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Abstract—Extracting discriminative and robust features from 
video  sequences  is  the  first and  most  critical  step  in  human 

action recognition. In this paper, instead of using handcrafted 
features,  we  automatically  learn  spatio-temporal  motion  fea- 
tures for action recognition. This is achieved via an evolutionary 

method, i.e., genetic programming (GP), which evolves the motion 
feature  descriptor on  a  population of  primitive 3D  operators 
(e.g., 3D-Gabor and wavelet). In this way, the scale and shift 

invariant features can be effectively extracted from both color 
and optical flow sequences. We intend to learn data adaptive 
descriptors for different datasets with multiple layers, which 

makes fully use of the knowledge to mimic the physical structure 
of the human visual cortex for action recognition and simulta- 
neously reduce the GP searching space to effectively accelerate 

the convergence of optimal solutions. In our evolutionary archi- 
tecture, the average cross-validation classification error, which is 
calculated by an support-vector-machine classifier on the training 

set, is adopted as the evaluation criterion for the GP fitness func- 
tion. After the entire evolution procedure finishes, the best-so-far 
solution selected by GP is regarded as the (near-)optimal action 

descriptor obtained. The GP-evolving feature extraction method 
is evaluated on four popular action datasets, namely KTH, 
HMDB51, UCF YouTube, and Hollywood2. Experimental results 

show that our method significantly outperforms other types of 
features, either hand-designed or machine-learned. 

 

Index     Terms—Action     recognition,     feature     extraction, 
feature learning, genetic programming (GP), spatio-temporal 

descriptors. 

I.  INTRO DUCTION  

UMAN  action  recognition [1]–[3],  as  a  hot  research 

area in computer vision, has many potential applications 

 
Manuscript  received  August  28,   2014;  revised  December  5,   2014; 

accepted  January  30,  2015.  Date  of  publication February  13,  2015;  date 
of  current version December 14, 2015. This work was supported in  part 
by  the  Key  Research  Program  of  the  Chinese  Academy  of  Sciences under 
Grant KGZD-EW-T03, and in part by the National Natural Science 
Foundation of China under Grant 61125106. This paper was recommended 
by Associate Editor S. X. Yang. (Corresponding author: Ling Shao.) 

L. Liu and L. Shao are with the College of Electronic and Information 
Engineering, Nanjing University of Information Science and Technology, 
Nanjing 210044, China, and also with the Department of Computer Science 
and  Digital  Technologies,  Northumbria  University,  Newcastle  upon  Tyne 
NE1 8ST, U.K. (e-mail: ling.shao@ieee.org). 

X. Li is with the Center for Optical Imagery Analysis and Learning, State 
Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics 
and  Precision  Mechanics,  Chinese  Academy  of  Sciences,  Xi’an  710119, 
China. 

K. Lu is with the University of Chinese Academy of Sciences, Beijing 
100049, China, and also with Beijing Center for Mathematics and Information 
Interdisciplinary Sciences, Beijing, China. 

such as video search and retrieval, intelligent surveillance sys- 

tems, and human-computer interaction. Despite its popularity, 

how  to  precisely  distinguish different  actions  still  remains 

challenging, since variations in lighting conditions, intraclass 

differences and complex backgrounds all pose as obstacles for 

robust feature extraction and action classification. 

Generally, the basic approach to action recognition contains 

the following two stages: 1) feature extraction and represen- 

tation and 2) action classification. For the first stage, there 

are mainly two groups of methods: 1) local feature-based and 

2) holistic feature-based. 

Within local feature-based methods, unsupervised tech- 

niques (e.g., cuboid detector [4] and 3D Harris corner detec- 

tor [5]) are first applied to detect interest points around which 

the most salient features, such as: histogram of 3D oriented 

gradients  (3DHOG)  [6],  3D  scale  invariant  feature  trans- 

forms [7], and histogram of “optical flow” (HOF) [8], are 

extracted. Then the bag-of-features (BOF) scheme is utilized 

to form a codebook and map obtained features in histogram 

representations which are finally fed to a classifier for action 

classification. The  local  feature-based  methods  tend  to  be 

more robust to complex backgrounds and occlusion in real- istic 

actions [9], however, this kind of sparse representation is  

often  not  precise  and  informative because  of  the  quan- 

tization error during codebook construction and the loss of 

structural configuration among local features. Another weak- 

ness of local approaches is that the detected spatio-temporal 

features are usually not distinctive and invariant enough, 

because the 3D local feature detectors are extended from their 

2-D counterparts without fully exploiting the intrinsic differ- 

ences between static images and dynamic video sequences. 

Because of these reasons, holistic feature-based methods have 

recently attracted significant attention in  action recognition 

research. 

On the other hand, the holistic approaches represent actions 

using visual information from the whole sequence and have also 

been utilized in  a  variety of  applications. Commonly, shape, 

intensity, and  color features are  used for  the  holis- tic  

representation of  an  action.  The  structure  and  orienta- tion  

information of  texture  and  shape  can  be  successfully 

extracted by mimicking the biological mechanism of visual 

cortex for human perception. Color features have the advan- 

tage of being invariant with respect to scaling, rotation, 

perspective, and partial occlusion. The classical approaches 

to compute the holistic features for action recognition were
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developed by [10]–[12], etc., which are able to encode more 

visual information by preserving spatial and temporal struc- 

tures of the human action occurring in a video sequence. 

However, holistic representations are sensitive to geometric 

and photometric distortions and shifting. Moreover, prepro- 

cessing steps, such as background subtraction, spatial and 

temporal alignments, segmentation and tracking, are often 

required. 

The methods introduced above are all based on handcrafted 

techniques [13], [14] designed and tuned by human experts, 

which, however, may achieve “good” performance in a par- 

ticular given domain and often result in poor performance on 

other applications. How to design an adaptive methodology to 

extract spatio-temporal features with discriminative recogni- 

tion capabilities for any user-defined application still remains 

an open research question. 

