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Abstract—Care issues and costs associated with an increasing
elderly population is becoming a major concern for many coun-
tries. The use of assistive robots in ‘smart-home’ environments
has been suggested as a possible partial solution to these concerns.
One of the many challenges faced is the personalisation of the
robot to meet the changing needs of the elderly person over
time. One approach is to allow the elderly person, or their
carers or relatives, to teach the robot to both recognise activities
in the smart home and to teach it to carry out behaviours in
response to these activities. The overriding premise being that
such teaching is both intuitive and ‘non-technical’. As part of
a European project researching and evaluating these issues a

commercially available autonomous robot has been deployed
in a fully sensorised but otherwise ordinary suburban house.
Occupants of the house are equipped with a non-technical
teaching and learning system. This paper details the design
approach to the teaching, learning, robot and smart home systems
as an integrated unit and presents results from an evaluation
of the teaching component and a preliminary evaluation of the
learning component in a Human-Robot interaction experiment.
Results from this evaluation indicated that participants overall
found this approach to personalisation useful, easy to use, and
felt that they would be capable of using it in a real-life situation
both for themselves and for others. However there were also some
salient individual differences within the sample.

Index Terms—Robot personalisation, robot teaching, robot
learning, activity recognition, robot companion.

I. INTRODUCTION

A
SSISTIVE robots in ‘smart-home’ environments have

been suggested as a possible cost and care solution to

demographics changes characterised by an increasing elderly

population [1], [2]. The vision is that service robots are

available in the home to help and assist elderly residents.

Furthermore, the robot partner might also motivate and provide

active support in terms of re-ablement - defined as “Support

people ‘to do’ rather than ‘doing to / for people’ ’ [3] - and co-

learning - working together to achieve a particular goal. Thus,

the assistive robot and the person form a partnership which is

ever changing and evolving to meet the changing needs of the

elderly person as they age, the robot effectively becoming a

trusted companion to the person. We define this mechanism

of providing support, assistance and active engagement over

time as personalisation. This paper describes an approach to

service robot personalisation based on end-user robot teaching

and learning designed to be used by carers, relatives and

elderly persons themselves. Personalisation has been shown
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in longitudinal studies to reinforce rapport, cooperation and

engagement with a robot [4].

The work described in this paper uses a commercially avail-

able robot, the Care-O-bot3 R©, manufactured by Fraunhofer

IPA [5]. The robot resides in a fully sensorised but other-

wise completely standard British three bedroom semi-detached

house near the University of Hertfordshire (we call this the

robot house). This environment being more ecologically valid

resembling a real living environment rather than a scientific

laboratory, and is used to test and evaluate work in Human

Robot Interaction (HRI) studies.

II. PROBLEM DEFINITION AND LITERATURE REVIEW

A. Co-learning and Re-ablement

The idea of co-learning in this context refers to the situation

whereby a human user and a robot work together to achieve a

particular goal. Typically the robot can provide help and assis-

tance, but in return also requires help and assistance. Usually

the human teaches the robot how to solve a problem, however

the robot can also assist by suggesting to the human that it has

particular capabilities and techniques which may prove fruitful

(or indeed that it already knows how to address this particular

problem). This concept is extended by further considering that

the robot will need to learn from the user about the user’s

activities and subsequently be able to exploit this information

in future teaching episodes This means that co-operation will

typify the user’s interaction with the robot. The concept of re-

ablement [6] exploits the co-learning capability in order not to

disenfranchise the human partner. Thus, rather than passively

accepting imposed solutions to a particular need, the user

actively participates in formulating with the robot their own

solutions and thus remains dominant of the technology and is

empowered, physically, cognitively and socially. This idea is

extended by ensuring that the robot engages in empathic and

socially interactive behaviour. For example, the robot should

not attempt to encourage immobility or passivity in the user,

but to re-able the user by making motivating suggestions to

persuade the user to be active or engage in an activity in the

home. For example, it could prompt the user to carry out

tasks, for example: writing a greeting card after reminding

the user of a relative’s birthday, or bring relevant events to the

user’s attention and suggest to the user an activity in order to

avoid social isolation. Thus the user-robot relationship is one

of mutually beneficial support, assistance and companionship.

B. Background

Achieving this level of personalisation presents many chal-

lenges for a companion robot. Simple scripting of interactions



IEEE TRANSACTIONS HUMAN MACHINE SYSTEMS 3

will not achieve the above aims due to the dynamics of the

interaction and the key requirement of the robot to develop

and learn.

1) Robot Teaching and Learning: All of the approaches

in robot learning attempt to derive a policy based on one or

more demonstrations from the user and subsequently execute

that policy at the appropriate time. Other key challenges are

how to refine the policy from further demonstrations, how to

scaffold different policies together to form more complex robot

behaviours and how to allow the robot to inform the user of

its existing repertoire of policies. For a more detailed survey

please refer to Argall et al., [7].

2) Learning by ‘Following’: This approach typically in-

volves both robot and user sharing a close context. The robot

often uses a vision system or some other sensory modality (e.g.

infra-red sensors, electronic markers) to detect the presence

of the user and then follow him/her. By closely following

the user the robot is able to approximately experience the

same perceptions as those experienced by the user. Thus

the ‘state’ of the user, which is not normally perceivable

by the robot, can be perceived indirectly. The ‘following’

approach has been used in work by Nicolescu and Mataric [8]

where a mobile robot tracks a human teacher’s movements by

following the teacher and matching predicted postconditions

against the robot’s current proprioceptive state. It then builds a

hierarchical behaviour-based network based on “Strips” style

production rules [9]. This work attempts to provide a natural

interface between robot and a teacher (who provides feedback

cues) whilst automatically constructing an appropriate action-

selection framework for the robot. During the learning process

the robot can use both external environmental perceptions

and any available internal proprioceptive feedback in order

to correctly replicate the user’s behaviour (for a more detailed

discussion of these ideas please see Saunders et al., [10]). In

the personalisation research reported in the current paper we

exploit many of these techniques, however external sensory

cues are provided to the robot exclusively via the smart home

sensors.

3) Behavioural Cloning: Behavioural cloning is used pri-

marily as a way of encoding human knowledge in a form

that can be used by a computational system. The actions

of a human subject, who will be typically operating a com-

plex control system (such as an aircraft), are recorded and

analysed. The actions and decisions are extracted and used

to control the system without human presence. An example

of behavioural cloning is Claude Sammut’s ”learning-to-fly”

application [11], [12] where recordings of control parameters

in a flight simulator flown by a number of human subjects were

analysed using Quinlan’s C4.5 induction algorithm [13]. The

algorithm extracts a set of “if-then” control rules. Van Lent and

Laird extended this work by providing a user interface which

could be marked with goal transition information [14]. This

allowed an action selection architecture to be constructed using

“Strips” style production rules [9]. In the studies presented in

the current paper we also provide the house resident with an

interface for teaching robot behaviours based on previously

learnt activities using Quinlan’s C4.5 rule induction system.

The resulting robot behavioural rules are also based on a

production rule approach.

