
cally when realizing that for most p nuclei, only very few trajectories
contribute and thus have non-negligible weights (see Section 3.1).

The weighted correlations as defined above result in values 0 ≤∣∣rq
corr

∣∣ ≤ 1, with 0 meaning no correlation. Negative values show an
anticorrelation, i.e. an increase in the rate would lead to a decrease
in abundance and vice versa. In order to understand and interpret
correctly the weighted correlations, it is useful to keep several things
in mind. Very importantly, the weighted correlation in itself is not
an absolute measure of the impact of a rate variation as its value
depends on the number of varied rates. For example, when only a
single rate is varied, the correlation will always be 1, even if this
rate does not change the abundance. It immediately follows that
values of the weighted correlations can only be compared within a
set of MC iterations without change in the number of varied rates. A
cross-comparison between different MC sets with different numbers
of varied rates is meaningless.

The above considerations also imply that the obtained correlation
values cannot be used directly to rank the important rates. As an ex-
ample, consider the situation where the uncertainty of the rate with
the highest correlation value has been removed by a measurement,
it would be taken out of the MC variation and different correlation
values will appear for the remaining rates. Not just the absolute
values, however, will be modified but also the relative values of
the rates compared to each other can be changed, i.e. their relative
ranking. This is because the large uncertainty in a key rate can mask
the impact of another rate. When the key rate is taken out of the
variation (which implies that it has zero uncertainty), it will not be
able to compensate another rate uncertainty and another rate may
appear with a large uncertainty correlation. Examples for this are

Figure 1. Example for the weighted correlation values obtained after the
initial MC run for reactions with respect to a specific nuclide. All rates
are numbered and shown on the horizontal axis. Correlations above 0.65
are considered to be strong. Red dots imply r > 0, blue dots are r <

0 (inverse correlation). Correlation values below 0.02 (cyan line) are not
shown. Typically, only one rate is strongly correlated, if any at all. A strong
correlation after the initial MC run defines level 1 key rates.

seen in the final results presented in Section 3.4. It is an advantage
of this MC correlation method over the manual variation of a few,
individual rates because the latter cannot capture the mutual com-
pensations of uncertainties in the simultaneous variation of many
rates.

Review of the available literature suggests that a Pearson product–
moment correlation coefficient value above 0.7 indicates a strong
correlation. We choose a threshold of 0.65 to account for numerical
uncertainties in our calculations. In our identification of key rates
for the production of each p nucleus, we perform several steps. If
rates with a value above 0.65 are present in our initial MC run,
we define these as key rates of high importance. Then, another
MC run is performed without variation of those key rates. If rates
with correlations above 0.65 appear again, we take these as rates
of second-level importance, i.e. they will be of interest as soon as
the previously found key rates have been determined with higher
accuracy. Another such step is taken to identify third-level key rates.
If no key rates are found in any of these steps, no further step is taken.
This means that the remaining uncertainties in the final abundances
are determined by the combined uncertainties of several rates.

Fig. 1 shows an example of the weighted correlations found for a
nuclide. Typically, only a few reactions show sizeable correlation,
if any at all, while the majority have negligible correlation.

It is important to remember that this definition of key rate selects
the rates that are mainly contributing to the uncertainty in the pro-
duction of a given nucleus. In other words, the uncertainty of a key
rate cannot be compensated for by variations in other rates. This
does not necessarily imply that an abundance is very sensitive to
the rate, i.e. that a small rate variation results in a large abundance
change. For instance, it is conceivable that an abundance being
sensitive to a rate with small uncertainty can be affected more by
another rate with larger uncertainty to which it is less sensitive.

3 R ESULTS

The standard rate set used was based on the theoretical rates by
Rauscher & Thielemann (2000), supplemented by experimental
rates taken from Dillmann et al. (2006) and Cyburt et al. (2010).

MNRAS 463, 4153–4166 (2016)



MC production uncertainties of p nuclei 4159

Figure 2. Total production uncertainties of the classical p nuclides in the
explosion of a 25 M� solar metallicity star, obtained with trajectories
from Hashimoto, Nomoto & Shigeyama (1989). The colour shade is the
probabilistic frequency and the 90 per cent probability intervals up and
down marked for each nuclide (see Fig. 5 for further details). Horizontal
dashed lines indicate a factor of 2 uncertainties.

Decays and electron captures were taken from a REACLIB file
compiled by Freiburghaus & Rauscher (1999) and supplemented
by rates from Takahashi & Yokoi (1987) and Goriely (1999) as
provided by Aikawa et al. (2005) and Xu et al. (2013). These rates
were varied according to the temperature-dependent uncertainties
assigned as described in Section 2.3.2.

