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Figure 1. Overview of our view-invariant human action recognition system 
 

Abstract—Human action recognition is an important problem 

in robotic vision. Traditional recognition algorithms usually 

require the knowledge of view angle, which is not always 

available in robotic applications such as active vision. In this 

paper, we propose a new framework to recognize actions with 

arbitrary views. A main feature of our algorithm is that view-

invariance is learned from synthetic 2D and 3D training data 

using transfer dictionary learning. This guarantees the 

availability of training data, and removes the hassle of obtaining 

real world video in specific viewing angles. The result of the 

process is a dictionary that can project real world 2D video into 

a view-invariant sparse representation. This facilitates the 

training of a view-invariant classifier. Experimental results on 

the IXMAS and N-UCLA datasets show significant 

improvements over existing algorithms. 

 

I. INTRODUCTION 

Machine vision is an important topic in robotics research [1, 

2]. In particular, there is a large body of research related to 

human action recognition, due to its potential applications in 

developing robots that can understand human behaviors and 

provide the right assistance. 

The main challenge of developing human action 

recognition techniques in robotics is that the viewpoint from a 

robot is usually unconstrained. In many domains such as 

active vision and human machine interaction, the robots have 

very little information about its viewpoint, as well as the 

relative direction of the human that performs the action. 

Therefore, traditional action recognition algorithms that 

require a predefined view angle fall short in producing 

satisfactory results. Traditional research in action recognition 

relies on visual appearance including shape features [3, 4, 5, 

6],     space-time     patterns     [7],     interest       point-based 
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representations [8, 9], as well as motion optical flow patterns 

[4, 9]. While these features are powerful in recognizing 

actions from a particular view, visual appearance can be very 

different from different view angles. As a result, a system 

trained with a particular view angle may perform poorly in 

run-time when the viewpoint changes. 

To tackle the problem, cross-view action recognition 

algorithms are proposed. The main idea is to transfer the 

knowledge from one view to another, allowing a system to 

recognize actions from a view that it has not been trained on. 

Li et al. presented a dynamics-based feature called hankelet 

that can capture the invariant property in viewpoint change 

using short tracklets for cross-view recognition [21]. Wang et 

al. used an AND-OR graph representation to compactly 

express the appearance and motion variance during viewpoint 

changes [22]. Zhang et al. constructed a continuous virtual 

path between source view and target view to facilitate cross-

view recognition [23]. The weakness of these algorithms is 

that view information is needed during the training process. 

However, such information may be difficult to obtain in 

robotics. 

Previous attempts to realize arbitrary view action 

recognition result in different levels of success. Weinland et 

al. proposed to recognize human actions by estimating 3D 

exemplars from a single 2D view angle using the hidden 

Markov model [10]. However, reconstructing these 3D 

exemplars from a single view is unreliable. Also, detailed 

action information may be lost as only discrete samples of 

information are used. Yan et al. presented 4D (i.e., 

3D spatial and 1D temporal dimensions) action features using 

time ordered 3D reconstruction of the actors from multi-view 

video data [11]. However, the recognition accuracy depends 

heavily on the performance of the 3D reconstruction, and the 

framework requires training data to be captured in carefully 

designed viewpoints. Gupta et al. proposed to project the 3D 

motion capture sequence in the 2D space and explore a best 

match  for  each  training  video  using  non-linear     circular 
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temporary encoding [12]. However, since discrete 2D 

projection instead of full 3D information is used for training, 

the accuracy depends on the number of projected views. 

Ideally, we would like to have a framework that can provide 

easy-to-obtain training data, and preform robustly in run-

time. 

In this paper, we propose a new view-invariant transfer 

dictionary learning framework to deal with the problem of 

human action recognition from arbitrary view angles. Our 

framework utilizes synthetic 3D and 2D training video in 

order to transfer view-invariant knowledge from 3D to 2D. 

Such a process does not depend on any real world video and 

training data can be synthesized effectively. The view-

invariant knowledge is represented as a dictionary, which 

can project real world 2D video into a view-invariant sparse 

representation. This allows us to train a view-invariant action 

classifier using a small number of real world 2D video 

sequences, in which the view-information is not annotated. 