4) Learning by Demonstration: Learning by Demonstration

normally refers to the direct interaction between a human

teacher and a robot1. The interaction is direct because the

teacher sends instructions to the robot directly through some

external control mechanism (e.g. a joystick or screen based

GUI). This direct approach avoids many of the complexities

of the Correspondence Problem [15]. Early work by Levas

and Selfridge [16] controlled a robot via tele-operation and

then used the robot’s proprioceptive feedback to construct a

set of production rules. A long line of research into teaching

service robots by observing humans in this manner has also

been carried out by Dillman et al., [17]–[20]. Kaiser trained

various robotic platforms in order to compute a control policy

using function approximation techniques and recognised the

important role of the human teacher in providing feedback.

Similar observations have also been made by Thomaz and

Breazeal [21].

5) Learning from Observation: Learning from Observation

normally decreases the closeness of shared context between

learner and user. Thus the robot operates by sharing context

with the user but at a distance.This research relies on recognis-

ing human motions and thus faces a difficult vision problem.

In order to obviate this problem complex vision techniques are

sometimes employed. Often however the problem is simplified

using coloured markers or some other tagging technique.Some

of the earliest examples of learning using an observational

approach is that of Kuniyoshi, Inaba and Inoue [22] and

Ikeuchi and Suehiro [23] where hierarchical and symbolic

representations of assembly tasks are learned from human

demonstration. Johnson and Demiris [24] use learning from

observation in their work where coupled inverse and forward

models [25], [26] are used to allow a robot to imitate ob-

served human actions and recognise new actions. In the smart

home context described in this paper we do not directly use

observational approaches but use the human feedback derived

from the house sensor activations (including human location

tracking).

C. Teaching and Learning in Smart Home Environments

Teaching, learning and adaptation in smart home environ-

ments tend to be less HRI specific and based more on auto-

matic service discovery (where the home automatically learns

the daily activities on the resident). Often called ‘Cognitive

Robotic Ecologies’ they attempt to understand the require-

ments of the house residents based on perception, planning and

learning from the house ‘ecology’ and derive robotic actions

to subsequently service these requirements. These methods

face difficult problems in identifying the information needed to

make these judgements and to identify the appropriate teaching

information to adapt such services.

Typical approaches to these issues include capturing and

merging sensor information via machine learning techniques

and then predicting resident behaviour [27]–[29], the majority

of which use labelled training examples built from annotation

1”Learning by Demonstration” is often also used in a wider sense to denote
all of the research areas that study robot teaching.
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of resident activities. However, labelling can be both costly

and time consuming.

III. METHODOLOGICAL FORMULATION

The main objective of our work is to allow the house

resident to personalise the robot to meet their ever changing

needs and to exploit the robot’s existing competencies to

achieve this where necessary.

In order to do this the approach that has been taken is one

where all basic activities, be they robot behaviours or house

sensory states, can be easily interpreted by the house resident.

Furthermore, the underlying design ensures that any new

behaviours or activities can be interpreted as basic activities

and exploit any services that apply to these activities.

A. Extending the Idea of a Sensor

Consider a situation where the elderly resident has a robot

that is capable of navigating autonomously around the house,

can move to the user’s location, is equipped with a raisable

tray and has the ability to ‘speak’ text strings. She would

like the robot to always be present in the kitchen when she is

using the microwave in order to carry items back to the dining

table. She might teach the robot to do this by providing simple

directives such as:

If the microwave is on

then go to the kitchen and raise your tray

In this example the microwave sensor is a basic physical

sensor, and the robot actions are navigation and tray actuation.

Simple sensory information could also be enhanced with

temporal constraints. For example:

If the microwave has been on

for more than 5 minutes

Then go to the user location

and say ‘the microwave is still on’

Furthermore the simple sensory states could be replaced by

states with higher levels of meaning. For example:

If ‘food is being prepared’

then come to the kitchen

where the sensory state ‘food is being prepared’ is derived

from activity recognition (for example recognising that the

microwave or main oven or fridge were being used). Addi-

tionally these higher states could be temporally extended:

If ‘food is being prepared’

and this has been happening

for more than 30 minutes

then go to the user location

and say ‘I think you are making a meal,

do you need help?’

Similar grouping of basic robot actions should also be possi-

ble. Thus simple sets of robot actions such as

go to user location, lowering tray if tray empty

could simply be labelled:

come to me

By enabling constructs of this kind the robot behaviour

personalisation is greatly enhanced. Consider a carer setting

up a robot behaviour to remind the elderly resident that

Fig. 1. The interior of the robot house ’living room’ with the Care-O-Bot3
robot. The images on the left side of the picture show the view from the
robot camera, the robot itself and the real-time mapping visualisation showing
person and robot location

her daughter visits her in the afternoon on Tuesdays and

Thursdays:

If it is Tuesday or Thursday and 1pm

then ‘come to me’

and say ‘Irene is coming to visit you today’

In this work the definition of ‘sensory state’ is expanded to

include both physical and semantic state and the definition

of robot action expanded via the ability to ‘scaffold’ robot

behaviours [30] to create more complex but semantically

simpler behaviours. This has the dual effect of making the

overall system easier to understand and of hiding the technical

complexities of robotics and smart home systems from the

user.

Two complimentary approaches to achieving this level of

personalisation were designed and called “Teach Me/Show

Me”. These were implemented as a program running on a

laptop computer (but could be modified for use on a tablet

computer). The “Teach Me” system allows residents’ to de-

fine and test robot behaviours based on both house sensory

activities and basic robot actions. These new behaviours, once

defined, can be used subsequently to create more complex

behaviours. The “Show Me” system allows the resident to

‘show’ the robot new activities (such as ‘preparing a meal’)

by simply carrying out that task. Once learned that activity

becomes part of the available sensory activities exploitable by

the Teach Me system.

A major advantage of this approach is that there is no pre-

labelling of activities. Labelling of sensory combinations of

all types is effectively carried out by the resident themselves.

The resident thus personalises their requirements and is thus

enabled and enfranchised by being at the centre of the person-

alisation process.

B. System Architecture

We regard the house as one entity rather than as a collection

of individual parts. In practise this means that the house
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sensor information is considered to be no different from robot

sensor information, the sensory information derived from the

occupants activities or from semantic sensors. This provides

the bedrock for the main focus of our work enabling co-

learning and re-ablement by not artificially treating the robot,

user (or indeed the house) as separate entities but rather focus

the generation of behavioural activity (which in our case is via

the robot, but in an ambient home it could be via actuation of

household devices) on the complete system.

1) Robot House Ontology: The robot house consists of

sensors, locations, objects, people, the robot and (robot) be-

haviours. These were analysed to yield a house ontology which

is instantiated in a ‘mySQL’ database. Episodic information,

which consists of both images and sensory feedback during

behaviour execution is also captured and can be accessed

via GUI’s allowing post-review of activities of the robot and

the user (this work is described in [31]). Procedural memory,

which is here defined as the robot actions together with pre

and post behavioural conditions, is also held as tables in

the database. However the rules themselves are encoded as

SQL statements which refer back to the semantic information

created by the sensor system.

