
EURASIP Journal on
Embedded Systems

Karavadara et al. EURASIP Journal on Embedded Systems (2016) 2016:14
DOI 10.1186/s13639-016-0035-9

RESEARCH Open Access

Dynamic power management for reactive
stream processing on the SCC tiled
architecture
Nilesh Karavadara1*, Michael Zolda1, Vu Thien Nga Nguyen1, Jens Knoop2 and Raimund Kirner1

Abstract

Dynamic voltage and frequency scaling (DVFS) is a means to adjust the computing capacity and power consumption
of computing systems to the application demands. DVFS is generally useful to provide a compromise between
computing demands and power consumption, especially in the areas of resource-constrained computing systems.
Many modern processors support some form of DVFS.
In this article, we focus on the development of an execution framework that provides lightweight DVFS support for
reactive stream processing systems (RSPS). RSPs are a common form of embedded control systems, operating in
direct response to inputs from their environment. At the execution framework, we focus on support for many-core
scheduling for parallel execution of concurrent programs. We provide a DVFS strategy for RSPs that is simple and
lightweight, to be used for dynamic adaptation of the power consumption at runtime. The simplicity of the DVFS
strategy became possible by the sole focus on the application domain of RSPs. The presented DVFS strategy does not
require specific assumptions about the message arrival rate or the underlying scheduling method.
While DVFS is a very active field, in contrast to most existing research, our approach works also for platforms like
many-core processors, where the power settings typically cannot be controlled individually for each computational
unit. We also support dynamic scheduling with variable workload. While many research results are provided with
simulators, in our approach, we present a parallel execution framework with experiments conducted on real
hardware, using the single-chip cloud computer many-core processor. The results of our experimental evaluation
confirm that our simple DVFS strategy provides potential for significant energy saving on RSPs.

Keywords: Tiled architectures, Stream-processing, Reactive systems, Many-core processor, Power management, DVFS

1 Introduction
With the ever-increasing demand of applications for com-
putational performance, tiled architectures have become
a promising new technology for parallel processing that
combine the computational power of GPUs/DSPs with the
flexibility of synchronous multiprocessing. In particular,
tiled architectures were designed to address the problems
of long line lengths and performance bottlenecks caused
by shared resources that have been occurring in tradi-
tional symmetric multi-core designs with the increasing
number of cores. At the same time, tiled architectures try
to retain the flexibility of traditional desktopmicroproces-
sor architectures.

*Correspondence: n.karavadara@herts.ac.uk
1School of Computer Science, University of Hertfordshire, AL109AB Hatfield, UK
Full list of author information is available at the end of the article

The decentralised nature of tiled architectures requires
programming and executionmodels that differ from those
used for symmetric multi-core architectures. Stream pro-
cessing is a promising parallel execution model that is
well-suited for modern tiled many-core architectures,
as it embraces distributed processes that interact solely
through explicit, unidirectional data streams. High-level
coordination languages based on principles from dataflow
programming allow software engineers to rapidly build
maintainable parallel applications from sequential build-
ing blocks. A lightweight load-balancing middleware layer
can then be used to effectively schedule the execution of
these building blocks on tiled architectures.
Reactive stream processing systems (RSPs) designate

the case where stream processing is used to imple-
ment reactive systems, i.e. systems that operate in direct

© 2016 Karavadara et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13639-016-0035-9-x&domain=pdf
mailto: n.karavadara@herts.ac.uk
http://creativecommons.org/licenses/by/4.0/

Karavadara et al. EURASIP Journal on Embedded Systems (2016) 2016:14 Page 2 of 17

response to inputs from their environment. An example
of RSPs is real-time video encoding, where the encoder
needs to process incoming video frames as they arrive.
Optimisation of power consumption is important, espe-

cially if RSPs are used in embedded resource-constrained
environments. For example, if the system load imposed
by the environment varies over time, the use of dynamic
power management techniques like dynamic voltage and
frequency scaling (DVFS) can be used to effectively reduce
the power consumption of such systems. Expanding on
the example of real-time video encoding, the computa-
tional resources needed vary greatly depending on the
captured scenery: detailed sceneries with fast, complex
movements are much more computationally intensive
than still scenes with few details.
It is important to note that this situation is very dif-

ferent from non-reactive stream processing, where the
system is not subject to such stringent timing constraints.
The challenge in dynamic power management for reac-
tive stream processing is to save power at the right time,
without violating the system’s throughput and latency
constraints. This is a hard problem, because the future
resource requirements can be unpredictable for many
important applications.
In this article, we present an execution framework

that provides lightweight DVFS support for RSPs. As
described in Section 2, most DVFS research, in contrast to
our approach, have been targeted towards generic systems
with observation of the system state at OS or message
passing interface (MPI) level and/or are limited to offline
approaches with static workload. Our specialisation to
RSPs allows to deploy a rather simple DVFS strategy,
which is fast enough to optimise power consumption
dynamically during runtime. And while many research
results are provided with simulators, in our approach, we
present a parallel execution framework with experiments
contacted on real hardware, using the single-chip cloud
computer (SCC)many-core processor as a concrete exam-
ple. The SCC provides 48 cores and a flexible infrastruc-
ture for DVFS. Compared to other commercially available
tiled architectures, it supports more independent on-die
voltage and frequency domains. Moreover, since the SCC
is based on IA-32 cores, legacy benchmark code can eas-
ily be ported. A brief overview of the SCC architecture
is given in Section 3. The programming and execution
model we used to test our framework is described in
Section 4.
Our lightweight strategy for DVFS on RSPs, which is

described in Section 5, reduces the frequency and voltage
in case that the system has more than enough resources
available to cope with the current input rate. It increase
frequency and voltage in case when the load changes and
the system becomes overloaded. To do so, we observe the
input and output rates of the RSPs, as well as the number

of workers waiting for new work to predict overload and
underload situations. We then use this information for
DVFS so that the system can cope with the input rate
and save energy at the same time. Our evaluation in
Section 6 indicates that our DVFS strategy for RSPs can
reduce energy consumption significantly, even down to
half of the non-regulated one. Section 7 concludes this
research.

2 Related work
DVFS has attracted several research projects for its appli-
cations in efficient power management. The majority of
the work in this area aims to minimise energy consump-
tion by dynamically adjusting the voltage and frequency
of CPUs depending on the state of the system at different
levels.
By observing memory operations likememget,memput,

and memcpy, Gamell et al. in [1] identify slack periods
of partitioned global address space (PGAS) applications
during these operations. By exploiting these slack periods,
the authors propose a power management middleware to
allow adjusting the power configuration at both PGAS
application and runtime layers. The runtime layer makes
decisions for power configurations based on the combi-
nation of predefined thresholds and adaptive thresholds
based on the history. At the application layer, the middle-
ware allows the programmer to use language extensions
to define different power/performance policies includ-
ing maximum performance, balance power/performance,
minimum power, and maximum power reduction. The
middleware is facilitated with a power controller to
dynamically adjust the voltage and frequency depending
on the power configuration. To achieve the desired con-
figuration, the power controller can operate in different
modes including asynchronous adjusting both the volt-
age and frequency (DVFS) or adjusting only the frequency
(DFS).
Cai et al. proposed a mechanism to save energy con-

sumption based on the identification of critical threads
in parallel regions [2]. These threads are detected by the
meeting point thread characterisation mechanism and are
executed on cores with maximum frequency. The voltage
and frequency are scaled down for cores executing other
non-critical threads.
Several works focus on dynamic power adaptation for

