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Dry powder inhalers are increasingly popular for delivering drugs to the lungs for the treatment of
respiratory diseases, but are complex products with multivariate performance determinants. Heuristic
product development guided by in vitro aerosol performance testing is a costly and time-consuming
process. This study investigated the feasibility of using artificial neural networks (ANNs) to predict
fine particle fraction (FPF) based on formulation device variables. Thirty-one ANN architectures were
evaluated for their ability to predict experimentally determined FPF for a self-consistent dataset
containing salmeterol xinafoate and salbutamol sulfate dry powder inhalers (237 experimental obser-
vations). Principal component analysis was used to identify inputs that significantly affected FPF.
Orthogonal arrays (OAs) were used to design ANN architectures, optimized using the Taguchi method.
The primary OA ANN r2 values ranged between 0.46 and 0.90 and the secondary OA increased the
r2 values (0.53-0.93). The optimum ANN (9-4-1 architecture, average r2 0.92 ± 0.02) included active
pharmaceutical ingredient, formulation, and device inputs identified by principal component analysis,
which reflected the recognized importance and interdependency of these factors for orally inhaled
product performance. The Taguchi method was effective at identifying successful architecture with the
potential for development as a useful generic inhaler ANN model, although this would require much
larger datasets and more variable inputs.

© 2016 Published by Elsevier Inc. on behalf of the American Pharmacists Association.
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Introduction

Dry powder inhalers (DPIs) are increasingly popular for
delivering drugs to the lungs for the treatment of respiratory
diseases. Over the last 2 decades, device and formulation technol-
ogies have developed considerably, along with the scientific
understanding of the determinants of inhaler performance.1-7

In vitro impactor deposition is the principal pharmaceutical
performance assay and is an essential assessment during the
development and registration of new originator or generic DPI
formulations.8 The fine particle fraction (FPF) determined using
in vitro deposition techniques has been used as a DPI performance
characteristic for mechanistic modeling,6 in vitro-in vivo correla-
tion,9 and to make estimations of clinical relevance.5 FPF is defined
▪▪▪; Fax: ▪▪▪).
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as the proportion of the particles that are <5 mm in diameter, that is,
the respirable dose. Modeling the influence of formulation and
device variables on FPF could facilitate the development of the next
generation of inhaledmedicines10 and thematching of test inhalers
to reference products during the development of generic
products.8,11

As the patents for inhaled drugs expire, many companies are
expending much effort in developing generic versions of innovator
inhaled medicines. The United States Food and Drug Administra-
tion and European Medicine Agency have clear processes by which
a generic orally inhaled product can be developed for the market,12

both of which include extensive in vitro studies.13,14 The United
States Food and Drug Administration recently issued specific
guidance for salmeterol-fluticasone combinations aiming for
registration as a generic Advair15,16 including the requirement to
match FPF. For generic product development, the matching of
in vitro performance is the obvious first stage in product develop-
ment. However, heuristic development of a product guided by
sociation.
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Figure 1. A simplified structure for a supervised ANN showing the feedforward links
from the input layer to one neuron of the hidden layer which subsequently feeds onto
the output layer (prediction of FPF). Input layer elements are the properties of API,
formulation factors, and device factors. The output layer is product performance in
terms of FPF.
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in vitro FPF is a costly and time-consuming process. There has
already been interest in using in silico models to streamline this
process and there is a belief that modeling may become increas-
ingly crucial in the design and development of inhaled drug
products.17 Linear regression models have been used to understand
the complex formulation characteristics of DPIs,6,18 for example,
Kinnunen et al.19 showed a best r2 value of 0.861 between the
physical properties of the carrier (amount of fines which are <4.5
mm in size) and the in vitro performance of the formulation, for
example, FPF. Regression models make the assumption that
relationships between physiochemical factors are linear. As such,
prediction of pharmaceutical response based on these polynomial
relationships is limited and can provide an incomplete estimate of
the observed response in experimental determinations. Therefore,
there is a need to investigate non-linear models as an alternative
approach to determine whether or not this improves model qual-
ity.20 The use of artificial neural networks (ANNs) is one such
technique that could be exploited.

ANNs are computational models that replicate the way the hu-
man brain processes information, by linking input variables to a
desired output via the selective activation of artificial “neurons” in a
complex network (Fig. 1).21 The ANN is typically separated into
3 sections: the input layer, the hidden layer, and the output layer.
The input layer contains information that will be used as stimuli for
the ANN, such as experimental variables. The elements of the input
layer are connected to the neurons of the hidden layer via links.
Each link has aweight value (w) associatedwith it, and each neuron
receives numerical input from each of the elements of the input
layer (element value � link weight). The hidden layer neuron can
exist in one of the 2 states: inactive or active. Whether or not a
neuron is active or inactive is determined by an activation
threshold function. If the sum of the numerical inputs from the
elements of the input layer exceeds the threshold value then the
neuron is activated. Activated neurons then communicate with the
output layer. Each neuron in the hidden layer is connected via a link
(with an associated weight, w) to each element in the output layer.
The elements in the output layer define one of a possible number of
permissible outcomes from the input. The output value(s) selected
by an ANN is a function of the neurons activated in the hidden layer.