2) Robot Capabilities: For this work we use the Care-O-

bot3 R© (see Fig. 1) which has been especially designed for

research in assistive environments. The Care-O-bot3 uses ROS

navigation (a form of SLAM) [32] using its laser range-finders

to update a map of the house in real-time and can thus navigate

to any given location whilst avoiding obstacles and replanning

routes. Similarly the robot is equipped with facilities for

manipulating the arm, torso, ‘eyes’, robot LED’s, tray and

has a voice synthesiser to express given text. High level

commands are sent via the ROS ‘script server’ mechanism

and interpreted into low level commands by the robot software.

Typical commands would be for example, ‘raise tray’, ‘nod’,

‘look forward’, ‘move to location x’, ‘grab object on tray’,

‘put object x at location y’, ‘say hello’ etc.

3) Robot House Sensors: All sensory information (both

from physical and from semantic sensors) is held in a ‘sensors’

table and a ‘sensor logging’ table in the database. Each

individual sensor is held as a row in the sensors table and

each row provides the instantaneous value of the sensor as

well as the time it changed and its previous value. Each

row in the logging table contains the historical sensor value

over time. The ‘TeachMe’ system uses only the current and

previous sensor values, whereas the ‘ShowMe’ system exploits

the historical sensor log. The robot house (see Fig. 1) contains

around 50 ‘low level’ sensors . These range from electrical

(fridge door open, microwave on etc.), to furniture (cupboard

door and drawers open etc.), to services (such as toilet flushing,

taps running etc.) and pressure devices (sofa or bed occupied).

Sensory information from the robot is also sent to the database

or for high throughput, is acquired via ROS messaging [32].

In addition user locations are known to the robot via ceiling

mounted cameras [33] and robot locations are available via

ROS navigation [32] in a common framework. There are an

unlimited number of semantic sensors dependent on what the

resident teaches the robot.

4) Behaviour Encoding: Behaviours are automatically gen-

erated from the teaching facilities described in section III-C

below. However each behaviour generated follows a template

similar to Nillson’s T-R formalism [34] of evaluating pre-

conditions, followed by execution of robot actions and updat-

ing of post-conditions. Pre-conditions can be applied to any

form of sensory information, both set by the environment or

set at a ‘semantic’ level. An example of such a behaviour

would be

IF the oven has been on for 90 minutes

// house sensor pre-condition

AND the user has not already been reminded

// semantic sensor pre-condition

THEN ‘come to me’

// scaffolded robot action

say ‘The oven has been on for

a long time’

// basic robot action

update the database to signal

that the user has been reminded

// set semantic sensor post-condition

The pre-conditions would be automatically encoded by the

teaching system as SQL statements (two SQL statements rep-

resenting pre-conditions would be generated for the example

given above):

SELECT * FROM Sensors WHERE sensorId = 50

AND value = ‘On’ AND

lastUpdate+INTERVAL 5400 SECOND <= NOW()

SELECT * FROM Sensors WHERE sensorId = 701 AND

value = ‘notReminded’

If a row is returned from the execution of the SQL state-

ment, then that pre-condition is deemed to be true, otherwise

false. Typical robot actions, e.g. calling the navigation system

to move the base, making the robot say something and

updating a semantic sensor are shown below:

base,0,[4.329:0.837:51],999,wait

speak,0,The oven has been on for a long time

cond,701,reminded

These commands, depending on the command type (e.g. for

the example above, ‘base’ moves the robot, ‘speak’ invokes

the voice synthesiser and ‘cond’ sets the value of a semantic

sensor), would then either be sent to the planner (see sec-

tion III-B9), or sent directly to a lower level control module

if planning was not required.
5) Sensors and Sensor Abstraction: All sensory infor-

mation updates the database in real-time and all robot be-

haviours continually retrieve information from these sensors

to assess whether their behavioural pre-conditions are met

allowing behavioural scheduling and execution (explained in

section III-B11). Behaviours will continue to execute if their

pre-conditions remain true or unless they are pre-empted by a

higher priority behaviour.
6) Semantic Sensors: In order to cope with ongoing events

in the house which are not reflected by the physical house

sensors a set of ‘semantic sensors’ can be created by the

teaching system, e.g. a sensor with the label ‘User has been

reminded that the oven is on’. This latter sensor would be

set to ’reminded’ following the spoken oven reminder in the

example in section III-B4 above. Similarly an activity context

recognition system can update semantic sensors in real-time

based on the ‘Show Me’ system described in section III-C2

below. Thus if the user has shown the system what activities
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constitute ‘preparing a meal’ then the ‘preparing a meal’

semantic sensor would be set to ‘true’ when these events occur.

7) Temporal Aspects of Sensors: Using sensors at a phys-

ical and semantic level provides the opportunity to apply

temporal constraints. Consider for example a doorbell; this

type of sensor is ‘on’ only for a short period of time, and thus

rather than ask ‘Is the doorbell ringing?’ we would ask ‘has

the doorbell rung within the last 30 seconds?’. This is checked

by exploiting the underlying capabilities of the SQL database

by holding episodic values and we thus have the ability to

query previous values at a previous point in time:

SELECT * FROM Sensors WHERE sensorId = 59

AND lastActiveValue > 0 AND

lastUpdate+INTERVAL 30 SECOND >= NOW()

The further capability of assessing how long a sensor has been

active (or inactive) allows for greater behavioural expressivity.

For example ‘Has the user been sitting on the sofa for longer

than 2 hours?’, ‘has the user opened the fridge in the last 3

hours?, ‘has the user been reminded to call his friend Albert

this week?’. These encoding facilities can therefore cope with

a very wide range of situations and capture information related

to current activity, past activity and socially desirable activity,

the latter being primarily set through the creation of semantic

sensors. More detailed information on temporal aspects of

sensors is described in Saunders et al., [35].

8) External Sensors and External Actions: The sensor

system provides a standardised way of encoding information

and therefore provides possibilities for associating semantic

sensors with other, typically external, events. For example, by

polling an external weather service it would be possible to set

a ‘weather’ sensor. This could then be checked by a behaviour

which might suggest to the user that this was a good day for

a walk, or to do some gardening. In this way the idea of re-

ablement can be operationalised. External actions could also

be run, for example calling a text messaging (SMS) service.

For example, a behaviour that checks whether the bed pressure

sensor had been active for more than 12 hours and that there

had been no activity in the kitchen might then send a text

message to the user’s caregivers suggesting that the person

might need assistance to get out of bed.

9) Planning: Our general approach is to plan only when

needed and when necessary. Thus the overall behaviour of the

system is driven primarily by the environmental conditions via

house or semantic sensors values queried via behavioural pre-

conditions. Behaviours are explicitly scheduled. However there

are instances where, due to multiple choices being available

for robot action (e.g. in a multi-room environment navigation

may take multiple paths), or when there is conflict between

available resources when planning is necessary. We consider

that creating planning domains to be too complex for end-

user involvement and therefore we pre-code these where nec-

essary. Although such planning complexity could be coded as

multiple behaviours within the existing execution framework,

this would lead to an overly complex set of behavioural rules.

By separating these pre-coded planning domains for particular

tasks, and calling them only as necessary within behaviours

that require them, the overall complexity is reduced.