Since the p-nucleus production depends on the mass of the super-
nova progenitor (Woosley & Howard 1978; Rauscher et al. 2002),
we chose trajectories and initial abundances obtained in a 15 and
a 25 M� model evolved in the KEPLER stellar evolution code
(Weaver, Zimmermann, & Woosley 1978; Rauscher et al. 2002;
Woosley & Heger 2007) starting from abundances by Lodders
(2003, 2010). Trajectories and initial abundances from the O/Ne
shell of a 25 M� model by Hashimoto et al. (1989) have been
frequently used in earlier post-processing studies with manual vari-
ation of reaction rates for the γ process (see e.g. Rayet et al. 1995;
Rapp et al. 2006; Rauscher 2006; Pignatari et al. 2016). Therefore,
we also studied final abundance uncertainties obtained in that model
for comparison.

Figs 2 and 3 show the uncertainties in production (or destruc-
tion) of the classical 35 p nuclei obtained by our MC method in
the 25 M� models by Hashimoto et al. (1989) and KEPLER,
respectively. These can be compared directly. The results for a
15 M� KEPLER model are shown in Fig. 4. The numerical val-
ues are given in Tables 2 and 3, respectively.1 The colour shading
in the figures provides the probabilistic frequency which counts
how often an abundance value was obtained in the MC variations.
Note that the uncertainty distributions are asymmetric, especially
for the cases with large uncertainties. For easier legibility, the uncer-
tainty bounds enclosing 90 per cent of the distribution are marked.
Fig. 5 shows an example of such a distribution. As mentioned in
Section 2.3.2, the more reactions contribute the closer it becomes
to a pure lognormal distribution.

1 The nuclei 138La and 180Ta receive strong contributions from the ν process
which is not included in our post-processing; the shown uncertainties only
refer to other reactions involving these isotopes.

Figure 3. Same as Fig. 2 but for the explosion of a 25 M� solar metallicity
star, obtained with KEPLER trajectories.

Figure 4. Same as Fig. 3 but for the explosion of a 15 M� solar metallicity
star.

3.1 Differences between stellar models

Although the main focus here is on nuclear uncertainties in γ -
process calculations, it is worthwhile to also explore differences
arising from the use of different codes, even when they attempt to
model the same physical environment. As is evident from Figs 2
and 3, although the general pattern seems to be comparable, the
overall uncertainty is found to be larger when using the Hashimoto
et al. (1989) trajectories than the ones obtained with KEPLER tra-
jectories. For several nuclei, however, there are distinct differences
between the uncertainties obtained in each calculation. The differ-
ences in uncertainty magnitude and for specific isotopes are not so
much due to the possibility of differences in calculated stellar evo-
lution up to the point when the supernova shock is passing through
the O/Ne layer of the star but, rather, can be traced back to dif-
ferences in the applied grid of mass zones. For both models, each
trajectory is defined by the hydrodynamical evolution of a single
mass zone of the stellar model. Each zone experiences a rapid in-
crease in temperature and density when the supernova shock wave
moves through. The shockwave loses energy on its way outwards
and thus the peak temperature reached will be lower in zones lo-
cated further out. By definition, all material in a zone is exposed
to the same temperature and density history. A finer grid of mass
zones thus will sample a finer graduation in peak temperatures. The
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Table 2. Total production uncertain-
ties from MC post-processing of the
25 M� model of Hashimoto et al.
(1989). The shown uncertainty factors
for variations up and down enclose
a 90 per cent probability interval, as
shown in Fig. 5.

Nuclide Up Down

74Se 1.683 0.734
78Kr 1.781 0.717
84Sr 1.395 0.266
92Mo 2.845 0.805
94Mo 1.213 0.726
96Ru 2.078 0.787
98Ru 1.106 0.935
102Pd 1.518 0.742
106Cd 1.476 0.707
108Cd 1.389 0.809
113In 1.404 0.751
112Sn 1.551 0.860
114Sn 1.166 0.701
115Sn 1.779 0.832
120Te 1.550 0.799
124Xe 1.246 0.818
126Xe 1.212 0.678
130Ba 1.134 0.938
132Ba 1.265 0.591
136Ce 1.241 0.953
138Ce 1.183 0.565
138La 1.064 0.591
144Sm 1.127 0.539
152Gd 1.728 0.600
156Dy 1.194 0.487
158Dy 1.577 0.603
162Er 1.216 0.692
164Er 2.014 0.590
168Yb 1.990 0.787
174Hf 4.875 0.855
180Ta 1.080 0.763
180W 5.156 0.786
184Os 1.054 0.811
190Pt 1.237 0.221
196Hg 2.929 0.852

achieved peak temperature is an essential factor in the production
of p nuclei because they are produced only in a narrow range of
temperatures. Trajectories with too high T will destroy too much,
while those with too low T will not be able to change abundances
significantly. Furthermore, different mass ranges of p nuclei require
different temperatures. Abundance changes for the light p nuclei
are only possible at higher T (around 3 GK) because their nuclear
binding is larger.

Figs 6–8 show the relative production (or destruction) of nuclei
in each mass zone. The zoning grid in the model of Hashimoto
et al. (1989, Fig. 6) is coarser than the one in Rauscher et al.
(2002, Figs 7 and 8), each zone encloses more mass and extends
over a larger spatial distance. A coarser grid samples a coarser
distribution of peak temperatures since more stellar material expe-
riences a similar evolution of temperature and density. With respect
to nucleosynthesis, not all relevant reactions and reaction flows
may be captured with such a coarse zoning. This is especially true
for the inner zones, for which the peak temperatures change more
rapidly when moving from one zone to the next. Moreover, a coarse

Table 3. Same as Table 2 but for the 15 and 25 M� KEPLER
models.