MPI applications by observing the behaviours of MPI
calls. For example, Lim et al. proposed a method which
aims to dynamically reduce the power state (p-state)
of CPUs during communication phases where compu-
tation is not extensive [3]. This approach uses different
training algorithms to identify communication regions in
the MPI program and to derive the appropriate p-state
of each region. A shifting component is then used to
determine when the MPI program enters and leaves a

Karavadara et al. EURASIP Journal on Embedded Systems (2016) 2016:14 Page 3 of 17

communication region. This component is also respon-
sible for changing the p-state to the desired level. The
p-state is changed by writing the appropriate values of
the frequency identifier (FID) and voltage identifier (VID)
to the model-specific register (MSR). Similarly, Iannou
et al. proposed a method that aims to detect recurring
communication and execution phases in MPI applica-
tions [4]. The phase detector is designed by instrumenting
MPI calls to measure the execution time of each call and
the execution time of the program in between calls. The
instrumentation information is then used in the so-called
supermaximal repeat string algorithm [5] to detect differ-
ent phases in the MPI program. The work also proposes
a hierarchical power controller to automatically adjust
the voltage and frequency during each detected phase.
The adjustment is determined based not only on the
information of the local power domains but also on the
previously observed execution times of the phase on mul-
tiple frequency and voltage domains. As another example,
Kappiah et al. proposed a method which exploits inter-
node slack to detect non-bottleneck nodes [6]. The fre-
quency of these nodes is scaled down so that their com-
putations are potentially completed at the same time with
bottleneck nodes.
As a static power adjustment approach, Rountree et al.

use linear programming to derive the offline schedule for
CPU frequency so that energy saving is optimal [7]. The
linear programming solver relies on the application com-
munication trace to identify the critical path of execution.
Using the power characteristics of the cluster, the solver
derives a schedule that ensures that the node execut-
ing the critical path is never slowed down. Although this
approach provides a nearly optimal schedule, it requires a
complete trace of the program at each different frequency
level. In addition, the linear programming solver is too
slow to be efficiently utilised at runtime for dynamic adap-
tation. To overcome these problems, the authors combine
this static approach and dynamic slack prediction into
the Adagio runtime system [8]. Adagio first generates a
static schedule based on the predicted execution time.
The schedule is dynamically adapted during the runtime
based on the prediction of critical paths.
Wang and Lu proposed a threshold-based approach

to reduce energy consumption for heterogeneous clus-
ters [9]. First, an offline analysis is performed to gener-
ate thresholds. These thresholds are then used to divide
the workload into several ranges with different power
configurations. At runtime, the workload for cluster is
measured and based on this measurement, future work-
load is predicted. The predicted workload is then used
to decide the range and appropriate power configura-
tion to be used. Similarly, Chen at al. proposed a DVFS
scheme for heterogeneous clusters that satisfy quality of
service (QoS) requirements [10]. They use approximation

algorithms to analyse the trade-off of time/space com-
plexity and power consumption minimisation for three
different QoS models. A latest survey by Bambagini and
Marinoni [11] presents an in-depth analysis of state-of-
the-art energy-aware scheduling algorithms for real-time
systems including DVFS, DPM, and hybrid approaches.
Chen et al. have presented a DVFS (and also static

power consumption) approach that targets special mul-
ticore platforms with time-triggered communication, i.e.
time-divisionmultiple access (TDMA) [12]. Our approach
is not limited to such TDMA-based architectures. Also,
the SCC used in our experiments does not have a time-
triggered network on chip (NoC). In addition, TDMA
schemes are normally applied for highly dependable archi-
tectures, where the focus is more on dependability rather
than efficient resource utilisation.
Poellabauer et al. have developed a feedback-based

DVFS approach that aims to reduce the processor speed
during input-output (IO) intensive phases where the max-
imum processor speed cannot be fully exploited [13]. The
detection is done by observing the ratio of data cache
misses per instruction, which they callmemory access rate
(MAR). A high MAR denotes an IO-intensive period with
lots of accesses to data memory, while a lowMAR denotes
a computation-intensive period. The separation of execu-
tion phases into IO and computation works effectively for
a single core. With multiple cores, these phases tend to be
out of sync among the cores, which reduces the chances
that all cores are doing IO at the same time. In contrast,
with our DVFS framework, we do not focus on speed
reduction at IO phases but rather on speed reduction at
temporal underload situations.
Bini et al. have presented a DVFS framework for real-

time systems [14]. This approach is based on the calcula-
tion of the so-called optimal processor speed which would
allow all deadlines to be met. They then use two discrete
speeds, one slightly below and the other one slightly above
the optimal speed, which are used to approximate the
optimal speed, such that it is guaranteed that no deadline
is missed. While this work focuses on static calculation
of processor speed, our approach targets systems with
temporal changes of the system load, which requires a
dynamic approach.
The related work discussed in this section addresses dif-

ferent specific platform and software properties. There-
fore, none of them can be easily adapted to be integrated
into our execution framework in order to compare it with
our DVFS strategy. The reasons for this are as follows:

Uniform vs. core-based control
The majority of DVFS research assumes the power
controlability of individual computing elements, for
example, Cai et al. [2], Gamell et al. [1], Lim et al. [3],
Iannou et al. [4, 5], and Poellabauer et al. [13]. This

Karavadara et al. EURASIP Journal on Embedded Systems (2016) 2016:14 Page 4 of 17

is also the case for Chen et al. [10] with the focus on
server farms.

For many-core processors like the SCC, such
an individual control of computing elements is
not applicable. While the SCC allows frequency
switching at the tile level, the more important
voltage setting can only be done at the individual
voltage islands of four tiles each. Thus, we support
an approach that does not rely on controlability of
individual nodes but rather does a processor-wide
adaptation of power settings.

Dynamic vs. static scheduling
Some DVFS approaches focus on static control

of power settings, for example, Kappiah et al. [6],
Rountree et al. [7],[8], and Chen et al. [12].

In contrast, our approach focuses on the support
of dynamic scheduling problems, not limiting it only
to static ones.

Soft vs. hard real time
Some DVFS approaches target real-time systems,

deploying scheduling methods that rely on the
knowledge of the computational demand of individ-
ual tasks in order to allow response-time analysis, for
example, Wang and Lu [9], Bambagini and Marinoni
[11], or Bini et al. [14].

Our approach does not rely on the knowledge of
computational demands of individual tasks. How-
ever, on the downside, our approach is not applicable
for frameworks with hard real-time requirements.

In addition, some of the related work described above
the results are acquired by means of simulation. In con-
trast, we use actual hardware platform to obtain results.

Nevertheless, our approach is also hardware indepen-
dent, i.e. it does not require any specific performance
registers, and as such can be adapted to a new hard-
ware platform without the need for any additional mea-
sures/modifications.