10) Planning Domain: We use an open source state-of-the-

art HTN (Hierarchical Task Network) planner (SHOP2 [36]) to

cope with these situations. We follow the approach described

by Hartanto [37] and Off and Zhang [38], in that each

planning domain is individually coded in the lisp-like syntax

of SHOP2 and called when the high level action is required.

For example, asking the robot to fetch a cup, SHOP2 will

plan the appropriate actions on the robot to get the cup (i.e. if

the cup were in the kitchen and the robot was in the kitchen

the robot would not need to drive to the kitchen, however if

the robot were elsewhere then some form of navigation would

be necessary). SHOP2 returns the planning actions as robot

actions. After each action execution we recall the planning

component just in case the environment has changed between

actions.

Fig. 2. The diagram shows the layers in operation in the robot house. Sensory
information from the robot, house and people together with semantic sensors
update the database in real-time. Taught behaviours use these sensors to access
behavioural pre-conditions and may subsequently set semantic sensors during
execution. All behavioural pre-conditions are continually evaluated by the
scheduling system and become available for execution if all pre-conditions are
met. Actions that require planning call a HTN planner. Lower level functions,
such as navigation and arm manipulation work at a reactive level.

11) Pre-emptive Scheduling: Behaviours can be created

in two ways: via a technical interface [39], used when the

system is first installed, by technical personnel. Or by the

end user using the ‘TeachMe’ facility described in this pa-

per. The ‘technical’ interface allows a priority to be given

to each behaviour whereas the ‘TeachMe’ system sets all

created behaviours to have the same priority. On execution the

scheduling system continually checks all of the preconditions

of all of the behaviours (in a manner similar to Nilsson [40]).

Should all of the pre-conditions of a behaviour be satisfied the

behaviour becomes available for execution, with the highest

priority behaviour being executed first. Priority ties result

in a random choice of behaviour for execution. Note that

due to continual checking of all behavioural pre-conditions,

behaviours may become valid or invalid for execution as the

currently executing behaviour operates. In this manner the set

of environment and semantic sensors drive behaviour execu-

tion. Some behaviours can also be set as non-interruptible, for

example if a behaviour was reporting on a critical house event
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- such as the bathroom taps running for a long time. Fig. 2

provides a pictorial overview of the architecture.

C. Teaching and Learning Interfaces

The teaching interface allows users to create robot be-

haviours, the learning interface allows users to create higher

level semantic sensors for use by the teaching system. For

example, the user might create a sensor called ‘relaxing in

the afternoon’ using the learning system and subsequently

exploit it in a robot behaviour such as “If I am ‘relaxing in

the afternoon’ for longer than 3 hours remind me to take some

exercise”.

1) Teaching Interface - ‘Teach Me’: In order to create

behaviours the user as a minimum would need to specify what

needs to happen (the actions of the robot) and when those

actions should take place (setting pre-conditions based on

the values of physical or semantic sensors). Having specified

‘what’ and ‘when’ the system automatically generates many

of the sub-behaviours required to operationalise the system. It

does this by using templates. The cost of this simplification is

a loss of generality; however it is compensated for by ease of

use, the latter being one of our priorities in order to develop

systems that can be used by non-experts in real-life scenarios.

Fig. 3. Shown are screenshots of the teaching interface (note that not all
screens are shown - see main text and Fig. 4). In the top figure the user has
entered the words that the robot is meant to say. The second screen allows
choice of differing activities, such as polling sensors or setting diary events.

Fig. 4. Shown are final 2 screenshots of the teaching interface (see Fig. 3
for the first 2 screens). The top image shows the diary option selected in this
case and the condition ‘after 5pm’ is entered. The bottom screen shows the
final behaviour created (in fact this may generate multiple behaviours on the
robot execution system).

To illustrate this idea let us consider a user who wants

to be reminded to take their medicine at 5pm. If we were

to create this task, individual behaviours would need to be

created to associate each precondition with the appropriate

sensor, including the semantic sensors, effectively creating

two behaviours, one to carry out the task and one to reset

conditions, as follows:

i) The first behaviour would need to check that the time

was after 5pm and that the user had not been already

reminded i.e. a ‘user not yet reminded’ semantic

sensor would be true. If both of these conditions are

true then the robot carries out a procedure of moving

to the user and saying ‘It’s time for your medicine’

then re-setting the semantic sensor to false to indicate

that the user has been reminded.

ii) At some point later, a second behaviour would need

to be created, which in this example would be: if after

midnight, reset the ‘user not yet reminded’ sensor to

true so that it can fire the next day.

Thus two behaviours need to be created, and careful align-

ment of reminder rules need to be inserted.

However, the sort of behaviours (see table I) that we
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envisage users setting up themselves tend to follow a set of

common templates e.g. diary like functions, or direct actions

based on sensory conditions in the house. We can therefore

exploit these templates to generate the appropriate conditional

logic. The template in the example above is based on ‘diary’

like conditions and the automatic setting and creation of

support behaviours (such as the resetting behaviour above). In

this manner much of the cognitive load is removed from the

user and left to the behaviour generation system. Co-learning

is operationalised by allowing the robot to provide details of

its existing sets of skills that can then be exploited by the

user. Re-ablement is supported simply in the act of teaching

the robot.

The standard template for ‘diary like’ robot actions is

as follows:

Entered by user via GUI:

reminderTime = t (e.g. 5pm)

textItem e.g. ‘Have you taken your medicine?’

repeatAfter = n (e.g. 60 seconds)

<other robot actions> e.g. "Move to user"

Created automically:

Cond-Reminder = TRUE

Cond-Remind-again = FALSE

Then create the following robot behaviours automatically:

1) ReminderX-reset: % resets conditions

IF NOW between midnight and t

AND

Cond-Reminder = FALSE

SET Cond-Reminder = TRUE

SET Cond-Remind-again = FALSE

2) ReminderX: % the actual diary reminded

IF NOW >= t

AND

Cond-Reminder = TRUE

EXECUTE <other robot actions>

SAY <text item>

SET Cond-Reminder = FALSE

SET Cond-Remind-again = TRUE

An example of the user teaching GUI is shown in Figs. 3

and 4 and displays the actions a non-technical person would

use to create the example behaviour above. The steps consists

of ‘what’ the robot should do followed by ‘when’ the robot

should do it:

i. The user chooses to send the robot to the current user

location and then presses a ‘learn it’ button. This puts

the command into the robot memory (screenshot not

shown).

ii. Then the user makes the robot say ‘It’s time for your

medicine’. This is not in the robot’s current set of skills

and so is entered as a text input by the user (screenshot

shown at top of Fig. 3). This is followed by a press of

the ‘learn it’ button.

iii. Now the two actions are in the robot’s memory and the

user completes the ‘what’ phase and starts on the ‘when’

phase.

iv. The user is offered a number of choices including

reacting to events in the house, or user or robot locations

or a diary function (second screen in figure 3).

v. The user chooses a diary function and enters 17:00 in

the ‘at this time’ box (first screenshot shown in Fig. 4).

vi. Again this is followed by pressing the ‘learn it’ button.

vii. Having completed both ‘what’ and ‘when’ phases the

user is shown the complete behaviour for review and

can modify it if necessary (screenshot shown at bottom

of Fig. 4).

viii. Once happy the user presses a ‘make me do this from

now on’ button and the complete behaviour becomes

part of the robot behavioural repertoire.

