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A Fast Single Image Haze Removal Algorithm
Using Color Attenuation Prior

Qingsong Zhu, Member, IEEE, Jiaming Mai, and Ling Shao, Senior Member, IEEE

Abstract— Single image haze removal has been a challenging
problem due to its ill-posed nature. In this paper, we propose
a simple but powerful color attenuation prior for haze removal
from a single input hazy image. By creating a linear model for
modeling the scene depth of the hazy image under this novel
prior and learning the parameters of the model with a supervised
learning method, the depth information can be well recovered.
With the depth map of the hazy image, we can easily estimate the
transmission and restore the scene radiance via the atmospheric
scattering model, and thus effectively remove the haze from
a single image. Experimental results show that the proposed
approach outperforms state-of-the-art haze removal algorithms
in terms of both efficiency and the dehazing effect.

Index Terms— Dehazing, defog, image restoration, depth
restoration.

I. INTRODUCTION

OUTDOOR images taken in bad weather (e.g., foggy or
hazy) usually lose contrast and fidelity, resulting from

the fact that light is absorbed and scattered by the turbid
medium such as particles and water droplets in the atmosphere
during the process of propagation. Moreover, most automatic
systems, which strongly depend on the definition of the input
images, fail to work normally caused by the degraded images.
Therefore, improving the technique of image haze removal will
benefit many image understanding and computer vision appli-
cations such as aerial imagery [1], image classification [2]–[5],
image/video retrieval [6]–[8], remote sensing [9]–[11] and
video analysis and recognition [12]–[14].

Since concentration of the haze is different from place
to place and it is hard to detect in a hazy image, image
dehazing is thus a challenging task. Early researchers use
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the traditional techniques of image processing to remove
the haze from a single image (for instance, histogram-based
dehazing methods [15]–[17]). However, the dehazing effect is
limited, because a single hazy image can hardly provide much
information. Later, researchers try to improve the dehazing
performance with multiple images. In [18]–[20], polarization-
based methods are used for dehazing with multiple images
which are taken with different degrees of polarization.
In [21]–[23], Narasimhan et al. propose haze removal
approaches with multiple images of the same scene under
different weather conditions. In [24] and [25], dehazing is
conducted based on the given depth information.

Recently, significant progress has been made in single
image dehazing based on the physical model. Under the
assumption that the local contrast of the haze-free image is
much higher than that in the hazy image, Tan [26] proposes
a novel haze removal method by maximizing the local
contrast of the image based on Markov Random Field (MRF).
Although Tan’s approach is able to achieve impressive
results, it tends to produce over-saturated images. Fattal [27]
proposes to remove the haze from color images based on
Independent Component Analysis (ICA), but the approach
is time-consuming and cannot be used for grayscale image
dehazing. Furthermore, it has some difficulties to deal with
dense-haze images. Inspired by the widely used dark-object
subtraction technique [28] and based on a large number of
experiments on haze-free images, He et al. [29] discover the
dark channel prior (DCP) that, in most of the non-sky patches,
at least one color channel has some pixels whose intensities
are very low and close to zero. With this prior, they estimate
the thickness of haze, and restore the haze-free image by the
atmospheric scattering model. The DCP approach is simple
and effective in most cases. However, it cannot well handle the
sky images and is computationally intensive. Some improved
algorithms [30]–[36], [45]–[51] are proposed to overcome
the weakness of the DCP approach. For efficiency,
Gibson et al. [31], Yu et al. [32], He et al. [43],
Tarel and Hautiere [45], and Tarel et al. [46] replace
the time-consuming soft matting [44] with standard median
filtering, “median of median filter”, guided joint bilateral
filtering [37]–[42] and guided image filtering, respectively.
In terms of dehazing quality, Kratz and Nishino [48] and
Nishino et al. [49] model the image with a factorial Markov
random filed to estimate the scene radiance more accurately;
Meng et al. [50] propose an effective regularization dehazing
method to restore the haze-free image by exploring the
inherent boundary constraint; Tang et al. [51] combine
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Fig. 1. An overview of the proposed dehazing method. Top-left: Input hazy
image. Top-right: Restored depth map. Bottom-left: Restored transmission
map. Bottom-right: Dehazed image.

four types of haze-relevant features with Random Forest [52]
to estimate the transmission. Despite the remarkable progress,
the limitation of the state-of-the-art methods lies in the fact
that the haze-relevant priors or heuristic cues used are not
effective or efficient enough.