3 The SCC architecture
The SCC [15] is an experimental multi-core processor cre-
ated by INTEL LABS as a research vehicle for many-core
software. As seen in Fig. 1, the processor consists of 24
tiles in a 4×6 grid, connected by a high bandwidth, low
latency, on-die 2Dmesh network. Such an arrangement of
tiles and network resembles a cluster on a single chip.
Each tile contains two modified P54C processor cores

that support x86 architecture compilers and operating
systems. In standard mode, each core usually runs its
own OS, usually Linux and communicate with other cores
over a packet-based network. Each core has a private
32 kibibytes (KiB) L1 and 256KiB L2 caches. Furthermore,
each tile features a 16-KiB block of static random access
memory (SRAM) called message passing buffer (MPB)
that is physically distributed, but logically shared. Each
tile connects to a 2D mesh network via router with fixed
XY-routing. The SCC chip has four on-die memory con-
trollers (MC) as shown in Fig. 1, which supports 16- to
64-gibibytes (GiB) off-die dynamic random access mem-
ory (DRAM) in total and a voltage regulator controller
(VRC) to let programs dynamically manage the power and
the frequency of cores. In addition, one atomic test-and-
set register and two atomic counter registers are available
per core via the system interface.
The SCC chip is not directly bootable and requires

additional hardware to manage and control it. This is
done by an FPGA called the board management con-
troller (BMC). The BMC handles commands to initialise

Fig. 1 SCC top-level tile architecture

Karavadara et al. EURASIP Journal on Embedded Systems (2016) 2016:14 Page 5 of 17

and shut down the SCC and enables data collection for
power consumption. The BMC in-turn connects to the
management console PC (MCPC).
Normally, the software (called sccKit) provided by

INTEL LABS is used to communicate to BMC.

3.1 Memory architecture
The SCC offers three different address spaces:

• A private off-chip address space in DRAM for each
core. This memory is cache coherent with an
individual core’s L1 and L2 caches.

• A shared off-chip address space in DRAM. This
memory may be configured as uncached or cached. If
configured as cached, it is the programmer’s
responsibility to manage coherence.

• The MPB, that is 24×16KiB of physically distributed,
logically shared SRAM.

Tiles on the SCC are organised into four regions, each
containing six tiles. Each region maps to a particular MC.
The access to private memory goes through the assigned
MC while the access to shared memory can go through
any of the four MCs.
INTEL has provided a tag for shared data in the MPB

called message passing buffer type (MPBT) that identi-
fies cache lines for shared data in L1. All data tagged
with MPBT bypasses the L2 cache and directly goes into
the L1 cache in case of read accesses. Write operation
to MPBT type memory are stored in the write combine
buffer (WCB), until an entire cache line is filled or a
write access to a different cache line happens. The INTEL
instruction set architecture (ISA) is also extended with an
CL1INVMB instruction that invalidates all cache lines in
L1 tagged as MPBT. Access to this invalidated L1 cache
lines forces an update of the L1 cache lines with the data
in the shared memory.

3.2 Voltage and frequency scaling
Power management on the SCC consists of three compo-
nents that work with separate clocks and power sources:
tiles, mesh network, and memory controllers. In this
study, we will focus only on power management at tile
level because voltage/frequency for mesh and memory
controller cannot be adjusted at runtime.
As can be seen from Fig. 1, on the SCC, tiles are

arranged in voltage and frequency islands. There are seven
voltage and 28 frequency islands on SCC. Each tile on SCC
is one frequency island, while MCs, VRC, and the mesh
make up the rest of the islands. In contrast to frequency
island whereby each tile is an island, six voltage island con-
tains 2×2 array of tiles (four tiles per island) each, while
entire mesh network is regarded as seventh island. The
voltage of six islands made up of tiles can be controlled

by using the VRC. As described in the SCC architecture
specification document [16], the VRC allows a set of volt-
ages between 0 and 1.3V in increments of 6.25mV at
island granularity. However, practically, the usable volt-
age range is 0.7 to 1.3V (lower voltage setting will require
hard reset of the SCC to resume normal operation again).
The frequency management system provides a configura-
tion register for each tile. The maximum frequency that
can be set is dependent on the current voltage level and
can be varied between 100 to 800MHz. To change the
voltage, a value that contains island identifier and actual
voltage value is written to VRC. For frequency change, a
divider value between 2 and 16 is used to select operat-
ing frequency of tile. Divider value is used to divide global
frequency of 1600MHz, providing 800 to 100MHz and all
the values in between. This divider value with tile identi-
fier make up the value that is written to the configuration
register. The frequency of the mesh network andMCs can
be set at either 800 or 1600MHz, and it cannot be changed
dynamically.
In order to prevent any damage to the SCC chip,

scaling the frequency up requires a corresponding
change in the voltage. The official SCC documenta-
tion [17] and source code of RCCE communication
library [18] provides a table with the maximum fre-
quency allowed for each voltage level. However, there
were stability issues with certain voltage level and max-
imum allowed frequency [19]. As reported in [1, 20],
we also found that some of the voltage frequency pairs
resulted in cores becoming unstable or crashing all
together (which requires hard reset of the platform).
Through experimental evaluation, we have calibrated the
voltage and frequency pairs that works for our SCC unit.
Figure 2 shows our calibrated voltage-frequency levels,
and the one provided in RCCE source code. For frequency
range marked as improved, we were able to lower the
voltage required, while for unstable range, we have to
increase the volts required to make the core stable and
prevent crashes. While RCCE source code only provides
two usable voltage levels, our calibrated profile provides
four voltage levels.

4 Programming and executionmodel
4.1 Stream programming
A stream program consists of a set of computational nodes
that communicate by exchanging messages via directed
streams. The program consumes messages from a dedi-
cated entry stream and produces messages to a dedicated
exit stream. Nodes can be connected in different patterns,
such as pipelines and parallel networks. Some examples of
stream programming can be found in [21–23].
A stream program can be viewed as a graph whose ver-

tices are nodes and whose edges are streams. For example,
Fig. 3 shows an image filter application which includes

Karavadara et al. EURASIP Journal on Embedded Systems (2016) 2016:14 Page 6 of 17

Fig. 2 Frequency-voltage profile of the SCC

a Splitter node that reads messages containing images
and splits them into messages containing sub-images that
are distributed into separate branches, where Filter nodes
perform some transformation. Messages containing the
filtered sub-images are then sent to the Merger node,
which combines them into complete images.
As can be seen in this example, a node may produce

multiple output messages from a single input message,
and it may produce a single output message frommultiple
input messages. In general, a node that always produces
m > 0 output messages from n > 0 input messages is said
to have amultiplicity of

k = m
n
.

The notion of multiplicity can be naturally extended to
networks.

4.2 Task model
The programming model of stream programs described
in 4.1 results in a task dependence graph. This graph G =
〈TI ,TO,TC ,E〉 has a set of tasksT = TI∪TO∪TC and a set
of directed dependency edges E: ∀〈τ1, τ2〉 ∈ E. τ1, τ2 ∈ T .
An edge 〈τ1, τ2〉 ∈ E denotes that there is a communica-
tion stream from task τ1 to task τ2. There is no restriction

Fig. 3 Program structure of image filter application

assumed on the possible structure of that task dependence
graph. TI is the set of tasks that read external input, TO is
the set of tasks that write external output, and TC is the set
of task that have only internal communication within the
task dependence graph. TI and TO can theoretically also
overlap: TI ∩ TO ⊇ ∅, while by definition, there cannot be
an overlap between TC and TI or TO: TC ∩ (TI ∪TO) = ∅.
As a stream processing system, the computations are

triggered by the arrival of an external input message. We
require no particular assumption about the arrival rate of
the input messages.
There is also no particular assumption about the

deployed scheduling method, as our DVFS method does
not depend on some specific properties of the task
schedule. This makes our DVFS approach outstanding
compared to those approaches that depend on a partic-
ular schedule. The underlying scheduling method may
also have real-time requirements. However, our approach
would be limited to soft real-time scheduling only. This is
due to the nature of our DVFS method where the system
might be sometimes for a short time in overload situa-
tions, before the overload gets detected and the speed is
increased again.