2) Learning Interface - ‘Show Me’: The ‘Show Me’ ap-

proach is contingent on the house occupant indicating to the

robot that activities are underway. For example, the person

might indicate that they are now ‘preparing food’. Activities

typically have a nested and sometimes hierarchical nature. For

example, ‘preparing food’ might also include ‘making a hot or

cold drink’ or ‘using the toaster’. The start and end times and

durations of the main task and the sub-tasks are completely

variable. However, when any of the sub-tasks are active (e.g.

using toaster) the main task must also be active (i.e. preparing

food).

Consider that the person has indicated to the robot that they

are ‘preparing food’ and at some point they also indicated that

they are now ‘using the toaster’. If the robot learns the set of

sensory activities associated with these tasks it should be able

to recognize them when they occur again in the future. Thus

the robot would recognize when the toaster is active and infer

not only that ‘using the toaster’ is true but also that ‘preparing

food’ is true.

Given that these activities can be recognized by the robot

(via the house sensory system), it would then be possible to

exploit these in the teaching system outlined above and the

person would now be able to teach the robot based on the

higher level semantics associated with the task. For example,

the user might teach “When I am ‘Preparing food’, the robot

should come to the kitchen and raise its tray”.

The learning system provides symbolic entries by automat-

ically creating semantic sensors labelled with the descriptive

term (e.g. ‘preparing food’) provided by the user. These can

then be exploited to create new behaviours on the robot.

The challenges for a learning system are therefore to be able

to recognise that learnt situations can be active in parallel,

have an implicit nested hierarchy and that higher levels in

the hierarchy (typically) represent higher level of semantic

knowledge. These need to be represented as lexical symbols

in the memory architecture which the teacher can then exploit.

3) Approach to Learning: In order to learn typical activities

in the house the robot needs to recognize when these situations

re-occur. This recognition would be primarily based on the

current sensory state of the house, however, in more complex

circumstances both the historical sensory state and a predicted

future sensory state may also be necessary (for example, in

historical terms, to recognize that the postman called this

afternoon, or in the predicted sense, that the house occupant

is likely soon to go to bed). In the work presented in this

paper we only consider the current sensory state. Work on



IEEE TRANSACTIONS HUMAN MACHINE SYSTEMS 9

a predicted sensory state (for example using sequential data

mining algorithms) is part of our ongoing studies.

We also have to consider that the certainty of situations

cannot always be represented by a simple true/false dichotomy.

For example, if I am in the kitchen it is likely I am preparing

food, but it is not a certainty. The confidence of the task

assessment by the robot has to be considered.

Our approach falls under the banner of Ambient Activity

Recognition in that house resident activities are modelled by

analysing a sequence of ambient sensor events. The various

approaches to this research area typically apply supervised

machine learning techniques such as decision trees/rule in-

duction [41]) (as is used in the studies presented in this docu-

ment), HMM’s and dynamic Bayesian networks [42], template

matching techniques such as k-NN [43] or dynamic windowing

techniques [28]. Sensor data is typically pre-labelled by an

external observer (although some techniques also search for

common patterns in daily activities [27]). Our approach differs

from a strict supervised learning approach in that the house

resident is responsible for ‘labelling’ the data and does this by

simply providing the label and then carrying out the activity

whilst the system records and automatically assigns the label to

the sensory data accordingly. Furthermore, the newly acquired

activity can be subsequently used for direct robot teaching.

Activity recognition is based on streaming vectorised sensor

data - an approach which allows multiple activity patterns to

be recognized in parallel.

The current memory system as a whole is based on rule

sets held as behaviours, these are human readable and taught

by the human using the teaching system. Ideally a learning

system should also be human readable to allow them to be

understood by the user. We therefore decided to employ a rule

induction approach to learning based on Quinlan’s C4.5 Rule

induction algorithm (the latest version is C5.0) [13] which

allows generation of rule sets in human readable form.

4) Verification of Approach: In order to verify the plau-

sibility of our approach we exploited some existing end

user behaviour data available from previous studies in the

University of Hertfordshire robot house by Duque et al., [44].

In these previous studies 14 participants were asked to carry

out a series of typical daily activities within the house. Each

participant took part in two sessions of approximately 45min

duration each. In the first (training) session the experimenter

suggested to the participant particular tasks that should be

carried out. In the second (test) session the experimenter asked

the participant to carry out any of the tasks (or none) at

their own discretion. During the experiment all house sensory

data was recorded and all sessions videotaped. Subsequently

the video tapes were annotated by both Duque [44] and an

external observer (with subsequent appropriate inter-observer

correlation carried out) and marked with the task and sub-

task start and end times. These were then matched against

the recorded sensory data. Duque et al’s. [44], aim in these

experiments was to manually create a rule-set, derived from the

training sessions, which could be applied to the test data and

accurately predict the activity that was being carried out by the

participant. This rule set was constructed and applied to the

test data resulting in recognition accuracy (based on precision,

Fig. 5. The ROC curves showing the results of the applying the induction sys-
tem on both the training and testing data for four categories of classification.
Points near the top left hand corner of the curve indicate good classification
results. Random classification is shown as the diagonal line from bottom left to
top right. Entries towards the bottom right corner indicate poor classification.
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recall and accuracy) of over 80%. In the work presented in this

paper we tested the plausibility of our approach by replacing

the designer generated rules with rules automatically derived

using the C5.0 algorithm. We then assessed the performance

of this approach.

The training data for the 14 participants was used to train

a learner using C5.0 with boosting over 10 trials. The learner

was then applied to the test data and the resulting performance

analysed for four activity states displayed on ROC curves (see

Fig. 5).

Each data point in the ROC curves indicate a participant’s

training or testing session. Also shown are the combined

results after aggregation of data of all of the 14 participants

into one data set. Clusters that occur in the top left quadrant

of the ROC curves indicate a strong level of learning and

recognition performance.

The results of the ROC analysis indicated that such a

learning approach can allow the robot to recognize human

activities in the robot house. However, in a ‘real’ situation

we are faced with having no observer of human actions and

no annotator of those actions to derive a classification set. In

order to provide a solution to this issue we allowed the house

occupant to become the observer/annotator by informing the

robot when tasks are starting and finishing. To carry this out

an end-user training GUI was developed which we called

‘Show Me’ (see Fig. 6). The GUI allowed users to state

what they are currently doing (up to three hierarchical levels)

and subsequently test whether the system correctly recognises

these actions .
5) Learning and Execution Mechanism: Data for the in-

duction algorithm is held as a table of single row sensor

vectors each labelled with the user defined text provided by the

GUI. The sensor vectors are used by C5.0 to produce its rule

sets. These rule sets are then applied in real-time to incoming

sensory data from the house. The effectiveness of the rule set is

expressed by C5.0 as a percentage. If this percentage exceeds

50% the labelled semantic sensor is set to true, otherwise false.

A pictorial representation of the process is shown in Fig. 7.

IV. EVALUATION OF THE TEACHING AND LEARNING

SYSTEMS

A. Procedure for the Teaching System - ‘Teach Me’

The evaluation of the template based teaching system in-

volved 20 participants recruited from the general population.