In this paper, we propose a novel color attenuation prior for
single image dehazing. This simple and powerful prior can
help to create a linear model for the scene depth of the hazy
image. By learning the parameters of the linear model with
a supervised learning method, the bridge between the hazy
image and its corresponding depth map is built effectively.
With the recovered depth information, we can easily remove
the haze from a single hazy image. An overview of the
proposed dehazing method is shown in Figure 1. The efficiency
of this dehazing method is dramatically high and the dehazing
effectiveness is also superior to that of prevailing dehazing
algorithms as we will show in Section VI. A conference
version of our work has been presented in [53].

The remainder of this paper is organized as follows:
In Section II, we review the atmospheric scattering model
which is widely used for image dehazing and give a concise
analysis on the parameters of this model. In Section III,
we present a novel color attenuation prior. In Section IV, we
discuss the approach of recovering the scene depth with the
proposed color attenuation prior. In Section V, the method
of image dehazing with the depth information is described.
In Section VI, we present and analyze the experimental results.
Finally, we summarize this paper in Section VII.

II. ATMOSPHERIC SCATTERING MODEL

To describe the formation of a hazy image, the
atmospheric scattering model, which is proposed by

McCartney in 1976 [54], is widely used in computer vision and
image processing. Narasimhan and Nayar [22], [23], [55], [56]
further derive the model later, and the model can be expressed
as follows:

I(x) = J(x)t (x) + A(1 − t (x)), (1)

t (x) = e−βd(x), (2)

where x is the position of the pixel within the image,
I is the hazy image, J is the scene radiance representing the
haze-free image, A is the atmospheric light, t is the medium
transmission, β is the scattering coefficient of the atmosphere
and d is the depth of scene. I, J and A are all three-dimensional
vectors in RGB space. Since I is known, the goal of dehazing
is to estimate A and t , then restore J according to Equation (1).

It is worth noting that the depth of the scene d is the
most important information. Since the scattering coefficient
β can be regarded as a constant in homogeneous atmosphere
condition [55], the medium transmission t can be estimated
easily according to Equation (2) if the depth of the scene
is given. Moreover, in the ideal case, the range of d(x) is
[0,+∞) as the scenery objects that appear in the image can
be very far from the observer, and we have:

I(x) = A, d(x) → ∞. (3)

Equation (3) shows that the intensity of the pixel, which
makes the depth tend to infinity, can stand for the value of
the atmospheric light A. Note that, if d(x) is large enough,
t (x) tends to be very small according to Equation (2), and
I(x) equals A approximately. Therefore, instead of calculating
the atmospheric light A by Equation (3), we can estimate A
by the following equation given a threshold dthresold :

I(x) = A, d(x) ≥ dthresold . (4)

We also notice the fact that it is not hard to satisfy this
constraint: d(x) > dthresold . In most cases, a hazy image taken
outdoor has a distant view that is kilometres away from the
observer. In other words, the pixel belonging to the region
with a distant view in the image should have a very large
depth dthreshold . Assuming that every hazy image has a distant
view, we have:

d(x) ≥ dthresold, x ∈ {x |∀y : d(y) ≤ d(x)} (5)

Based on this assumption, the atmospheric light A is given by:

A = I(x), x ∈ {x |∀y : d(y) ≤ d(x)}. (6)

On this condition, the task of dehazing can be further con-
verted into depth information restoration. However, it is also
a challenging task to obtain the depth map from a single hazy
image.

In the next section, we present a novel color attenuation
prior which is useful for restoring the depth information from
a single hazy image directly.

III. COLOR ATTENUATION PRIOR

To detect or remove the haze from a single image is a
challenging task in computer vision, because little information
about the scene structure is available. In spite of this,
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Fig. 2. The concentration of the haze is positively correlated with the
difference between the brightness and the saturation. (a) A hazy image.
(b) The close-up patch of a dense-haze region and its histogram. (c) The
close-up patch of a moderately hazy region and its histogram. (d) The
close-up patch of a haze-free region and its histogram.

the human brain can quickly identify the hazy area from
the natural scenery without any additional information. This
inspired us to conduct a large number of experiments on
various hazy images to find the statistics and seek a new
prior for single image dehazing. Interestingly, we find that
the brightness and the saturation of pixels in a hazy image
vary sharply along with the change of the haze concentration.

