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ABSTRACT
The doppler measurements of stars are diluted and distorted by stellar activity noise. Different
choices of noise models and statistical methods have led to much controversy in the confir-
mation of exoplanet candidates obtained through analysing radial velocity data. To quantify
the limitation of various models and methods, we compare different noise models and signal
detection criteria for various simulated and real data sets in the Bayesian framework. Accord-
ing to our analyses, the white noise model tend to interpret noise as signal, leading to false
positives. On the other hand, the red noise models are likely to interprete signal as noise, re-
sulting in false negatives. We find that the Bayesian information criterion combined with a
Bayes factor threshold of 150 can efficiently rule out false positives and confirm true detec-
tions. We further propose a Goldilocks principle aimed at modeling radial velocity noise to
avoid too many false positives and too many false negatives. We propose that the noise model
with RHK-dependent jitter is used in combination with the moving average model to detect
planetary signals for M dwarfs. Our work may also shed light on the noise modeling for hotter
stars, and provide a valid approach for finding similar principles in other disciplines.

Key words: methods: numerical; methods: statistical; methods: data analysis; Planetary Sys-
tems; techniques: radial velocities

1 INTRODUCTION

Almost all natural phenomena are studied by collecting and model-
ing data, comparing models and inferring model parameters. Since
the data collection and reduction are usually standardised to remove
bias and systematics, the results of data analyses are more influ-
enced by the choice of models and inference methods than by data
reduction1.

Due to the limited explanation power of theories and mod-
els, natural phenomena are always left with inadequate or incom-
plete modeling. Thus our understanding of these unexplained vari-
ations (so-called “noise”) significantly influences how well we can
explain data particularly when noise levels are similar to those
of variations. For example, the glacial-interglacial cycles over the
Pleistocene era were probably caused by the orbital variations of
the Earth through modulating the incoming solar radiation (Mi-
lankovitch 1930; Hays, Imbrie & Shackleton 1976). However, this
theory is challenged by various authors (Hasselmann 1976; Pel-
letier & Turcotte 1997; Wunsch 2004) using stochastic processes
to model the climate change.

In the case of detections of exoplanets in the doppler measure-

? E-mail: f.feng@herts.ac.uk or fengfabo@gmail.com
1 Actually, data reduction is also a kind of modeling that converts the pri-
mary observations into secondary data such as catalogues. But the process
is well understood in a theoretical sense.

ments of stars, the activity induced radial velocity (RV) variations
are called “excess noise” or “jitter”, compared with the RV varia-
tions caused by Keplerian motions of planets (called “signals”). Jit-
ter is typically correlated (or red) over various time scales (Baluev
2013), and is caused by various mechanisms such as instability of
instruments, magnetic cycles, oscillation, rotation and granulation
of stars (Dumusque et al. 2012). Jitter actually consists of unmod-
eled variations as well as pure noise. This jitter is poorly understood
and modeled, leading to the problem of model incompleteness (Fis-
cher et al. 2016). To separate jitter from planetary signals, many
noise models are proposed based either on statistical properties of
the RV time series (e.g., Baluev 2013) or on astrophysical studies
of stellar variability (e.g. Rajpaul et al. 2015). The number of plan-
etary candidates are sometimes greatly influenced by the choice of
these noise models. For example, six planets have been claimed to
orbit around GJ 581 (Vogt et al. 2010) based on data analysis ap-
plying the white noise model. However, Baluev (2013) could not
confirm all of them using Gaussian process models. Similar con-
troversies exist in the confirmation of exoplanets around GJ 667C
using the white noise, moving average and Gaussian process mod-
els (Anglada-Escudé et al. 2013; Feroz & Hobson 2014). These
controversies show that the more flexible the noise model is, the
less planetary signals it can find. We will see this effect in the com-
parison of noise models.

Another factor that causes uncertainties in data analysis is the
usage of different statistical methods. For example, many studies
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claimed periodicities in the data of mass extinctions and terrestrial
impact craters based on the periodogram or other frequentist ap-
proach (Alvarez & Muller 1984; Raup & Sepkoski 1984; Melott
et al. 2012). But there seems to be no evidence for periodicities in
the data based on the Bayesian inference (Bailer-Jones 2011; Feng
& Bailer-Jones 2013, 2014). The tension caused by statistics also
exists in the confirmation of planetary candidates even if the same
noise model is used. For example, Tuomi (2011) only found four
planets using Bayesian methods while Vogt et al. (2010) found six
using the same radial velocity data set of GJ 581 and the same
noise model but based on the periodogram. The solution to such
controversies relies on the exploration of appropriate modeling and
inference methods based on a better understanding of the mecha-
nisms underlying certain phenomena and a proper choice of statis-
tical tools.

Most data analysis of radial velocity data was seen based on
frequentist methods, in particular, the Lomb-Scargle periodogram
and adaptations of it, e.g. two dimensional Keplerian Lomb-Scargle
periodogram (O’Toole et al. 2009). However, the periodogram as-
sumes that the noise in the time series is not correlated and that
there is only one periodic signal in the data. Despite this, it is mis-
used to search for multiple periodic signals. For example, only one
Keplerian component is used to model a superposition of several
Keplerian signals. Both of these assumptions are problematic if the
strength of signals is comparable with the noise level (Tuomi &
Jenkins 2012; Fischer et al. 2016). Furthermore, the periodogram
assumes periodicity in the data rather than testing it by comparing
periodic models with other models. Thus periodogram, by defini-
tion, is biased in terms of model comparison. This is particularly
true when the mechanisms responsible for certain phenomena are
complex and poorly modeled (e. g. aperiodic and/or quasi-periodic
phenomena).

Despite these problems, various periodograms are broadly em-
ployed to identify planetary signals in RV observations because
they are easy to calculate. To test the significance of a signal, a
selected false alarm probability (FAP) of a periodogram is com-
monly used as a detection threshold. This metric is equivalent to
the p-value which is used to reject null hypotheses such as the white
noise model. However, the choice of null hypothesis is always ar-
bitrary, and thus makes FAP unable to properly estimate the sig-
nificance of a signal. Considering these drawbacks, periodograms
should be used cautiously particularly in cases when the signal to
noise ratio is not high and the host star is perturbed by multiple
planets (Cumming 2004; Ford & Gregory 2007).

To avoid the above problems of the periodogram, we need a
statistical tool to compare models on the same footing rather than
rejecting simple null hypothesis. If we know exactly the underly-
ing physics of certain phenomena, there would be no need to com-
pare different models. But this is often not the case for natural phe-
nomena. Hence a proper way to account for model incompleteness,
model complexity and uncertainties of models and data is crucial
for robust data analyses. Fortunately, such inference problems can
be properly dealt with in the Bayesian framework (e.g., Kass &
Raftery 1995; Spiegelhalter et al. 2002; Gregory 2005; von Tous-
saint 2011). For example, Bayesian inference methods assess the
overall plausibility of a model by calculating its likelihood aver-
aged over its prior distribution. This approach naturally accounts
for the model complexity and thus models can be compared prop-
erly.

In addition to an appropriate inference method, a modeling
principle should be established through quantifying the limitations
of stochastic and deterministic models. We do this for the RV data

of M dwarfs by comparing various noise models in the following
steps. First, we generate artificial data sets using noise models and
the Keplerian model. For these data sets, we compare noise models
using various signal detection criteria. Then we select the best cri-
terion which confirms most true detections and rejects most false
positives. We further apply the criterion to compare models for the
data sets with injected Keplerian signals. Based on the results, we
quantify the limitations of various noise models and devise a frame-
work of noise models to detect planetary signals.