4.3 Execution model
Conceptually, the stream execution model includes two
layers: a runtime system (RTS) and an execution layer.
At the RTS layer, each stream is represented as a FIFO
buffer for storing messages and each node of the stream
program is transformed into one task. A task is an iter-
ating process that reads messages from its input streams,
performs the associated node’s computations, and writes
output messages to its output streams. The role of the RTS

Karavadara et al. EURASIP Journal on Embedded Systems (2016) 2016:14 Page 7 of 17

is to enforce the semantic of stream programs, i.e. make
sure that each task reads from and writes to appropriate
streams.
The execution layer, which lies under the RTS, pro-

vides essential facilities for task and streammanagements.
The execution layer also provides a scheduler to distribute
tasks to physical resources.

4.4 LPEL—a stream execution layer with efficient
scheduling

The lightweight parallel execution layer (LPEL) [24] is an
execution layer that supports stream programs on shared
memory platforms. LPEL adopts a user-level threading
scheme providing the necessary threading and communi-
cation mechanisms in the user space. In LPEL, there is
a stream component to support stream creation, stream
reading, stream writing, and stream replacing. Addition-
ally, a task component is provided to create a wrapper
around each node before sending them to the scheduler.
Figure 4 shows an abstract design of the LPEL exe-

cution layer. In LPEL, each CPU core is modelled as a
worker. LPEL is facilitated with a centralised scheduler
to obtain automatic load balancing [25]. In this sched-
uler, one worker is dedicated as the conductor to manage
the central task queue (CTQ) which stores all ready tasks.
Each worker once free sends a request to the conduc-
tor. The conductor selects one task in the CTQ to send

to the worker. To obtain good performance in terms of
throughput and latency, the scheduler uses the notion
of data demands on streams to derive the task priority.
All conductor-worker communications are exercised via
mailboxes.
LPEL is also facilitated with a monitoring framework

which can provide the information of internal behaviours
at different levels of details ranging from scheduling
activities to performance measurement and resource
utilisations [26].

5 DVFS strategy
In reactive stream processing, the system operates in
direct response to inputs from its environment. If the load
imposed by the environment varies, dynamic power man-
agement techniques can be used to effectively reduce the
power consumption of such systems.
Our strategy is to reduce the frequency and voltage

when there are more than enough resources and the sys-
tem can easily cope with the input rate and to increase
them when the system becomes overloaded.
We have extended LPEL to support this automatic

DVFS strategy. Each SCC core runs an LPEL worker. We
use the built-in monitoring framework of LPEL to observe
the input and output rates of the program, as well as the
number of workers waiting for new work. We then use

Fig. 4 LPEL execution layer

Karavadara et al. EURASIP Journal on Embedded Systems (2016) 2016:14 Page 8 of 17

this information to dynamically adjust the voltage and
frequency so that the system can cope with the input rate
and save energy at the same time.
As mentioned in Section 4.1, stream programs consume

messages from a dedicated entry stream and produce out-
put messages to a dedicated exit stream. At runtime, we
would ideally want a situation where

ir ≈ k · or,
where ir is the rate at which messages enter the network,
or is the rate at which messages leave the network, and k is
the multiplicity of the network (cf. Section 4.1). More pre-
cisely, we want to avoid the case of ir � k·or, whichmeans
that the system is internally accumulating messages, a
behaviour that will eventually lead to memory exhaustion,
whereas the case of ir � k · or is just impossible.
For simplicity, we will (w.l.o.g.) assume a multiplicity of

k = 1, i.e. the network produces exactly one output mes-
sage for each input message. In that case, we can drop the
factor k and obtain

ir ≈ or. (1)

To achieve the near balance of Eq. 1, we have to con-
sider a dynamic input rate from the environment. The
system must be equipped with sufficient computational
resources to process messages fast enough under themax-
imal input rate irmax; otherwise, the system may become
overloaded. In this case, the output rate will stay close to
some maximal achievable output rate ormax, i.e.

or ≈ ormax � ir, (2)

and messages will either start to accumulate inside the
system or they will be dropped. On the other hand, if
the input rate falls below ormax, the system becomes
underloaded, i.e.

ir ≈ or � ormax, (3)

and unused system resources may cause unnecessary
power drain.
One way to deal with this situation is to use a plat-

form where we can dynamically adjust the performance in
response to demand. If we use voltage and frequency scal-
ing to adjust the performance, ormax becomes dependent
on the current voltage V and frequency f.
According to Condition 2, we can detect overload by

checking if the average output rate falls below the average
input rate. The overload at time t is given by

ol(t) = ir(t) − or(t)
ir(t)

. (4)

5.1 Detecting overload
In many streaming applications, the input rate depends on
a stateful stochastic process. Thus, it makes sense to con-
sider the overload history to predict the potential future

overload. We wanted to keep the overhead of our strat-
egy low and therefore decided to use a simple exponential
moving average (EMA) predictor, which is extremely fast
to calculate and has minimal memory overhead. At a
given time t, we calculate the predicted future overload
olpred(t + 1) as

olpred(t+1) =
{
0 if t = 0
αol · ol(t) + (1 − αol) · olpred(t) if t ≥ 1.

(5)

The smoothing factor 0 < αol < 1 is application spe-
cific. A high value makes the prediction depend mostly on
the recent history, whereas a low value makes the predic-
tion more dependent on the long-term history. A suitable
smoothing factor can be found by minimising an error
measure, like the sum of square errors (SSE), on rep-
resentative sample data. This can either be achieved by
graphically checking the fit for different parameters or by
applying a least squares approach [27].

5.2 Detecting underload
We detect underload situations by observing used
resources. More precisely, we examine the slack, e.g.
the number of workers that are waiting for work to be
assigned. Like in the overload case, we use an EMA to
make a prediction about the future underload. At a given
time t, we calculate the predicted future number of unused
workers wwpred(t + 1) as

wwpred(t + 1)

=
{
0 if t = 0
αww · ww(t) + (1 − αww) · wwpred(t) if t ≥ 1.

(6)

Again, the smoothing factor 0 < αww < 1 is applica-
tion dependent. A high valuemakes the prediction depend
mostly on the recent history, whereas a low value makes
the prediction more dependent on the long-term his-
tory. A suitable smoothing factor can, again, be found by
minimising an error measure on representative sample
data.

5.3 Policy
Our policy for adjusting the frequency at runtime can be
summarised by the following set of rules:

1. Increase the frequency of all the islands by one step,
when the number of waiting workers is predicted to
fall short of a given lower threshold
(wwpred(t + 1) ≤ wwth) and the overload is predicted
to exceed a given upper threshold
(olpred(t + 1) > olth).

2. Decrease the frequency of all the islands by one step,
when the number of waiting workers is predicted to

Karavadara et al. EURASIP Journal on Embedded Systems (2016) 2016:14 Page 9 of 17

exceed the given lower threshold
(wwpred(t + 1) > wwth).

3. Otherwise, do not change the frequency.

Table 1 summarises all possible situations and the action
implied by the above rules. Of course, the frequency is
only varied within the limits given in Fig. 2.
If some messages are half-way processed in the sys-

tem, the effect of the change is not seen immediately in
its full extent. We therefore limit the rate of frequency
adjustments. The maximal allowable rate of frequency
adjustments depends on the application-specific maximal
processing latency lmax and on the smoothing factor αol.
In Section 6.4, we develop a few general guidelines

for choosing suitable thresholds wwth and olth. Notwith-
standing, the concrete values are application specific. In
practice, these values could be determined using meta-
heuristics to perform guided profiling of the application
under consideration.