As an alternative to handcrafted solutions based on deep 

domain  knowledge,  genetic  programming  (GP),  a  power- 

ful  evolutionary method  inspired by  natural  evolution, can 

be employed to automatically solve problems without prior 

knowledge of the solutions. In the present setting, we wish 

to identify the feature descriptor (i.e., the sequence of prim- 

itive operations, the composition and order of which are 

unknown) to maximize recognition performance on a human 

action  recognition  task.  This  is  an  NP-hard  search  prob- 

lem [15] that evolutionary methods may solve in a tractable 

amount of computer time compared to the exhaustive enu- 

merative  search.  GP  has  been  used  to  address  a  wide range 

of practical problems producing human-competitive results and 

even patentable inventions. As a  search frame- work, GP can 

typically escape the local minima in the optimization landscape 

which may trap deterministic search methods. 

In this paper, we adopt GP for designing holistic descriptors 

that are adaptive to action domains and robust to shift, scal- 

ing and background cluttering for action recognition. Given a 

group of primitive 3D processing operators and a set of labeled 

training examples, GP evolves better-performing individuals 

in  the  next  generation. Eventually, a  best-so-far individual 

can be selected as the final solution (i.e., the near-optimal 

descriptor). The GP-evolved spatio-temporal descriptors can 

extract and fuse the meaningful information from the original 

sequences and the corresponding optical flow motion data. We 

systematically evaluate the method on the KTH, HMDB51, 

YouTube, and Hollywood2 datasets to demonstrate its perfor- 

mance and generalizability. For comparison, we also show that 

the proposed method is superior to some previously-published 

hand-crafted solutions. 

The main contributions of this paper can be summarized as 

follows. 

1)  GP is used to automatically “evolve” spatio-temporal 

feature descriptors that are adaptive and discriminative 

for action recognition without profound knowledge of 

the action datasets. 

2)  The  GP-learned descriptors provide an  effective way 

to   simultaneously  extract  and   fuse   the   color  and 

motion (i.e., optical flow) information into one feature 

representation. 

This  paper is  organized as  follows. In  Section II,  some 

related work is summarized. The detailed architecture of our 

method is presented in Section III, and relevant experiments and 

results are described in Section IV. In Section V, we conclude 

this paper and outline possible future work. 
 
 

II.  RELATED WORK 

As this paper falls in the category of holistic representa- 

tions, we mainly review methods of holistic spatio-temporal 

representations for action recognition. 

Bobick and Davis [10] presented motion templates through 

projecting frames onto a single image, namely motion his- 

tory images (MHI) and motion energy images. This kind of 

motion templates can capture the motion patterns occurring 

in a video sequence. However, this simple representation only 

gives satisfactory performance where the background is rel- 

atively static. Efros et al. [16] proposed a motion descriptor 

based on smoothed and aggregated optical flows over a spatio- 

temporal volume, which is centered on a moving figure. This 

descriptor has been proven to be suitable for distant objects, 

but the moving figure needs to be localized quite accurately. 

Schindler and Van Gool [17] found that very short snippets (1–

7 frames) are sufficient for basic action recognition. They 

applied log-Gabor filters to raw frames to extract form fea- 

tures and optical flow filters to extract motion features. In 

addition, Gorelick et al. [18] extracted spatio-temporal fea- 

tures,  such  as  local  space-time  saliency,  action  dynamics, 

shape structure, and orientation, based on the properties of 

Poisson equation solutions. Moreover, some recent discrimi- 

nant analysis methods have also shown superior performance 

for action recognition, such as slow feature analysis (SFA) [19] 

which  extracts the  slowly  varying and  relevant  stable  fea- 

tures from the quickly changed action videos. SFA has been 

proved to be effectively used in constructing the visual recep- 

tive fields of the cortical neurons. General tensor discriminant 

analysis and Gabor features originally proposed for gait recog- 

nition [20] can be also applied to action recognition. These 

handcrafted  features  usually  involve  a  lot  of  engineering 

work to  design and tune and are not adaptive to  different 

datasets. 

Besides handcrafted features, there have also been a few 

works on learning feature representations for action recog- 

nition.  Le  et  al.  [21]  have  proposed  using  unsupervised 

feature learning as a direct way to learn invariant spatio- 

temporal features from unlabeled video data. Furthermore, 

Taylor et al. [12] have introduced a model that learns latent 

representations of image sequences from pairs of successive 

images. Similarly, Ji et al. [11] developed a 3D convolutional 

neural network (CNN), which is directly extended from its 

2-D counterpart, for feature extraction. In a 3D CNN, motion 

information in multiple adjacent frames is captured through 

performing convolutions over spatial and temporal dimensions. 

The convolutional architecture of their model allows it to scale 

to realistic video sizes whilst using a compact parametriza- tion. 

Recently, deep belief network (DBN) [22] also shows its 

capacity to automatically learn multiple layers of nonlin- ear 

features from images and videos. However, the number of



 
 

parameters to be learned in those deep learning models [23] 

is very large, sometimes too large relative to the available 

number of training samples, which unfortunately restricts their 

applicability. 

Within the area of evolutionary computation, evolution- 

based methods simulate biological evolution to automatically 

generate solutions for user-defined tasks, such as: genetic algo- 

rithms (GA), memetic algorithms (MA), particle swarm opti- 

mization (PSO), ant-colony systems (ACS), and GP. Generally, 

these are heuristic and population-based searching methods. 

They  all  attempt to  move  from  one  population to  another 

population in  a  single iteration with  probabilistic rules. In 

particular, GA seeks the solution of a problem in the form 

of a string of numbers (traditionally binary, although the best 

representations are usually those that reflect something about 

the problem being solved), by applying operators such as 

recombination and mutation (sometimes one, sometimes both). 