Supervised ANNs, such as the ones used in this investigation,
work by training the network to generate a desired output from
input variables using an iterative process of calculating and mini-
mizing the error between the generated and expected output
value.22 Error is minimized by manipulating the weights associated
with the links between the 3 layers of the ANN via a process known
as backpropogation.23

ANNs are powerful pattern recognition tools and have been
utilized for analyzing inhaled drug delivery. Nazir et al.24,25

produced ANNs for predicting the regional and total aerosol
deposition in the human lungs and De Matas et al.26-28 produced
FLA 5.4.0 DTD � XPHS524_proof
ANNs that predicted deposition and clinical effects for pulmonary
drug delivery (improvements in the forced expiratory volume in 1 s
and urinary excretion of the drug in 24 h). To create an optimal ANN
architecture, manymodels need to be created and tested, which can
be challenging and time-consuming. Hence, any techniques that
can help to reduce the number of architectures that need to be
investigated are useful with respect to streamlining the develop-
ment process. As such, the Taguchi method has beenwidely used in
formulation development29,30 and in designing the architecture of
ANNs.31-33 Design of experiments has also been used to evaluate
the effect of lactose size fractions on the performance of the dry
powder formulation,2 but has not been used to design an optimum
ANN predicting the in vitro performance of a DPI. The objective of
this study was to investigate the feasibility of using ANNs to predict
FPF based on formulation device variables. The Taguchi method,
which has not previously been applied to ANN to predict the FPF of
DPI, was used to develop an optimized ANN.

Methods

Materials

Unscrambler™ was obtained from CAMO Software (Oslo,
Norway), while Minitab™ was from On Line Computers (York, UK).
Neurosolutions™ was from Neuro-dimension (Gainsville, USA).

Experimental Data for Modeling

The self-consistent dataset used in this study was assembled
from studies into the effect DPI formulation factors on FPF reported
by Hassoun et al.,34 Muddle et al.,35 and Parisini36 (Table 1) where
we define a self-consistent dataset as experimental data for a range
of compounds and/or formulation types that has been obtained
using identical experimental procedures. Two of these studies,
investigating the effect of the carrier lactose particle, total fine
lactose content and device resistance on FPF of salmeterol xina-
foate34 and salbutamol sulfate,35 were performed in the same
manner to allow direct comparison. In brief, the active pharma-
ceutical ingredient (API) was blended with 3 coarse lactose grades
(Respitose® ML001, Respitose ML006, and Lactohale® LH200) and
different amounts of fine lactose were added (0%-20%) (Lactohale
LH300). These formulations were tested using a next-generation
pharmaceutical impactor to measure their in vitro deposition
with 3 different inhalers (Aeroliser®, Handihaler®, and Rotahaler®).
The third study36 investigated salmeterol xinafoate and salbutamol
sulfate blended with a different coarse lactose (Respitose SV003) ±
addition of 5% fine lactose. These 4 formulations were then tested
using a Cyclohaler® at 2 different pressure drops (2 and 4 kPa).
Thus, the combined dataset had 2 APIs (salmeterol xinafoate and
salbutamol sulfate) tested with 4 different inhalers (Aeroliser,
Handihaler, Rotahaler, and Cyclohaler) and 4 different coarse
lactoses blended with a variety of different fine lactose ratios to
allow a large range of total fines content to be examined (Table 1).

To allow the datasets to be combined as described above, the
device factors, resistance, test flow rate (Q), and pressure drop (P)
were converted to a value for the power generated by simulated
“inhalation” through the inhaler at each flow rate using an estab-
lished method37 (Eq. 1). This enabled the 3 original datasets to be
combined by overcoming the problem that the 3 inhalers were
originally tested at different flow rates.

Power ¼ P:Q : (1)

The records in the combined dataset (237 records) were split
into a training set (60% of the records), a cross validation (CV, 20%
� 1 November 2016 � 3:00 pm



Table 1
Datasets for Salmeterol Xinafoate and Salbutamol Sulfate Dry Powder Inhaler Fine Particle Fraction Versus Formulation Device Variables, Showing the Input Variables and
Number of Records for the Individual Datasets that Were Emerged to Form the Combined Dataset Used to Develop ANN

Dataset ANN Input ANN Output

API Device Formulation No. of Records

Hassoun et al.34 Salmeterol (0.58% wt/wt) Aeroliser, Handihaler,
Rotahaler

Coarse lactose (Respitose ML001, ML006, Lactohale LH200)
Fine lactose 0%-20%

84

Muddle et al.35 Salbutamol (0.58% wt/wt) Aeroliser, Handihaler,
Rotahaler

Coarse lactose (Respitose ML001, ML006, Lactohale LH200)
Fine lactose 0%-15%

120

Parisini36 Salbutamol and salmeterol
(1.48% wt/wt)

Cyclohaler Coarse lactose (Respitose SV003)
Fine lactose 0%-5%

33

Combined dataset Salbutamol and salmeterol
(0.58% wt/wt and 1.48% wt/wt)

Aeroliser, Handihaler,
Rotahaler, Cyclohaler

Coarse lactose (Respitose ML001, ML006, SV003;
Lactohale LH200)

Fine lactose 0%-20%

237

Melting point; critical primary
pressure of dispersion

Power Total lactose fines; dv10; dV50; dV90; intrinsic fines FPF

Factors below the dotted line in the combined dataset are the inputs and outputs used in the optimized model.
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of the records), and test set (20% of the records). Neurosolutions
for Excel was used to allocate records to the training, test, and
validation sets. The records with the maximum and minimum
experimental FPF values were allocated to the training set. The
remainder of the records was randomly allocated to the training,
validation, and test sets, using the random allocation tool in
Neurosolutions for Excel.
Table 2
The ANNArchitecture Characteristics Used in the Primary OA to Design an Optimum

349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
Principal Component Analysis