5.4 Frequency adjustment
As pointed out in [28], the operating speed of a pro-
cessing unit on a multicore platform is approximately
proportional to its operating clock frequency,

speed ∝ f , (7)

whereas its dynamic power consumption is approximately
proportional to the product of its operating frequency by
the square of its operating voltage,

Power ∝ f · V 2. (8)

Since a lower operating voltage increases the circuit
delay, the operating voltage always imposes an upper
bound on the operating frequency, and it follows that
the dynamic power consumption of a processing unit is
approximately proportional to the cube of its operating
voltage,

Power ∝ V 3, (9)

or, equivalently, to the cube of its operating speed or
frequency,

Power ∝ speed3 ∝ f 3. (10)

Table 1 Policy for changing the frequency

Underload condition Overload condition Action

wwpred(t + 1) ≤ wwth olpred(t + 1) ≤ olth None

wwpred(t + 1) ≤ wwth olpred(t + 1) > olth Increase frequency

wwpred(t + 1) > wwth olpred(t + 1) ≤ olth Decrease frequency

wwpred(t + 1) > wwth olpred(t + 1) > olth Decrease frequency

We use the full range of available frequency settings,
that is, from 100 to 800MHz.We change the frequency by
adjusting the operating frequency divider fdivcur

fdivinc = fdivcur − 1
fdivdec = fdivcur + 1.

(11)

As pointed out above, there is a minimal required volt-
age level for each frequency, which we also have to adjust
in order to avoid chip failures (cf. Fig. 2).

5.5 Influence of load balancing
The SCC allows to individually set the frequency of each
tile (of two cores) and the voltage of each island (of eight
cores).
Although the SCC offers a theoretical feature to put

individual islands to sleep by setting their voltage to 0V,
we found that this feature did not work properly in prac-
tice, as pointed out in Section 3.2.
Considering that putting processing units to sleep in

order to reduce their static power consumption is thus not
an option, maximal dynamic power savings are achieved
on a perfectly load-balanced systems, by reducing the
speed of all islands by the same amount and avoiding dif-
ferent speeds on different cores. This can easily be seen
for a two-core system, where the total power

Power =Powercore1 +Powercore2 ∝ speed3core1 + speed3core2 .
(12)

Since we are considering reactive systems with a data
input rate that is determined by the environment, we want
to run the system at a momentary speed of

s = speedcore1 + speedcore2 , (13)

that is determined by the current workload, hence,

Power ∝ speed3core1 + (s − speedcore1)
3

= s3 − 3s2speedcore1 + 3s speed2core1 ,
(14)

which is minimal for speedcore1 = s/2. In other words,
speedcore1 = speedcore2(= s/2) yields the minimal power
consumption for any momentary system speed s. It is not
hard to generalised this result to n cores.
Since LPEL already performs automatic load balancing

(cf. Section 4.4), we may restrict ourselves to chip-level
DVFS, i.e. we merely have to adjust the total system speed,
such that the system can cope with the data input rate of
the environment. Any required balancing is then automat-
ically performed by LPEL. This greatly simplifies the act
of choosing the right voltages/frequencies in the presence
of core-level load fluctuations.

6 Evaluation
To evaluate our power-aware scheduler, we deployed
a resource aware LPEL (RALPEL) on the SCC. We

Karavadara et al. EURASIP Journal on Embedded Systems (2016) 2016:14 Page 10 of 17

used different policies to measure the impact of power
saving.

6.1 Experimental setup
We used the default sccKit 1.4.2 configuration, with mem-
ory and mesh running at 800MHz.
As our benchmark, we chose a fast fourier transform

(FFT), face detection (FD), and data encryption stan-
dard (DES) applications implemented using the S-Net [22]
streaming language.
Each benchmark contains themain structure which per-

forms the computation. Normally, this main structure is
comprised of multiple sub-tasks. To increase the level of
concurrency, S-Net provides parallel replication to create
multiple instances of the main structure. The number of
instances depends on the number of workers.We reserved
some cores to simulate the environment, consisting of a
source/producer and a sink/consumer.
The FFT benchmark applies FFT to messages contain-

ing 213 discrete complex values.
The FD benchmark applies a sequence of classifiers to

detect different features to be found in an image, like the
eyes, mouth, nose, etc. The way the algorithm behaves is
that it calls in a pipeline all the different classifiers. Each
classifier searches on a list of feature predictors until the
first matching one has been found. For simplicity of the
implementation, we used a simulation of the actual fea-
ture detectors and decided randomly whether the feature
predictors were matched.
The main structure of DES is made of three sub-tasks.

First, sub-task performs initial permutation and splits
block of bits into two blocks of equal size. In the next sub-
task, actual ciphering is applied to the two blocks. The
last sub-task joins up the two blocks into one cipher text
block and applies the final permutations. Each sub-task
has variable execution time that depends on the size of
input messages.
Table 2 shows the minimal and maximal execution time

with difference in percentage for each task in the bench-
marks. The value reported are arithmetic mean of five
runs of each benchmark. For these experiments, we did
not employ voltage or frequency scaling. We can see that
all benchmarks show a considerable variation in execution
times of tasks.

6.2 Data collection and post-processing
As we mentioned in Section 3, the SCC is connected to
the FPGA called the BMC. While SCC is equipped with
many sensor ADCs that can measure the supply voltages
for individual islands, it does not, however, provide cur-
rent at this level. In order to calculate power, we need
both supply voltage and the current. Both of these values
are available at chip level on the 3.3V rails. Which means

Table 2 Minimal and maximal task execution time for different
benchmarks, mean values of five runs with maximal voltage and
frequency energy policy

Benchmark Task Min (s) Max (s) Difference (%)

FFT initP 6.5868 8.2640 25.4623

stepP 70.5236 113.0189 60.2568

FD classifier1 4.0704 14.6089 258.9072

classifier2 4.7971 14.1402 194.7675

classifier3 4.4682 13.1498 194.2975

DES initP 3.6370 6.8986 89.6753

subRound 4.7194 14.3530 204.1283

finalP 2.1357 4.0790 90.9877

power can only be measured of all cores and the mesh
together as a whole.
The power measurement controller (PMC) situated

in the FPGA/BMC periodically collects the data from
the measurement ADCs and stores them in the power
measurement registers. These registers can be memory
mapped and read by the cores or theMCPC. Furthermore,
FPGA also provides global timestamp counter that can be
used across cores to have reliable/consistent time source.
Since global timestamp counter is located on the FPGA,
it does not get affected by frequency change on the SCC
cores.