Bhanu et al. [24] have proposed an adaptive image segmen- 

tation system based on a GA. In their method, the GA is 

an effective way of searching the hyperspace of segmentation 

parameter combinations to determine the set which maximizes 

a  segmentation quality criterion. Besides GA,  PSO,  which 

is inspired by the social behavior of migrating birds trying 

to reach an unknown destination, has been used for feature 

selection and classification in computer vision tasks. In [25], 

PSO is incorporated within an AdaBoost framework for face 

detection. Dynamic clustering using PSO has been proposed for 

unsupervised image classification in [26]. Additionally, a 

multiobjective PSO for discriminative feature selection was 

proposed in [27] for robust classification problems. Beyond 

the above methods, MA [28] and ACS [29] have been adopted 

in vision applications too. 

However, since GA and MA are based on a fixed form 

of gene expression during the whole optimization procedure, 

the  representations of  the  solution are  relatively fixed and 

limited,  which  heavily  influence the  effectiveness  in  com- 

plex optimization problems. While, different from GA/MA, 

PSO considers the birds’ social behavior and accordingly their 

movements  toward  an  optimal  destination  rather  than  cre- 

ating new solutions within each generation. Compared with 

other evolution-based methods, PSO achieves a final solution 

in a linear search space and tends to be relatively efficient. 

However, this kind of simple linear search cannot tackle 

complex optimization problems. 

To enable more flexible representations, another evolution- 

ary  approach,  i.e.,  GP,  has  been  proposed  [15],  [30].  GP 

has been widely utilized in the computer vision domain and 

proved to be more powerful than GA. It is more intuitive 

for  implementation  and  can  effectively  solve  highly  non- 

linear  optimization  problems.  Thus,  in  terms  of  obtaining 

better results, this kind of flexible, nonlinear searching mech- 

anism can help GP achieve better solutions. Poli [31] applied 

GP  to  automatically select optimal filters for  segmentation 

of  the  brain  in  medical  images.  Following  the  same  line, 

Torres et al. [32] used GP for finding a combination of sim- 

ilarity functions for image retrieval. Davis et al. [33] have 

also employed GP for feature selection in multivariate data 

analysis, where GP can automatically select a subset of the 

most discriminative features without any prior information. In 

addition, other researchers [34]–[36] have also successfully 

applied GP to recognition tasks with improvements compared 

with previous methods. 

Recently, GP has been exploited to assemble low-level fea- 

ture detectors for high-level analysis, such as: object detection, 

3D reconstruction, image tracking, and matching. The first 

work in  this  area  employed GP  to  evolve an  operator for 

detecting interest points [37]. Trujillo and Olague [38] have also 

used GP to generate feature extractors for computer vision 

applications. In addition, a GP-based detector was proposed 

by Howard et al. [39] for detecting ship wakes in synthetic 

aperture radar images. 

One  most  related  work  using  GP  to  automatically gen- 

erate low-level features for action recognition is introduced 

in [40]. In this paper, some basic filters are successfully 

evolved to construct spatio-temporal descriptors for represent- 

ing action sequences. Although this framework is regarded as 

the first attempt in using GP to learn holistic representations 

for action recognition, some aspects in this framework can 

still be improved. Specifically, the evolved structure is totally 

random rather  than  mimicking the  structure of  the  human 

brain cortex with multiple tiers—this kind of random evolu- 

tion may fail to find the best solutions in a limited number of 

generations. Furthermore, the previous work attempts to learn 

general-purpose representations, which tend to be less specific 

and discriminative for different action data domains. Lastly, is 

the method was only evaluated on “staged” action datasets 

rather than realistic action datasets. We expect to solve all 

these issues in this paper. 

Inspired by the effectiveness of GP on flexible optimiza- 

tion  tasks and  successful applications mentioned above, in 

this  paper,  we  use  GP  to  automatically evolve more task- 

specific spatio-temporal descriptors from a set of 3D filters 

and operators for realistic human action recognition. 
 
 

III.  EVO LUTIONARY MOT I O N FEATURE EXTRACTION 

Much of what is done in action recognition aims to achieve 

what the human vision system is capable of. This has caused 

many researchers to model systems and algorithms after vari- 

ous aspects of the human vision system. In this paper, we also 

attempt to simulate the human visual cortex system which is 

made up of hierarchical layers of neurons with feedforward 

and feedback connections that grow and evolve from birth as 

the vision system develops. The prior stages of processing in 

the visual cortex are sensitive to visual stimuli such as intensity 

and orientations, spatial motion, and even colors. In a simi- 

lar way that feedforward neural connections between these 

visual cortex layers are created and evolved in humans, we 

propose a domain-independent machine learning methodology 

to automatically generate low-level spatio-temporal descriptors 

for high-level action recognition using GP. In our architecture, 

the original color and optical-flow sequences are regarded as 

the inputs and a group of 3D operators are assembled to con- 

struct an effective problem-specific descriptor which is capable 

of selectively extracting features from input data. The final 

evolved  descriptor, combining the  nice  properties of  those
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FUNCTION  SET IN GP 

 
 

 

  
    

    

    

    

    

    

    

    
    
    
    
    

    

    

    

    

    

    

    

  

 

   

 

 
 

solution. In our method, each individual in GP represents a 

candidate spatio-temporal descriptor and is evolved continu- 

ously through generations. To establish the architecture of our 

model, three significant concepts: function set, terminal set, 

and fitness function should be first defined. 
 
 
 

 
Fig. 1.    Outline of our feature learning-based approach. 

 

 
primitive 3D operators, can both extract meaningful features 

and form a compact action representation. We learn our pro- 

posed system over a  training set, in  which descriptors are 

evolved by maximizing the recognition accuracy through a 

fitness function, and further evaluate the GP-selected one over 

a testing set to demonstrate the performance of our method. 

The architecture of our proposed model is illustrated in Fig. 1. 

Generally,  GP  programs  can  be  represented  as  a  tree 

structure,  evolved  (by  selection,  crossover,  and  mutation) 

through sexual reproduction with pairs of parents being chosen 

stochastically but biased in their fitness on the task at hand, 

and finally select the best performing individual as the terminal 

A. Function Set and Terminal Set 

A key component of GP is the function set which consti- 

tutes the internal nodes of the tree and is typically driven by 

the nature of the problem. To make the GP evolution process 

fast, more efficient operators that can extract meaningful infor- 

mation from action sequences are preferred. Our function set 

consists of 19 unary operators and 4 binary ones, including 

processing filters and basic arithmetic functions, as illustrated 

in Table I. 