Principal component analysis (PCA) was carried out in
Unscrambler X. The input variables were total fines content, con-
centration of fine lactose added, intrinsic fines content, mean drug
content, particle size distribution (dv10, dv50, and dv90), power of the
simulated inhalation, molecular weight, aromatic proportion,
melting point, log P, and critical primary pressure (CPP) for
dispersion of the API during pressure titration laser diffraction
analysis, which was established by Jaffari et al.38 All the input
variables and the associated FPF (output variable) were analyzed in
a PCA loading plot. The input variable, which had the lowest
absolute value on PC-1 in the loading plot, was removed and
the PCA repeated with the remaining inputs. If the explained
variance of PC-1 in the newmodel remained the same or increased,
then the removed input variable was excluded from the model as it
was irrelevant for predicting FPF. This process was repeated
until only the factors relevant to predicting the output remained. If
there was a decrease in the explained variance of PC-1, then the
factor was put back into the model, as this represented a break-
down in the modeling process, that is, the minimal number of
variables required to explain the variance in the dataset had
been reached.
ANN

Factor
Name

Architecture
Characteristics

No. of
Levels

Level 01 Level 02

DT Dataset 2 Full Without
PCA fields

NU Number of units in
the hidden layer

2 10 units 100 units

NL Number of layers in
the hidden layer

2 1 layer 2 layers

LF Learning function 2 Momentum Quickprop
SS Step size 2 0.1 1
MO Momentum 2 0.1 0.7
EP Epochs 2 50 1000
BT Backpropagation type 2 Online Batch
TE Termination 2 None CV incremental

Each factor was split into 2 levels to develop the best architecture for predicting FPF
in the experimental dataset.

374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
Orthogonal Array Design

Primary and secondary orthogonal arrays (OAs) were designed
to optimize the architecture characteristics for an ANN to be used to
predict FPF. Ten architecture characteristics were evaluated during
the primary OA (Table 2). Each of these characteristics was set at 2
levels and the data were normalized between the values of 0.1 and
0.9 (Eq. 2, where xn is the normalized value, x is the descriptor
value, xmax is the maximum value, and xmin is the minimum value
for each of the inputs). The options for the dataset were either the
full dataset or the dataset with the reduced number of input fields
which was decided upon by PCA. In the primary OA, the learning
functions examined were momentum and quickprop, and the type
of termination was either none or CV incremental, where an
FLA 5.4.0 DTD � XPHS524_proof �
iteration can only decrease the error of the CV set by a negligible
amount (0.001).

xn ¼ 0:1 þ ð0:9� 0:1Þ * ðx� xmaxÞ
ðxmin � xmaxÞ (2)

The primary OAwas designed using Minitab to give an L12 array.
The 12 networks were created in Neurobuilder. Once created, the
networks were tested with the external test set. The OA designs
were evaluated using the mean r2 value of the predicted versus
observed FPF from the training, CV, and test sets, from each indi-
vidual network to assess the effectiveness of each of the ANNs. The
output of each individual prediction was also analyzed to deter-
minewhether it was correctly categorized, that is, within 15% of the
observed FPF, enabling the amount of the records which were
correctly categorized in each of the data subsets (training, CV, and
training set) to be compared.

The results of the primary OA were fed into the design of a
secondary OA. The number of architecture characteristics was
reduced to 7 and the number of levels were increased to 3 (Table 3).
A secondary OA card (L18) was designed. Each of these networks
were tested and validated with the same training, CV, and test sets
described previously. The mean r2 value for the training, CV, and
test sets and the percentage of the observations that were correctly
categorized were determined for each network. The difference
between the maximum and minimum average r2 value for each of
the architecture characteristics was used to determine their
significance. The most significant architecture characteristic was
1 November 2016 � 3:00 pm



Table 3
he ANN Architecture Characteristics Incorporated in the Secondary Orthogonal Array and their Associated Levels

Factor Name Architecture Characteristics No. of Levels Level 01 Level 02 Level 03

NU Number of units in the hidden layer 3 50 units 100 units 200 units
NL Number of layers in the hidden layer 3 2 layers 3 layers 4 layers
LF Learning function 3 Quickprop Delta Bar Step
SS Step size 3 0.3 0.5 0.7
MO Momentum 3 0.1 0.2 0.3
EP Epochs 3 500 1000 2000
TE Termination 3 None Maximum Minimum

Table 4
PCA loading Plots Were Used to Remove Input Factors which Caused
Over-representation of Certain Variable in the Dataset

No. What Has Been Removed? PC1 PC2 Total Explained �
Variance

C1 C2 C3

1 Baseline values 42.0 20.0 42.1 62.0 74.9
2 Without mean drug content 45.0 21.0 45.0 66.2 79.9
3 Without mean drug content

and concentration of fines
48.0 23.0 48.2 70.9 84.2

4 Without mean drug content,
concentration of fines and power

55.0 26.0 55.0 80.7 93.9

5 Without mean drug content,
concentration of fines and dv10

49.0 23.0 48.9 71.5 85.4

6 Without mean drug content,
concentration of fines and dv50

51.0 19.0 50.7 69.8 83.6

7 Without mean drug content,
concentration of fines and dv90

50.0 23.0 50.3 73.3 87.0

Input factors were evaluated for whether there was a reduction in the explained
variance of PC-1 compared to the original PCA. PC-1 and PC-2 were taken from the
PCA score loading plot, whereas the Explained � Variance was calculated from the
explained variance plot when they were removed. The Explained Variance was
calculated by the variance explained by PC-1 (C1) was then added the Explained
Variance of PC-2 (C2 Q8). Then, the Explained Variance of PC-3 was added to C2 for C3.
After C3, the Explained Variance was almost 100%.
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the one that had the greatest difference between themaximum and
minimum mean r2 value of the 3 levels. Any architecture charac-
teristic which had a difference of 0.05 (5%) or greater between the
maximum and minimum average r2 value of the 3 levels was
deemed to be a significant architecture factor in the creation of an
ANN to predict FPF.