Table 3 Total wall clock time, average power level, and total
energy consumption of each benchmark under three different
energy policies, as mean over five runs

Benchmark Policy Wall clock time (s) Power (W) Energy (kJ)

FFT DVFS 1646.045 30.600 50.378

DFS 1662.049 47.934 79.670

MVF 1655.352 72.579 120.143

σ 2 43.069 296.665 818.136

σ/μ 0.40 % 34.19 % 34.30 %

FD DVFS 1797.958 42.044 75.757

DFS 1774.602 53.726 95.513

MVF 1776.495 74.030 131.508

σ 2 112.186 174.648 532.678

σ/μ 0.59 % 23.35 % 22.87 %

DES DVFS 1447.779 46.625 67.507

DFS 1448.767 56.862 82.399

MVF 1451.745 71.838 104.291

σ 2 2.842 107.199 228.231

σ/μ 0.12 % 17.72 % 17.83 %

Karavadara et al. EURASIP Journal on Embedded Systems (2016) 2016:14 Page 11 of 17

Fig. 5 Fast fourier transform with thresholds olth = 0.20 and wwth = 3.0. a DVFS. b DFS. cMVF

As we mentioned before, we only need to observer
input rate, output rate, and waiting workers. In addi-
tion, we also keep track of voltage and current of the
SCC chip. We achieve this by memory mapping regis-
ters mentioned above. All of this information is collected
and used by power manager (a part of conductor) at run-
time. Power manager also writes all the information in
to a log file for post-processing. Post-processing is only
required to generate graphs and analyse the effects of dif-
ferent energy policies. Power consumption is calculated

by multiplying the voltage and current consumption at
any given moment (i.e. when each measurement is taken).
Average power consumption of a benchmark execution is
arithmetic mean of all the power readings.

6.3 Effectiveness of power saving
We tested our DVFS strategy using different thresholds
for overload (olth) and waiting workers (wwth), using a
fixed input pattern consisting of 7000 messages for FFT
and FD and 2300messages for DES.We expected different

Fig. 6 Face detection with thresholds olth = 0.20 and wwth = 3.0. a DVFS. b DFS. cMVF

Karavadara et al. EURASIP Journal on Embedded Systems (2016) 2016:14 Page 12 of 17

thresholds to yield different behaviours with respect to
energy efficiency, which would allow us to pick thresh-
olds with a balanced behaviour, i.e. which would save a
significant amount of energy without sacrificing too much
computational performance.
Table 3 summarises the main result of our experi-

ments, indicating the total wall clock time, the average
power level, and the total energy consumption of each
benchmark under three different energy policies: dynamic
voltage and frequency scaling (DVFS) as described in
Section 5, dynamic frequency scaling at maximal voltage
(DFS), and maximal voltage and frequency settings
(MVF).
The total wall clock time that each benchmark takes

to run is roughly the same (σ/μ < 0.6%) under DVFS,
DFS, and MVF; the reason being that we are considering
a reactive scenario, where the pace of the system is not
determined by the core frequency but by the data input
rate imposed by the environment. In other words, the sys-
tem must complete a given workload within a specified
wall clock time. It cannot complete the workload signifi-
cantly faster, because the input data only becomes avail-
able in real time, and it must not complete its workload
significantly slower (the latter would indicate an abnormal
overload situation).
Tiny differences in the wall clock times are mainly due

to variations in the dynamic scheduling of tasks: for exam-
ple, even a slight difference in the execution time of a sole
task (e.g. due to a cache hit vs. miss) can influence numer-
ous subsequent scheduling decisions, like the assignment
of individual tasks to particular cores, which can in turn

Table 4 Average power level, wall clock time, and total energy
consumption for different threshold values of olth and wwth

under the DVFS policy, as mean over three runs

Benchmark olth wwth Wall clock time (s) Power (W) Energy (kJ)

FFT 0.24 2.4 1647.944 26.868 44.278

0.16 2.4 1638.741 28.729 47.080

0.20 3.0 1646.045 30.600 50.378

0.24 3.6 1635.508 32.971 53.930

0.16 3.6 1655.718 32.010 53.024

FD 0.24 2.4 1766.394 33.599 59.714

0.16 2.4 1785.962 34.912 62.487

0.20 3.0 1797.958 42.044 75.757

0.24 3.6 1785.684 40.825 73.130

0.16 3.6 1760.555 44.493 78.333

DES 0.24 2.4 1443.617 40.944 59.113

0.16 2.4 1454.066 44.094 64.168

0.20 3.0 1447.779 46.625 67.507

0.24 3.6 1441.094 43.402 62.539

0.16 3.6 1447.406 46.882 67.849

cause changes in the memory access times of these tasks,
due to the use of differing NoC routes.
Our results indicate that the DVFS strategy cut the

energy consumption of the FFT benchmark by roughly a
half and the energy consumption of the FD benchmark by
a third. The reduction for the DES benchmark is about

Fig. 7 DES with thresholds olth = 0.20 and wwth = 3.0. a DVFS. b DFS. cMVF

Karavadara et al. EURASIP Journal on Embedded Systems (2016) 2016:14 Page 13 of 17

30%. As expected, the exclusive use of frequency scal-
ing without voltage scaling (DFS) saves significantly less
energy in all benchmarks.

6.4 Influence of thresholds
Figures 5, 6 and 7 show time series of our experiments
under the three energy policies. Each sub-figure shows the
progress of the input rate ir, the output rate or, the pre-
dicted overload olpred, the predicted number of waiting
workers wwpred, and power.

The red dashed lines mark our balanced overload
threshold olth = 0.2 and our balanced waiting thresh-
old wwth = 3.0. In the topmost panel, we can see
our input rate pattern, in this case, a synthetic ascend-
ing/descending step pattern. The panel below shows the
corresponding output rate, which can be seen to carry
a significant jitter. The next two panels show the pre-
dicted overload olpred and the predicted number of wait-
ing workers wwpred, respectively. In the last panel, we
see that the power level for DVFS follows roughly the

Fig. 8 Fast fourier transform with different choices of thresholds olth and wwth for DVFS (a–d)

Karavadara et al. EURASIP Journal on Embedded Systems (2016) 2016:14 Page 14 of 17

shape of the input rate pattern, although it is delayed.
The pattern for DFS is similar, but the system oper-
ates at a higher power level, which is visible as a
shift on the power axis. Moreover, the system reaches
the maximal power level faster and stays there longer.
For MVF, the power level is practically constant, and
what can be seen in the panel is merely a slight jit-
ter. Bakker et al. [29] have observed a similar fluctua-
tion in power consumption of SCC chip in idle mode.

They ascribe this behaviour to the charging and dis-
charging of a stabiliser capacitor in the voltage regulator
circuits.
Table 4 summarises the results of our experimentation

with different overload and waiting workers thresholds
under the DVFS policy. For the same reason as given in
Section 6.3 concerning Table 3, the total wall clock time
that each benchmark takes to run is roughly the same for
all different chosen thresholds.

Fig. 9 Face detection with different choices of thresholds olth and wwth for DVFS (a–d)

Karavadara et al. EURASIP Journal on Embedded Systems (2016) 2016:14 Page 15 of 17

Let us have a closer look at the effect of the different
parameter choices for the FFT benchmark. The combi-
nation of a high overload threshold of olth = 0.24 and a
low waiting threshold of wwth = 2.4, as seen in Fig. 8a,
causes the system to increase its performance configu-
ration at a very late point in time, and performance is
decreased again shortly afterwards. Although the olpred is
already higher than olth, the system does not engage DVFS
to increase performance, the reason being that wwpred is
still a lot lower than wwth. Which means that the overload

that the system is experiencing can be/is dealt with by
increasing the resource usage, i.e. waiting workers. Once
wwpred is below the threshold wwth and if olpred is still
above olth, then DVFS is engaged. Lowering the over-
load threshold to olth = 0.16 makes the system reach
its maximum performance state earlier and leave it later,
as shown in Fig. 8b. If, in addition, the waiting threshold
is raised to wwth = 3.6, as shown in Fig. 8d, the sys-
tem spends most of the time in its maximum performance
state.