Experimental results show that our system achieves better 

accuracy compared with previous work in arbitrary view and 

cross-view action recognition. 

This paper has three main contributions: 

 We propose a new transfer dictionary learning 

framework that utilizes synthetic 2D and 3D training 

videos to learn a dictionary that can project a real world 

2D video into a view-invariant sparse representation, 

which allows us to train an action classifier for arbitrary 

views. 

 We propose a new 3D feature called Histogram of 3D 

Velocity (HO3V), which is a 3D equivalent of the 

state-of-the-art 2D feature dense trajectories [9]. 

 We introduce the first synthetic 2D and 3D training 

dataset for view-invariant transfer dictionary learning. 

The database are released for public usage. 

The rest of this paper is organized as follows. In Section II, 

we give an overview of our view-invariant human action 

recognition frame. In Section III, we present the synthesis and 

feature extraction process on our 2D and 3D video data. 

Section IV provides the details of our view-invariant 

dictionary learning algorithm. Section V presents the 

experimental results, and Section IV concludes the paper. 

 

II. SYSTEM OVERVIEW 

In our system, we synthesize 3D video sequences using 

motion capture data. 𝑌3𝐷 = [𝑌3𝐷
1, … , 𝑌3𝐷

𝑘 ] ∈ ℝ𝑚×𝑘 denotes 

𝑘 𝑚-dimensional features extracted from a source 3D video. 
The synthesized  3D  video  is  projected  into different  
viewpoints     to     create     synthesized     2D videos. 𝑌2𝐷 = 

[𝑌2𝐷
1, … , 𝑌2𝐷 

𝑘] ∈ ℝ𝑛×𝑘 denotes the 𝑘 𝑛-dimensional features 

extracted from the target synthetic 2D videos. We train  3D 

and 2D dictionaries simultaneously from the synthetic data, 

which are represented as 𝐷3𝐷 = [𝑑3𝐷
1, … , 𝑑3𝐷

𝑁] ∈ ℝ𝑚×𝑁 and 𝐷2𝐷 = 

[𝑑2𝐷
1, … , 𝑑2𝐷

𝑁] ∈ ℝ𝑛×𝑁 . Such dictionaries can project the 

corresponding video features into a view-invariant sparse 

representation 𝑋 = [𝑋1, … , 𝑋𝑘] ∈ ℝ𝑁×𝑘, which is used to train 
an SVM-based action classifier. 

As illustrated in Figure 1 left, in the transfer dictionary 

learning phase, we learn the dictionaries  𝐷3𝐷  and  𝐷2𝐷 

simultaneously from synthetic 3D video and synthetic 2D 
video data. Records belonging to same action class in both 
3D and  2D  data   are  encouraged  to   share the  same  

sparse representation 𝑋 ∈ ℝ𝑁 .  This  allows  us  to  obtain  a  

target dictionary 𝐷2𝐷   that  maps  2D  videos to  view-

invariant  3D videos. It is used to encode a 2D video into a 
view-invariant representation 

Then, as illustrated in Figure 1 middle, in the classifier 

training phase, we use the learned dictionary 𝐷2𝐷 to encode 

the features extracted from real 2D videos. The 
representation is not sensitive to view changes as the 
dictionary is trained with 3D video data, and is used to train 
an SVM classifier. 

Finally, in the testing phase as illustrated in Figure 1 right, 

given any real 2D video, we apply 𝐷2𝐷 to encode the features 

into view-invariant sparse representation for classification. 
Due to the use of the 3D to 2D correlation dictionary, our 
system can identify actions from an arbitrary view. 

 
III. VIDEO SYNTHESIS AND FEATURE EXTRACTION 

In this section, we explain how we synthesize 3D videos 

and project them to generate synthetic 2D videos. We then 
explain how we extract a corresponding set of features in the 

3D and 2D space {𝑌3𝐷 , 𝑌2𝐷 }, respectively. 

A. Synthesis of 3D and 2D Video 

Here, we explain the process of synthesizing 3D and 2D 

video data. 3D videos provide 3D features that are invariant 

to viewpoint changes, and 2D videos are used to simulate real 

videos. 