15 M� model 25 M� model
Nuclide Up Down Up Down

74Se 1.198 0.804 1.373 0.834
78Kr 1.361 0.808 2.049 0.789
84Sr 1.386 0.652 1.245 0.822
92Mo 1.891 0.843 1.499 0.819
94Mo 1.084 0.831 1.082 0.835
96Ru 1.682 0.766 1.823 0.753
98Ru 1.437 0.886 1.239 0.895
102Pd 1.384 0.756 2.018 0.819
106Cd 1.240 0.753 1.364 0.733
108Cd 1.342 0.813 1.310 0.844
113In 2.660 0.819 1.013 0.947
112Sn 1.154 0.912 1.198 0.814
114Sn 1.119 0.857 1.214 0.856
115Sn 3.500 0.720 1.764 0.891
120Te 1.108 0.839 1.155 0.816
124Xe 1.130 0.920 1.273 0.834
126Xe 1.122 0.922 1.353 0.850
130Ba 1.085 0.854 1.142 0.804
132Ba 1.152 0.796 1.209 0.776
136Ce 1.095 0.853 1.347 0.845
138Ce 1.126 0.833 1.223 0.836
138La 1.093 0.858 1.017 0.944
144Sm 1.076 0.865 1.116 0.831
152Gd 1.300 0.758 1.339 0.835
156Dy 2.040 0.853 1.148 0.860
158Dy 1.152 0.897 1.155 0.924
162Er 1.490 0.893 1.456 0.946
164Er 1.559 0.712 1.851 0.803
168Yb 2.495 0.825 3.476 0.838
174Hf 1.186 0.888 3.328 0.759
180Ta 1.160 0.694 1.091 0.960
180W 1.981 0.808 1.829 0.753
184Os 1.038 0.903 1.130 0.932
190Pt 1.153 0.704 1.498 0.841
196Hg 1.209 0.858 1.239 0.843

Figure 5. Example of the abundance distributions obtained in the MC runs.
The bounds encompassing 5 per cent and 95 per cent of the distribution are
marked to allow to use them as uncertainty measures.

MNRAS 463, 4153–4166 (2016)



MC production uncertainties of p nuclei 4161

Figure 6. Relative abundance change (as defined in equation 11) for each
nucleus of interest in each zone of the 25 M� model by Hashimoto et al.
(1989). The (arbitrary) zone number is given on the abscissa; lower zone
numbers are deeper inside the star.

Figure 7. Same as Fig. 6 but for the 25 M� KEPLER model.

Figure 8. Same as Fig. 6 but for the 15 M� KEPLER model.

grid tends to overemphasize certain zones when a finer grid would
actually find a significant change in abundance in several zones.
In the context of uncertainties, this implies that certain reaction
flows obtain more weight than they actually should, which results
in a tendency to overestimate the uncertainty due to the lack of
alternative paths.

A further problem can be identified comparing Figs 6 and 7:
the considered zones may not contain all zones necessary to com-
pletely follow the synthesis of light p nuclei, as the zone cut-off
lies too far out and several zones further inside the star may still
contribute. This not only impacts the resulting uncertainties but
also directly affects the final abundances. It is clearly seen, on

the other hand, that a sufficient number of zones from the KE-
PLER model was used to assure the inclusion of all nucleosynthesis
zones.

The two issues described above explain the main differences
found in a comparison of the final abundance uncertainties resulting
from the two codes. The coarser zoning especially affects the nuclei
that do not show a focused production in one or two zones but whose
production is rather spread over many zones, such as 113In, 115Sn,
156, 158Dy, 162Er, 168Yb, 174Hf, 184Os, and 190Pt. The production of
the lightest p nuclei is also affected by this and in addition by the
inner cut-off of the zones which seems to lie too far out in the star.
This is important to note, since the same set of trajectories from
Hashimoto et al. (1989) has been, and still is, frequently used for
post-processing studies.

3.2 Final production uncertainties

Tables 2 and 3 provide the numerical values for the production
uncertainty for each of the classical p nuclides. Due to the mentioned
limitations of the Hashimoto et al. (1989) zones, in the following
we focus on discussing the results for the 15 and 25 M� models
obtained with the higher resolution of the KEPLER code. It has to be
noted that the uncertainties shown in Figs 2–4 and in Tables 2 and 3
have been combined from the contributions of all considered zones,
applying the weight given in equation (11) instead of a simple
zone mass weighting. This is to avoid an artificial dilution and
diminution of the uncertainty originating from nuclear reactions by
contributions from zones where no change in the abundance of the
nuclide in question occurs.

It can be seen that most uncertainties are well below a factor of
2, with some exceptions both for light and heavy p nuclei. Com-
paring this to Figs 7 and 8, it becomes apparent that the largest
uncertainties are found for nuclides which are not mainly pro-
duced in a single zone but for which the production is rather spread
out across several, sometimes many, zones. Under such varying
conditions more reactions can contribute and their uncertainties
accumulate.