Each participant was introduced to the experimenter, a tech-

nician and the experiment psychologist. The technician was

present only to ensure the safety of the participant (this is

a safety requirement of the ethics agreement required for

using this particular robot) and played no other part in the

experiment. The technician was stationed in a part of the room

outside the main interaction area and took an entirely passive

role.

The psychologist asked the participant to complete several

forms: a consent form, a demographics form, a questionnaire

assessing computer and robot experience and the Ten Item

Personality Inventory(TIPI) [45].

The experimenter then took over and the psychologist

retired to a different room. The experimenter then explained

Fig. 6. The ‘Show Me’ learning GUI. Here the user has entered ‘Preparing
Food’ and when ready presses the ‘press me to start showing the robot’ button.
They then carry out actions associated with preparing food (e.g. starting the
microwave oven). If a sub-task is required (in this case ‘Preparing a Hot
Drink’), the user can continue to enter new tasks up to a maximum of 3 levels
deep. Once each task completes, the user presses the red ‘Press me when you
have finished‘ button. Testing can be carried out by pressing the ‘Test Me’
button. This operates in real-time and allows the user, whilst repeating the
task, to check if the system correctly identifies it. A probability % is also
given based on the predicted accuracy of the real-time classifier using the
learned rules. The colour of the classifier symbol turns green if the probability
exceeds 50%. Note that the system automatically creates lexical symbols
which are then available within the robot teaching interface. In the testing
example (shown being tested with the house simulator), the microwave is on,
therefore the system infers that ‘Preparing Food’ is 80% certain. However as
the kettle is off ‘Preparing Hot Drink’ is very unlikely (0%).

the purpose of the experiment, the nature of the sensorised

house and the capabilities of the robot (in this experiment

the robot capabilities were restricted to moving to differing

locations and speaking, although the tray and arm/gripper were

visible).

The robot had previously been taught to approach the

experimenter and participant and to introduce itself by saying

“welcome to the robot house”. This gave the experimenter a

chance to explain the robot capabilities and for the participant

to see the robot in action for the first time.

Examples of three sets of behaviours, each with increasing

complexity, were shown to participants (the behaviours are

shown in table I). The behaviour relating to ‘answering the

doorbell’ in set 1 was used by the experimenter to show the
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Fig. 7. The ‘Show Me’ system first asks the user to provide a label for the
activity. The user then clicks the green ‘start’ button and actually carries out
that activity. During the activity vectorised sensor data is captured to a file
in real-time. The user indicates that this task has finished by pressing the
red ‘stop’ button and the recorded file is subsequently processed by the C5.0
algorithm resulting a a rule set. The system also creates a semantic sensor
labelled with the name given by the user. To test the system the user presses
the ‘test’ button and repeats the task. Real-time sensory data from the house
and robot is queried by the rule set generated by C5.0 which results in the
labelled semantic sensor being set either true or false.

TABLE I
TAUGHT ROBOT BEHAVIOURS INCREASING IN BEHAVIOURAL

COMPLEXITY.

Taught Behaviours - Set 1

Whenever you open the microwave oven, make the robot come to
the kitchen and wait outside.

If the TV is on, and you are sitting on the sofa, make the
robot join you at the sofa.

If the doorbell rings and the TV is on, make the robot say
“There’s someone at the door” and then go to the Hallway.

Taught Behaviours - Set 2

Make the robot come to the table and remind you to always call
your friend “Mary” on Thursday at 2pm.

On Mondays, Wednesdays and Fridays make the robot stand in the
hall and remind you that your lunch is being delivered at 12:30pm.

If you are sitting on the sofa for more than 30 minutes, make the
robot come to the sofa and tell you to take some exercise. Make the
robot do this again after another 30m if you are still sitting there.

Make the robot come to the table and remind you to take your
medicine at 12pm and 4pm every day, yellow pills at 12, pink at 4pm.

Taught Behaviours - Set 3

Make the robot come to the sofa and tell you to ‘move about a bit’,
if, in the afternoon, you have sat on the sofa for longer than
1 hour continuously.

If it is after 9pm, and you have left the sofa for over 5 minutes
and the TV in on, make the robot go to the hall entrance and say
“turn off the TV”.

If the microwave has been open or on for more than 1 minute, make
the robot come to the table and tell you that the microwave is open
or on. Make the robot remind you every minute until the microwave
is turned off and door is closed.

participant how to use the teaching GUI.

Participants were then asked to choose one behaviour from

each set of behaviours and use the teaching GUI to teach the

robot these behaviours.

During the teaching process the experimenter stayed with

the participant and helped them when asked. Given that none

of the participants had ever interacted with a robot before, and

that the teaching GUI was entirely new to them, we felt that

TABLE II
THE TABLE SHOWS THE QUESTIONS POSED TO PARTICIPANTS

SPECIFICALLY RELATING TO USABILITY. ALL ANSWERS WERE BASED ON

A 5-POINT LIKERT SCALE

Modified Brooke’s Usability Scale

I think that I would like to use the robot teaching system
like this often.

I found using the robot teaching system too complex.

I thought the robot teaching system was easy to use.

I thought the robot teaching system was easy to use

I think that I would need the support of a technical person who
is always nearby to be able to use this robot teaching system .

I found the various functions in the robot teaching system
were well integrated.

I thought there was too much inconsistency in the robot
teaching system.

I would imagine that most people would very quickly learn to use
the robot teaching system.

I found the robot teaching system very cumbersome to use.

I felt very confident using the robot teaching system.

I needed to learn a lot of things before I could get
going with the robot teaching system .

this was a necessary requirement. Furthermore, part of the post

experimental questionnaire asked them to indicate whether

they thought they could continue to use the teaching system

without the help of the experimenter. The participant’s use of

the teaching system was also videotaped for later analysis.

Having taught the robot a new behaviour the experimenter

then invited the participant to test it. If the behaviour operated

successfully then the participant moved on to teaching the

next behaviour in the subsequent set. Alternatively they could

modify the existing behaviour and re-test. Having taught all

three behaviours (one from each set) the experimenter retired

to another room and the psychologist returned and asked the

participant to fill in a post evaluation questionnaire based on

Brooke’s usability scale [46] that had been adapted to the

HRI domain from its typical form in HCI (see table II). A

subsequent questionnaire (see table VI) was also completed

which focused on the usefulness of the robot and teaching

system specifically. We felt that this separation of duties

between the experimenter and psychologist was necessary to

avoid putting any pressure on the participant when they were

completing the evaluation questionnaire.

After completion of the questionnaires the participant was

invited to ask questions if they wished about the experience,

the house the robot etc. In fact, all of the participants were

very interested to know how the house and robot worked.

B. Results of the ‘Teach Me’ Evaluation

1) Demographics: There were 20 participants in the study,

16 female and 4 male. The mean age in the sample was 44

years, with a median age of 49 years. The age range was from

20 to 67 years. The computer usage of the participants can be

found in Table III, which suggest that majority of participants

used computers for work/studies as well as for social reasons.

There was a split in the sample however, in that about half of

the participants used computers for recreational reasons, such

as games. None of the participants programmed computers.