In our GP structure, we divide our function set into two 

tiers: 1) filtering tier (bottom tier) and 2) max-pooling tier 

(top tier). The order of these tiers in our structure is always 

fixed. Specifically, we do not allow the filter operators in the 

function set to be above the max-pooling functions. In our 

implementation, when a descriptor is evolved, we will check 

whether it is a wrongly ordered descriptor or not. A wrongly 

ordered descriptor will be automatically discarded by our pro- 

gram and a new correctly-ordered descriptor would be evolved
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Fig. 2.    Illustration of the mechanism of max-pooling filter. 

 

to replace the discarded one. In this way, in any GP-evolved 

program, the operators in the filtering tier must be located 

below the operators in the max-pooling tier. In addition, not 

all the operators listed in the function set have to be used in a 

given tree and the same operator can be used more than once. 

Therefore, the topology of the tree in each tier is essentially 

unrestricted. This kind of tree structure makes fully use of the 

knowledge to mimic the physical structure of the human visual 

cortex [41], [42] by encoding orientation, intensity, and color 

information of the targets and can effectively tolerate shifting, 

translation, and scaling for action recognition and simultane- 

ously reduce the GP searching space to effectively accelerate 

the convergence of optimal solutions. 

1) Filtering Tier:  In  the  filtering tier,  aiming to  extract 

meaningful   features   from   dynamic   actions,   we   adopt 

3D Gaussian filters, 3D Laplacian filers, 3D Wavelet filters, 

3*D Gabor filters, and some other sequence processing oper- 

ators and basic arithmetic functions. 

3D  Gaussian  filters are  adopted  due  to  their  ability  for 

denoising and 3D Laplacian filters are used for separating sig- 

nals into different spectral sub-bands. Laplacian of Gaussian 

operators have been successfully applied to capture intensity 

features for action recognition in [2] and [43]. Wavelet trans- 

forms  can  perform  multiresolution analysis  and  obtain  the 

contour information of human actions by using the 3D CDF 

“9/7” [44] wavelet filters. 

In this paper, these 3D filters are used for constructing the 

sequence pyramid (i.e., GauPy, LapPy, Wavelet), which is a data 

structure designed to support efficient scaled convolution 

through reducing the resolution. It consists of a sequence of 

copies of an original sequence in which both sampling den- 

sity and resolution are decreased in regular steps. A pyramid 

is a multiscale representation with a recursive method. Beyond 

those, 3D  Gabor  filters are  regarded as  the  most  effective 

method to obtain the orientation information in a sequence. 

Following Riesenhuber and Poggio [41], we simulate the bio- 

logical mechanism of the visual cortex to define our Gabor 

filter-based operators. Firstly,  we  convolve an  input  action 

sequence with Gabor filters at six different scales (7 × 7 × 7, 

9 × 9 × 9, 11 × 11 × 11, 13 × 13 × 13, 15 × 15 × 15, and 

17 × 17 × 17) under a certain orientation (i.e., 0◦ , 45◦ , 90◦ , 

or  135◦ );  we  further apply  the  max  operation to  pick  the 

maximum value across all six convolved sequences for that 

particular orientation. Fig. 3 illustrates the procedure of our 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3.     Outline of multiscale-max Gabor filter. This figure illustrates an 
example of the multiscale-max Gabor filter with a fixed orientation of 45◦ . 

 
 
multiscale-max Gabor filters for a certain orientation. The max 

operation among different scales is defined as follows: 
 

IMAX        max [I7   7   7 (x, y, z, θs ), I9   9   9 (x, y, z, θs ), 
(x,y,z) 

..., I15×15×15 (x, y, z, θs ), I17×17×17 (x, y, z, θs )]   (1) 
 

where IMAX  is the output of the multiscale-max Gabor fil- 

ter. Ii×i×i (x, y, z, θs ) denotes the convolved sequences with the 

scale i × i × i and the orientation θs . 

Moreover, several other 3D operators that are common for 

feature extraction are added to the function set to increase the 

variety of the selection for composing individuals during the 

GP evolution. Basic arithmetic functions are chosen to real- 

ize operations such as addition and subtraction of the internal 

nodes of the tree to make the whole evolution procedure more 

natural. 

To ensure the closure property [15], we have only used func- 

tions which map one or two 3D sequences to a single 3D 

sequence with identical size (i.e., the input and the output of 

each function node have the same size). In this way, a GP tree 

can be an unrestricted composition of function nodes but still 

always produce a semantically legal structure. 

2) Max-Pooling Tier:  In the max-pooling tier, we include 

four functions listed in Table I, which are performed over 

local neighborhoods with windows varying from 5 × 5 × 5 

to 20 × 20 × 20 with a shifting step of 5 pixels. This max- 

pooling operation (see Fig. 2) is a key mechanism for object



 
 

recognition in the cortex and provides a more robust response, 

successfully tolerating shift and scaling, in the case of recog- 

nition  in  clutter  or  with  multiple  stimuli  in  the  receptive 

field [41]. Given a sequence, max-pooling functions will pick 

out the local max values from the input and shrink it along 

spatial and temporal dimensions to compose a more compact 

representation of the input sequence. We further resize outputs 

calculated from max-pooling functions to an identical size as 

inputs using linear interpolation [45]. In this way, the sizes of 

inputs and outputs of our max-pooling functions are the same. 

Each function in the function set is regarded as a tree node 

in evolved programs, which connects the outputs of lower level 

functions or inputs. Note that, in our proposed GP architec- 

ture, not all the functions listed in the function set have to be 

used in a given structure and the same function can be used 

more than once. The topology of our GP structure is essen- 

tially unrestricted. Besides, functions in the function set are also 

highly related to our problem domain. For this paper, we aim to 

construct novel discriminative feature descriptors for action 

recognition. So, what we choose in the function set are 

effective filters for feature extraction, i.e., 3D Gaussian filters, 

3D Gabor filters, 3D Laplacian filters, etc. We expect the whole 

learned architecture is consistent with the physical structure of 

the human visual cortex. 