Figure 2 gives an example with a natural scene to show how
the brightness and the saturation of pixels vary within a hazy
image. As illustrated in Figure 2(d), in a haze-free region,
the saturation of the scene is pretty high, the brightness is
moderate and the difference between the brightness and the
saturation is close to zero. But it is observed from Figure 2(c)
that the saturation of the patch decreases sharply while the
color of the scene fades under the influence of the haze, and
the brightness increases at the same time producing the high
value of the difference. Furthermore, Figure 2(b) shows that in
a dense-haze region, it is more difficult for us to recognize the
inherent color of the scene, and the difference is even higher
than that in Figure 2(c). It seems that the three properties
(the brightness, the saturation and the difference) are prone
to vary regularly in a single hazy image according to this
observation. Is this coincidence, or is there a fundamental
reason behind this? To answer this question, we first review
the process of imaging.

Figure 3 illustrates the imaging process. In the haze-free
condition, the scene element reflects the energy that is from
the illumination source (e.g., direct sunlight, diffuse skylight
and light reflected by the ground), and little energy is lost when
it reaches the imaging system. The imaging system collects the
incoming energy reflected from the scene element and focuses
it onto the image plane. Without the influence of the haze,
outdoor images are usually with vivid color (see Figure 3(a)).
In hazy weather, in contrast, the situation becomes more
complex (see Figure 3(b)). There are two mechanisms
(the direct attenuation and the airlight) in imaging under

hazy weather [23]. On one hand, the direct attenuation caused
by the reduction in reflected energy leads to low intensity of
the brightness. To understand this, we review the atmospheric
scattering model. The term J(x)t (x) in Equation (1) is used
for describing the direct attenuation. It reveals the fact that
the intensity of the pixels within the image will decrease in
a multiplicative manner. So it turns out that the brightness
tends to decrease under the influence of the direct attenuation.
On the other hand, the white or gray airlight, which is formed
by the scattering of the environmental illumination, enhances
the brightness and reduces the saturation. We can also explain
this by the atmospheric scatter model. The rightmost term
A(1−t (x)) in Equation (1) represents the effect of the airlight.
It can be deduced from this term that the effect of the white or
gray airlight on the observed values is additive. Thus, caused
by the airlight, the brightness is increased while the saturation
is decreased. Since the airlight plays a more important role
in most cases, hazy regions in the image are characterized by
high brightness and low saturation. What’s more, the denser
the haze is, the stronger the influence of the airlight would be.
This allows us to utilize the difference between the brightness
and the saturation to estimate the concentration of the haze.
In Figure 4, we show that the difference increases along with
the concentration of the haze in a hazy image, as we expected.

Since the concentration of the haze increases along with
the change of the scene depth in general, we can make an
assumption that the depth of the scene is positively correlated
with the concentration of the haze and we have:

d(x) ∝ c(x) ∝ v(x) − s(x), (7)

where d is the scene depth, c is the concentration of the
haze, v is the brightness of the scene and s is the saturation.
We regard this statistics as color attenuation prior. Figure 5
gives the geometric description of the color attenuation prior
through the HSV color model. Figure 5(a) is the HSV color
model, and Figure 5(b-d) are the near, moderate-distance and
far scene depths, respectively. Vector I indicates the hazy
image, passing through the origin and performing the projec-
tion of the vector I onto a horizontal plane Setting the angle
between vector I and its projection as α, according to the HSV
color model, when α varies between 0 and 90 degrees, the
higher the value of α is, the higher the value of tangent
α is, which indicates the greater the difference between the
component of I in the direction of V and the component of I in
the direction of S. As the depth increases, the value v increases
and the saturation s decreases, and therefore α increases.
In other words, the angle α is positively correlated with the
depth.

It is worth to point out that Equation (7) is just an intu-
itional result of the observation and it cannot be an accurate
expression about the links among d , v and s. We will find
the way to create a more robust expression in the following
sections.

IV. SCENE DEPTH RESTORATION

A. The Linear Model Definition

As the difference between the brightness and the saturation
can approximately represent the concentration of the haze,
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Fig. 3. The process of imaging under different weather conditions. (a) The process of imaging in sunny weather. (b) The process of imaging in hazy weather.