In our system, we implement a design to balance 

computational cost and system performance. For 3D videos, 

we utilize simplified cylindrical models for computational 

efficiency. However, we utilize high quality character meshes 

for 2D videos such that the extracted features are comparable 

to that of real 2D videos. 

To synthesize the 3D motion models, we utilize the motion 

capture data from Carnegie-Mellon Graphics Lab and the 

Truebones dataset [13]. The motions are represented with 

captured 3D position information of body joints over times 

with 25 frames per second (FPS). Following [12], we use 

cylinders to model body parts and represent surface 

information. 
 

 

(a) (b) 

 

Figure  2. Synthesizing  3D  video:  (a)  Motion  retargeting  (b) 

Example postures from synthetic 3D video 
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The advantage of using 3D motion data is that we can 

apply motion retargeting to synthesize the motion performed 

by characters of different body sizes. As illustrated in Figure 

2(a), the motion of a full size character is retargeted into a 

small size character. During the process, the scale of 

movement such as step size is scaled. Figure 2(b) shows some 

postures captured from 3D synthetic videos. 

We use a similar process to produce synthetic 2D videos. 

We first synthesize 3D videos using motion data, and project 

them uniformly in different viewpoints. Here, in order to 

enhance the realism of the produced 2D videos such that they 

can correspond better with real 2D videos, we use high 

quality character meshes instead of cylinders to model a 

character’s body. Figure 3(a) shows example frames of a 

generated 2D video, and Figure 3(b) shows the same frames 

from different viewpoints. Notice that in our system, we do 

not require any information about the viewpoints. 

 

 

 

(a) 

 

 

 

 
(b)  

 

 

Figure 3. (a) Example frames of a synthetic 2D video. (b) 2D 

projections from different viewpoints. 

B. Trajectory-Aligned Descriptor 

Here, we describe the process of extracting features in 2D 

and 3D videos. 2D video features are extracted using dense 

trajectories [9]. We then propose a new 3D feature descriptor 

that is logically similar to the 2D dense trajectories, which we 

call Histogram of 3D Velocity (HO3V). 
 

  

(a) (b) 

Figure 4. (a) Synthesized 2D video (b) Extracted dense 

trajectories (red points are interest points, green curves are 

trajectories) 

For both 2D synthetic videos and 2D real videos (which are 

used for classifier training and testing in Section IV), we 

employ state-of-the-art action representation dense 

trajectories [9] for feature extraction. It describes both 

holistic and local information of the motion by combining 

dense sampling and trajectory tracking. Specifically, it 

consists of a set of low-level descriptors, including trajectory 

Histogram (MBH). Among them, HOG can extract the static 

appearance of the videos while HOF and MBH can extract the 

motion information. Figure 4 shows an example of dense 

trajectories extracted from a video. 

An advantage of synthetic 3D videos is that vertices 

geometry on the cylinder surface, as well as their 
correspondence across frames, are available. We first sample 

interest points from the vertices as shown in Figure 5(a). For 
each point, we extract the motion trajectory across frames. 

That is, ( 𝑃𝑡, 𝑃𝑡+1, 𝑃𝑡+2, … ), where 𝑃𝑡 is the 3D Cartesian coordinate 

of the vertex at frame t. We  then  define  a normalized 

trajectory as: 

𝑇𝑟′ =   
((𝛥𝑃𝑡,…,𝛥𝑃𝑡+𝐿−1)) 

, (1)
 

∑𝑡+𝐿−1‖𝛥𝑃𝑗‖
 

where L is a user-defined value that represents the number of 

frames to be considered in a trajectory, and 𝛥𝑃𝑡 = (𝑃𝑡+1 − 
𝑃𝑡) indicates the  displacement  across  two  frames. The 
denominator is the total length of the trajectory, which is used 

for normalization. Figure 5(b) shows an example of the 

extracted trajectories. 
 

 

(a) (b) 

Figure 5. 3D trajectory-aligned descriptor: (a) Uniformly-sampled 

interest points in a 3D video (b) 3D extracted trajectories 

Our transfer learning involves transferring 3D features to 

2D ones, and hence it is preferable that both 3D and 2D 

features have similar logical meanings. We therefore propose 

a new feature called Histogram of 3D Velocity (HO3V), 

which is a velocity field and is logically similar to HOF in 2D 

dense trajectories. We first define the velocity of a vertex as: 

V = 
𝛥𝑃𝑡  

, (2) 
1/𝐹𝑃𝑆 

where 𝐹𝑃𝑆 means frame per second of the 3D video, which 

is set as 25 in our experiments. 
 