Fig. 10 DES with different choices of thresholds olth and wwth for DVFS (a–d)

Karavadara et al. EURASIP Journal on Embedded Systems (2016) 2016:14 Page 16 of 17

Figure 9 shows similar patterns for the face detection
benchmark. Note that the power panel in Fig. 8a and
Fig. 9a has a different scale, indicating a very good choice
of parameters, where the system never needs the maximal
performance settings. For the DES benchmark, similar
patterns to FFT and FD can be seen in Fig. 10. Figure 10a
shows that olpred and wwpred crosses the thresholds at
roughly the same time and we can see that power con-
sumption start to increase around same time (roughly
around 500 messages). From Fig. 10c, we can see that
even though wwpred is below threshold around 375 mes-
sages, we do not see the corresponding change in power
consumption, the reason being olpred has not reached the
threshold yet. Once olpred crosses the threshold olth =
0.24 around 500 messages, we can see that power con-
sumption start to increase reflecting the increase in volt-
age/frequency.
From all the experiments, we can see that the waiting

worker threshold wwth determines the sensitivity towards
low resources. If wwth is too high, the speed of the proces-
sor (and thus the power consumption) might be increased
earlier than necessary to handle the workload even though
that are still some workers available that might be able
to handle increased workload. If wwth is too low, there
is a risk that the system will not be able to handle the
workload. The overload threshold olth determines the sen-
sitivity towards high workload. If olth is too low, the speed
of the cores (and thus the power consumption) might be
kept higher than necessary to handle the work load. If olth
is too high, there is a risk that the system will not be able
to handle the workload.
The above rules form a set of general guidelines for

choosing the suitable thresholds wwth and olth. Notwith-
standing, the concrete values are application specific. In
practice, these values could be determined using meta-
heuristics to perform guided profiling of the application
under consideration.

7 Conclusions
Reactive stream processing systems (RSPs) are a com-
mon paradigm in embedded computing. The streaming
model behind RSPs makes them well suited for computa-
tionally intensive applications where parallel execution on
multiple cores is required.
In this paper, we present an execution framework for

RSPs that provides a dynamic voltage and frequency scal-
ing (DVFS) to optimise the power consumption. With
our specialisation to RSPs, we were able to deploy a
lightweight DVFS strategy that can be used for DVFS dur-
ing runtime in order to cope with variable system load.
Our DVFS strategy reduces the frequency and voltage
when there are more than enough resources, and the sys-
tem can easily cope with the input rate, and increases
them when the system becomes overloaded. To do so, we

observe the input and output rates of the RSPs, as well
as the number of workers waiting for new work to pre-
dict overload and underload situations. We then use this
information to dynamically adjust the voltage and fre-
quency so that the system can cope with the input rate and
save energy at the same time. In contrast to many other
approaches, we do not require the ability to control the
power setting of individual computational units, making
our approach suitable for tiled many-core processors like
the SCC.
Our experimental validation of approach does not rely

on simulations. We use an execution framework that runs
on real parallel hardware, for example, the SCC we used
in our experiments. This execution framework has been
built into the lightweight parallel execution layer (LPEL)
middleware, since it already provided a load-balancing
dynamic scheduler. Our experimental evaluation indicates
that our DVFS strategy for RSPs can significantly reduce
energy consumption, even to a half.
Competing interests
The authors declare that they have no competing interests.

Acknowledgements
This work has been supported by the Material Transfer Agreement 2010–2013
for the Intel SCC Research Processor “Lightweight Parallel Execution Layer for
Stream Processing Networks on Distributed Memory Architectures”, the IST
FP7 research project “Asynchronous and Dynamic Virtualization through
performance ANalysis to support Concurrency Engineering” (ADVANCE) under
contract no. IST-2010-248828, and the FP7 ARTEMIS-JU research project
“ConstRaint and Application driven Framework for Tailoring Embedded
Real-time Systems” (CRAFTERS) under contract no. 295371.

Author details
1School of Computer Science, University of Hertfordshire, AL109AB Hatfield,
UK. 2Institut für Computersprachen, Vienna University of Technology, A-1040
Vienna, Austria.

Received: 30 September 2015 Accepted: 14 May 2016

References
1. M Gamell, I Rodero, M Parashar, R Muralidhar, in Proceedings of the 21st

International Symposium on High-Performance Parallel and Distributed
Computing.HPDC’12. Exploring cross-layer power management for PGAS
applications on the SCC platform (Association for Computing Machinery
(ACM), New York, NY, USA, 2012), pp. 235–246.
doi:10.1145/2287076.2287113. http://doi.acm.org/10.1145/2287076.
2287113

2. Q Cai, J González, R Rakvic, G Magklis, P Chaparro, A González, in
Proceedings of the 17th International Conference on Parallel Architectures
and Compilation Techniques. PACT ’08. Meeting points: using thread
criticality to adapt multicore hardware to parallel regions (ACM, New
York, NY, USA, 2008), pp. 240–249. doi:10.1145/1454115.1454149. http://
doi.acm.org/10.1145/1454115.1454149

3. MY Lim, VW Freeh, DK Lowenthal, in Supercomputing Conf. (SC),
Proceedings of the ACM/IEEE. Adaptive, transparent frequency and voltage
scaling of communication phases in MPI programs (IEEE, Washington, DC,
USA, 2006), pp. 14–14

4. N Ioannou, M Kauschke, M Gries, M Cintra, in Parallel Architectures and
Compilation Techniques (PACT), 2011 International Conference On.
Phase-based application-driven hierarchical power management on the
single-chip cloud computer (Institute of Electrical & Electronics Engineers
(IEEE), Galveston Island, TX, USA, 2011), pp. 131–142.
doi:10.1109/pact.2011.19. http://dx.doi.org/10.1109/pact.2011.19

http://dx.doi.org/10.1145/2287076.2287113
http://doi.acm.org/10.1145/2287076.2287113
http://doi.acm.org/10.1145/2287076.2287113
http://dx.doi.org/10.1145/1454115.1454149
http://doi.acm.org/10.1145/1454115.1454149
http://doi.acm.org/10.1145/1454115.1454149
http://dx.doi.org/10.1109/pact.2011.19
http://dx.doi.org/10.1109/pact.2011.19

Karavadara et al. EURASIP Journal on Embedded Systems (2016) 2016:14 Page 17 of 17

5. D Gusfield, Algorithms on Strings, Trees, and Sequences—Computer Science
and Computational Biology. (Cambridge University Press, Cambridge, UK,
1997)

6. N Kappiah, VW Freeh, DK Lowenthal, in Proceedings of the 2005 ACM/IEEE
Conference on Supercomputing. SC ’05. Just in time dynamic voltage
scaling: exploiting inter-node slack to save energy in MPI programs (IEEE
Computer Society, Washington, DC, USA, 2005), p. 33.
doi:10.1109/SC.2005.39. http://dx.doi.org/10.1109/SC.2005.39

7. B Rountree, DK Lowenthal, S Funk, VW Freeh, BR de Supinski, M Schulz, in
Supercomputing, 2007. SC’07. Proceedings of the 2007 ACM/IEEE Conference
On. Bounding energy consumption in large-scale MPI programs,
(Washington, DC, USA, 2007), pp. 1–9