3) Terminal Set: In addition, the terminal set is also a sig- 

nificant component of GP. For action recognition, we consider 

the following aspects of our task: 1) the terminal set must 

capture the holistic information of each action sequence and 

2) during the evolution process, the evaluation of the fitness 

function must be efficient. In our implementation, to simulate 

the human visual cognition system, which makes decisions 

relying on both color and motion information of moving objects 

from a  viewpoint, we expect to  obtain informative spatio-

temporal features by fusing original color and motion 

information. Particularly, the motion information is extracted by 

computing the optical flow [46] along horizontal and ver- tical 

directions. Given an original action sequence, the optical flow 

maps: Fx and Fy are computed between adjacent tth frame and 

(t + 1)th frame. The final optical flow data are further 

obtained by piling the Fx and Fy into sequences VFx  and VFy . 

We further normalize all data in the terminal set into the same 
size by applying bicubic interpolation [47]. In addition, the ter- 

minal of the GP structure is data-dependent, which means that 

each video sequence Vi from the training set has a correspond- 

ing Ti  defined by: Ti = {Vcolor , VFx , and VFy } (See Fig. 4). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4.    Example of input data types in the terminal set. 

 
TABLE II 

STATEMENT  O F  TERMINA L  NODES  

 
 
 

   
   

   

 

 
 

appropriate  fitness  functions.   To   evaluate   the   candidate 

GP-evolved feature descriptors here, we estimate their recogni- 

tion accuracies using a linear support-vector-machine (SVM),1 

which is a popular classifier for computer vision tasks because 

of its high accuracy and efficiency. To avoid the redundancy 

and make a more compact feature representation, we take the 

m × n × t output of the GP tree and divide it into 10 × 10 × 5 

sub-blocks.2 The mean values of each sub-block are concate- 

nated into a 500D vector which comprises the input of a SVM, 

as shown in Fig. 6. To obtain a more reliable fitness evaluation, 

for each new GP tree we estimate the recognition accuracy 

with the SVM using ten-fold cross-validation. We divide the 

GP training set randomly into ten equal parts and perform ten 

repetitions of training the SVM on nine-tenths of the set and 

testing on the remaining tenth. The overall fitness of the candi- 

date GP tree is taken as the average of the ten SVM test-fold 

accuracies. The corresponding fitness function is defined as 

follows:

Note that, in our implementation, a color sequence is merely                                         
n

a grayscale intensity sequence, as we believe that the use of 

three colors (red, green, and blue) will not bring much extra 

information for action recognition. For each tree-based genetic 

Er = 1 −  
   

(SVM[acui ])/n 

i=1 

× 100%         (2)

structure, an action sequence is located at the bottom leaf of 

the entire tree and connects with the higher function nodes 

directly. The data types used for the terminal of program nodes 

are listed in Table II. 
 
 

B. Fitness Function 

The  objective  of  evolutionary  methods  is  to  maximize 

the performance of individual solutions as gauged by some 

where SVM[acui ] denotes the recognition accuracy of fold i 
by the SVM and n indicates the total number of folds executed 

with cross-validation. Here n is equal to 10. 

 
1 The classifier used during descriptor learning and at the testing stage 

should be consistent. 
2 In our experiments, we selected the optimal size of the sub-blocks from the 

set of {5 × 5 × 5, 10 × 5 × 5, 10 × 10 × 5, 10 × 10 × 10, and 15 × 15 × 10} 
by 5-fold cross-validation. The relevant results show 10 × 5 × 5 and 10 × 
10 × 5 both achieve better performance for final classification. Due to the 
consideration of complexity, we chose 10 × 10 × 5 in our experiments.



 
 

 

 
 

Fig. 5.   Illustration of a possible learned-structure. All the 3D operators and 
pooling functions used in the structure are randomly selected through the GP 
evolution. 

 

 
 

Fig. 6.    Procedure of spatio-temporal sequence representation. 

 

 
In our method, each training sample is a video sequence 

containing a large number of pixels and the fitness function 

has to be evaluated over the training set many times for whole 

population in each GP generation. Meanwhile, for getting good 

results, a large number of generations are usually required. 

All these will lead to heavy computation. To speed-up the GP 

learning algorithm, we used multiple processors which can 

evaluate many fitness measures at the same time, giving a 

tremendous reduction in the training time. 
 

 
C. Genetic Programming Framework 

GP [15] is one of a number of population-based evolutionary 

algorithms inspired by natural evolution and is widely used in 

machine learning. It allows a computer to automatically solve 

predefined tasks without requiring users to know or specify the 

form or structure of the solution in advance. In GP, we ran- 

domly generate an initial population of operation sequences 

which are regarded as candidate solutions. This population is 

then allowed to evolve (by selection, crossover, and mutation) 

through sexual reproduction with pairs of parents being cho- 

sen stochastically but biased in their fitness on the task at 

hand. In this way, the general fitness of the population tends 

to improve over time. Finally, the best performing individual 

obtained is taken as the final solution. It should be noted that 

 

 
Algorithm 1 Genetic Programming 

Start 
Initialization 
for size of population do 

Randomly create an initial population of operation sequences from the 

available primitives (terminal set & function set) 
end for 

for number of generations do 

for each individual do 
(1) Process action sequences with evolved individual feature descriptor 
(2) Evaluate the fitness of the individual via recognition error rate 
(3) Choose individuals from the population with a particular probability biased 

 
in their fitness 
(4) Create a new generation of individuals applying genetic operations 
(crossover & mutation) 

If    An acceptable solution is found or the maximum number of generations 
(defined by user) exceeded 

end for 

end for 
Return    The best feature descriptor is selected 

end for 

 

 
evolutionary methods do not guarantee to find any mathemat- 

ical optimum, but, in practice, usually find a good solution 

to an NP-hard problem in an acceptable amount of computer 

time. The relevant GP algorithm is shown in Algorithm 1. 