The Taguchi method uses a signal to noise ratio to calculate
which of the levels of each of the architecture characteristics
formed the optimum ANN. The signal to noise ratio was calculated
from the mean r2 value for each network in the secondary OA using
Equation 3, where n was the number in each mean r2 value. The
ANN (a multilayer perceptron [MLP]) was created in Neurobuilder,
the same method as the creation of all the other ANNs, using the
optimum characteristics. The r2 values and proportion of the re-
cords which were correctly categorized were used to evaluate the
training, CV, and test sets as described above.

S=N ¼ �10 log

P 1
r2

n
(3)

Results and Discussion

Selection of Input Factors Using Principal Component Analysis

The PCA loading plots were examined to identify any factors
which did not contribute to explaining the overall variance of the
dataset, that is, added noise to the analysis. Initially, the input
variables specifically relating to the API were melting point, aro-
matic proportion, log P, and CPP. However, only 2 of these input
variables, CPP andmelting point, were retained, as analysis showed
that the others did not contribute to explaining the variance in FPF
in the dataset in the first 2 PCs (90% of the variance in the dataset).
Of these, melting point was shown by PCA to be most important in
explaining the variance in the dataset. However, this does not imply
that melting point of an API is directly related to the aerodynamic
properties of a substance. Melting point has been linked to other
solid-state properties such as crystal packing/crystal structure,
which can impact on the aerodynamic properties of the substance,
and this may be reflected in these findings. Also, as the number of
APIs increase and melting point range becomes more of a
continuum, it is possible that this would influence its relative
importance on the PCA loading plot. Hence, the baseline value was
obtained from an input vector of total fines content, intrinsic fines
content, concentration of the fines added, mean drug content,
particle size distribution (dv10, dv50, and dv90), power of the inhaler,
melting point, amount of API in formulation, and CPP of the API
(Table 4, No. 1).

The input factor which had a loading value close to zero on PC-1,
that is, the factor contributing least to explaining the overall vari-
ance of the dataset, was mean drug content (PC-1 loading
value �0.010). This factor was removed from the input vector and
the PCAwas regenerated. The second PCA resulted in an increase in
FLA 5.4.0 DTD � XPHS524_proof
the explained variance in PC-1 (Table 4, No. 1: 42%, No. 2: 45%)
suggesting that the mean drug content was not contributing to
explaining the variance in the dataset. However, there was limited
variation in drug content, as the powders were formulated and
tested for homogeneity and compliance with 95%-105% of target
drug content in the original studies.

The goal of the PCA was to ascertain/identify which metric of
fines content provided the best predictive strength to include in the
ANN model. Concentration of fine lactose was the next input vari-
able with the lowest explained variance of PC-1, and therefore was
removed (PCA loading value: 0.011). Removal of concentration of
fine lactose (PCA No. 3) caused an increase in the explained vari-
ance of PC-1 from 45% to 48%. There was also an increase in the
explained variance of PC-2 from 21% to 23%, hence an increase in
the overall variance which had been explained by the first 2 PCs
(Table 4). The total fines content was calculated as the sum of the
amount of fine lactose added and the intrinsic fines content of each
formulation. Thus, there was an over-representation of the data by
including all 3 input variables. The removal of concentration of fines
reduced noise in the dataset and increased the predictive strength
of the ANN model, which was represented by the increase in
variance explained by PC-1. Removal of any other input factors
caused breakdown in the orthogonality of the score plots (Table 4,
No. 4-7). The remaining input factors which were important in
describing FPF when analyzed using PCA were total fines content,
intrinsic fines content, particle size distribution (dv10, dv50, and
dv90), power of the inhaler, melting point, amount of API, and CPP of
the API.
� 1 November 2016 � 3:00 pm
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Figure 2. Mean r2 value between the ANN predicted and observed FPF for the training,
CV, and testing sets from the primary OA, separated into 9 architecture characteristics
at 2 levels. These r2 values were achieved from each of the ANN defined in the primary
OA (Table 4). The architecture characteristics which were evaluated were dataset (DT),
number of layers in the hidden layer (NL), number of units in the hidden layer (NU),
learning function (LF), step size (SS), momentum (MO), number of epochs (EP),
backpropagation type (BT), and termination (TE).Q11
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Optimization of ANNs Using the Orthogonal Arrays

The primary OA suggested that the creation of 12 networks was
required to assess the 10 architecture characteristics. The archi-
tecture characteristics evaluated were dataset (DT), number of
hidden layers (NL), number of units in the hidden layer (NU),
learning function (LF), step size (SS), momentum (MO), number of
epochs (EP), backpropagation type (BT), and termination (TE)
(Table 1). Analysis was completed by comparing the mean and the
individual r2 values of the training, CV, and test sets for the
observed versus predicted FPF for each of the 12 networks of the
primary OA and at each of the 2 levels (Fig. 2). Also, the percent of
the records that were correctly categorized was analyzed. Some of
the networks created in the primary OA demonstrated a weak
correlation between the observed FPF and the predicted FPF
(Table 5, Network 9: r2 value ¼ 0.31, Network 2: r2 value ¼ 0.46,
Network 5: r2 value ¼ 0.49). Many of the networks investigated
were over-training, as indicated by the higher proportion of records
which were categorized correctly in the CV compared to the
training set where we define the percentage of records that were
correctly categorized as the number of the records, that the ANN
generated, which were within 15% of the experimentally observed
values. Network 12 categorized the highest number of records
successfully (average of 73.5%) and along with Network 8 did not
show signs of over-training, where over-training was seen to have
occurred when the network simply memorized the training set and
was unable to generalize the problem (i.e., gave poor test set
Table 5
Analysis of Networks Designed by Primary OA Analysis: r2 Value for Predicted Versus O
Categorized Outputs (±15% of observed FPF)