In the interpretation of the uncertainty patterns in the context
of the production of p nuclei during GCE, it has to be noted
that the 15 M� model will contribute more to the Galactic total
than the 25 M� model because of the dominance of 15 M� stars
in the initial stellar mass function.

3.3 Radiogenic isotopes

As already mentioned in the introduction, knowledge of the produc-
tion of the unstable nuclides 92Nb, 97, 98Tc, and 146Sm is important
for understanding the composition of the early Solar system which,
in turn, allows us to constrain GCE models. Moreover, Dauphas
et al. (2003) have argued that the 92Mo/92Nb production ratio also
allows us to rule out proton-rich nucleosynthesis sites as sources of
p nuclides when they do not produce sufficient amounts of 92Nb in
line with the measurements.

Here, we provide the same information for the nuclides 92Nb,
97,98Tc, and 146Sm as for the classical p nuclides. Figs 9 and 10
show the zonal production for the 25 and 15 M� KEPLER models,
respectively, and Figs 11 and 12 the resulting production uncertain-
ties. As before, the numerical 5 per cent and 95 per cent limits of
the abundance distributions obtained in the MC procedure are given
in Table 4 for the two KEPLER models.
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Figure 9. Same as Fig. 7 (25 M� KEPLER model) for the radiogenic
nuclides.

Figure 10. Same as Fig. 9 but for the 15 M� KEPLER model.

Figure 11. Same as Fig. 3 (25 M� KEPLER model) for the radiogenic
nuclides.

3.4 Key rates

Tables 5 and 6 show the key rates identified for each nuclide using
the procedure described in Section 2.4. These tables also include
key rates for the radioactive isotopes. As mentioned above, we
distinguish between levels 1, 2, and 3 key rates, with level 1 being
the most important ones. We consider the level 1 key rates to be our
main, robust result; further key rates only become important after
the uncertainty in these rates has been reduced and their relevance
may also be impacted by the actual, newly determined values of
the rates found on previous levels. Also shown in the tables are

Figure 12. Same as Fig. 11 but for the 15 M� KEPLER model.

Table 4. Same as Table 3 but for the radiogenic nuclei in the 15 and 25 M�
KEPLER models.

15 M� model 25 M� model
Nuclide Up Down Up Down

92Nb 1.170 0.878 1.091 0.871
97Tc 2.408 0.882 1.051 0.904
98Tc 1.125 0.844 1.034 0.927
146Sm 1.188 0.857 1.169 0.790

the obtained correlation factors on which the selection of key rates
is based, for the initial run (rcorr, 0), and for the subsequent runs
not varying level 1 (rcorr, 1) rates or level 2 (rcorr, 2) rates. Not all p
nuclides appear in the tables because only those for which a levels
1, 2, or 3 key rate was found are listed. The production uncertainties
for the nuclides showing in Figs 3 and 4, but not listed in Tables 5
and 6, are not dominated by a single rate but rather stem from a
combination of uncertainties of several or many rates.

It has to be emphasized again that rates assigned a level 1 impor-
tance by themselves mainly determine the production uncertainty
for a specific nuclide based on the input uncertainties we chose, re-
gardless of whether this uncertainty is large or small. If one wishes
to select rates from Tables 5 and 6 for further theoretical or exper-
imental study, the amount of expected reduction in the production
uncertainty should be considered. The uncertainties can be found
in Table 3. A time-consuming, expensive measurement may not be
worthwhile when the original uncertainty is already low.

Another very important point to consider when selecting possi-
ble targets for experiments is the contribution of thermally excited
states to the stellar rate, as introduced in Section 2.3.1. The g.s.
contribution X0 to the stellar rate, as defined in equation (5), is also
quoted in Tables 5 and 6 for convenience. Shown are the g.s. contri-
butions for the reaction direction for which they are the largest. For
capture ↔ photodisintegration, this is always the capture direction
whereas X0 is smaller by several orders of magnitude for photo-
disintegration (Rauscher 2012a). Especially in a high-temperature
nucleosynthesis process, such as the γ process, most stellar rates
are dominated by transitions from excited states and a measurement
of the reaction cross-section of the g.s. of a nucleus will not be able
to provide a better constraint as the uncertainty will be mainly due
to the theory error. Level 1 key rates with large X0 are few, only
rates relevant to the abundances of 92, 94Mo, 96Ru, 138Ce, 144Sm have
more than 80 per cent g.s. contribution to the stellar rate. The key
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Table 5. Key rates determining the production uncertainties in the 25 M� KEPLER model; shown are levels 1–3 key rates as defined in Section 2.4, along
with their weighted correlation factors rcorr,0, rcorr,1, rcorr,2, respectively. Not all p nuclides are listed but only those for which key rates were found. The lower
part of the table additionally shows rates important for the production of selected unstable nuclides. Also shown for each rate are the g.s. contributions of the
capture reaction to the stellar rate at two plasma temperatures. See text for further details.