 

(a) (b) 

Figure 6. The 14 velocity bins visualized with a 3D cube: (a) 6 

directions pointing towards the faces of the cube (b) 8 directions 

pointing towards the corners of the cube 

We  quantize  the  3D  velocity  orientations  into  14 bins 

𝐻(ℎ1, ℎ1, … , ℎ14) as shown in Figure 6. HO3V is defined as 

the binned histogram along each vertex trajectory: 
∑𝑡∈𝑇𝑖

‖V𝑡‖ 

descriptor,    Histogram    of    Oriented    Gradients  (HOG), 
Histogram  of  Optical  Flow  (HOF)  and  Motion Boundary 

ℎ𝑖 = 
∑𝑡+𝐿−1‖V𝑡‖ , (3) 



 

2 

2 
2 

2𝐷 

where 𝑇𝑖 is a set that contains the frame’s number in which 

the velocity direction of the interest point belongs to 𝑖 on a 

𝐿 -frame trajectory. ‖V𝑡‖ is the  magnitude  of  the velocity. 

Notice that the magnitudes of the 3D velocity are used for 
weighting. 

IV. VIEW-INVARIANT ACTION CLASSIFICATION 

In this section, we explain how we apply synthesized 3D 

and 2D video data to enhance action recognition in real 2D 

videos through dictionary learning. 

A. View-invariant Dictionary Learning 

Here, we introduce the basic theory of dictionary  learning 

We divide the dictionary into some disjoint subsets and 

each subset is used for one action category. 3D and 2D videos 

with the same action category are therefore represented with 

the same subset of the dictionary. Those with different action 

categories are represented with disjoint subsets of the 

dictionary. With this design, the 3D and 2D videos with the 

same action category tend to share the same sparse 

representation. Conversely, those with different action 

categories tend to have different representations. 

Specifically, the dictionary optimization function is 

designed as: 

< 𝑋, 𝐷3𝐷, 𝐷2𝐷, 𝐴 ≥= 𝑎𝑟𝑔𝑚𝑖𝑛𝑋,𝐷3𝐷,𝐷2𝐷,𝐴 [15], and explain how we learn the view-invariant transfer 𝛼‖𝑌3𝐷 − 𝐷3𝐷𝑋‖2 
2𝐷 2𝐷 2 2 2 + ‖𝑌 − 𝐷    𝑋‖2         + 𝛽‖𝑄 − 𝐴𝑋‖2

 

dictionary for the 3D and 2D synthetic videos. Dictionary 
learning generates a sparse representation for a high 

dimensional signal using linear projection with a   projection 

𝑠. 𝑡. ∀𝑖, [‖𝑥𝑖‖  ] ≤  𝑇 , (6) 
0 

where α and β are tradeoff parameters, ‖𝑌3𝐷 − 𝐷3𝐷𝑋‖2 and 
dictionary. Let 𝑌 ∈ ℝ𝑛denote an 𝑛-dimensional input signal ‖𝑌2𝐷 − 𝐷2𝐷 𝑋‖2 are two terms to minimize the error of the 3D 
that can be  reconstructed  by the 𝑁-dimensional projection 

coefficient 𝑋 ∈ ℝ𝑁  via  a  linear  projection  dictionary 𝐷 = 

[𝑑1, … , 𝑑𝑖, … , 𝑑𝑁] ∈ ℝ𝑛×𝑁 
. To obtain an over-completed 

dictionary,  N  should  be  much  larger  than n. Assuming 

the reconstruction error to be 𝐸(𝑋), the projection  process  
is formulated as: 

𝑌  =  𝐷𝑋  + 𝐸(𝑋) . (4) 
The objective function is defined as: 

and 2D dictionaries respectively, and ‖𝑄 − 𝐴𝑋‖2 is a label 
consistent regularization term to minimize the difference in 
sparse   representation   for   the   same   class of action  as 

introduced  in  [17,18].  The  matrix 𝑄 = [𝑞1, … , 𝑞𝑘] ∈ ℝ𝑁×𝑘 

and each vector q𝑖 = [q𝑖
1, … q𝑖

𝑁] = [0…1, 1…0] ∈ ℝ𝑁 is the 
discriminative sparse code   of   one   shared   video    pair 