The mean number of hours spent on computers in the sample
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TABLE III
COMPUTER USAGE IN THE SAMPLE

Activity Yes No

Work or Study 18 2
Socialising 19 1
Recreation 8 12
Programming 0 20

TABLE IV
PERSONALITY IN THE SAMPLE

Mean SD

Extraversion 4.38 1.48
Agreeable 5.35 1.14

Conscientious 5.83 1.15
Emotional Stability 4.85 1.36

Openness 5.17 1.10

was 35 hours (SE=2.98) with a median number of hours of

33. Only one of the participant had had any experience with

robots. Table IV shows the responses to the TIPI in the sample.

2) Responses to the ‘Teach Me’ SUS: The mean participant

response to the the System Usability Scale regarding the teach-

ing interface was 79.75 (SE=2.29), and the median response

was 76.25. These scores were significantly higher than the

“neutral score” of 68 (t(19) = 5.12, p < .01).

While considering the relationship between the usability

scores to the ‘neutral’ score it is important to note that the

collaborative carer/primary user usage and training scenarios

intended for the ‘TeachMe/Show Me’ system is very different

from the more industrial settings where the SUS is more

commonly applied. As such, the score should be taken as

representative of the experienced usability within the inter-

action context itself rather than merely a representation of the

interface [47].

A multiple regression analysis was conducted in order to

investigate demographic predictors of SUS responses to this

task. After removing non-significant predictors, the final model

had an adjusted r2 of .28, and predicted SUS scores signifi-

cantly (F (2, 17) = 4.70, p < .05). The model is described in

Table V and suggests that both higher age and higher scores

on the Conscientiousness personality trait were associated with

lower scores on the SUS for this task.

3) Responses to the ‘Teach Me’ Ad-Hoc Questions: Par-

ticipant responses to the ad-hoc Likert items can be found in

table VI. All participant responded ‘Very Useful’ or ‘Useful’

when asked if they thought it useful useful to teach a robot.

In addition all participants answered ‘Definitely Yes’ or ‘Yes’

when asked if they thought that they would be able to teach the

robot, if they would do so for a relative, and that they would

find it useful to customise the tasks of a robot beyond a set

of standard tasks. The participants did not, however, agree as

TABLE V
PREDICTORS OF SUS SCORES

Predictor β SE t(19) p

Intercept 0.00 0.00 0.00 1.00
Age -.49 .20 -2.48 < .05
Conscientiousness -.40 .20 -2.23 < .05

TABLE VI
FREQUENCIES OF RESPONSES TO THE ‘TEACH ME’ AD-HOC LIKERT

ITEMS

Do you think it is useful teach a robot?

Very Useful Useful Neither Not Useful Not at all
18 2 0 0 0

Do you think that you would be able to teach the robot?

Def. Yes Yes Neither No Def. No
10 10 0 0 0

Would you be willing to teach the robot for someone else

e.g. if you were a relative or carer of the other person?

Def. Yes Yes Neither No Def. No
14 6 0 0 0

Do you think that robot should already have been completely

setup by someone else?

Def. Yes Yes Neither No Def. No
1 3 4 11 1

Do you think that the robot should be able to carry out

standard tasks but it would be useful to be able to customize it?

Def. Yes Yes Neither No Def. No
13 7 0 0 0

Is it useful knowing what the robot can already do?

Def. Yes Yes Neither No Def. No
12 8 0 0 0

How would you feel about having a robot suggesting
that you take more exercise?

Very Comf. Comfortable Neutral Uncomf. Very Uncomf.
9 8 2 1 0

How would you feel about having a robot suggesting

that you play a game together e.g. a video game or chess/draughts?

Very Comf. Comfortable Neutral Uncomf. Very Uncomf.
6 11 2 1 0

How would you feel about having a robot warning you
that there was a problem in the house

e.g. fridge left open or hot/cold taps running or TV left on?

Very Comf. Comfortable Neutral Uncomf. Very Uncomf.
18 2 0 0 0

How would you feel about having a robot informing someone

else that there was a problem in the house e.g. by texting them,
if the problem had not been resolved?

Very Comf. Comfortable Neutral Uncomf. Very Uncomf.
12 5 2 1 0

strongly on whether or not the robot should be completely set

up by someone else, with a wider range of responses from the

participants.

Participants also responded that they were overall ‘Very

Comfortable’ or ‘Comfortable’ with a robot informing them

that there was a problem in their house, and 17 out of the

20 participants answered that they were at least ‘Comfortable’

with the robot informing a third party about an unresolved

problem, but there was less agreement regarding having a robot

suggest that they play a game or exercise.

As these were ordinal Likert-items, linear regression anal-

yses were not performed, instead a series of exploratory

Spearman’s correlations were carried out.

For wanting the robot already set up, there was a correla-

tion approaching significant between this and the Emotional

Stability personality trait (ρ(20) = .40, p = .08) indicating

that participants with higher scores along this dimension were

less likely to want the robot fully set up by someone else.

There was also a trend approaching significance for this item

and Age (ρ(20) = −.37, p = .10), in which older participants

were more likely to want the robot already set-up.

There were no significant relationships between comfort
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with the robot suggesting that one take more exercise and the

demographic measures.

There was a significant relationship between Age and Com-

fort regarding the robot contacting a third party in case of a

problem (ρ(20) = −.53, p < .05), where older participants

were more comfortable with this.

4) Teaching Behaviours - ‘Teach Me’ - Summary of Results:

The results from the SUS suggest that participants found the

interface easy to use. Moreover, all participants indicated that

they felt able to use a system like this to teach the robot, and

willing to use such a system to set-up behaviours for an elderly

relative or person in their care. These are encouraging results

which suggest that further development of the robot teaching

system is warranted.

In terms of individual differences, there are some salient

relationships. The relationship between Age and SUS scores

are not unexpected. The older members of the sample found

the system more difficult to use than the younger participants.

Related to this is the impact of age on the ad-hoc item

regarding wanting the robot to be already set up by someone

else. Here, older participants were more likely to want the

robot being fully set-up than younger participants.

Taken together, this suggest that the current stage of this

teaching system may be better suited for use by carers and

relatives of elderly people to set up the robot’s behaviours for

them, but that it needs to be further developed in order to be

more suitable for the use of elderly people themselves.

The relationship between items covering the possibility of

the robot contacting third-parties in case of problems, and Age

is also interesting (and we envisaged that this would be a key

item that may be taught to the robot). While one explanation

for this result may be that older participants were closer to

having to consider these scenarios in their own lives than

their younger counterparts, a more likely explanation may be

that the older portion of the sample were more likely to have

had more experiences with caring for elderly parents or other

relatives and so might identify more strongly with the third

party that is to be contacted. Some of the informal responses

from participants during the debrief of the study did reference

such experiences.

C. The Learning System - ‘Show Me’

A preliminary evaluation of the learning system involved

3 persons, all female aged 58 to 66, who were “informal”

carers. They typically looked after an elderly relative. All of

the informal carers had previously been exposed to the ‘Teach

Me’ system and were therefore familiar with the teaching

process reported above.

1) Procedure: The experimenter explained the purpose of

the study and ensured that they understood the instructions.