No. DT NL NU LF SS MO EP BP TE r

T

1 Full 1 10 Momentum 0.1 0.1 50 Online None 0
2 Full 1 10 Momentum 0.1 0.7 1000 Batch CV 0
3 Full 2 10 Quickprop 1 0.1 50 Online CV 0
4 Full 1 100 Quickprop 1 0.1 1000 Batch None 0
5 Full 2 100 Momentum 1 0.7 50 Batch None 0
6 Full 2 100 Quickprop 0.1 0.7 1000 Online CV 0
7 Reduced 2 10 Quickprop 0.1 0.1 1000 Batch None 0
8 Reduced 2 10 Momentum 1 0.7 1000 Online None 0
9 Reduced 1 10 Quickprop 1 0.7 50 Batch CV 0
10 Reduced 2 100 Momentum 0.1 0.1 50 Batch CV 0
11 Reduced 1 100 Quickprop 0.1 0.7 50 Online None 0
12 Reduced 1 100 Momentum 1 0.1 1000 Online CV 0

FLA 5.4.0 DTD � XPHS524_proof �
predictions). As such, reliance on the r2 values as a measure of
model predictivity was considered an over-simplification, and the
percent of the records which were correctly categorized (any value
produced by the ANN that was <15% variation from the desired
value) was seen as a better measurement. Network 12 was the best
performing network, seemingly as a result of the selection of online
backpropagation and the reduced dataset without PCA input fields
as input parameters.

The effect of changing the experimental factor level was the
most significant for the backpropagation architecture (Fig. 2).
Online learning was optimal when compared to batch learning
(Level 01 online range of r2 between 0.66 and 0.85, Level 02 batch
range of r2 between 0.31 and 0.79). Backpropagation affects the
updating of the weights associated with the neurons and hence the
error between the predicted and observed FPF. Given this, it is
unsurprising that this is the most significant architecture charac-
teristic. Online backpropagation updates the weights on the neu-
rons after the presentation of each exemplar, whereas “batch”waits
until the entire training set has been presented and then updates
the weights.39 With a larger dataset, online backpropagation has
more records to update all theweights associatedwith the neurons,
hence the error had a chance to reach the minima. The weight
changes of batch learning were significantly larger with larger
datasets, thus lead to larger step sizes being used which then in
turn lead to unstable learning and over-shooting of the local
minima.39 Commonly for larger datasets, online learning can
update the weights significantly quicker, as it does not have to
reduce the learning rate and was used for future creation of ANNs.

One of the other most significant architecture characteristics in
the primary OAwas the dataset (DT) (Fig. 2; difference in r2 ¼ 0.07).
The optimal dataset was the dataset which had the inputs removed
that caused noise in the models (Level 02: r2 ¼ 0.73), as determined
by PCA. Hence, PCA aided the understanding of which factors
explain the largest variance of the dataset and this knowledge can
then be used to remove any factors which contributed noise to the
data.

The other architecture characteristics were analyzed to deter-
mine values for use in the secondary OA, which were then used to
design the optimal ANN. When the number of epochs (EP) was set
at 1000, this had themost profound effect on the r2 value. Therefore
future experiments were planned around this value (Level 02:
r2 ¼ 0.79). Momentum (MO) had a larger effect at the rate of 0.1
(Level 01), hence further optimization occurred around this value
(Level 01: r2 ¼ 0.77). CV incremental had a negligible effect on the
r2 value (Level 02: r2 ¼ 0.63) when understanding the optimal
termination (TE) and therefore it was removed from analysis in the
secondary OA.
bserved FPF from the Training, CV, and Test Subsets and the Percent of Correctly

2 value % Correctly Categorized

raining CV Test Mean ± SD Training CV Test Mean ± SD

.754 0.651 0.575 0.660 ± 0.09 63.0 44.7 51.1 56.9 ± 16.0

.403 0.494 0.474 0.457 ± 0.05 41.2 29.8 48.9 42.6 ± 11.1

.816 0.790 0.738 0.781 ± 0.04 61.3 63.8 57.4 64.8 ± 7.8

.887 0.824 0.713 0.808 ± 0.09 69.7 63.8 57.4 68.1 ± 13.3

.460 0.532 0.478 0.490 ± 0.04 40.3 29.8 36.2 38.0 ± 9.2

.847 0.814 0.709 0.790 ± 0.07 55.0 61.7 57.4 61.7 ± 4.3

.895 0.916 0.879 0.897 ± 0.02 62.2 64.6 58.3 61.7 ± 3.2

.903 0.950 0.849 0.901 ± 0.05 71.4 79.2 64.6 71.7 ± 7.3

.431 0.249 0.246 0.309 ± 0.11 38.6 27.1 37.5 34.4 ± 6.4

.633 0.525 0.492 0.550 ± 0.07 37.0 25 37.5 33.2 ± 7.1

.870 0.848 0.835 0.851 ± 0.02 63.9 60.4 56.3 60.2 ± 3.8

.923 0.887 0.873 0.894 ± 0.03 74.8 75.0 70.8 73.5 ± 2.3
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Table 6
Analysis of Networks Designed by Secondary OA Analysis: r2 Value for Predicted Versus Observed FPF from the Training, CV, and Test Subsets and the Percent of Correctly
Categorized Outputs (±15% of observed FPF)