Nuclide rcorr, 0 rcorr, 1 rcorr, 2 Key rate Key rate Key rate X0 (2 GK) X0 (3 GK)
Level 1 Level 2 Level 3 capture capture

78Kr − 0.84 77Br + p ↔ γ + 78Kr 9.63 × 10−2 4.44 × 10−2

0.34 0.87 79Kr + n ↔ γ + 80Kr 1.28 × 10−1 7.94 × 10−2

92Mo − 0.74 91Nb + p ↔ γ + 92Mo 8.88 × 10−1 8.24 × 10−1

96Ru − 0.73 92Mo + α ↔ γ + 96Ru 1.00 9.86 × 10−1

− 0.43 −0.69 95Tc + p ↔ γ + 96Ru 7.64 × 10−1 6.60 × 10−1

102Pd − 0.87 101Pd + n ↔ γ + 102Pd 5.62 × 10−1 3.97 × 10−1

112Sn − 0.88 111Sn + n ↔ γ + 112Sn 7.79 × 10−1 6.73 × 10−1

114Sn − 0.77 113Sn + n ↔ γ + 114Sn 1.82 × 10−1 1.28 × 10−1

120Te − 0.64 −0.66 119Te + n ↔ γ + 120Te 2.43 × 10−1 1.77 × 10−1

124Xe − 0.74 123Xe + n ↔ γ + 124Xe 8.25 × 10−2 4.38 × 10−2

126Xe − 0.75 125Cs + p ↔ γ + 126Ba 1.17 × 10−1 7.41 × 10−2

0.30 0.64 0.65 127Ba + n ↔ γ + 128Ba 5.78 × 10−2 3.59 × 10−2

130Ba − 0.66 129Ba + n ↔ γ + 130Ba 5.77 × 10−2 3.55 × 10−2

132Ba − 0.77 131Ba + n ↔ γ + 132Ba 1.07 × 10−1 5.85 × 10−2

136Ce − 0.69 135Ce + n ↔ γ + 136Ce 1.86 × 10−1 8.94 × 10−2

0.31 0.72 139Ce + n ↔ γ + 140Ce 8.56 × 10−1 6.09 × 10−1

138Ce − 0.66 137Ce + n ↔ γ + 138Ce 4.16 × 10−1 2.54 × 10−1

− 0.16 −0.19 −0.66 136Ce + n ↔ γ + 137Ce 7.57 × 10−1 4.70 × 10−1

144Sm 0.70 145Eu + p ↔ γ + 146Gd 8.06 × 10−1 6.02 × 10−1

152Gd − 0.74 151Gd + n ↔ γ + 152Gd 6.18 × 10−1 3.87 × 10−1

0.43 0.76 153Gd + n ↔ γ + 154Gd 5.38 × 10−2 2.78 × 10−2

− 0.14 −0.26 −0.73 148Sm + α ↔ γ + 152Gd 8.14 × 10−1 5.22 × 10−1

164Er − 0.78 160Er + α ↔ γ + 164Yb 2.13 × 10−1 1.24 × 10−1

180W − 0.83 176W + α ↔ γ + 180Os 1.83 × 10−1 1.04 × 10−1

− 0.19 −0.60 −0.68 179Os + n ↔ γ + 180Os 4.89 × 10−2 2.49 × 10−2

196Hg − 0.83 195Pb + n ↔ γ + 196Pb 2.97 × 10−1 1.89 × 10−1

0.31 0.70 197Pb + n ↔ γ + 198Pb 3.28 × 10−1 2.39 × 10−1

0.17 0.35 0.67 199Pb + n ↔ γ + 200Pb 6.37 × 10−1 3.47 × 10−1

92Nb 0.76 90Zr + p ↔ γ + 91Nb 1.00 9.95 × 10−1

146Sm − 0.57 −0.75 144Sm + α ↔ γ + 148Gd 9.99 × 10−1 9.65 × 10−1

0.34 0.44 0.79 147Gd + n ↔ γ + 148Gd 9.92 × 10−1 9.28 × 10−1

rates on all levels for the radioactive nuclides also exhibit large g.s.
contributions.

Tables 5 and 6 also give levels 2 and 3 key rates, following the
prescription of Section 2.4. It is important to remember that these
become ‘key’ only after the uncertainties in higher level key rates
have been reduced. A reduction in uncertainty in a lower level key
rate does not have much impact when higher level rates have not
been improved. Furthermore, none of the levels 2 and 3 rates show
X0 ≥ 0.8, except for 193Ce + n ↔ γ + 194Ce, 148Sm + α ↔
γ + 152Sm in the 25 M� model.