{𝑦3𝐷
𝑖, 𝑦2𝐷 

𝑖}. The non-zero values of q𝑖 indicate that the pair and 

the dictionary  item 𝑑𝑖 share  the  same action label. Notice 

that due to our dictionary design, 𝑑2𝐷and 𝑑3𝐷      always 
𝑖 𝑖 2 

< 𝑋, 𝐷 >= 𝑎𝑟𝑔𝑚𝑖𝑛𝑋‖𝑌 − 𝐷𝑋‖2 𝑠. 𝑡. ‖𝑋‖0 ≤ 𝑇 ,  (5) 

where ‖𝑌 − 𝐷𝑋‖2 denotes the reconstruction  error and 
2 

‖𝑋‖0 ≤ 𝑇 is the sparsity constraint. 

We design a transfer dictionary learning system to transfer 

the view-invariance of the synthetic 3D videos to the 

synthetic 2D videos. We train two dictionaries 

simultaneously, with one for 3D (i.e., source - 𝐷3𝐷) and one 

have the same action label. 𝐴 is a transformation matrix  that 

can  transform  the  sparse  code 𝑋 to  the  most discriminative 

space based on label consistent matrix 𝑄. 

B. Optimization 

Here, we explain how we obtain the solution for Eq. (6). 

Since the three terms on the right hand side of Eq. (6) belong 

to the same format, we can first rewrite Eq. (6) as follows: 

for 2D (i.e., target - 𝐷2𝐷). The main idea is that we optimize < 𝑋, 𝐷 ≥ 𝑎𝑟𝑔𝑚𝑖𝑛 ‖𝑌 − 𝐷 𝑋‖2 𝑠. 𝑡. ∀𝑖, [‖𝑥𝑖‖    ]  ≤ 𝑇, 
the dictionaries such that the same action in both 3D and 2D 

videos has similar sparse representations, as visualized in 

Figure 7. Upon successful training, 𝐷2𝐷 is able to project the 

0 

 
 

√𝛼𝑌3𝐷 

𝑋,𝐷0 0 0 2 

 
 

√𝛼𝐷3𝐷 

0 

(7) 

feature vector of a 2D video into a sparse representation that where 𝑌0 = ( 𝑌2𝐷 ) , 𝐷0 = ( 𝐷2𝐷 ) . Such an objective 
is similar to that of a 3D video. In other words, such a sparse √𝛽𝑄 √𝛽𝐴 

representation is view-invariant. 
 

 
Figure 7. Optimizing the 3D (source) and 2D (target) dictionaries to 
encourage that the same action in synthetic 3D and 2D videos has the 
same sparse representations. 

function is then sharing the same form as Eq. (5), which  can 
be optimized using K-SVD algorithm [16]. 

𝐷3𝐷 , 𝐷2𝐷 and 𝐴 are required to  be  initialized before 

optimization. In our system, for 𝐷3𝐷 and 𝐷2𝐷, we run a few 

iterations of K-SVD within each action class and initialize 
the label of the dictionary items based on  their action labels. 
For 𝐴, we use the multivariate ridge regression model [19] 

with the 𝐿2- norm: 

𝐴  = (𝑋𝑋𝑡                         + 𝜆𝐼)−1                         , (8) 

where 𝑋 is calculated with the initialized 𝐷3𝐷 or 𝐷2𝐷. 

C. Action Classifier 

Here, we explain how we apply our trained dictionary to 

perform view-invariant action classification. 



 

2𝐷   = 
{ 2 

Since 𝐷3𝐷 , 𝐷2𝐷 and 𝐴 are jointly 𝐿2-normalized during the 

optimization  process,  we  will  need  another  step of 
normalization before they can be used for classification. We 

follow [17] for this process. The       desired dictionaries 𝐷̂3𝐷 , 

𝐷̂2𝐷  and  the  desired  transformation matrix 

𝐴̂ are calculated as: 

From our experience, a larger synthetic dataset would 

perform better. We decided the size such that we can obtain 

good system accuracy with a reasonable training time. 