No. NL NU LF SS MO EP TE r2 Value % Correctly Categorized

Training CV Test Mean ± SD Training CV Test Mean ± SD

1 4 200 Quickprop 0.3 0.2 1000 Minimum 0.904 0.946 0.911 0.920 ± 0.02 57.1 70.8 58.3 62.1 ± 7.6
2 2 50 Quickprop 0.3 0.1 500 None 0.877 0.948 0.902 0.909 ± 0.04 55.5 68.8 62.5 62.2 ± 6.6
3 4 100 Quickprop 0.7 0.1 500 Maximum 0.874 0.948 0.908 0.910 ± 0.04 58.8 77.1 64.6 66.8 ± 9.3
4 3 50 Quickprop 0.5 0.3 1000 Maximum 0.880 0.949 0.879 0.903 ± 0.04 61.3 79.2 60.4 70.0 ± 10.6
5 4 50 Delta Bar 0.5 0.3 500 Minimum 0.414 0.659 0.524 0.532 ± 0.12 31.1 39.6 33.3 34.6 ± 4.4
6 2 200 Delta Bar 0.5 0.1 1000 None 0.493 0.693 0.667 0.618 ± 0.11 30.3 52.1 47.9 43.4 ± 11.6
7 3 200 Quickprop 0.7 0.3 2000 None 0.928 0.951 0.936 0.938 ± 0.01 73.9 77.1 79.2 76.7 ± 2.6
8 4 100 Delta Bar 0.3 0.3 2000 None 0.352 0.671 0.572 0.531 ± 0.16 31.9 45.8 45.8 41.2 ± 8.0
9 2 50 Delta Bar 0.7 0.2 2000 Maximum 0.914 0.938 0.940 0.930 ± 0.01 71.4 68.1 68.1 69.2 ± 1.9
10 2 100 Step 0.3 0.3 1000 Maximum 0.904 0.938 0.932 0.925 ± 0.02 65.5 68.8 64.6 66.3 ± 2.2
11 4 200 Step 0.5 0.1 2000 Maximum 0.924 0.943 0.921 0.929 ± 0.01 73.9 72.9 66.7 71.2 ± 3.9
12 3 50 Step 0.3 0.1 2000 Minimum 0.913 0.934 0.899 0.915 ± 0.02 70.6 79.2 62.5 70.8 ± 8.3
13 2 200 Step 0.7 0.3 500 Minimum 0.893 0.927 0.894 0.905 ± 0.02 64.7 66.7 62.5 64.6 ± 2.1
14 4 50 Step 0.7 0.2 1000 None 0.919 0.942 0.910 0.924 ± 0.02 79.8 70.8 72.9 74.5 ± 4.7
15 3 100 Step 0.5 0.2 500 None 0.893 0.942 0.917 0.917 ± 0.02 63.0 70.8 64.6 66.1 ± 4.1
16 2 100 Quickprop 0.5 0.2 2000 Minimum 0.907 0.944 0.909 0.920 ± 0.02 72.3 79.2 70.8 74.1 ± 4.5
17 3 100 Delta Bar 0.7 0.1 1000 Minimum 0.900 0.934 0.913 0.916 ± 0.02 73.1 72.9 64.6 70.2 ± 4.9
18 3 200 Delta Bar 0.3 0.2 500 Maximum 0.886 0.926 0.915 0.909 ± 0.02 71.4 68.8 72.9 71.0 ± 2.11
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The other 4 factors (number of hidden layers [NL], number of
units [NU], learning function [LF], and step size [SS]) had little effect
on the predictive ability of ANN with a difference of <5% between
the r2 values of the levels. Therefore, a similar range was chosen to
further examine these in the secondary OA. It is likely that the
number of units and number of hidden layers did not have a
significant effect on the primary OA because the increase in number
of units and the change from one to two hidden layers did not add
enough complexity to the ANN to make a significant difference in
the predictive ability of the ANN. Both step sizes and learning
function performed similarly, so neither significantly improved the
performance of the ANN. Overall, the primary OA helped to define
the ranges of each of the architecture characteristics, whereas the
secondary OA was used to refine these levels to produce the
optimum ANN architecture characteristics.

The general validity of the networks was assessed using the
values for the training, test, and validation sets during the ANN
construction. The high r2 values in the secondary OA showed a
slightly biased view, as most networks accurately categorized
around 60%-80% of the records correctly. Many of the networks
demonstrated over-training with the CV or test set producing a
higher percentage of records which have been correctly categorized
when compared to the training set. The networks in the secondary
OA which did not show signs of over-training were Networks 9, 11,
14, and 17. Analyzing the percent of the records which were
correctly categorized and the r2 values (Table 6) showed that these
networks were not over-fitting the data, hence it demonstrated the
plausible application of an ANN to predict FPF.

Initially, weights between links were set to random values
between �1 and 1, as it is a common practice when establishing
ANNs. Reproducibility of results is considered a limitation of ANN
because of this random assignment. However, previous work
carried out in the group (Ali J, unpublished data, 2014) has shown
that similar overall results can be obtained for ANNs, which have
different starting weights, as long as the parameters, such as the
learning algorithm and the number of cycles, have been optimized;
therefore the random assignment of weights was not considered to
be a limiting factor in the general approach employed.

The secondary OA was important to identify the best learning
function, the optimum number of hidden layers, step size,
momentum rate, and the best type of termination. The most
significant architecture characteristic in the secondary OA when
FLA 5.4.0 DTD � XPHS524_proof
improving the predictive ability of the ANNwas the type of learning
function (LF). It had the largest difference of 18% between the
maximum and minimum r2 value between levels (Fig. 3).