Fig. 4. Difference between brightness and saturation increases along with the
concentration of the haze. (a) A hazy image. (b) Difference between brightness
and saturation.

we can create a linear model, i.e., a more accurate expression,
as follows:

d(x) = θ0 + θ1v(x) + θ2s(x) + ε(x), (8)

where x is the position within the image, d is the scene
depth, v is the brightness component of the hazy image,
s is the saturation component, θ0, θ1, θ2 are the unknown
linear coefficients, ε(x) is a random variable representing the
random error of the model, and ε can be regarded as a random
image. We use a Gaussian density for ε with zero mean and
variable σ 2 (i.e. ε(x) ∼ N(0, σ 2)). According to the property
of the Gaussian distribution, we have:

d(x) ∼ p(d(x)|x, θ0, θ1, θ2, σ
2) = N(θ0 + θ1v + θ2s, σ 2).

(9)

One of the most important advantages of this model
is that it has the edge-preserving property. To illustrate
this, we calculate the gradient of d in Equation (8) and

Fig. 5. The geometric description of the color attenuation prior. (a) The HSV
color model. (b) The near scene depth condition. (c) The moderate-distance
condition. (d) The far scene depth condition.

we have:

∇d = θ1∇v + θ2∇s + ∇ε. (10)

Due to that σ can never be too large in practice, the value
of ε(x) tends to be very low and close to zero. In this case, the
value of �ε is low enough to be ignored. A 600×450 random
image ε with σ = 0.05 and its corresponding gradient image
�ε are shown in Figure 6(e) and Figure 6(d), respectively.
As can be seen, both the gradient image �ε and the random
image ε are very dark. It turns out that the edge distribution of
d is independent of ε given a small σ . In addition, since v and
s are actually the two single-channel images (the value channel
and the saturation channel of the HSV color space) into which
the hazy image I splits, Equation (10) ensures that d has an
edge only if I has an edge. We give an example to illustrate
this in Figure 6. Figure 6(a) is the hazy image. Figure 6(b)
shows the edge distribution of the hazy image. Figure 6(c)
shows the Sobel image �d = θ1�v + θ2�s + �ε, where θ1
is simply set to 1.0, θ2 is set to −1.0, and ε is a random
image as mentioned. As we can see, Figure 6(b) is similar
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Fig. 6. Illustration of the edge-preserving property of the linear model. (a) The hazy image. (b) The Sobel image of (a). (c) The Sobel image �d = �v−�s+�ε.
(d) The Sobel image of (e). (e) The random image ε with σ = 0.05.

Fig. 7. The process of generating the training samples with the haze-
free images. Left sub-figure: The haze-free images. Center sub-figure: The
generated random depth maps. Right sub-figure: The generated hazy images.

to Figure 6(c) representing that I and d have similar edge
distributions. This further ensures that the depth information
can be well recovered even near the depth discontinuities in
the scene. The linear model works well as we will show
later.

In the following sections, we use a simple and efficient
supervised learning method to determine the coefficients
θ0, θ1, θ2 and the variable σ 2.

B. Training Data Collection

In order to learn the coefficients θ0, θ1 and θ2 accurately,
the training data are necessary. In our case, a training sample
consists of a hazy image and its corresponding ground truth
depth map. Unfortunately, the depth map is very difficult
to obtain due to the fact that there is no reliable means to
measure the depths in outdoor scenes. Current depth cameras
such as Kinect are not able to acquire the accurate depth
information.

Inspired by Tang et al.’s method for preparing the training
data [51], we collect the haze-free images from Google Images
and Flickr and use them to produce the synthetic depth maps
and the corresponding hazy images for obtaining enough train-
ing samples. The process of generating the training samples
is illustrated in Figure 7. Firstly, for each haze-free image, we
generate a random depth map with the same size. The values
of the pixels within the synthetic depth map are drawn from
the standard uniform distribution on the open interval (0, 1).
Secondly, we generate the random atmospheric light A
(k, k, k) where the value of k is between 0.85 and 1.0. Finally,
we generate the hazy image I with the random depth map d
and the random atmospheric light A according to Equation (1)
and Equation (2). In our case, 500 haze-free images are used
for generating the training samples (500 random depth maps
and 500 synthetic hazy images).