Our aim is to provide a quantitative comparison between noise
models used in the literature. We quantify the disadvantages and ad-
vantages of each noise model within the Bayesian framework. Var-
ious inference criteria are investigated for representative RV data
sets. We also present a new principle to model stellar jitter and
identify planetary signals.

This paper is structured as follows. We describe the Bayesian
inference method and signal detection criteria in section 2. In sec-
tion 3, we introduce the models of RV variations, and define their
prior distributions. Then we compare various noise models and sig-
nal detection criteria for artificial data sets in section 4. In section
5, we introduce three RV data sets and inject planetary signals into
them for model comparison. Finally, we discuss the results and con-
clude in section 6.

2 DATA ANALYSIS AND INFERENCE METHOD

2.1 Model comparison

The Bayesian model comparison relies on the Bayes theorem which
is

P (Mi|D) =
P (D|Mi)P (Mi)∑

j

P (D|Mj)
, (1)

where P (Mi|D) is the posterior of model Mi for data D,
P (D|Mi) and P (Mi) are the evidence (also called the integrated
likelihood) and the prior of model Mi, and the denominator is a
normalisation factor. Then the ratio of the posteriors of two models
is

P (Mi|D)

P (Mj |D)
=
P (D|Mi)

P (D|Mj)

P (Mi)

P (Mj)
. (2)

If no model is favoured a priori, i.e. P (Mi)/P (Mj) = 1, the pos-
terior ratio becomes

P (Mi|D)

P (Mj |D)
=
P (D|Mi)

P (D|Mj)
≡ BFij , (3)

where BFij is the odds of evidences of model Mi and Mj , and is
called Bayes factor. Following Kass & Raftery (1995), we interpret
BFij > 150 as a strong evidence for Mi and against Mj .

For model M with parameters θθθ, the evidence is

P (D|M) =

∫
θθθ

P (D|θθθ,M)P (θθθ|M)dθθθ , (4)

where θθθ is the parameter vector of model M , P (θθθ|M) is the prior
distribution of parameters, and L(θθθ) ≡ P (D|θθθ,M) is the likeli-
hood. The evidence is actually the normalisation factor of the pos-
terior distribution of model parameters,

P (θθθ|D,M) =
P (D|θθθ,M)P (θθθ|M)

P (D|M)
. (5)

In most cases, the evidence cannot be calculated analytically due
to the complexity of the likelihood. Thus a Monte Carlo approach
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is required either to sample the prior density P (θθθ|M) (prior sam-
pling) or to sample the posterior density P (θθθ|D,M) (posterior
sampling) or to sample both. The prior sampling is not appropri-
ate for RV models because the posterior density always contains
multiple modes in the period space related to planets and activity-
induced variations. The modes are typically narrow that the prior
samples may not resolve the posterior distribution properly. Con-
sidering these difficulties in prior sampling, we sample the poste-
rior and calculate the Bayes factors using various estimators which
will be introduced in section 2.3.

2.2 Posterior sampling

To sample the posterior density, we use an adaptive Metropolis-
Hastings algorithm of Markov Chain Monte Carlo (MCMC) de-
veloped by Haario, Saksman & Tamminen (2001). This algorithm
adjusts the step of the sampler to explore the posterior efficiently.
Considering possible nonlinear correlation between parameters and
a non-Gaussian posterior, we run adaptive Metropolis-Hastings al-
gorithms to obtain posterior samples of 106 − 107 for inference.
We use the Gelman-Rubin criteria to judge whether a chain ap-
proximately converges to a stationary distribution (Gelman & Ru-
bin 1992).

Specifically, we conduct the following steps to produce poste-
rior samples. First, we run four chains in parallel, and drop out one
half of each chain as “burn-in” part. Second, we estimate the so-
called “potential scale reduction factor” (R̂) by calculating the vari-
ance between and within the chains according to the Gelman-Rubin
criteria. If R̂ is less than 1.1, we combine these chains to provide a
statistically representative posterior sample for inference. Third, we
repeat the above two steps to generate chains with different temper-
ing parameters. A chain is tempered if it is generated with a proba-
bility of move that is proportional to a power of the posterior ratio
of proposed parameters and current parameters. Tempering is used
to improve the dynamic properties of a chain to explore the whole
parameter space efficiently. The chain without tempering is called
“cold chain” while the tempered chain is called “hot chain”. Con-
sidering that the optimal acceptance rate of a Metropolis-Hastings
algorithm is around 0.234 under general conditions (Roberts et al.
1997), we select the hot chains with acceptance rate between 10%
and 35%. Then we identify the potential signal based on the max-
imum a posteriori estimation, and use the corresponding parame-
ters as the initial conditions of a cold chain. Finally, the cold chain
provides a sample drawn from the posterior density of the model.
For models without a Keplerian component, we run cold chains di-
rectly to obtain their unimodal posterior densities. Because we aim
at comparing noise models rather than models with multiple Kep-
lerian components, we only obtain samples for models with at most
one planetary component.

2.3 Signal detection criteria

Given a statistically representative sample drawn from the posterior
density, we move on to calculate the evidence using various meth-
ods. The integral in Eqn. (4) can be calculated by the “importance
sampling” method (Kass & Raftery 1995), which generates sam-
ples from a density. For example, the harmonic mean (HM) estima-
tor of the evidence is calculated by averaging the likelihood over
samples approximately drawn from the posterior density. However,
this estimator cannot converge efficiently due to the occasional oc-
currence of samples with very low likelihoods. To solve the con-
vergence problem of HM, Tuomi & Jones (2012) introduce the

truncated posterior mixture (TPM) by drawing samples from dif-
ferent sections of a MCMC chain to avoid the divergence caused by
low likelihood values. This method is easy to implement because
it only uses the output of Metropolis-Hastings algorithms. But this
method is biased if its free parameter λ is large (Tuomi & Jones
2012; Dı́az et al. 2016). In addition to importance sampling meth-
ods, we introduce the one-block Metropolis-Hastings method de-
veloped by Chib & Jeliazkov (2001). The Chib’s estimator (CHIB)
is based on the calculation of the posterior of a single point using
samples drawn from the posterior density and the proposal density
of a Metropolis-Hastings sampler.

Although the evidence can be approximately calculated by
the above methods, they have limitations in applications to com-
plex problems due to unrealistic assumptions or computation in-
efficiency (see Friel & Wyse 2012 and Han & Carlin 2011 for a
review). Considering these, we also introduce various information
criteria which are easy to calculate and thus are frequently used
by practitioners. We introduce three of them: the Akaike Informa-
tion Criterion (AIC; Akaike (1974)), the Bayesian Information Cri-
terion (BIC; Schwarz et al. (1978)) and the Deviance Information
Criterion (DIC; Spiegelhalter et al. 2002). The AIC and DIC are cri-
teria motivated from information theory while the BIC is derived in
the Bayesian framework2. Considering that the sample size of RV
data sets may be small, we use a revised version of AIC introduced
by Hurvich & Tsai (1989). We write the three criteria as follows.