We extracted dense trajectories from 2D synthetic videos, 

as well as 2D real videos from the IXMAS and the N-UCLA 

datasets. Similar with [9], we constructed a codebook for each 

𝐷̂3𝐷  = { 𝑑3𝐷
1

 , 
𝑑3𝐷

2
 , … , 𝑑3𝐷

𝑁 

} of the four descriptors in the dense trajectories separately. For 

‖𝑑3𝐷
1‖ 

𝐷̂ 
𝑑2𝐷

1 

, 
‖𝑑2𝐷

1‖ 

1 2 

‖𝑑3𝐷
2‖ 

𝑑2𝐷
2

 

‖𝑑2𝐷
2‖ 

 
 

, … , 
 
𝑁 

‖𝑑3𝐷
𝑁‖ 

𝑑2𝐷
𝑁 

} , 
‖𝑑2𝐷

𝑁‖ 

each descriptor,  we  applied  k-means to  cluster  a  subset of 
100,000 dense trajectory features into 500 visual words. This 

resulted in a 2D feature 𝑌2𝐷  of 2,000 dimensions. 

For 3D synthetic  models,  similar  with [10],  we  set   the 

𝐴̂ = { 
𝑎

 
‖𝑎1‖2 

,  
𝑎 

‖𝑎2‖2 

, … ,  
𝑎

 

‖𝑎𝑁‖2 

} (9) trajectory sample step to 5 frames, and the trajectory length to 

15 samples. We constructed codebooks for 3D     trajectories 

During the training phase, we first extract the features from 

real 2D videos as explained in Section III-B. We then 

calculate the sparse representation of each training samples 

using the trained 2D dictionary. This allows us to project the 

features in a real 2D video into a view-invariant sparse 

representation: 
2 

and HO3V descriptors respectively. We applied k-means to 
cluster a subset of 100,000 3D trajectory-aligned descriptors 
into 500 visual words. This resulted in a 3D feature 𝑌3𝐷  of 

1,000 dimensions. 

When constructing the transfer dictionary learning, to 

initialize the dictionary pair 𝐷3𝐷 and 𝐷2𝐷 ,  we employed 

𝑥 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑥‖𝑦 − 𝐷̂2𝐷 𝑥‖ 𝑠. 𝑡. ∀𝑖, [‖𝑥𝑖‖ ] ≤ 𝑇 .  
(10) 

0 

k-means 5 times on the features 𝑌3𝐷 and 𝑌2𝐷 respectively. We 
set the dictionary sizes 𝑁 to 1000 for both 𝐷3𝐷 and  𝐷2𝐷. 

Finally, we train a non-linear multi-class SVM with χ2 

kernel for action classification: 

𝐾(𝑥𝑝, 𝑥𝑞) = 𝑒𝑥𝑝(− ∑ 
1 
𝐷(𝑥𝑝, 𝑥𝑞)) . (11) 

𝑀 
 
 

 

V. EXPERIMENTAL RESULTS 

In this section, we first provide experiment setup details. 
We then evaluate the performance of our method with two 
public multi-view datasets including the IXMAS database and 
the N-UCLA database. 

The synthetic 3D and 2D datasets we used for transfer 
dictionary learning are open to public. They can be found at 
our project website. 

All experiments were performed with a desktop computer 

with an Intel i7-4790k CPU, an NVIDIA Quadro K2200 

graphics card and 16GB RAM. 

A. Transfer Dictionary Learning 

We used the software package Poser 2014 [14] to animate 

and retarget motion capture data files, as well as render the 

scenes into 2D videos. The 3D videos were synthesized with 

5 cylindrical characters with 18 motion data files per action 

class. The 2D videos were synthesized with 5 high quality 

characters with a uniformly sampled 18 viewpoints per action 

class, with the motion files randomly selected. The azimuthal 

angle of the projection was uniformly sampled as {0°, 60°, 

120°, 180°, 240°, 300°} and the polar angle of the projection 

was sampled as {0°, -30°, -60°}. This setup allowed us to 

generate the same number of 3D and 2D videos for transfer 

dictionary learning as required by K-SVD. 