The action sequences form the terminal set and each 

sequence with the size of m × n × t is taken, in turn, as the 

input to a GP individual. Each GP candidate feature descrip- 

tor is formulated as a tree structure, the output of which is 

still a m × n × t block. A representative GP tree is illustrated 

in Fig. 5. 

 
IV.  EXPERIMENTS A ND RESULTS  

In this section, we describe the details of our GP imple- 

mentation and the relevant experimental results we obtain by 

our approach. 

 
A. GP Implementation 

We implement our proposed method using MATLAB 2011a 

(with the GP toolbox GPLAB3 ) on a server with a 12-core 

processor and 54GB of RAM running the Linux operating 

system. The total runtime was around three weeks. The user- 

defined GP parameters are as follows. 

1) Population Size:  According to some previous relevant 

experiments, the larger population we define in GP running, 

the  better solution we  can  potentially obtain. In  this  case, 

considering the high computational cost, we set a population 

size of 200 individuals with the initial population generated 

with the ramped half-and-half method [15]. The number of 

generations is defined as 70. 

2) Genetic  Operators:  We  use  both  tree  crossover  and 

mutation [15] as our genetic operators. Following the stan- 

dard setting in [15], we fix their probabilities during the GP 

evolution at 90% and 10%, respectively. 

3) Selection for Reproduction:  The selection method we 

apply is lexicographic parsimony pressure [48] which is simi- 

lar to tournament selection in choosing parents from a random 

sub-set of individuals in the population. However, the unique 

feature of lexicographic parsimony pressure is that the small- 

est individual (i.e., fewest tree nodes) will be selected if more 
 

3 http://gplab.sourceforge.net/download.html, a GP Toolbox for MATLAB.

http://gplab.sourceforge.net/download.html


 
 

 

 
 

Fig. 7.    Some example frames of four datasets. Images in the top row are from the KTH dataset, images in the second row are from the HMDB51 dataset, 
images in the third row are from the YouTube dataset, and images in the bottom row are from the Hollywood2 dataset. 

 
 

than one individual has the same best fitness in the selection 

competition. 

4) Survival Method:  We adopt the “total elitism” scheme 

for GP running. In this scheme, all the individuals from both 

parents and children populations are ordered by fitness alone, 

regardless of being parents or children. Consequently, the best 

individuals can be kept and inherited generation by genera- 

tion. This scheme has been demonstrated leading to promising 

results in many applications. 

5) Stopping Conditions:  We set the GP termination cri- 

terion as the error rate falling to ≤ 2% or the number of 

generations exceeding 70. 

As GP is a stochastic approach, we run our method three 

times on each dataset and select the best performing descrip- 

tor. Once a descriptor is learned and selected, its structure is 

fixed and can be used on new data the same as a hand-crafted 

descriptor. 
 

B. Datasets 

We systematically test our proposed method on four pop- 

ular action datasets: KTH [49], HMDB51 [50] YouTube [9], 

and Hollywood2 [51]. Some example frames from these four 

datasets are visualized in Fig. 7. 

The KTH dataset is a commonly used benchmark action 

dataset with 599 video clips. Six human action classes, includ- 

ing walking, jogging, running, boxing, hand-waving, and 

handclapping, are performed by 25 subjects in four different 

scenarios: outdoors (s1), outdoors with scale variation (s2), 

outdoors with different clothes (s3), and indoors with light- 

ing variation (s4). Following the preprocessing step mentioned 

in [52], the coarse 3D bounding boxes are extracted from all the 

raw action sequences and further normalized into an equal 

size of 100 × 100 × 60. We follow the original experimen- 

tal setting of the authors, i.e., divide the data into a test set 

(9 sujects: 2, 3, 5, 6, 7, 8, 9, 10, 22 for final testing) and a train- 

ing set (the remaining 16 subjects for GP training). As in [49], 

we train and evaluate a multiclass classifier and report the 

average accuracy over all classes as the performance measure. 

The HMDB51 dataset collects 6849 action sequences from 

various  movies  and  online  videos.  In  our  case,  we  adopt 

2241 sequences from 19 general body action categories (i.e., 

cartwheel, clap hands, climb, climb stairs, dive, fall on the floor, 

backhand flip, handstand, jump, pull up, push up, run, sit down, 

sit up, somersault, stand up, turn, walk, and wave) as our 

research data. In our experiments, coarse bounding boxes have 

been extracted from all the sequences through masks released 

with the dataset and initialized into the size of 100 × 120 × 50. 

We further randomly divide these 2241 sequences into three 

subsets and adopt the first two subsets as the training set and 

the rest as the testing set. 

The YouTube dataset contains 1168 video sequences 

collected from 11 action categories: basketball shooting, 

biking/cycling, diving, golf swinging, horse back riding, soc- 

cer juggling, swinging, tennis swinging, trampoline jumping, 

volleyball spiking, and walking with a dog. This dataset is 

very challenging due to large variations in camera motion, 

object appearance and pose, object scale, viewpoint, cluttered 

background, and illumination conditions. For this dataset, we 

deliberately use the full-sized sequences without any bounding 

boxes as the input to evaluate our method’s robustness against 

complex and noisy backgrounds. Each sequence is further nor- 

malized into the size of 100 × 100 × 60. We take the first 2/3 

sequences from each category to compose our training set, and 

the rest of the data is defined as the testing set.



 

   

   

   
   

   
   
   

 

 

 

 
 

Fig. 8.    Near-optimal feature descriptor generated through GP on the KTH 
dataset. 

 

 
The Hollywood2 dataset has collected 1707 action samples 

from 69 different Hollywood movies with 12 action classes: 

answering the phone, driving car, eating, fighting, getting out 

of car, hand shaking, hugging, kissing, running, sitting down, 

sitting up, and standing up. To meet the closure requirement 

of GP, we further resize all sequences in this dataset to the 

identical size 100 × 100 × 80. In our experiments, we utilize 

our GP method on a training set with 823 sequences and a 

test set with 884 sequences following the original paper. 