AIC ≡ −2 lnLmax +
2k(k + 1)

N − k − 1
(6)

BIC ≡ −2 lnLmax + k lnN (7)

DIC ≡ D(θ̄) + 2pD = D̄(θ) + pD , (8)

where Lmax is the maximum likelihood, k is the number of free pa-
rameters3, N is the number of data points, the deviance D(θθθ) =
−2 lnL(θθθ) and the effective number of parameters pD = D̄ −
D(θ̄θθ). To compare the above information criteria with the Bayes
factor estimators, we transform these information criteria into a
Bayes factor like quantities 4. It is straightforward to convert the
BIC into a Bayes factor because Kass & Raftery (1995) argued that
e−∆BIC10/2 → BF10 when the sample size is large. Here we de-
fine ∆BIC10 = BIC1 − BIC0. We also define Bayes factor using
the relative likelihood derived from AIC, i.e. BF10 = e−∆AIC10/2,
where ∆AIC10 = AIC1−AIC0. We then derive Bayes factor from
DIC in the same fashion, since the DIC probably approaches the
AIC when parameters are well constrained (Liddle 2007). Note that
the transformations from AIC and DIC to Bayes factor are without
theoretical foundation. Rather, it is used to transform the threshold
of AIC or DIC to the threshold of Bayes factor, making AIC or DIC
approximately suitable for Bayesian inference.

With the above evidence estimators and information criteria,
we adopt the following diagnostics for the presence of a Keplerian
signal.

2 Although the BIC is derived using the Laplace approximation of a Gaus-
sian likelihood distribution and the likelihood distribution in our case is
always multimodal, we use it because the likelihood is always dominated
by the Keplerian signal if there is, and the local distribution around the max-
imum is always Gaussian.
3 We assume that a free parameter could be any variable in a model as
in the case of linear models. Although a more complex definition of the
parameter number could be helpful for nonlinear models, this is equivalent
to changing the Bayes factor threshold which we will do in section 5.2 .
4 To make the notation simple, we still use BF to name this quantity.
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• The period P of the signal can be constrained from above and
below in the posterior density. In other words, it converges to a
stationary distribution.
• The amplitude K of the signal is significantly greater than

zero. Specifically, the posterior of K = 0, i.e. P (K = 0|D,M),
is less than 1% 5.
• The evidence of a model with one Keplerian component

should be at least 150 times higher than the evidence for the model
without any Keplerian component, i.e. BF10 > 150 (Kass &
Raftery 1995).

The above procedure is also used by Tuomi (2012) in combination
with the moving average model which we will introduce in the fol-
lowing section.

3 MODELING RADIAL VELOCITY VARIATIONS

The measured doppler shifts of a star are generated by gravitational
force from star-planet(s) interactions and stellar activity. The spec-
troscopic measurements of these doppler shifts yield RV data with
instrument uncertainties and various activity indexes. To account
for these factors, we model the data by combining Keplerian com-
ponents and various noise components. In the following sections,
we introduce the basic model which includes the white noise model
and the Keplerian component. Then we add various noise compo-
nents onto the basic model to build other models in such a way that
the basic model is nested in the full model given all noise compo-
nents.

3.1 White noise model

There is good evidence in the architectures of the Solar System
and exoplanetary systems for orbital resonances playing some role
(e.g., semi-major axes of resonant trans-Neptunian objects). How-
ever, the importance is limited over the typically time span of RV
data (e.g., Batygin 2015), and so we make the simplifying assump-
tion that planetary orbits are indenpendent of each other in a plan-
etary system. Although we only consider at most one Keplerian
signal in this work, we introduce a model of multiple Keplerian
signals for general cases. We adopt the following basic model of
RV variations,

v̂b(ti,θ) =

n∑
j=1

fj(ti) + a ti + b+
∑
k

ckIk

fj(ti) = Kj [cos(ωj + νj(ti)) + ej cos(ωj)] , (9)

where Kj , ω, νj , ej are the amplitude, the longitude of periastron,
the true anomaly and the eccentricity for the j th planetary signal.
The true anomaly ν is an implicit function of time, and depends
on the orbital period P and the orbital phase at the reference time
M0. It can be calculated by solving the Kepler’s equation. Thus the
Keplerian component for each planet contains five free parameters:
K, P , e, ω and M0. In addition to the above parameters, we use
two parameters, a and b, to model the acceleration caused either by
a companion or by the long period activity cycles of the star and the
reference velocity. We also use ck to model the linear dependence
of radial velocity on the activity index Ik. Specifically, we use IF ,
IB and IR to denote the width of the spectral lines (FWHM), the

5 In reality, we fit a normal distribution to the posterior sample, and from
the best fitted posterior density we determine P (K = 0|D,M).

bisector span (BIS) and the log(R′hk) (RHK), respectively. Note
that these indexes are included into the model in a deterministic
way. But they will be used in section 3.4 and 3.5 to model the jitter
in a stochastic way .

The white noise model accounts for the excess noise through
the likelihood function:

L(θ) ≡ P (D|θ,Mw) =
∏
i

1√
2π(σ2

i + s2
w)

exp

[
− (v̂b(ti,θ)− vi)2

2(σ2
i + s2

w)

]
,

(10)
where σi is the observational noise at time ti, sw is the constant am-
plitude of the white noise, and vi is the observed RV at time ti. The
jitter depends on stellar activity levels which are partly measured
by various shape indexes of spectrum such as FWHM and BIS and
activity proxies such as theRHK index. The noises caused by activ-
ity and instruments are typically correlated (Baluev 2013), and are
too complex to be modeled deterministically. Thus a range of red
noise models are proposed to remove correlated noises which may
mimic Keplerian signals. In the following sections, we introduce
two of them: the moving average and Gaussian process models.

3.2 Moving average

The moving average (MA) model is used to model the dependence
of current noise on previous noise. The moving average of order q
or MA(q) is

v̂(ti) = v̂b(ti) + εti +

q∑
j=1

k(ti, ti−j)εti−j , (11)

where k(ti, ti−j) is the kernel used to weight the white noise at
time ti−j . We introduce two kernel functions, the Laplacian kernel

kL(ti, ti−j) = wj exp(−β|ti − ti−j |) (12)

and the squared exponential kernel

kse(ti, ti−j) = wj exp(−β(ti − ti−j)2/2) , (13)

where wj is a positive number for white noise at ti−j , and β is a
free parameter.

According to Tuomi et al. (2013), MA(1) is the best mov-
ing average model which enable the detection of weak signals.
In addition, this model seems to outperform other red noise mod-
els in recent RV Challenge (Dumusque et al. 2016) conducted by
Xavier Dumusque 6. Hereafter we will use moving average to de-
note MA(1) and use the Laplacian kernel if not mentioned other-
wise.