To demonstrate the impact of a complete removal of the un-
certainties in the listed key rates, Figs 13 and 14 show the final
abundance uncertainties obtained when the levels 1–3 key rates
have been taken out of the variation. Most abundance uncertainties
have been reduced to a low level, with the exceptions of those of
115Sn in the 15 M� model and of 168Yb, 174Hf in the 25 M� model.
It was not possible to provide key rates for these isotopes because
no rate exhibited a correlation value above our threshold. This can
be understood by the fact that these are isotopes whose production
is not confined to a single zone but rather spread out over many
zones. Thus, many different rates can contribute. Moreover, their
production is feeble, anyway, and 115Sn is expected not to be a pure
p nuclide but receives strong contributions from the s and r pro-
cesses (see Section 1). Although not key rates by our definition, we
expect the rates 114Sn + n ↔ γ + 115Sn (rcorr = −0.59), 164Yb + α

↔ γ + 168Hf (rcorr = −0.64), and 170Hf + α ↔ γ + 174W (rcorr =
−0.42), to contribute to the abundance uncertainties of 115Sn, 168Yb,
and 174Hf, respectively.

The key rates influencing the production of the radioactive nu-
clides 92Nb, 97, 98Tc, and 146Sm are also given in the Tables 5 and
6. The remaining uncertainties after having taken out all key rates
from the MC variation are shown in Figs 15 and 16 for the 25 and
15 M� KEPLER models, respectively. With the exception of 97Tc
in the 15 M� model, the already small uncertainties were further
reduced. In the 15 M� model, 97Tc exhibits a strongly asymmetric
uncertainty which is caused by the combined uncertainties of many
reactions. Among these, while not being a key rate clearly dom-
inating the uncertainty, 96Ru + n ↔ γ + 97Ru has the strongest
correlation (rcorr = −0.384).

Table 5 does not list 74Se, 84Sr, 94Mo, 96, 98Ru, 106, 108Cd, 113In,
115Sn, 138La, 156, 158Dy, 162Er, 168Yb, 174Hf, 180Ta, 184Os, and 97, 98Tc
as no key rates were found for these nuclei in the 25 M� model. In-
spection of Figs 13 and 14 shows that the production uncertainties
are low for these nuclides, anyway. They are results of the com-
bined uncertainties in several rates. For completeness, further rates
with correlations |rcorr, 3| ≥ 0.4 (and not already shown in Table 5)
contributing to the uncertainties of the above nuclides are listed in
Tables 7 and 8. It has to be noted that these rates are not responsible
on their own for the remaining uncertainties and a better determina-
tion may not directly lead to a further strong uncertainty reduction.
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Table 6. Key rates determining production uncertainties in the 15 M� KEPLER model; shown are levels 1–3 key rates as defined in Section 2.4, along with
their weighted correlation factors rcorr, 0, rcorr, 1, rcorr, 2, respectively. Not all p nuclides are listed but only those for which key rates were found. The key rates
shown for 138La and 180Ta do not include reactions from the ν-process. The lower part of the table additionally shows rates important for the production of
selected unstable nuclides. Also shown for each rate are the g.s. contributions of the capture reaction to the stellar rate at two plasma temperatures. See text for
further details.

Nuclide rcorr, 0 rcorr, 1 rcorr, 2 Key rate Key rate Key rate X0 (2 GK) X0 (3 GK)
Level 1 Level 2 Level 3 capture capture