The experimenter then chose one of the activities in Table VII

and explained to the participant how to use the ‘Show Me’ GUI

to allow the robot to learn about this activity - typically by

actually carrying out that activity whilst the ‘start showing me’

button was active. They could then test whether this activity

was recognised by pressing the ‘test’ button, repeating the

activity and ensuring that the recognition bar turned green

TABLE VII
SET OF ACTIVITIES USED FOR THE ‘SHOW ME’ EVALUATION

Create an activity called ‘Watching TV’.

Create an activity called ‘Relaxing on the Sofa’.

Create an activity called ‘Preparing a hot drink’.

Create an activity called ‘Preparing a Ready Meal’ using the
microwave

Create an activity called ‘Kitchen Activities’ which is active when
‘Preparing a hot drink’ or ‘Preparing a ready meal’ or when any other
kitchen activity is being carried out

TABLE VIII
SET OF BEHAVIOURS TAUGHT AS PART OF THE ‘SHOW ME’ EVALUATION

Teach the robot that if it is 7.30 and you are ‘Watching TV’

then remind you that your favourite program is about to start.

If you have been ‘Relaxing on the sofa’ for more than 30mins
make the robot come to the sofa and tell you to ‘move about a bit’

If there are ‘Kitchen Activities’ make the robot come to
the kitchen and offer to carry the drink or meal to the dining table

(i.e. over 50% probable). If lower than 50% the activity was

repeated.

The participant was then asked to choose one of the other

activities shown in Table VII and use the ‘Show Me’ GUI to

allow the robot to learn about the activity. They then tested

this activity to ensure that the robot correctly identified it.

Having successfully tested that the robot had learned about

this activity, the participant was then asked to choose the

corresponding teaching task in Table VIII. For example, if the

robot had learned about ‘watching TV’, then the behaviour

involving ‘watching TV’ would be chosen. The participant

then taught the robot the chosen behaviour and subsequently

tested that it worked. For example, for ‘watching TV’, that the

robot would approach the participant (who was now sitting on

the sofa watching TV) and inform them about an upcoming

TV program. Following this the participant was asked to

complete the System Usability questionnaire and completed

two additional questionnaires on ad-hoc usability and provide,

if they wished, an overall comment on the system.

2) Results of the ‘Show Me’ Evaluation: Note that the

number of participants in the ‘Show Me’ evaluation was very

low and therefore not statistically valid. We hope however that

they are indicative of possible promising research in this area.

The SUS scores for the ‘Show Me’ interface ranged from

67.5 to 80. The mean score was 75.83 and the median score

was 80. This was larger than the expected average of 68. Ad-

hoc likert item results are shown in table IX and some user

comments are shown in table X.

Clearly such a small sample may only be indicative, how-

ever the results from the SUS suggested that participants found

the interface relatively easy to use. The three participants all

found the ‘Show Me’ feature useful, and felt confident in their

ability to use a feature like this to teach a robot about their

own activities or to use on behalf of someone else. They also

felt that this should not be something that was already set up

prior to use.
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TABLE IX
FREQUENCIES OF RESPONSES TO THE ‘TEACH ME’ AD-HOC LIKERT

ITEMS

Do you think it is useful to teach robot activities?

V. Useful Useful Neither Not Useful Not at all
3 0 0 0 0

Do you think that you would be able to teach robot activities?

Def. Yes Yes Neither No Def. No
2 1 0 0 0

Would you be willing to teach activities for someone else

carer of the other person?

Def. Yes Yes Neither No Def. No
2 1 0 0 0

Should activities already have been setup by someone else?

Def. Yes Yes Neither No Def. No
0 0 0 3 0

TABLE X
COMMENTS MADE ON THE ‘SHOW ME’ INTERFACE

I think it is a great idea to personalise the robot for an individual’s
needs. But also think this can be used alongside prepared repetitive
tasks. I think also very important for the robot to learn activities
rather than or as well as one off tasks. When teaching activities
need to show robot in simple exaggerated steps so that it does not
confuse activities

Not completely set up but a range of everyday types of activities
which can be personalised

V. CONCLUSION

We have described a robot personalisation system designed

to be used by persons operating in assistive environments in

smart homes, typically carers, relatives or the elderly person

themselves. The teaching component exploits sets of standard

templates in order to generate robot behaviours. This approach

avoids the complexity of robot behaviour generation for a

large set of tasks which we believe would be required by

such persons, clearly however more complex tasks would still

need technical personnel involvement. The teaching interface

was evaluated with end users and indicated that participants

considered that such a system would be both useful and

useable by them for aiding persons to stay in their homes for

longer periods. We have also described and presented a limited

evaluation of a user driven activity learning system which

allows the robot and smart home to recognise user activities.

This activity recognition system compliments the teaching

system by allowing a higher level of semantic behaviour

creation to be achieved.

The results of both of these studies indicate that such

facilities would be readily accepted for use by carers, relatives

and the elderly themselves. However, with increasing age, the

willingness to learn new ways to operate, by personalising a

robot’s behaviours, decreases.

In these studies the robot was operating primarily as a cog-

nitive prosthetic and our future work in this area will attempt

to extend from memory prosthetics to also include teaching

fetch and carry tasks. However, as a memory prothestic, a

question that could be asked is ‘why use a robot?’ and not

simply another device such as a mobile phone? We would

argue that the use of a robot differs in a number of ways to

that of a mobile phone. Firstly, the robot will find the person

to inform them (a mobile phone may be somewhere else and

ignored). Secondly, there is some evidence [48]–[51] that the

robot, by having a physical presence, is perceived as more

authoritative, i.e. a person is more likely to follow a robot’s

instructions or suggestions rather than, say, a phone.

The exploration, via the ‘Show Me’ system, of creating

higher level semantics, is we believe a novel and promising

way to ease the teaching burden. For example, being able

to instruct a robot by using everyday terms, such as ‘when

it’s time for bed do...’ or ‘if I’m making dinner do ....’. We

have only partially explored such opportunities and issues

which surround ‘showing’ a robot typical activities and this

work is at an early stage. A number of improvements and

enhancements to such facilities would be to use both inductive

and predictive mechanisms to increase the reliability of the

robot recognising user activities. Prediction algorithms already

exist which use past sensory data to predict possible next

actions [52]. A further extension of this work would be to use

those predictions to then predict again - effectively creating a

predictive forward model for the robot. This forward model

then being subject to the inductive algorithm, which would

now use both historical and predicted sensor vectors to make

a decision on user activity.

This area of research also presents some ongoing de-

sign challenges that are currently being pursued from two

largely distinct viewpoints. The first viewpoint focuses on

people-centred initiatives and improving acceptance by tack-

ling human-robot interaction issues by giving control on per-

sonalization and product customisation features. The second

viewpoint studies technologically-driven initiatives by building

impersonal systems that are able to autonomously adapt their

operations to fit changing requirements, but ignore human-

robot interaction. In order to inform the development of

a new generation of smart robotic spaces, solutions to the

combination of these different research strands is, we believe,

a fundamental requirement [53].

Finally, we have demonstrated in this work that person-

alisation of an autonomous robot is possible in a domestic

environment. Further analysis of the exploitation and com-

mercialisation of these findings may also be a positive next

step.
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