C. Learning Strategy

What we are interested in is the joint conditional
concentration:

L = p(d(x1), . . . , d(xn)|x1, . . . , xn, θ0, θ1, θ2, σ
2), (11)

where n is the total number of pixels within the training hazy
images, d(xn) is the depth of the nth scene point, and L is
the likelihood. Assuming that the random error at each scene
point is independent (i.e. p(ε1, …, εn) = ∏

i=1,...,n p(εi)), we
can rewrite Equation (11) as:

L =
n∏

i=1

p(d(xi)|xi , θ0, θ1, θ2, σ
2). (12)

According to Equation (9) and Equation (12), we have:

L =
n∏

i=1

1√
2πσ 2

e− dgi −(θ0+θ1v(xi )+θ2s(xi ))

2σ2 , (13)

where dgi represents the ground truth depth of the ith scene
point. So the problem is to find the optimal values of θ0, θ1, θ2,
and σ to maximum L. For convenience, instead of maximizing
the likelihood directly, we maximize the natural logarithm of
the likelihood ln L. Therefore, the problem can be expressed
as follows:

arg max
θ0,θ1,θ2,σ

ln L =
n∑

i=1

ln(
1√

2πσ 2
e
− dgi −(θ0+θ1v(xi )+θ2s(xi ))

2σ2 ). (14)

To solve the problem, we first calculate the partial derivative
of ln L with respect to σ and make it equal to zero:

∂ ln L

∂σ
= − n

σ
+ 1

σ 3

n∑

i=1

(dgi − (θ0 + θ1v(xi ) + θ2s(xi )))

= 0. (15)

According to Equation (15), the maximum likelihood estimate
for the variable σ 2 is:

σ 2 = 1

n

n∑

i=1

(dgi − (θ0 + θ1v(xi ) + θ2s(xi )))
2. (16)

As for the linear coefficients θ0, θ1 and θ2, we use the gradient
descent algorithm to estimate their values. By taking the partial
derivatives of ln L with respect to θ0, θ1 and θ2 respectively,
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Algorithm 1 Parameters Estimation

we can obtain the following expressions:

∂ ln L

∂θ0
= 1

σ 2

n∑

i=1

(dgi − (θ0 + θ1v(xi ) + θ2s(xi ))), (17)

∂ ln L

∂θ1
= 1

σ 2

n∑

i=1

v(xi )(dgi − (θ0 + θ1v(xi ) + θ2s(xi ))), (18)

∂ ln L

∂θ2
= 1

σ 2

n∑

i=1

s(xi )(dgi − (θ0 + θ1v(xi ) + θ2s(xi ))). (19)

The expression for updating the linear coefficients can be
concisely expressed by:

θi := θi + ∂ ln L

∂θi
s.t . i ∈ {0, 1, 2}. (20)

It is worth noting that the expression above is used for
iterating dynamically, and the notation: = does not express
the mathematical equality, but means that setting the value
of θi in the left term to be the value of the right term. The
procedure for learning the linear coefficients θ0, θ1, θ2 and the
variable σ 2 is shown in Algorithm 1.

We used 500 training samples containing 120 million scene
points to train our linear model. There are 517 epochs in
our case, and the best learning result is that θ0 = 0.121779,
θ1 = 0.959710, θ2 = −0.780245, σ = 0.041337. Once the
values of the coefficients have been determined, they can be
used for any single hazy image. These parameters will be
used for restoring the scene depths of the hazy images in
this paper.

Fig. 8. Refinement of the depth map. (a) The hazy image. (b) The raw depth
map. (c) The depth map with scale r = 15. (d) The refined depth map.

D. Estimation of the Depth Information

As the relationship among the scene depth d , the bright-
ness v and the saturation s has been established and the
coefficients have been estimated, we can restore the depth
map of a given input hazy image according to Equation (8).
However, this model may fail to work in some particular
situations. For instance, the white objects in an image are
usually with high values of the brightness and low values of the
saturation. Therefore, the proposed model tends to consider the
scene objects with white color as being distant. Unfortunately,
this misclassification will result in inaccurate estimation of the
depth in some cases. As shown in Figure 8, the white geese
in the first image are the regions for which the model can
hardly handle, and these regions are wrongly estimated with
high depth values in the depth map (see Figure 8(b)).

To overcome this problem, we need to consider each pixel
in the neighborhood. Based on the assumption that the scene
depth is locally constant, we process the raw depth map by:

dr (x) = min
y∈	r (x)

d(y), (21)

where 	r (x) is an r ×r neighborhood centered at x , and dr is
the depth map with scale r . As shown in Figure 8(c), the new
depth map d15 can well handle the geese regions. However, it
is also obvious that the blocking artifacts appear in the image.
To refine the depth map, we use the guided image filtering [43]
to smooth the image. Figure 8(d) shows the final restored depth
map of the hazy image. As can be seen, the blocking artifacts
are suppressed effectively.