78Kr − 0.77 77Br + p ↔ γ + 78Kr 9.63 × 10−2 4.44 × 10−2

0.38 0.66 79Kr + n ↔ γ + 80Kr 1.28 × 10−1 7.94 × 10−2

92Mo − 0.87 91Nb + p ↔ γ + 92Mo 8.88 × 10−1 8.24 × 10−1

94Mo 0.78 95Mo + n ↔ γ + 96Mo 9.14 × 10−1 7.69 × 10−1

96Ru − 0.67 92Mo + α ↔ γ + 96Ru 1.00 9.86 × 10−1

102Pd − 0.71 101Pd + n ↔ γ + 102Pd 5.62 × 10−1 3.97 × 10−1

112Sn − 0.74 111Sn + n ↔ γ + 112Sn 7.79 × 10−1 6.73 × 10−1

136Ce 0.53 0.66 137Ce + n ↔ γ + 138Ce 4.16 × 10−1 2.54 × 10−1

138Ce 0.71 139Ce + n ↔ γ + 140Ce 8.71 × 10−1 6.43 × 10−1

138La 0.94 138La + n ↔ γ + 139La 6.18 × 10−1 4.92 × 10−1

144Sm 0.79 145Eu + p ↔ γ + 146Gd 8.06 × 10−1 6.02 × 10−1

164Er − 0.76 160Er + α ↔ γ + 164Yb 2.13 × 10−1 1.24 × 10−1

168Yb − 0.80 164Yb + α ↔ γ + 168Hf 2.12 × 10−1 1.26 × 10−1

− 0.14 −0.67 166Yb + α ↔ γ + 170Hf 1.80 × 10−1 1.10 × 10−1

180Ta − 0.88 180Ta + n ↔ γ + 181Ta 7.09 × 10−2 3.96 × 10−2

0.09 0.90 179Ta + n ↔ γ + 180Ta 2.37 × 10−1 1.46 × 10−1

180W − 0.82 176W + α ↔ γ + 180Os 1.83 × 10−1 1.04 × 10−1

190Pt − 0.79 190Pt + n ↔ γ + 191Pt 3.58 × 10−1 1.58 × 10−1

196Hg − 0.86 195Pb + n ↔ γ + 196Pb 2.97 × 10−1 1.89 × 10−1

0.17 0.64 0.65 197Pb + n ↔ γ + 198Pb 3.28 × 10−1 2.39 × 10−1

92Nb 0.75 92Zr + p ↔ γ + 93Nb 9.91 × 10−1 9.76 × 10−1

98Tc 0.89 96Mo + p ↔ γ + 97Tc 9.50 × 10−1 8.56 × 10−1

146Sm − 0.65 144Sm + α ↔ γ + 148Gd 9.99 × 10−1 9.65 × 10−1

0.33 0.79 147Gd + n ↔ γ + 148Gd 9.92 × 10−1 9.28 × 10−1

Figure 13. Same as Fig. 3 (25 M� KEPLER model) but without variation
of all key rates (levels 1–3) shown in Table 5.

4 C O N C L U S I O N S

For the first time we have performed a comprehensive, large-scale
MC study of nucleosynthesis in the γ process in massive stars,
varying reactions on targets from Fe to Bi. Temperature-dependent
stellar reaction rate uncertainties were individually assigned to the
reactions, allowing a quantification of the uncertainties in final p-
nucleus production due to nuclear input. Our approach also allowed
identification of a number of key rates – which contribute most to
these final uncertainties – by a well-defined, automated method.
Overall, the uncertainties were found to be modest, better than a

Figure 14. Same as Fig. 4 (15 M� KEPLER model) but without variation
of all key rates (levels 1–2) shown in Table 6.

factor of 2. The remaining uncertainties are mainly due to theoreti-
cally predicted rates of reactions on unstable nuclei and of excited
state contributions. Only few uncertainties could be reduced directly
by measuring g.s. cross-sections. These are the ones with large g.s.
contributions to the stellar rate, which occur only for target nuclei
in the mass range of the light p nuclei.

Abundances and their uncertainties were studied in three different
stellar models, two based on the same code and input but for two
progenitor masses, and one for an additional, widely used stellar
model. A direct comparison revealed that the older model used too
crude a mass grid to be able to follow properly the temperature
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Figure 15. Same as Fig. 13 (25 M� KEPLER model) for the radiogenic
nuclides.

Figure 16. Same as Fig. 14 (15 M� KEPLER model) for the radiogenic
nuclides.

Table 7. Further rates with |rcorr, 3| ≥ 0.4 in the 25 M� KEPLER model, for
nuclides without key rates in Table 5. These do not determine the remaining
production uncertainties on their own.

Nuclide rcorr, 3 Rate X0 (2 GK) X0 (3 GK)

74Se − 0.5 73As + p ↔ γ + 74Se 3.39 × 10−1 2.41 × 10−1

− 0.4 70Ge + α ↔ γ + 74Se 9.87 × 10−1 9.15 × 10−1

− 0.4 75Se + n ↔ γ + 76Se 4.37 × 10−1 3.22 × 10−1

84Sr − 0.6 83Rb + p ↔ γ + 84Sr 2.83 × 10−1 2.47 × 10−1

94Mo 0.6 95Mo + n ↔ γ + 96Mo 8.93 × 10−1 7.59 × 10−1

− 0.4 93Mo + n ↔ γ + 94Mo 9.98 × 10−1 9.71 × 10−1

96Ru − 0.6 95Ru + n ↔ γ + 96Ru 9.90 × 10−1 9.23 × 10−1

− 0.4 105Cd + n ↔ γ + 106Cd 5.25 × 10−1 3.71 × 10−1

− 0.4 109In + p ↔ γ + 110Sn 9.89 × 10−1 9.28 × 10−1

98Ru − 0.6 97Ru + n ↔ γ + 98Ru 8.07 × 10−1 6.26 × 10−1

106Cd − 0.6 105Cd + n ↔ γ + 106Cd 5.25 × 10−1 3.71 × 10−1

0.4 109In + p ↔ γ + 110Sn 9.89 × 10−1 9.28 × 10−1

108Cd − 0.6 107Cd + n ↔ γ + 108Cd 6.19 × 10−1 4.22 × 10−1

113In 0.5 114In + n ↔ γ + 115In 1.94 × 10−1 9.60 × 10−2

115Sn − 0.4 114Sn + n ↔ γ + 115Sn 9.93 × 10−1 9.14 × 10−1

168Yb − 0.6 164Yb + α ↔ γ + 168Hf 2.14 × 10−1 1.28 × 10−1

174Hf − 0.4 170Hf + α ↔ γ + 174W 1.78 × 10−1 1.08 × 10−1

97Tc 0.5 98Tc + n ↔ γ + 99Tc 2.83 × 10−1 2.25 × 10−1

− 0.5 96Tc + n ↔ γ + 97Tc 3.00 × 10−1 2.53 × 10−1

Table 8. Further rates with |rcorr, 3| ≥ 0.4 in the 15 M� KEPLER model, for
nuclides without key rates in Table 6. These do not determine the remaining
production uncertainties on their own.