3.3 Gaussian process

The Gaussian process (GP) is included in the RV model by adding
non-diagonal parts to the covariance matrix of the likelihood func-
tion (see Eqn. 10) which is

L(θ) ≡ P (D|θ,Mgp) =
1√
|2πC|

exp

[
−1

2
(v − v̂b)C(v − v̂b)

]
,

(14)
where v is the observed RV sequence (i.e. {vi}), v̂b is the RV
model expressed by Eqn. (9) (i.e. {v̂b(ti,θ)}), and C is the covari-
ance matrix. The covariance matrix is composed of diagonal and

6 The details of RV Challenge data sets and results can be found online at
https://rv-challenge.wikispaces.com.
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non-diagonal components. The former is related to the Gaussian
measurement noise {σi} and the excess white noise sw, while the
latter is determined by a kernel. To calculate the covariance matrix,
we introduce three types of kernels: Laplacian (L), squared expo-
nential (se) and quasi-periodic (qp) kernels, which are formulated
as follows.

kL(t, t′) = sr exp(−|t− t′|/l) ,

kse(t, t
′) = sr exp

[
− (t− t′)2

2l2

]
,

kqp(t, t
′) = sr exp

[
− sin2(π(t− t′)/Pq)

2l2p
− (t− t′)2

2l2

]
,(15)

where sr is the red noise amplitude, l, lp and le are correlation time
scales, and Pq is the period of the quasi-periodic kernel. The L ker-
nel is used by Baluev (2013) and Feroz & Hobson (2014), while
the se and qp kernels are advocated by Rajpaul et al. (2015) in their
Gaussian process framework used to disentangle activity-induced
variations from planetary signals. In the comparison of noise mod-
els, we will focus on the Laplacian kernel, and use the other kenels
for sensitivity tests.

3.4 RHK-dependent jitter

It is well known that the solar activity is determined by the magne-
tohydrodynamic turbulence in the atmosphere, and thus is difficult
to be accurately predicted due to the chaotic nature of turbulence
(Petrovay 2010). Like the Sun, stars also show complex activity-
induced variations (Tobias, Weiss & Kirk 1995) which are partly
recorded by activity indexes in doppler measurements. Therefore
the relationship between RV variations and activity indexes are
probably complex (Vanderburg et al. 2016), and a deterministic re-
lationship may not be appropriate to model the activity-induced RV
counterpart. As a result, the dependence of RV on indexes should
be modeled statistically. For example, Dı́az et al. (2016) have pro-
posed a linear dependence of jitter on the RHK index. We call this
model “RHK-dependent jitter” (RJ) which replace the sw in Eqn.
(10) with

s(ti) = sw + αIR(ti) . (16)

Although Dı́az et al. (2016) used a truncated version of the lin-
ear function, we don’t explore more versions because the RHK-
dependent jitter model is flexible and representative, and does not
require a fine-tuned threshold to truncate the RHK index. For RV
data sets that do not have RHK index, IR denotes the activity index
which is determined by measuring the flux at the Ca II H&K lines
with respect to continuum.

3.5 Lagged RHK-dependent jitter

The activity of a star is determined by the underlying complex and
nonlinear dynamics. Thus the time series generated by stellar activ-
ity typically have long correlation time scale (Boffetta et al. 1999).
In a nonlinear dynamical system, the time series of state variables
are actually projected from the motion on the manifold of a set of
states. According to Takens (1981) the non-linear state space of the
dynamics could be reconstructed by using only the lagged time se-
ries of one variable, e.g. the RHK index in our case. Thus the jitter
in the RV variations can be modeled as a function of the lagged ac-
tivity indexes. Considering that the RHK index is more sensitive to
stellar activity (Dumusque, Boisse & Santos 2014), we let the jitter

s(ti) depend on the previous and subsequent RHK indexes. Then
the jitter noise becomes

s(ti) = sw + αIR(ti) + f(ti, ti−1)IR(ti−1) + f(ti, ti+1)IR(ti+1))

f(t, t′) = η exp(−κ|t− t′|), (17)

where η is the amplitude of the correlation between jitter, and κ is
the inverse of the correlation time scale. Replacing the white noise
jitter sw in Eqn. (10) by the above RHK-dependent jitter, we de-
fine the lagged RJ model or LRJ. Considering that the lagged RHK

may induce the RV counterpart in a deterministic way, we propose
another version of lagged RJ which is

v̂(ti) = v̂b(ti)+f(ti, ti−1)IR(ti−1)+f(ti, ti+1)IR(ti+1). (18)

We call the stochastic version in Eqn. (17) LRJ(S) and the deter-
ministic version in Eqn. (18) LRJ(R). They are more alike than dif-
ferent in terms of accounting for time lagged RHK, and thus share
the same name. In other words, the lagged RHK of LRJ(S) is put
into the denominator of the exponential term of the likelihood (Eqn.
10) while the LRJ(R) model contains the laggedRHK in the numer-
ator. For a simulated data set, only one LRJ version will be chosen
according to the ability of each LRJ model in finding signals.

In addition to the above mentioned noise models, we com-
bine them to build compound models to make the comparison more
comprehensive. We combine moving average withRHK-dependent
jitter to make the MARJ model, and combine moving average with
lagged RJ to make the MALRJ model. For models with and with-
out one Keplerian component, we add 1 and 0 after the model name,
respectively. For example, MA1 means the moving average model
with one Keplerian component while MA0 means the moving av-
erage model without Keplerian component7

3.6 Prior distributions

As a necessary part in Bayesian inference, the prior distributions
of parameters are explicitly given for all models in table 5. For the
Keplerian component in the white noise model, we adopt a Jef-
freys prior for the period with a range from one day to the time
span of the RV data sets. Following Tuomi & Anglada-Escudé
(2013) we adopt a Gaussian prior distribution over eccentricity, i.e.
P (e) ∝ N (0, σe) with σe = 0.2, to account for observed eccen-
tricity distribution (Kipping 2013) 8. We adopt a uniform prior for
the amplitudeK with a upper limit of twice the maximum absolute
value of RV. This prior is set not only to speed up the convergence
of the chain but also to account for the fact that the long period sig-
nal (longer than the RV time span) is already modeled as a linear
trend in Eqn. (9). The jitter amplitude s follows a uniform distri-
bution from 0 to the upper limit of the prior of K. This is also the
range of RHK-dependent jitter s(ti). To make the chain converge
quickly, we scale the RHK index such that it has zero mean and
unit variance. For the same reason, we define the ratio of the upper
boundary of the prior of K, Kmax, and the difference between the
maximum and minimum of the index variation as the upper limit of
the parameters for the dependence of RV on activity indexes, cR,
cF and cB . For the Gaussian process model, we find that the like-
lihood of the Gaussian process model is not sensitive to the time

7 This is not to be mixed with qth order moving average models denoted
as MA(q), we only apply MA(1) model.
8 Although Kipping (2013) recommend beta distribution, we adopt the
Gaussian distribution which is simpler and also flexible enough to describe
eccentricities.
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scale l, and thus set a narrow boundary for its prior. For the quasi-
periodic kernel, we adopt the priors used by Mortier et al. (2016).

4 MODEL COMPARISON FOR ARTIFICIAL DATA SETS

To ensure that a model is suitable for the data, it is important to test
them using artificial data sets with known noise. Otherwise, the
model or its prior may not be appropriate for certain applications
(Fischer et al. 2016). We will do this with two types of simulated
data sets, artificial (with artificial signals and noise) and injection
(with artificial signals and real noise) data sets. Comparing all mod-
els for these data sets, we quantify the limitations of these models
and form a signal detection strategy. Fitting different models to the
artificial data sets, we report the signals and models recovered by
testing models according to the diagnostics in section 2.3.