In order to check the validity of the assumption, we
collected a large database of outdoor hazy images from
several well-known photo websites (e.g., Google Images,
Photosig, Picasaweb and Flickr) and computed the scene depth
map of each hazy image with its brightness and saturation
components according to Equation (8) and Equation (21).
Some of the results are shown in Figure 9. Figure 9(a)
displays several outdoor hazy images, Figure 9(b) shows the
corresponding estimated depth maps and Figure 9(c) gives
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Fig. 9. Example images and the calculated depth maps. (a) Outdoor hazy images. (b) The corresponding calculated depth maps. (c) Haze-free images and
their calculated depth maps.

Fig. 10. Estimation of the atmospheric light. (a) Our recovered depth map
and the brightest region. (b) Input hazy image. (c) The patch from which our
method obtains the atmospheric light.

the example haze-free images and their estimated depth maps.
As can be seen, the restored depth maps have darker color
in haze-free regions while having lighter color in dense-haze
regions as expected. With the estimated depth map, the task
of dehazing is no longer difficult.

V. SCENE RADIANCE RECOVERY

A. Estimation of the Atmospheric Light

We have explained the main idea of estimating the
atmospheric light in Section II. In this section, we describe
the method in more detail. As the depth map of the input
hazy image has been recovered, the distribution of the scene
depth is known. Figure 10(a) shows the estimated depth
map of a hazy image. Bright regions in the map stand for
distant places. According to Equation (6), we pick the top
0.1 percent brightest pixels in the depth map, and select the
pixel with highest intensity in the corresponding hazy image I
among these brightest pixels as the atmospheric light A
(see Figure 10(b) and Figure 10(c)).

B. Scene Radiance Recovery

Now that the depth of the scene d and the atmospheric
light A are known, we can estimate the medium transmission
t easily according to Equation (2) and recover the scene

radiance J in Equation (1). For convenience, we rewrite
Equation (1) as follows:

J(x) = I(x) − A
t (x)

+ A = I(x) − A
e−βd(x)

+ A. (22)

For avoiding producing too much noise, we restrict the value of
the transmission t (x) between 0.1 and 0.9. So the final function
used for restoring the scene radiance J in the proposed method
can be expressed by:

J(x) = I(x) − A
min{max{e−βd(x), 0.1}, 0.9} + A, (23)

where J is the haze-free image we want. Figures 12-13 show
some final results of dehazing of the proposed method.

Note that the scattering coefficient β, which can be regarded
as a constant [55] in homogeneous regions, represents the
ability of a unit volume of atmosphere to scatter light in all
directions. In other words, β determines the intensity of dehaz-
ing indirectly. We illustrate this in Figure 11. Figure 11 (e-g)
shows the restored transmission maps with different β, and
Figure 11 (b-d) shows the corresponding dehazing results.
As can be seen, on the one hand, a small β leads to small
transmission, and the corresponding result remains still hazy in
the distant regions (see Figure 11(b) and Figure 11(e)). On the
other hand, a too large β may result in overestimation of the
transmission (see Figure 11(d) and Figure 11(g)). Therefore,
A moderate β is required when dealing with the images with
dense-haze regions. In most cases, β = 1.0 is more than
enough.

VI. EXPERIMENTS

In order to verify the effectiveness of the proposed dehazing
method, we test it on various hazy images and compare with
He et al.’s [29], Tarel et al.’s [46], Nishino et al.’s [49], and
Meng et al.’s [50] methods. All the algorithms are imple-
mented in the MatlabR2013a environment on a P4-3.3GHz PC
with 6GB RAM. The parameters used in the proposed method
are initialized as follows: r = 15, β = 1.0, θ0 = 0.121779,
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Fig. 11. Results with a different scattering coefficient β. (a) The hazy image. (b) The final result with β = 0.5. (c) The final result with β = 0.8.
(d) The final result with β = 1.2. (e) The restored transmission map with β = 0.5. (f) The restored transmission map with β = 0.8. (g) The restored
transmission map with β = 1.2.

Fig. 12. Qualitative comparison of different methods on real-world images. (a) The hazy images. (b) Tarel et al.’s results. (c) Nishino et al.’s results.
(d) He et al.’s results. (e) Meng et al.’s results. (f) Our results.