8. B Rountree, DK Lownenthal, BR de Supinski, M Schulz, VW Freeh, T Bletsch,
in Proceedings of the 23rd International Conference on Supercomputing. ICS
’09. Adagio: making DVS practical for complex HPC applications (ACM,
New York, NY, USA, 2009), pp. 460–469. doi:10.1145/1542275.1542340.
http://doi.acm.org/10.1145/1542275.1542340

9. L Wang, Y Lu, in Real-Time Systems Symposium, 2008. Efficient power
management of heterogeneous soft real-time clusters (IEEE, Washington,
DC, USA, 2008), pp. 323–332

10. J-J Chen, K Huang, L Thiele, Dynamic frequency scaling schemes for
heterogeneous clusters under quality of service requirements. J. Inform.
Sci. Eng. 28(6), 1073–1090 (2012)

11. M Bambagini, M Marinoni, H Aydin, G Buttazzo, Energy-aware scheduling
for real-time systems: a survey. ACM Trans. Embedded Comput. Syst.
(TECS). 15(1), 7 (2016)

12. G Chen, K Huang, A Knoll, Energy optimization for real-time
multiprocessor system-on-chip with optimal DVFS and DPM
combination. ACM Trans. Embed. Comput. Syst. 13(3s), 111–111121
(2014). doi:10.1145/2567935

13. C Poellabauer, L Singleton, K Schwan, in Real Time and Embedded
Technology and Applications Symposium, 2005. RTAS 2005. 11th IEEE.
Feedback-based dynamic voltage and frequency scaling for
memory-bound real-time applications (IEEE, Washington, DC, USA, 2005),
pp. 234–243

14. E Bini, G Buttazzo, G Lipari, Minimizing CPU energy in real-time systems
with discrete speed management. ACM Trans. Embed. Comput. Syst. 8(4),
31–13123 (2009). doi:10.1145/1550987.1550994

15. J Howard, S Dighe, Y Hoskote, S Vangal, D Finan, G Ruhl, D Jenkins, H
Wilson, N Borkar, G Schrom, F Pailet, S Jain, T Jacob, S Yada, S Marella, P
Salihundam, V Erraguntla, M Konow, M Riepen, G Droege, J Lindemann, M
Gries, T Apel, K Henriss, T Lund-Larsen, S Steibl, S Borkar, V De, RVD
Wijngaart, T Mattson, in 2010 IEEE International Solid-State Circuits
Conference - (ISSCC). A 48-core IA-32 message-passing processor with
DVFS in 45nm CMOS, (2010), pp. 108–109.
doi:10.1109/isscc.2010.5434077. http://dx.doi.org/10.1109/isscc.2010.
5434077

16. Intel Corporation, SCC external architecture specification (EAS). Technical
report, Intel Labs (November 2010). Revision 1.1. Available online at
https://communities.intel.com/docs/DOC-5852

17. Intel Corporation: The SCC programmer’s guide V(1.0) (2010). Intel
Corporation. Available online at https://communities.intel.com/docs/
DOC-5684

18. R van der Wijngaart, T Mattson, RCCE: a small library for many-core
communication. Technical report, Intel Labs (Jan 2011). Available online
at https://communities.intel.com/docs/DOC-5628

19. Many-core Applications Research Community, RCCE_iset_power
function causes cores to be unstable. https://communities.intel.com/
thread/26799 accessed 19-Apr-2014

20. P Gschwandtner, T Fahringer, R Prodan, in Cluster Computing (CLUSTER),
2011 IEEE International Conference On. Performance analysis and
benchmarking of the Intel SCC (IEEE, Washington, DC, USA, 2011),
pp. 139–149

21. I Buck, T Foley, D Horn, J Sugerman, K Fatahalian, M Houston, P Hanrahan,
Brook for GPUs: stream computing on graphics hardware. ACM Trans.
Graph. 23(3), 777–786 (2004)

22. C Grelck, S-B Scholz, A Shafarenko, A gentle introduction to S-Net: typed
stream processing and declarative coordination of asynchronous
components. Parallel Process. Lett. 18(2), 221–237 (2008)

23. W Thies, M Karczmarek, SP Amarasinghe, in Proceedings of the 11th
International Conference on Compiler Construction. CC ’02. StreamIt: a

language for streaming applications (Springer, London, UK, UK, 2002),
pp. 179–196. http://dl.acm.org/citation.cfm?id=647478.727935

24. D Prokesch, A light-weight parallel execution layer for shared-memory
stream processing. Master’s thesis, Technische Universität Wien, Vienna,
Austria (Feb. 2010)

25. V Nguyen, R Kirner, in Algorithms and Architectures for Parallel Processing.
Lecture Notes in Computer Science, ed. by J Kołodziej, B Martino, D Talia,
and K Xiong. Demand-based scheduling priorities for performance
optimisation of stream programs on parallel platforms, vol. 8285
(Springer, Vietri sul Mare, Italy, 2013), pp. 357–369

26. VTN Nguyen, R Kirner, F Penczek, in Proc. 12th International Conference on
Algorithms and Architectures for Parallel Processing. LNCS. A multi-level
monitoring framework for stream-based coordination programs
(Springer, Fukuoka, Japan, 2012)

27. DW Marquardt, An algorithm for least-squares estimation of nonlinear
parameters. SIAM J. Appl. Math. 11(2), 431–441 (1963).
doi:10.1137/0111030

28. JH Anderson, SK Baruah, in ISCA PDCS, ed. by S-M Yoo, HY Youn. Energy-
aware implementation of hard-real-time systems upon multiprocessor
platforms (ISCA, Atlantis Hotel, Reno, Nevada, USA, 2003), pp. 430–435

29. R Bakker, MW Van Tol, AD Pimentel, in Parallel, Distributed and
Network-Based Processing (PDP), 2014 22nd Euromicro International
Conference On. Emulating asymmetric MPSoCs on the Intel SCC
many-core processor (IEEE, 2014), pp. 520–527. doi:10.1109/pdp.2014.104

Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

http://dx.doi.org/10.1109/SC.2005.39
http://dx.doi.org/10.1109/SC.2005.39
http://dx.doi.org/10.1145/1542275.1542340
http://doi.acm.org/10.1145/1542275.1542340
http://dx.doi.org/10.1145/2567935
http://dx.doi.org/10.1145/1550987.1550994
http://dx.doi.org/10.1109/isscc.2010.5434077
http://dx.doi.org/10.1109/isscc.2010.5434077
http://dx.doi.org/10.1109/isscc.2010.5434077
https://communities.intel.com/docs/DOC-5852
https://communities.intel.com/docs/DOC-5684
https://communities.intel.com/docs/DOC-5684
https://communities.intel.com/docs/DOC-5628
https://communities.intel.com/thread/26799
https://communities.intel.com/thread/26799
http://dl.acm.org/citation.cfm?id=647478.727935
http://dx.doi.org/10.1137/0111030
http://dx.doi.org/10.1109/pdp.2014.104

	Abstract
	Keywords

	Introduction
	Related work
	The SCC architecture
	Memory architecture
	Voltage and frequency scaling

	Programming and execution model
	Stream programming
	Task model
	Execution model
	LPEL—a stream execution layer with efficient scheduling

	DVFS strategy
	Detecting overload
	Detecting underload
	Policy
	Frequency adjustment
	Influence of load balancing

	Evaluation
	Experimental setup
	Data collection and post-processing
	Effectiveness of power saving
	Influence of thresholds

	Conclusions
	Competing interests
	Acknowledgements
	Author details
	References