 
C. Results 

For the KTH dataset, our approach automatically selects 

and fuses color-motion information and generates machine- 

learned descriptors for action recognition. We select the best 

GP-evolved feature descriptor to represent all the action 

sequences and train a linear-SVM classifier on the training 

set  and  test  on  the  remaining  following  the  experimental 

setting  in  [49].  We  finally  achieve  the  recognition  accu- 

racy of 95% on the testing set. Compared with other results 

listed in Table III, we can easily conclude that our result is 

comparable to [53] and significantly outperforms other meth- 

ods. Note that using the “leave-one-out” experimental setting 

should yield higher accuracies than using the “split” setting 

as  mentioned  in  [49].  Fig.  8  shows  the  tree  structure  of 

the best-performed GP program(feature descriptor), in which 

3D Gaussian,  3D Laplacian,  and  3D Gabor  operators  were 

automatically selected by GP evolving at the filtering layer 

to extract the orientation and intensity features, and several 

scales of pooling operators can get the most robust and dis- 

tinctive responses to different data resolutions on the top layer. 

The whole learned architecture is indeed consistent with the 

physical structure of the human visual cortex. In addition, the 

detailed information of error rate during the genetic evolu- 

tion can be seen in Fig. 12. Beyond those, as illustrated in 

Table IV and Fig. 11, we have further evaluated our method 

with different classifiers in the fitness function to prove that 

our evolved system, which comprises the evolved descriptor 

and the used classifier, gives better classification performance 

 
TABLE III 

COMPA RISON  O F ACTION  RECOGNITION ACCURACIES 

IN PERCENTAG E (%) ON THE  KTH DATA S E T 

WITH  DIFFERENT  METHODS  

 
  

 
 
 

   

  
 
 
 
 
 
 

 
 
 
 
 
 
 

  
 

 
 

 

  

 

 

 

 
TABLE IV 

CLASSIFICAT ION PERFORMANCE O F OUR GP-BASED  TECHNIQU E USING 

DIFFERENT  CLASSIFIERS IN THE  FITNESS  FUNCTION  ON THE  KTH DATA 

S E T (WITH T HE SPLITTING  SETTING ) 
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independently of  the  selected  classifier compared  with  the 

hand-crafted feature descriptors. In addition, Table IV shows 

that a more powerful classifier such as SVM will lead to better 

performance of the system consisting of the evolved descriptor 

and the adopted classifier. 

The HMDB51 dataset is one of the most complex datasets 

for action recognition. In our experiments, the proposed method 

still works well to assemble a (near-)optimized fea- ture 

descriptor by using GP. The LISP format of the evolved 

descriptor is shown in Fig. 9. Combining with the linear-SVM 

classifier, the GP-evolved descriptor achieves excellent per- 

formance on these action sequences with noisy and complex 

backgrounds. As a result, the obtained best feature descrip- 

tor achieves the final recognition accuracy rate of 48.4% on 

the testing set. Due to different experimental settings and a 

different focus of attention, we only compare with state-of-arts



 
 

 

 
 

Fig. 9.  LISP format of the (near-)optimal feature descriptor generated through 
GP on the HMDB51 dataset. 

 

 
 

Fig. 10.     LISP format of the (near-)optimal feature descriptor generated 
through GP on the YouTube dataset. 

 

 
 

Fig.  11.      LISP  format  of  the  (near-)optimal  feature  descriptors  gener- 
ated through GP with nearest neighbor classifier and naive Bayes classifier, 
respectively in fitness function on the KTH dataset. 

 

 
 

Fig. 12.    Evolved best-so-far values of fitness on four datasets. 

 

 
handcrafted feature descriptors rather than other action recog- 

nition systems. The relevant results are shown in Table V, 

from which, our method shows higher performance than other 

handcraft and machine learned features. 

The results on the YouTube dataset are shown in Table VI. 

As expected, the best GP-evolved feature descriptor achieves a 

recognition accuracy rate of 82.3% on the testing set using the 

SVM classifier, since this collection represents a natural pool 

 
TABLE V 

COMPA RISON  O F ACTION  RECOGNITION ACCURACIES 

IN PERCENTAG E (%) ON THE  HMDB51 DATA S E T 

WITH  DIFFERENT  METHODS  

 
  

 
 
 

   
  

 
 
 
 
 
 

 
 
 
 
 
 
 

  
 

 
 

 
TABLE VI 

COMPA RISON  O F ACTION  RECOGNITION ACCURACIES 

IN PERCENTAG E (%) ON THE  YOUTUBE  DATA S E T 

WITH  DIFFERENT  METHODS  

 

  
 

 
 

   

  
 
 
 
 
 
 

 
 
 
 
 
 
 

  
 

 
 

 
TABLE VII 

COMPA RISON  O F ACTION  RECOGNITION ACCURACIES 

IN PERCENTAG E (%) ON THE  HOLLY WOOD 2 
DATA S E T  WITH  DIFFERENT  METHODS  

 
  

 
 
 

   
  

 
 
 
 
 
 

 
 
 
 
 
 
 

  
 

 
 

 
 
of actions featured in a wide range of scenes and viewpoints 

with large intraclass variability. Fig. 10 shows the LISP format 

of the corresponding GP program. Note here, due to the com- 

putational cost of GP, we cannot do cross-validation following 

the original experimental setting. All the comparable results 

are calculated under our data division. From Table VI, it is 

obvious that our GP-evolved motion feature is competitive 

with the DBN-learned one but significantly outperforms other 

features. 

To demonstrate the generalizability of the proposed method, 

we evaluate it on the Hollywood2 dataset as well. Since the 

actions of the Hollywood2 dataset are collected from films



 
 

 

 
 

Fig.  13.      Near-optimal feature  descriptor  generated  through  GP  on  the 
Hollywood2 dataset. 