We generate artificial data sets using three time samples and
corresponding measurement errors: the sample from the Keck mea-
surements of GJ 515A which contains 282 data points and two
subsamples which are generated by randomly drawing 100 time
samples from the full sample of GJ 515A. We denote these three
samples as “full”, “sub1” and “sub2”, respectively. Then we gener-
ate the RV values using three models: white noise with one Keple-
rian component (W1), moving average with one Keplerian compo-
nent (MA1) and Gaussian process with one Keplerian component
(GP1). We vary the period P ∈ {20, 40, 80} days and the ampli-
tude of constant jitter s ∈ {0.5, 1, 2}m/s. The other parameters
are fixed, such that K = 1 m/s, e = 0.1, ω = π/2, M0 = π/2,
a = −0.1 m s−1yr−1, b = 1 m/s, (w, β) = (0.9, 0.25 day−1) and
(sr, l) = (1 m/s, 3 day). The total number of these artificial data
sets is 54. Then we analyze each data set with the W0, W1, MA0,
MA1, GP0 and GP1 models, and apply the signal detection criteria
(see section 2.3) to confirm/reject potential signals. The results are
shown in table 2.

4.1 Comparing models

In table 2, we observe that the white noise model recovers signals
better than the red noise models. However, the white noise model
also detects more false positives because it interprets correlated
noise as signal. It is a surprise that the moving average model does
not recover itself for the full and sub2 data sets with (P,K) =
(40 day, 1 m/s). That means the moving average model interprets
both the moving average noise and part of the signal as correlated
noise, leading to an underestimation of the significance of the true
signal. This indicates that a red noise model may not successfully
separate correlated noise from planetary signals.

We also find that the white noise and moving average models
could be recovered through applying at least one Bayes factor es-
timator for 10 and 7 data sets, respectively. However, the Gaussian
process model is recovered for only 3 data sets. Due to the flexi-
bility of the Gaussian process model in fitting a data set, it overfits
the noise and thus underfits the signal, leading to a lower evidence.
This problem is also evident from the fact that the Gaussian pro-
cess model does not recover any true signals while the white noise
and moving average models recover 4 and 3, respectively, for the
Gaussian process generated data sets.

We can see the above differences between the white noise and
moving average and Gaussian process models from their posterior
densities in figure 1. We calculate the posterior densities by binning
the posterior samples over the period and choosing the maximum
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Figure 1. The unnormalised logarithm posterior density from the tempered
chains for the white noise (upper), moving average (middle) and Gaussian
process (lower) models for the full data set simulated using the Gaussian
process model with P = 20day and s = 1m/s. To show the significance of
signals in each panel, the 10%, 1% and 0.1% of the maximum a posterior is
shown by dashed lines. The true period of the artificial signal is denoted by
a vertical dotted line.

posterior in each bin as an approximation of the marginalised pos-
terior. The significance of the signal can be inferred from the pos-
terior difference between thresholds and the difference between the
signal and noise. We find that the signal detected by the white noise
model is more significant than those detected by red noise models,
and the signal detected by the Gaussian process model is the weak-
est. We also observe that the broad peaks around 70 days are proba-
bly false positives. The red noise models reduce the significance of
the false positives together with that of the signal. In other words,
the cost of decreasing the false positive rate is increasing the false
negative rate. We also notice that the peak around 1.05 day is prob-
ably an alias of the signal. But it is not as significant as the signal
for all noise models. In particular, the red noise models seem to re-
move the alias efficiently due to their ability of modeling correlated
noise over short time scales.

The performance of the models is also revealed by their maxi-
mum likelihoods shown in figure 2. We see that the planetary com-
ponent can improve the maximum likelihood of white noise model
more significantly than those of other models. This property of the
white noise model is generic for all artificial data sets.

4.2 Choosing the optimum Bayes factor estimators

To further confirm the signal detections in table 2, we compare
models with and without Keplerian component using the Bayes fac-
tor threshold BF > 150. We cannot calculate the Bayes factors of
models which do not have any chains converged to the target signal
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A Goldilocks principle for modeling radial velocity noise 7

Table 1. The prior distributions of model parameters. The unit of c1, c2, c3, α and η is m/s because the activity indexes are scaled before included in a model.
The maximum and minimum time of the RV data are denoted by tmax and tmin, respectively.

Parameter Unit Prior distribution Minimum Maximum
Each Keplerian signal

Kj m/s 1/(Kmax −Kmin) 0 2|v|max

Pj day P−1
j / log(Pmax/Pmin) 1 tmax − tmin

ej — N (0, 0.2) 0 1
ωj rad 1/(2π) 0 2π

M0j rad 1/(2π) 0 2π

Linear trend
a m s−1yr−1 1/(amax − amin) −365.24Kmax/Pmax 365.24Kmax/Pmax
b m/s 1/(bmax − bmin) −Kmax Kmax

Index dependence
c1 m/s 1/(c1max − c1min) −c1max Kmax/(IRmax − IRmin)

c2 m/s 1/(c2max − c2min) −c2max Kmax/(IFmax − IFmin)

c3 m/s 1/(c3max − c3min) −c3max Kmax/(IBmax − IBmin)

Jitter
sw m/s 1/(swmax − swmin) 0 Kmax
α m/s 1/(αmax − αmin) 0 Kmax/(IRmax − IRmin)
η m/s 1/(ηmax − ηmin) 0 Kmax/(IRmax − IRmin)

κ yr−1 1/(κmax − κmin) 365.24/(tmax − tmin) 1
Moving average

w — 1/(wmax − wmin) -1 1
β day−1 1/(βmax − βmin) 1/(tmax − tmin) 1

Gaussian process
sr m/s 1/(srmax − srmin) 0 Kmax
l day 1/(lmax − lmin) 0.01 10
lp day l−1

p / log(lpmax/lpmin) 0.01 100
Pq day 1/(Pqmax − Pqmin) 1 100

Table 2. Comparison of noise models for artificial data sets. The Bayes factor of the one planet models (e.g. MA1) and corresponding zero planet models
(e.g. MA0) are calculated for each data set. Without applying the threshold of BF10 > 150, the results of the test are denoted as A, B and C, which means
that the signal is correctly recovered, not recovered (false negative) and falsely identified (false positive). The results obtained without and with applying the
BIC-based BF threshold are written in normal and bold fonts, and corresponding detection numbers (denoted byN and n with subscripts) are reported without
and with brackets, respectively. The flag A is underlined if the true model is recovered based on any estimator of the Bayes factor. The numbers of the data
sets that have true models selected by any estimator and by the BIC is denoted by NT and nT , respectively.

Sample
True model W1 MA1 GP1
Test model W1 MA1 GP1 W1 MA1 GP1 W1 MA1 GP1

full

P =20day; s = 1m/s A A A A A A A A B
P =40day; s = 1m/s A A A A B A A A A
P =80day; s = 1m/s A A A A A A C C B
P =20day; s = 2m/s A A A A B B A B B
P =40day; s = 2m/s B B B A B B A A B
P =80day; s = 2m/s B B B A A A B B B

sub1

P =20day; s = 0.5m/s C B B A A A B B B
P =40day; s = 0.5m/s A A A A B B A B B
P =80day; s = 0.5m/s A A A A B B A A B
P =20day; s = 1m/s B B B B B B C C C
P =40day; s = 1m/s A B B B B B A A A
P =80day; s = 1m/s B B B B B B B B B

sub2

P =20day; s = 0.5m/s A A A A A A B B B
P =40day; s = 0.5m/s A A A A A A A A A
P =80day; s = 0.5m/s A A A A A A C C A
P =20day; s = 1m/s A B A B B B B B B
P =40day; s = 1m/s B B B A B A B B B
P =80day; s = 1m/s B B B B B B B B B

Numbers of flags for each model without (with) applying the threshold of BF > 150

NA(nA) 11(7) 9(6) 10(5) 13(10) 7(4) 9(6) 8(4) 6(3) 4(0)
NB 6 9 8 5 11 9 7 9 13

NC (nC ) 1(0) 0 0 0 0 0 3(2) 3(0) 1(0)
NT (nT ) 10(10) — — — 7(3) — — — 3(0)
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Figure 2. The maximum likelihood ratios (MLR) of various models and
the W0 model for the full data set simulated by the Gaussian process model
with P = 20day and s = 1m/s (the same data used in figure 1).