θ1 = 0.959710, θ2 = −0.780245 and σ = 0.041337. For fair
comparison, the parameters used in the four popular dehazing
methods are set to be optimal according to [29], [46], [49],
and [50].

A. Qualitative Comparison on Real-World Images

As all the dehazing algorithms are able to get really good
results by dehazing the general outdoor images, it is difficult
to rank them visually. In order to compare them, we carry out
the algorithms on some challenging images with large white
or gray regions, since most existing dehazing algorithms are
not sensitive to the white color.

Figure 12 shows the qualitative comparison of results
with the four state-of-the-art dehazing algorithms [29], [46],
[49], [50] on challenging real-world images. Figure 12(a)
depicts the hazy images to be dehazed. Figure 12(b-e)
shows the results of Tarel et al. [46], Nishino et al. [49],
He et al. [29], and Meng et al. [50], respectively. The
results of the proposed algorithm are given in Figure 12(f).
As shown in Figure 12(b), most of the haze is removed in
Tarel’s results, and the details of the scenes and objects are
well restored. However, the results significantly suffer from

over-enhancement (for instance, the sky region of the first
image is much darker than it should be, and the faces of the
women in the last image become brown). This is because
Tarel’s algorithm is based on He et al.’s algorithm which
has an inherent problem of overestimating the transmission
as discussed in [29]. Moreover, halo artifacts appear near the
discontinuities in Figure 12(b) (see the mountain in the first
image and the leaves of plant in the second image) due to that
the “median of the median filter” used in [46] is not an edge-
preserving filter. The results of Nishino et al. have a similar
problem as Nishino et al.’s algorithm tends to over enhance the
local contrast of the image. As we can observe in Figure 12(c),
the restored images are oversaturated and distorted, especially
in the third image (the color of the shirt is changed to dark).

In contrast, the results of He et al. are much better visually
(see Figure 12(d)). The dense haze in the distance can be well
removed, and there are no halo artifacts. Nevertheless, color
distortion still appears in the regions with white objects such
as the shirt in the third image. The reason can be explained as
follows: As the method of recovering the transmission used
in [29] is based on the dark channel prior, the accuracy of
the estimation strongly depends on the validity of the dark
channel prior. Unfortunately, this prior is invalid when the
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Fig. 13. Results on stereo images where the ground truth solutions are known. (a) The hazy images. (b) Tarel et al.’s results. (c) Nishino et al.’s results.
(d) He et al.’s results. (e) Meng et al.’s results. (f) Our results. (g) Ground truth.

scene brightness is similar to the atmospheric light, and the
estimated transmission is thus not reliable enough in some
cases. In addition, the atmospheric light is also an important
factor for calculating the transmission in [29]. Therefore, in
order to obtain the correct transmission, an accurate estimation
of the atmospheric light is required. However, the approach for
estimating the atmospheric light proposed by He et al. has its
limitation and the estimated result is an approximate value
as discussed in [29]. For this reason, He et al.’s algorithm is
prone to overestimating the transmission.

Meng et al.’s results are close to those obtained by He et al.
as displayed in Figure 12(e). This is due to the fact that,
although Meng et al. improve the DCP approach [29] by
adding a boundary constraint, it does not address the problem
of ambiguity between the image color and haze.

Compared with the results of the four algorithms, our results
are free from oversaturation. As displayed in Figure 12(f), the
sky and the cloud in the images are clear and the details of
the mountains are enhanced moderately.

B. Qualitative Comparison on Synthetic Images

In Figure 13, the five algorithms including the proposed
one are tested on the stereo images where the ground truth
images are known. Figure 13(a) shows the hazy images
which are synthesized from the haze-free images with known
depth maps. The results of the five algorithms are shown
in Figure 13(b-f). Figure 13(g) gives the ground truth images
for comparison. These haze-free images and their correspond-
ing ground truth depth maps are taken from the Middlebury
stereo datasets [57]–[61]. It is obvious that Tarel et al.’s
results are quite different from the ground truth images as the
results are much darker (see the toy with red hair in the dolls
image and the books in the books image in Figure 13(b)).

By observing the images in Figure 13(c), we can find that
Nishino et al.’s results have a similar problem. For example,
the color of the toys in the dolls image is changed into yellow,
and the color of background in the moebius image is darker.
He et al.’s results are more similar to the ground truth images
but still show some inaccuracies (see Figure 13(d)). Note
that the background in the books image is darker than it
should be. Similarly, Meng et al.’s results also suffer from
over-enhancement as shown in Figure 13(e). It is obvious
that the color of the mask in the cones image is far from
that in Figure 13(g). In contrast, our results do not have the
problem of oversaturation and maintain the original colors of
the objects (see Figure 13(f)).