 
 

presenting realistic scenarios, the results shown in Table VII 

on this dataset are not as promising as those on other datasets. 

Apparently, our GP-evolved method has consistently achieved 

significantly better results (46.8%) than other hand-crafted and 

is competitive with CNN and DBN. The evolved tree-based 

structure can be found in Fig. 13. 

For comparison, we also list the recognition rates calculated 

on all datasets by some prevalent hand-crafted 3D descrip- 

tors including: hierarchical MHI (HMHI), dense-HOG/HOF, 

dense-3DHOG, 3D-SURF, HOF, motion and structure features 

(MSF) [43], and 3D-Gabor-bank. Under the same experimen- 

tal  setting,  we  use  the  HMHI  as  a  holistic  3D  descriptor 

to extract the motion information for later recognition. 3D- 

Gabor-bank, which is considered as an effective and efficient 

way to obtain the orientation information, simulates the bio- 

logical mechanism of the human visual cortex by applying 3D 

Gabor filtering with 4 orientations at 6 different scales. The 

output of each filter is then averaged on a 10 × 10 × 10 grid to 

form a vector. Additionally, MSF encodes one motion plane and 

five image planes to capture the structure information. The 

Gaussian pyramid and center-surround operations are per- 

formed on each of the six obtained feature maps, decomposing 

each feature map into a set of sub-band maps, on which bio- 

logically inspired features are then extracted. As the other 3D 

descriptors are usually used as local descriptors, dense sam- 

pling is first applied on each sequence in a dense grid with the 

block size of 10 × 10 × 10 pixels and an overlap of 5 pixels in 

each dimension, and the final representation vector is the con- 

catenation of the descriptor calculated on all blocks. For fair 

comparison, all the above features are respectively extracted 

from the original sequence and the optical flow sequences, and 

then concatenated into a long representation which is fed to a 

linear SVM. 

In addition, we have also utilized two popular deep learning 

methods, i.e., DBN [22] and CNN [56], to learn hierarchical 

architectures for  feature extraction on  the  combined learn- 

ing  and  evaluation sets.  For  DBN, we  train  a  hierarchical 

architecture on the training sets with neuron numbers in the 

 
TABLE VIII 

TIME  COSTS  OF FEATURE  LEARNING  O N T HE FOUR  DATASETS  WE USED 

BY THE  PRO POSED  GP METHOD  (MATLAB 2011A I S 

USED  F OR CODING ) 
 

 
   

   

  
  

 
hidden  layers:  500 − 500 − 2000  with  backpropagation fine-

tuning   and    then    utilize    the    learned    architecture (with  

associated  parameters)  to   extract  features  on   the test sets 

combined with the linear SVM classifier for recogni- tion. 

Similarly, a 5-layer feature extraction structure has been trained 

using the CNN and further adopt the same recognition 

mechanism to compute the final accuracy. In our experiments, 

we use DeepLearnToolbox4  with default parameter settings 

according to previous publications by Hinton et al. [22], to 

implement relevant tasks. To make the comparison fair, all 

the sequences used as the inputs of the architectures are the 

combinations of the color and optical flow components of the 

original sequence. 

Additionally, to  illustrate time complexity of  the feature 

learning process, we show the evolving time costs of the method 

on four datasets in Table VIII. For video datasets, each training 

sample would be very large size. However, the fitness function 

must be evaluated over all the training set many times for all 

populations within one GP generation. Meanwhile, to getting 

good results, a large number of generations are usually required, 

which leads to heavy computation. In our experi- ments, we 

actually implement parallel processing to speed-up the GP 

learning algorithm. In our implementation, the large number of 

fitness evaluation can be performed by multiple processors at 

the same time, giving a tremendous reduction in the training 

time. 

As many other learning algorithms, the training of the 

descriptors is time-consuming, but it can be performed offline. 

Once the optimal descriptor is obtained from the GP train- 

ing phase, the classification phase will be very efficient, as 

the optimized descriptor can be just used as a handcrafted 

descriptor. Of course, with the rapid development of silicon 

technologies, future computers will be much faster and even the 

training will become less a problem. 

In this paper, we aim to introduce a novel adaptive method 

to learn discriminative descriptors. Our GP-learned solutions 

are just descriptors like SIFT. So, we mainly compare our 

GP-evolved descriptors with other state-of-the-art descriptors 

rather than a whole action recognition system composed with 

different feature descriptors and classifiers. As our contribution 

is the learning of features, comparing with other handcrafted 

and learned features using the same classifier with exactly the 

same setting is the fairest way. If combining our GP-learned 

motion features with more advanced classification models, it is 

possible to reach higher recognition results on these datasets, 
 

4 https://github.com/rasmusbergpalm/DeepLearnToolbox



 
 

but it is not the core of this paper. So, for the HMDB51, 

YouTube, and Hollywood2 datasets, it is meaningless to com- 

pare with other entire recognition systems under different 

experimental settings. 
 

 
V.  CONCLUSION  

In this paper, we have developed an adaptive learning 

methodology using GP to evolve discriminative spatiotempo- 

ral representations, which simultaneously fuse the color and 

motion information, for high-level action recognition tasks. 

Our method addresses feature learning as an optimization 

problem, and allows a computer to automatically assemble 

holistic feature extraction by using a pool of primitive oper- 

ators, which are devised according to the general knowledge 

of feature extraction. We have systematically evaluated our 

method on four public datasets: KTH, HMDB51, YouTube, 

and Hollywood2 with accuracies of 95%, 48.4%, 82.3%, and 

46.8% using the learned descriptors. In all four datasets, exper- 

imental results manifest that our GP feature learning approach 

achieves significantly higher recognition performance com- 

pared with state-of-the-art hand-crafted and machine-learned 

techniques. In future work, we will mainly focus on the paral- 

lel and GPU computation to speed-up our methods. Besides, 

other more recent evolutionary methods (e.g., PSO) will be 

taken into consideration for leaning discriminative features. 
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