(denoted by flag “A” in table 2) due to a lack of statistically rep-
resentative posterior samples. For data sets with recovered signals,
we calculate the Bayes factor using the AIC, BIC, CHIB, DIC, HM
and TPM estimators. To ensure the convergence of each method,
we increase the size of the posterior sample gradually and calcu-
late the Bayes factor for each sample size. Since the DIC cannot
converge properly due to the asymmetry and multimodes of the
posterior density, we only show the results for other estimators in
figure 3. We find that the HM and TPM estimators give similar
results since the HM is just a special case of the TPM (Tuomi &
Jones 2012). However, neither of them converge very well due to
the occasional occurrence of samples with very low likelihoods.
The Bayes factor estimated by AIC is always higher than that esti-
mated by the BIC and CHIB. We also see these differences from the
Bayes factors calculated using the full posterior sample in figure 4.
For models with one Keplerian component, we find that the DIC al-
ways estimate much higher Bayes factors while the BIC and CHIB
estimate the lowest Bayes factors. However, for models without
any Keplerian component, all methods give simliar Bayes factors,
which justifies the usage of each method in the cases of unimodal
posterior densities. We further investigate all data sets, and find that
the Bayes factors estimated by AIC, HM and TPM are comparable,
and the BIC and CHIB estimators always give similar results.

We then test the significance of signals using the Bayes factor
threshold of 150. For each estimator of the Bayes factor, we apply
the threshold to confirm recovered signals (denoted by “ A”), false
positives (denoted by “ C”) and recovered models (denoted by “
T”). The ratios of confirmed and total number of them for all data
sets9 are used to characterize the ability of estimators combined
with the Bayes factor threshold in confirming true signals and noise
properties. The results for all estimators are reported in table 3.

In this table, we find that the DIC is not appropriate for con-
firming detections because it cannot rule out any false positive. On
the contrary, the CHIB estimator is able to get rid of almost all false
positives, but can only confirm 47% true detections. An appropri-
ate choice is the AIC which could rule out about one quarter of the
false positives, and confirm 96% of the true detections. Although

9 To keep the notation simple, we continue to use N and n with subscripts
to denote them (see table 2).
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Figure 3. The convergence of Bayes factor estimators for the artificial data
set generated by the moving average model with P = 80day and s = 1m/s.
The upper, middle and bottom panels show the logarithm Bayes factors of
W1, MA1, GP1, with respect to W0, respectively. The TPM estimator of
Bayes factor is calculated with λ = 10−4 as recommended by Tuomi &
Jenkins (2012).

Figure 4. The Bayes factors estimated by various methods. The heights of
the lines within each gray bar represent the Bayes factors of a certain model
with respect to W0 estimated by AIC, BIC, CHIB, DIC, HM and TPM from
left to right.

Table 3. The ratios used to characterise estimators. The notations are similar
to those in table 2.

AIC BIC CHIB DIC HM TPM
nA/NA 0.96 0.58 0.47 1.0 0.90 0.90
nC/NC 0.75 0.25 0.13 1.0 0.88 0.88
nT /NT 0.75 0.65 0.60 0.40 0.70 0.50
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A Goldilocks principle for modeling radial velocity noise 9

the AIC is not a Bayesian criterion, we regard the AIC combined
with a threshold as a practical tool to confirm detections. In the case
of exoplanet detection, avoiding false positives is more important
than avoiding false negatives. Such requirements can be satisfied by
the BIC which rules out 75% false positives and confirms 58% true
detections. In addition, the BIC recovers 75% true models while the
CHIB method recovers 60%, justifying our choice of the BIC rather
than the CHIB estimator to rule out false positives. Although the
HM and TPM estimators confirm most true detections, they have
convergence problems as we have mentioned (see figure 3).

In summary, the white noise model is able to detect weak
signals efficiently while the Gaussian process are so flexible that
signals are interpreted as correlated noise. The performance of the
moving average model is somewhere between the performance of
Gaussian process and white noise models. Moreover, most false
positives could be ruled out by the BIC-estimated Bayes factor
threshold of 150.

5 MODEL COMPARISON FOR INJECTION DATA SETS

In the above section, we have analysed the artificial data sets with
known noises and signals. To make our analysis more general, we
apply the same analysis method to data sets with known signals but
with noises from real data. We adopt three data sets, the HARPS
measurements of GJ 1 (44 epochs) and GJ 361 (101 epochs), and
the Keck measurements of GJ 445 (64 epochs). For each data set,
we use the RVs, measurement errors and activity indexes of RHK.
We also consider the RV dependence on the FWHM and BIS in-
dex (see Eqn. 9) if they are available. Considering that the data of
GJ 445 is not published before, we show it in the appendix. We
introduce the three targets in the following section.

5.1 Radial velocity data

Most nearby stars now have precision radial velocities recorded for
them. As of 2016 April the ESO archive for the HARPS instrument
finds over 7000 different targets although most only have a few
epochs some objects have large numbers, e.g., nearly 20,000 for
alpha Centauri B. We focus our attention on radial velocity data
for nearby M dwarfs. We choose these targets because they appear
to have relatively lower activity noise. We have attempted to focus
on targets which have reasonable sampling, good precision and for
which there is enough radial velocity data to make detections but
where there is not a strong known signal. We have drawn these from
the sample of Tuomi et al. (2016) and specifically choose to study
data from both HARPS (Mayor et al. 2003) and HIRES (Vogt et al.
1994). These are two of the pre-eminent radial velocity instruments
whose design, calibration and processing can be considered both
reliable and independent.

GJ 1 is a metal-poor (e.g., [Fe/H]=-0.45; Neves et al. 2012)
M2 dwarf at a distance of 4.5 pc (van Leeuwen 2007) without any
reported planetary companions (e.g. Zechmeister, Kürster & Endl
2009). Suárez Mascareño et al. (2015) find that it has a rotation
period of 60.1± 5.7 d based on spectral activity indexes. Analysis
of the ASAS photometric data (Pojmanski 2002) does not confirm
this rotation period (Tuomi et al. 2016) though there are relatively
modest 42 photometric data points spanning less than a year. We
consider the 44 HARPS epochs which we have extracted from the
ESO archive.

GJ 445 is a metal-poor (e.g., [Fe/H]=-0.30; Neves et al. 2012)
M4 dwarf at a distance of 5.4 pc (van Leeuwen 2007) without any

reported planetary companions or rotational signals. Here we con-
sider 64 epochs of Keck data.

GJ 361 is a slightly metal-poor (e.g., [Fe/H]=-0.11; Neves
et al. 2012) M1.5 dwarf at 11 pc (van Leeuwen 2007). Tuomi et al.
(2016) find a low amplitude signal (3.82m/s) with a period of 28.9 d
which is removed from the data. Tuomi et al. (2016) do not find any
evidence for significant periodicities in 241 ASAS V-band photo-
metric observations of the star spanning 2,298 days. We utilise 101
epochs of HARPS radial velocity data.