In the secondary OA, Level 02 of the learning function
(Delta Bar) was detrimental to the predictability of the ANN (Level
02: r2 ¼ 0.74). However, step and quickprop (Level 01 and Level 03)
had a similar effect (Level 01: r2 ¼ 0.92, Level 03: r2 ¼ 0.92,
respectively). Learning function had the most significant effect
because it was the way of transferring information between the
layers. Delta Bar (Level 02) was an adaptive step size learning
function, as it is updated according to the previous error values of
the processing element. Therefore, if the current weight and past
weight are both the same sign, this contributes to a quicker
computational time, whereas if these weights were opposite signs
then this indicates that the change to the value of the weight had
gone too far. For a smaller sample size (<100 records), Delta Bar was
the best learning function, as theWidow-Hoff error was involved to
determine the amount the weights were changed by. However,
Delta Bar (Level 02) was detrimental to the predictive ability of the
ANN due to a combination of all the networks using online learning
and the larger dataset allowing the other learning functions to
thrive, as they had more training records to learn properly.40 There
was nothing to choose between the other 2 learning functions, step
and quickprop. The learning function, Step, uses the step size to
determine which direction to get to the local minima. Quickprop
uses the momentum to provide the gradient descent toward the
local minima. However, oscillations may occur if the momentum is
set too high in the learning function of quickprop, which results in
never reaching the local minima. This may have been one of the
reasons that step was shown in the analysis to be slightly more
beneficial.

The next most significant factor was the number of hidden
layers (NL), and Level 02, 3 layers, produced the highest r2 value out
of the 3 levels (Level 03: r2 ¼ 0.87; Fig. 3). The number of hidden
layers was one of the most significant factors because it affected the
learning capabilities of the ANN (difference in r2 ¼ 0.13). The larger
number of hidden layers allowed a greater complexity to be
obtained in the ANN, hence the ANN can handle the complex
dataset.

The other significant factors when predicting the FPF were step
size, momentum, and the type of termination, as they had >5%
variation between the r2 values associated with the different levels.
� 1 November 2016 � 3:01 pm
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Figure 3. Evaluation of the number of hidden layers (NL), the number of units in the hidden layer (NU), learning function (LF), step size (SS), momentum (MO), number of epochs
(EP), and termination (TE) (a) r2 values between the desired and generated FPF from the average of the training, CV, and testing sets from the secondary OA (Table 5) (data represent
mean ± SD), and (b) the difference in the average r2 value between the maximum and minimum level for each architecture characteristics. (c) Signal to noise ratio from the training,
CV, and testing sets (mean ± SD).

J. Muddle et al. / Journal of Pharmaceutical Sciences xxx (2016) 1-9 7

779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843

844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
The optimal step size (SS) was Level 03, 0.7, as it produced the
highest r2 value for the 3 levels (Level 03: r2 ¼ 0.92). Also, the
highest r2 value from the 18 networks was produced when the
momentum (MO) was set at 0.2 (Level 02: r2 ¼ 0.92) (Fig. 3). Step
size and momentum were obviously significant architecture
factors, as a non-optimal step size and momentum rate, especially
with the learning function of step. The largest step size (Level 03)
was large enough so the ANN reached the local minima without
over-shooting it and causing the error to oscillate. As such, Level 03
was chosen for the optimum ANN as the smaller step sizes involved
a greater amount of computational time and carried the risk of
never reaching the local minima. Momentumwas the rate at which
the ANN reaches the local minima and if the momentum was too
large it may over-shoot the local minima, hence the optimum
condition was a small value of 0.2.

The best r2 values were produced when the termination (TE)
was set to “minimum” (Fig. 4; Level 03: r2 ¼ 0.92), which means
that when the mean square error was less than the threshold value
of 0.01 (default setting), the network training would terminate. The
default setting was low enough that the network reached its local
minima and did not over-train.

The other 2 factors assessed had a non-significant effect on the
predictability of the ANN, although the results can still be examined
to see which factor had the best response to help create the opti-
mum ANN. The number of epochs showed a slight increase in the
r2 value when 1000 epochs were used (Level 02: r2 value ¼ 0.87)
when compared to 500 epochs (Level 01: r2 value¼ 0.86) and 2000
epochs (Level 03: r2 value ¼ 0.86). The number of the hidden units
was optimal at the maximum level of 200 units in the secondary
Figure 4. Explained variance of each of the final input variables used in the optimal ANN (a)
for each of the input variables.

FLA 5.4.0 DTD � XPHS524_proof �
OA (Fig. 4; Level 03: r2 ¼ 0.87). This is unusual given that a
commonly used heuristic in ANN design is that the number of
hidden units should not be more than twice the number of inputs.
Too few hidden units would result in high training and high
generalization error, whereas too many hidden units would result
in themodel being over-fitted. The primary OA showed that models
with 100 hidden units consistently outperformed those with 10
without being over-fitted. This formed the basis of the second array
tablewhere values of 50,100, and 200 hidden units were examined.
In these networks in the secondary OA, the greater number of units
was not detrimental to the ANN performance, because the addition
of units did not add any complexity to the ANN when compared to
the addition of hidden layers.
Performance of the Optimized ANN