C. Quantitative Comparison

In order to quantitatively assess and rate the algorithms,
we calculate the mean squares error (MSE) and the structural
similarity (SSIM) [62] of the results in Figure 13 for
comparison. The MSE of each result can be calculated by
the following equation:

e =
√
√
√
√

1

3N

∑

c∈{r,g,b}
‖Jc − Gc‖2, (24)

where J is the dehazed image, G is the ground truth image,
Jc represents a color channel of J, Gc represents a color
channel of G, N is the number of pixels within the image G,
and e is the MSE measuring the difference between the
dehazed image J and the ground truth image G. Note that
J and G have the same size since they are corresponding
with the hazy image I. Given J and G, a low MSE represents
that the dehazed result is satisfying while a high MSE means
that the dehazing effect is not acceptable.
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TABLE I

TIME CONSUMPTION COMPARISON WITH HE et al. [29], TAREL et al. [46], NISHINO et al. [49], AND MENG et al. [50]

Fig. 14. Mean squared error (MSE) of different algorithms.

We further show the MSEs of the results produced
by different algorithms in Figure 14. As can be seen,
Nishino et al.’s results produce the highest MSEs overall.
The high MSEs are mainly because of the over-enhancement
as mentioned earlier. Tarel et al.’s results outperform
Nishino et al.’s in the first three images while they perform
worse in the books images. Meng et al.’s results rank third in
terms of the total performance. The total MSE of He et al.’s
results is 0.0167, which is more than twice smaller than the
other three. In contrast, our method achieves the lowest MSEs
in all cases.

The structural similarity (SSIM) image quality assessment
index [62] is introduced to evaluate the ability to preserve
the structural information of the algorithms. A high SSIM
represents high similarity between the dehazed image and the
ground truth image, while a low SSIM conveys the opposite
meaning. Figure 15 shows the SSIM of the results in Figure 13.
The SSIMs of Nishona et al.’s results are all lower than
0.7 indicating that much structural information in the images
has been lost. Tarel et al.’s SSIMs are similar to those of
Meng et al., but neither of them can go to 0.8. It is obvious
that the SSIMs of He et al. are much higher than the other
three in the four images. Our results achieve the highest SSIMs
outperforming the four algorithms.

D. Complexity

Given an image of size m × n and radius r , the complexity
of the proposed dehazing algorithm is only O(m×n×r), when
the linear coefficients θ0, θ1, θ2 in Equation (8) are obtained.
In Table I, we give the time consumption comparison with
He et al. [29] (accelerated by the guided image filtering [43]),
Tarel et al. [46], Nishino et al. [49], and Meng et al. [50].

Fig. 15. Structural similarity (SSIM) of different algorithms.

As we can see, our approach is much faster than others and
achieves efficient processing even when the given hazy image
is large. The high efficiency of the proposed approach mainly
benefits from the fact that the linear model based on the color
attenuation prior significantly simplifies the estimation of the
scene depth and the transmission.

VII. DISCUSSIONS AND CONCLUSION

In this paper, we have proposed a novel linear color attenu-
ation prior, based on the difference between the brightness
and the saturation of the pixels within the hazy image.
By creating a linear model for the scene depth of the hazy
image with this simple but powerful prior and learning the
parameters of the model using a supervised learning method,
the depth information can be well recovered. By means of the
depth map obtained by the proposed method, the scene radi-
ance of the hazy image can be recovered easily. Experimental
results show that the proposed approach achieves dramatically
high efficiency and outstanding dehazing effects as well.

Although we have found a way to model the scene depth
with the brightness and the saturation of the hazy image,
there is still a common problem to be solved. That is,
the scattering coefficient β in the atmospheric scattering
model cannot be regarded as a constant in inhomogeneous
atmosphere conditions [55]. For example, a region which
is kilometers away from the observer should have a very
low value of β. Therefore, the dehazing algorithms which
are based on the atmospheric scattering model are prone to
underestimating the transmission in some cases. As almost all
the existing single image dehazing algorithms are based on
the constant-β assumption, a more flexible model is highly
desired. To overcome this challenge, some more advanced
physical models [63] can be taken into account. We leave
this problem for our future research.
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