To extract the noise from the GJ 361 data set, we analyze the
data of GJ 361 with the moving model and identify the signal,
and subtract the signal from the data set. This subtracted version
is called “GJ361 subtracted”. To ensure that no significant signal
exist in the GJ 1, GJ 445 and GJ 361 subtracted data sets, we fit all
models in section 3 to them and do not find any significant signal
which satisfies the signal detection criteria. Fitting the W0 model
to all data sets, we obtain the posterior of jitter-induced white noise
sw, and use the mean value as a reference point for choosing the
amplitudes of injected Keplerian signals.

5.2 Recovering signals

To inject signals, we vary the amplitude and period of the Ke-
plerian component and keep other parameters fixed. The ampli-
tude of a signal is varied in such a way that the signal strength
is lower, comparable or higher than the jitter level. We adopt
P ∈ {20, 40, 80} day for all data sets, K ∈ {1, 2, 4}m/s for GJ 1
and GJ 361, andK ∈ {4, 6, 8}m/s for GJ 445. The other Keplerian
parameters are set e = 0.1, ω = π/2, M0 = π/2. Finally, we fit
all noise models with and without planet to the injection data sets,
and report the detections confirmed by the signal detection criteria
in table 4.

As seen from table 4, no strong signals are found by any noise
model, although the W1, RJ1 and LRJ1 models seem to identify
weak signals which fail to pass the Bayes factor threshold. The ta-
ble shows that the LRJ1 model detects the most signals without
applying the BIC-estimated Bayes factor threshold (BF10 > 150)
while the W1 and RJ1 models find the most signals once apply-
ing the threshold. On the contrary, red noise models only recover
less than half of the injected signals and even less if applying the
Bayes factor threshold, implying that they are much more conser-
vative and prone to false negatives. However, if without applying
the Bayes factor threshold, the moving average model can recover
13 signals. As a red noise model, moving average is not as flexi-
ble as Gaussian process, and thus is able to identify more signals.
In addition, most true signals recovered by the W1, RJ1 and LRJ1
models are also strong in the posterior densities of the moving av-
erage model, although they may not satisfy the detection criteria.
On the contrary, the false positives are never strong in the posterior
distributions of moving average. Hence the moving average model
can be used to confirm true detections and reject false ones.

To ensure that the results are not sensitive to the choice of
kernels, we adopt the squared exponential kernel for the moving
average models (see Eqn. 13), the squared exponential and quasi-
periodic kernels for the Gaussian process models (see Eqn. 15). We
fit the red noise models with these new kernels to the GJ1 data set
with (P,K) = (20 day, 2 m/s), the GJ445 data set with (P,K) =
(80 day, 8 m/s), and the GJ361 subtracted data set with (P,K) =
(80 day, 2 m/s). For all these three data sets, we don’t find any sta-
tistically significant improvement by changing kernels.

As we have mentioned in section 4, the red noise models in-
terprets signals as noise, and thus adding a Keplerian component
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Table 4. Model comparison for RV data sets without and with injected signals. We use the LRJ(S) and MALRJ(S) models to fit the GJ1 data set, and apply the
LRJ(R) and MALRJ(R) models to fit the other data sets. The meanings of A, B and C are described in table 2.

data set injected signal MA1 GP1 W1 RJ1 LRJ1 MARJ1 MALRJ1

GJ1

— B B B B B B B
P= 20 day, K= 1 m/ s B B B B B B B
P= 20 day, K= 2 m/ s B B A A A A A
P= 20 day, K= 4 m/ s A A A A A A A
P= 40 day, K= 1 m/ s B B C B B B B
P= 40 day, K= 2 m/ s A B A A A A A
P= 40 day, K= 4 m/ s A A A A A A A
P= 80 day, K= 1 m/ s B B C B C B B
P= 80 day, K= 2 m/ s A B A A A A A
P= 80 day, K= 4 m/ s A A A A A A A

GJ445

— B B C B B B B
P= 20 day, K= 4 m/ s B B B B B B B
P= 20 day, K= 6 m/ s B B C C A B B
P= 20 day, K= 8 m/ s A A A A A A A
P= 40 day, K= 4 m/ s A B C B A B A
P= 40 day, K= 6 m/ s A B A A C A A
P= 40 day, K= 8 m/ s A A A A A A A
P= 80 day, K= 4 m/ s B B C C B B B
P= 80 day, K= 6 m/ s B B B B B B B
P= 80 day, K= 8 m/ s B B A A A B B

GJ361 subtracted

— B B C C C B B
P= 20 day, K= 1 m/ s B B B B B B B
P= 20 day, K= 2 m/ s B B B B B B B
P= 20 day, K= 4 m/ s A A A A A A A
P= 40 day, K= 1 m/ s B B C B C B B
P= 40 day, K= 2 m/ s A A A A A A A
P= 40 day, K= 4 m/ s A A A A A A A
P= 80 day, K= 1 m/ s B B B C B B B
P= 80 day, K= 2 m/ s B B A A A B A
P= 80 day, K= 4 m/ s A A A A A A A

Numbers of flags for each model without (with) applying the threshold of BF > 150

NA(nA) 13(8) 9(7) 15(15) 15(15) 16(14) 13(9) 15(9)
NB 17 21 7 11 10 17 15

NC (nC ) 0 0 8(2) 4(0) 4(0) 0 0

to a red noise model would not improve the likelihood as much
as the W1 model does. This is evident from the comparison of the
maximum likelihoods of all models in figure 5. We observe that the
likelihoods of W1, RJ1 and LRJ1 are much higher than those of
W0, RJ0 and LRJ0, indicating the necessity of adding one Keple-
rian component into the noise model. On the contrary, the Keplerian
component does not significantly improve the likelihoods of the red
noise models, in particular the Gaussian process model.

Among the W1, RJ1 and LRJ1 models, the W1 model give
similar results as the RJ1 and LRJ1 models, although RJ1 and LRJ1
can model a few data sets slightly better due to adjusting extra free
parameters. The LRJ1 model is favoured by the GJ445 data sets
with (P,K) =(20 day, 6 m/s) and (40 day, 4 m/s). For the latter
one, we show the posterior distribution of parameters α, η and κ
of LRJ1 in figure 6. We observe that the white noise sw dominates
the total noise while the index dependent noises is consistent with
zero. For all the other data sets, we don’t find strong dependence
of noise on the RHS index either. Despite this, the RJ1 and LRJ1
models give fewer false positives than the white noise model does,
indicating a weak dependence of jitter on the RHS index. Further-
more, the false positives detected by RJ1 and LRJ1 failed to pass
the Bayes factor threshold. This is not caused by the Bayesian pe-
nalization of model complexity because the Bayes factor of RJ1 (or
LRJ1) and RJ0 (or LRJ0) do not depend on the number of param-
eters of the RJ (or LRJ) model. To test this further, we vary the

Bayes factor threshold to see whether there is an optimal threshold
which can reject more false positives and keep all true detections.
But we failed to find such a value. For example, we increase the
Bayes factor threshold to be 200, and apply this new threshold to
test the signals detected by the white noise model. We find that the
false positives for the GJ445 data set with (P,K) = (40 day, 4 m/s)
cannot be ruled out, and the true signal in the GJ1 data set with
(P,K) = (20 day, 2 m/s) is rejected. It means that we cannot con-
firm all true signals recovered by the white noise model and reject
false positives simultaneously by adjusting the Bayes factor thresh-
old. Considering these problems of the white noise model and the
complexity of the LRJ models, we recommend theRHK-dependent
jitter to model the excess noise in RV observations.