An “optimal” MLP architecture was designed from the results of
the OA analysis (Fig. 3c) comprising 3 hidden layers, 200 units in
each of these hidden layers, a learning function of step, a step size of
0.7, a momentum rate of 0.2, number of epochs of 1000, a termi-
nation procedure of minimum, and online backpropagation as the
learning algorithm. The optimum MLP produced a high average
r2 value of 0.937 (Table 7). However, this ANN had a higher r2 value
and proportion of the records which were correctly categorized
associated with the CV set when compared to the training set,
which demonstrated that the ANN was over-fitting and could not
perform at its best. This could have been because the levels selected
for each architecture characteristic led to the network error missing
loading plot of each of the input variables and (b) plot of the explained variance of PC-1
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Table 7
he r2 Value and the Percent of Correctly Categorized FPF Records for Each Dataset Tested in the MLP Designed Using the Signal to Noise Ratio from the Taguchi Method,
Compared to the Best Network from the Secondary Array (Network 14 from Table 6)

Set of Data Network Designed Using Signal to Noise Ratio Network 14 From Secondary OA

r2 Value Between the Expected and Generated FPF Percent Which were Correctly Categorized Percent Which were Correctly Categorized

Training 0.938 73.9 79.8
CV 0.952 79.2 70.8
Test 0.922 68.8 72.9
Mean ± SD 0.937 ± 0.015 73.9 ± 5.2 74.5 ± 4.7
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the local minima, leading to the network over-training, but could
also be a consequence of the small dataset used in the study.

In the primary and secondary OAs, some of the networks were
over-fitting with higher r2 values associated with the CV set and the
optimum model due to the selection of certain ANN architecture
characteristics (Fig. 3). However, this was not the case with
Network 14 of the secondary OA which correctly categorized a
greater amount of records when compared to the optimum ANN
(74.5%) and was not over-fitted (Table 7). This indicated that some
of the networks could be useful to predict FPF. Network 14’s
architecture include online backpropagation, 4 hidden layers, 50
units in each of these hidden layers, a learning function of step, a
step size of 0.7, a momentum rate of 0.2, number of epochs of 1000,
and no termination procedure. Network 14 from the secondary OA
thus proved to be the best performing architecture for this dataset.
Many of the ANNs created had a high mean r2 value and the
proportion of the records which were correctly categorized was
above 70%. Thus, Network 14 in the secondary OA showed that
ANNs could be a feasible modeling technique when analyzing the
complex relationship between the formulation and device
characteristics of a DPI.

This study indicated that it was possible to develop an ANN
that could handle the complex relationship of different devices,
formulations, and API to predict FPF, although given the small
dataset used it cannot be claimed that this model is generalizable.
In a similar study using ANNs, Kinnunen et al.19 showed that the
critical parameter in describing in vitro deposition patterns was the
concentration of fine lactose which was <4.5 mm and >15 mm. This
was determined by calculating the connection weights of the
different input parameters in the ANN when the output was FPF
and mass median aerodynamic diameter. However, the study
covered less complexity with a single API, budesonide, and one
device type, Cyclohaler. As r2 values for these ANNs were not
reported, a direct comparison between the 2 studies cannot be
made beyond the success in using an ANN to predict the deposition
of dry powder formulations with similar input factors. However, a
comparison can be made between the input factors which were
important in the ANN. The melting point and CPP were the most
important input factors derived from the API in explaining the
variance of FPF in the dataset, which was expected as these 2 input
factors take one of two values. The next most significant input
factors were those related to the formulation (Fig. 4), especially the
amount of fine lactose similarly to the findings reported by
Kinnunen et al.19

This work shows the potential to develop a useful generic model
for predicting FPF, although this would require much larger data-
sets and more variable inputs, especially for the API and inhaler
device. Preliminary investigations (data not shown) revealed that it
was necessary to combine the experimental datasets to produce
sufficient records such that a reliable network could be developed,
as evident by higher r2 values and the proportion of the records that
were correctly categorized. Many of the projected networks
showed signs of over-training, which are not unexpected given the
small dataset, but the Taguchi method was able to identify which
FLA 5.4.0 DTD � XPHS524_proof
ANNs were successful. In general, ANNs are good at classifying
items, so for future experiments the FPF may be grouped, which
may lead to an improved proportion of records which are correctly
categorized. Overall, relying on r2 values alone as a measure of
model predictability gave inflated results regarding model quality.
However, the inclusion of the proportion of the records which were
correctly categorized allowed a more realistic evaluation to
mitigate against this. Even with these limitations, the potential for
applying ANN to predicting FPF was shown and the dataset could
be expanded to include a larger variety of inhalers and APIs, and the
optimal ANN architecture characteristics for this specific dataset
would evolve. Without such a sufficiently large and diverse dataset,
ANN development will need to be completed for each prospective
inhaled product on a case-by-case basis. With a considerably
enlarged dataset, it may be possible to model formulation devel-
opment to achieve a target performance specification, or match
performance to that of a reference item. This technique could be
used to aid the design and development of new products: the
proposed material science tetrahedron proposes modeling
approaches to probe the relationship between the structure,
properties, processing of a medicine, and its performance. The
optimum ANN used in this study allows the impact of structure and
properties of inhaled product components on FPF to be predicted.

Conclusion

This study has demonstrated that ANNs can predict the effect of
formulation and device design on the respirability of particles
emitted from DPIs. The optimum ANN included inputs for the API,
formulation, and device which reflected the recognized importance
and interdependency of these factors for orally inhaled product
performance. The Taguchi method was effective at identifying
successful architecture with the potential for development as a
useful generic ANN model for predicting FPF, although this would
require much larger datasets and more variable inputs, especially
for the API and inhaler device in order to be generalizable. To realize
the full potential for reducing the impactor testing burden, the
modeling could be extended to other impactor outputs, for example,
emitted dose, aerodynamic particle size distribution, mass median
aerodynamic particle size, and geometric standard deviation.
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