Nuclide rcorr, 3 Rate X0 (2 GK) X0 (3 GK)

74Se 0.4 75As + p ↔ n + 75Se 3.53 × 10−1 1.76 × 10−1

− 0.4 73As + p ↔ γ + 74Se 3.39 × 10−1 2.41 × 10−1

84Sr 0.6 84Sr + n ↔ γ + 85Sr 9.31 × 10−1 7.27 × 10−1

− 0.5 83Rb + p ↔ γ + 84Sr 2.83 × 10−1 2.47 × 10−1

98Ru − 0.6 97Ru + n ↔ γ + 98Ru 8.07 × 10−1 6.26 × 10−1

106Cd − 0.6 105Cd + n ↔ γ + 106Cd 5.25 × 10−1 3.71 × 10−1

0.6 109In + p ↔ γ + 110Sn 9.89 × 10−1 9.28 × 10−1

108Cd − 0.6 107Cd + n ↔ γ + 108Cd 6.19 × 10−1 4.22 × 10−1

0.4 109In + p ↔ γ + 110Sn 9.89 × 10−1 9.28 × 10−1

113In 0.6 113Sn + n ↔ γ + 114Sn 1.89 × 10−1 1.37 × 10−1

114Sn − 0.6 113Sn + n ↔ γ + 114Sn 1.89 × 10−1 1.37 × 10−1

115Sn − 0.6 114Sn + n ↔ γ + 115Sn 9.93 × 10−1 9.14 × 10−1

120Te 0.5 121Te + n ↔ γ + 122Te 2.02 × 10−1 9.50 × 10−2

124Xe − 0.5 123Xe + n ↔ γ + 124Xe 8.19 × 10−2 4.78 × 10−2

130Ba − 0.5 130Ba + n ↔ γ + 131Ba 3.75 × 10−1 1.65 × 10−1

0.5 131Ba + n ↔ γ + 132Ba 1.07 × 10−1 5.85 × 10−2

132Ba 0.4 133Ba + n ↔ γ + 134Ba 1.17 × 10−1 6.91 × 10−2

152Gd − 0.6 152Gd + n ↔ γ + 153Gd 4.39 × 10−1 1.97 × 10−1

0.4 153Gd + n ↔ γ + 154Gd 5.38 × 10−2 2.78 × 10−2

158Dy − 0.6 157Dy + n ↔ γ + 158Dy 8.23 × 10−2 4.12 × 10−2

0.5 156Dy + n ↔ γ + 157Dy 1.49 × 10−1 7.70 × 10−2

162Er − 0.5 158Er + α ↔ γ + 162Yb 3.10 × 10−1 1.71 × 10−1

174Hf − 0.4 174Hf + n ↔ γ + 175Hf 1.01 × 10−1 5.56 × 10−2

184Os − 0.5 184Os + n ↔ γ + 185Os 1.39 × 10−1 7.78 × 10−2

196Hg 0.5 199Pb + n ↔ γ + 200Pb 4.21 × 10−1 2.03 × 10−1

97Tc − 0.4 96Ru + n ↔ γ + 97Ru 1.00 9.91 × 10−1

evolution in the γ -process layers. The coarse grid and an inner
cut-off at too large a radius led to discrepancies mainly in the
prediction of light p nuclei and a number of heavier p nuclides
whose production is spread out over many zones.

The results of our study are expected to be useful for both as-
trophysicists and nuclear physicists. They can be incorporated in
GCE models to assess uncertainties in Galactic p-nucleus produc-
tion, although it would be desirable to extend this investigation to
a wider range of progenitor masses and initial metallicities to fully
capture the uncertainty distribution. Experimental and theoretical
nuclear physicists can see which reaction rates need to be improved
to successfully reduce the uncertainties.

This maiden voyage of our MC framework also worked as a proof
of concept, showing that it is possible to perform large-scale rate
variations in extended reaction networks and use the MC method to
not only quantify combined uncertainties of all rates but also derive
the key rates that contribute the most to those uncertainties. We
plan to apply our method to further nucleosynthesis processes, such
as the γ -process in thermonuclear supernovae (in preparation), the
weak s process in massive stars (Nishimura et al. 2016), the main
s process (Cescutti et al., in preparation), and the νp, rp, and r
processes.
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Nemeth Zs., Käppeler F., Theis C., Belgya T., Yates S. W., 1994, ApJ, 426,

357
Netterdon L., Endres A., Heim F., Rauscher T., Scholz P., Spieker M.,

Weinert M., Zilges A., 2016, Phys. Rev. C, in press
Nishimura N., Hirschi R., Rauscher T., Murphy A. St. J., 2016, MNRAS, in

press
Pearson K., 1895, Proc. R. Soc., 58, 240
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2013, Rep. Prog. Phys., 76, 066201
Rayet M., Arnould M., Hashimoto M., Prantzos N., Nomoto K., 1995, A&A,

298, 517
Smith D. L., Naberejnev D. G., 2004, Nucl. Instrum. Meth. Phys. Res. A,

518, 754
Takahashi K., Yokoi K., 1987, At. Data Nucl. Data Tables, 36, 375
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