Considering the limitations of different noise models, we set
up a rule for modeling RV noise and selecting signals in order to
avoid as many false positives and negatives as possible. We call this
rule “Goldilocks principle”. Specifically, we suggest combining the
white noise model and the RHK-dependent jitter with the moving
average model in the following way to confirm detections. First, we
apply the three criteria introduced in section 2.3 to confirm a sig-
nal detected by the model of RHK-dependent jitter. Then the signal
is further confirmed if it is also strong and unique (without local
maxima exceeding the 10% threshold, see figure 1) in the poste-
rior distribution of the moving average model. Finally, the signal is
confirmed as a planet if it is not found to be strong in the posterior
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Figure 5. The maximum likelihood ratio (MLR) of noise models and the
W0 model for the GJ445 data set with P = 40 day and K = 8m/s and the
GJ361 subtracted data sets with P = 80 day and K = 2m/s. Each grey
bar encloses the MLRs for one noise model with and without planetary
component.

distributions of the white noise model (with zero eccentricity) for
the activity indexes to avoid detecting activity-induced false posi-
tives that have a different phase in the RVs and activity indexes.

6 DISCUSSIONS AND CONCLUSIONS

This work aims at comparing various noise models and inference
criteria for detecting weak signals in radial velocity data sets. We
define different noise models and introduce estimators of Bayes
factor to analyse artificial data sets. We find that the white noise
model is better than red noise models in detecting true signals.
However, the white noise model tends to interpret correlated noise
as a signal, and thus detect false positives. On the contrary, the red
noise models, particularly the Gaussian process, usually interprets
the signal as noise, at least partially, leading to false negatives. This
is also the reason why the Gaussian process model is not favored
even by the Gaussian process generated data sets (see table 2). This
challenges the view that a simultaneous modeling of noise and sig-
nal components in data would not result in overfitting or under-
fitting problems (e.g. Foreman-Mackey et al. 2015). The solution
of the problem is not only to perform modeling in the Bayesian
framework but also to properly model noise and signal according
to a Goldilocks principle which could be obtained for each specific
scientific question.

Comparing various Bayes factor estimators, we find that the
BIC estimation of Bayes factor combined with a Bayes factor

threshold of 150 can reject most false positives while other cri-
teria either confirm more false positives or reject a large propor-
tion of true detections. In addition, the truncated posterior mixture,
harmonic mean and Deviance Information Criterion estimators do
not converge properly. Meanwhile the Akaike Information Crite-
rion and Chib’s estimators penalize the one planet models too little
and too much, leading to false positives and negatives, respectively.
Given that all estimators of Bayes factors have short-comings (Ford
& Gregory 2007), we adopt the BIC for practical reasons.

We have applied the BIC-based signal detection threshold to
analyze data sets with injected signals. We have simulated 27 data
sets by injecting signals with various periods and amplitudes into
the HARPS measurements of GJ1 and GJ361 and the Keck ob-
servations of GJ445. We find that the white noise model and the
(lagged) RHK-dependent jitter models recover most injected sig-
nals. However, the Bayes factor threshold cannot reject all false
positives found by the while noise model. Increasing the threshold
cannot rule out all false positives and confirm all true detections si-
multaneously. On the contrary, the Bayes factor threshold success-
fully reject all false positives detected by theRHK-dependent noise
models, although the dependence of jitter on theRHK is weak prob-
ably due to the low activity level of our targets. To make the planet
detection conservative, we suggest to form a noise model frame-
work by combining the RHK-dependent noise model (RJ) and the
moving average model. Since most planet hosts are M dwarfs, our
conclusions on modeling the RV noise of M dwarfs are probably
generic for exoplanet detections and so this work may also shed
light on the noise modeling for hotter stars.

We also test the sensitivity of the evidences for red noise mod-
els to their kernels, and don’t find any significant improvement for
the test cases analysed here. Since the injection data sets are from
different instruments and with different sizes, our quantification of
the limitations of various noise models are probably generic for
detecting planets in RV observations. Our results indicate that flex-
ible noise models such as Gaussian processes may underestimate
the number of Keplerian signals. This is supported by Tuomi et al.
(2013)’s choice of first order moving average model to reduce jitter
rather than higher order moving average models. In addition, the
Tuomi et al. group “won” the RV Challenge using the moving av-
erage model while other groups failed to recover as many signals
using more flexible models. This is consistent with our findings that
the usage of flexible noise models tend to result in false negatives
when the models do not correctly reflect the underlying physics of
stellar activity.

This difference between noise models is also evident from the
controversy over the validation of the number of planets, where red
noise models find less signals than other models, e.g. GJ 581 and
GJ 667C discussed in the introduction section. These controversies
are consistent with our conclusion that red noise models lead to
false negatives while the white (or RHK-dependent) noise model
lead to false positives. To avoid both, we define a Goldilocks prin-
ciple by combining theRHK-dependent noise model with the mov-
ing average model and a BIC-based signal detection criterion. This
principle also provides a clue for noise modeling in other fields.
For example, stochastic models may not be appropriate for mod-
eling the glacial-interglacial cycles over the Pleistocene because
they tend to give false negatives. This can be investigated through
injecting Earth’s orbital variations into noisy climate data and re-
covering them using stochastic noise models in combination with
orbital models. Another example is the detection of periodic sig-
nals in quasar light curves. The optical variability of quasars could
be caused by random processes, rotations of binary black holes,
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Figure 6. The unnormalised posterior distribution of sw , α, η and κ of the LRJ1 model. The histograms are made with 90,5004 posterior samples of a cold
chain. For each panel, the red curve shows the fit of Gaussian distribution to the unnormalised posterior density. The mode, mean (µ), standard deviation (σ),
skewness (µ3) and kurtosis (µ4) are shown for each posterior distribution.

uneven sampling and/or correlated noise. Since RV variations have
similar characteristics, our work may also provide insights for dis-
entangling periodic signals from stochastic variability in quasar
light curves (e.g. Graham et al. 2015; Vaughan et al. 2016).

In summary, the Goldilocks principle provides an approach
to balance between overfitting and underfitting of noise by statis-
tical models, which may poorly reflect the underlying physics and
thus are unable to disentangle noise from signals. Although a Gaus-
sian process framework has been proposed to partly account for
the underlying physics (Rajpaul et al. 2015), the jitter may not be
properly modeled due to the flexibility of Gaussian process mod-
els and the simplification of the complex relationship between RV
variations and stellar activity indexes. Further studies on the statis-
tical property of stellar activity proxies and their connection with
RV variations are essential steps towards an astrophysically mo-
tivated modeling of stellar jitter. A probable method is the non-
linear time series analysis which connects the nonlinear dynami-
cal system with the time series of some system outputs (Kantz &
Schreiber 2004; Sugihara et al. 2012). This idea has inspired us to
build the lagged RHK-dependent jitter model which performs well
in our analyses. Moreover, correlated noise and deterministic sig-
nals can be well distinguished using surrogate time series, a concept
developed in the community of nonlinear time series (Schreiber &
Schmitz 2000). These facts justify further investigations into the
nonlinear approach of modeling RV noise.
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