As a result, for the experiments with the IXMAS dataset 

with 11 action classes, we synthesized 990 pairwise 3D and 

2D videos. For the experiments with the N-UCLA dataset 

with 10 action classes, we synthesized 900 pairwise   videos. 

The 3D dictionary trade-off parameter 𝛼 was set to 2.0.  The 
label  consistent  trade-off  parameter  𝛽  was  set  to  be  4.0. 
Finally, the number of iterations for  the  K-SVD algorithm 

was set to 60. 

B. Experiments on the IXMAS Dataset 

The IXMAS dataset [20] contains 11 action classes captured 

in 5 different viewpoints with 10 different actors. Figure 8 

shows some examples. 
 

 

Figure 8. Sample frames form the IXMAS dataset 

 

A major strength of our system is that it works on arbitrary 

views, which means that we do not require view labels (or 

camera labels) in any of our system training. In this 

experiment, we combined the 2D real videos from different 

viewpoints in IXMAS without retaining the view labels for 

training and testing the action classifier. We followed the 

leave-one-actor-out cross validation strategy from [10, 11] to 

obtain the recognition accuracy. As shown in Table 1, our 

system outperforms existing methods including 3D Exemplar 

and 4D-AFMS, mainly because we used synthetic 3D and 2D 

videos for transfer learning to enhance the accuracy. Table 2 

shows the performance of our system under different cross 

validation strategies. The accuracy shows a downward trend 

with the reduction of the number of the training samples. 
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Figure 9: Cross-view recognition accuracy of all possible viewpoint combinations. The horizontal axis labels are formatted as “source 

view - target view” in cross-view training. 

 

Table 1. Accuracy of view-invariant action recognition 

with the IXMAS dataset 
 

 Accuracy (%) 

Ours 84.3 

3D Exemplar [10] 81.3 

4D-AFMS [11] 78.0 

 

Table 2. Accuracy obtained with different cross validation 

strategies 

 
Figure 10. Cross-view recognition accuracy per action class in 

IXMAS 

C. Experiments on the N-UCLA Dataset 

The N-UCLA dataset [22] contains 10 action classes 

captured in 3 different viewpoints with 10 different actors. 

 

 

 

 

 

In order to compare with existing works on cross-view 

action recognition that utilize view labels including nCTE [12] 

and Hankelets [21], we conducted another experiment 

considering view labels. Here, we grouped the videos in the 

IXMAS dataset into different views, and evaluated the 

accuracy of transferring one view to another. We followed the 

leave-one-action-out cross validation strategy from [12, 21]. 

Figure 9 shows that our algorithm outperforms the state-of-

the-art method nCTE in most cross-view pairs, as well as the 

average system accuracy. Figure 10 shows that our algorithm 

outperforms nCTE in most action classes. These demonstrate 

that our system can realize cross-view action recognition by 

transferring the view-invariance from 3D models. Notice that 

in our ideal setup, the system does not require view 

information. This experiment is designed for the sake of 

comparison only. 

 

 

 

 
 

Figure 11. Example frames from the N-UCLA dataset 

We evaluated our system accuracy in cross-view action 

recognition and compare with existing work including nCTE 

[12] and CVP [23]. We followed the experimental setup in 

[12, 23] that utilizes videos captured from two cameras for 

training and the other one for testing. The accuracy was 

calculated using leave-one-action-out cross validation. As 

shown in Figure 12, our method outperforms existing 

algorithms in most of the cross-view setups and the overall 

result. 

 Training 

samples/Total 

samples (%) 

 

Accuracy (%) 

Leave-one-actor-out 90 84.3 

Leave-two-actors-out 80 82.6 

Leave-three-actors-out 70 77.6 

Leave-four-actors-out 60 69.7 

Leave-five-actors-out 50 58.4 

 



 

 

 

Figure 12. Cross-view accuracy using N-UCLA, with the 

horizontal axis formatted as “two source views - target view” 

 

VI. CONCLUSION AND DISCUSSIONS 

 
In this paper, we have proposed a view-invariant human 

action recognition framework. Unlike previous work, the 

view-invariance is obtained from synthetic 2D and 3D 

training data through transfer dictionary learning. The trained 

dictionary is used to project real world a 2D video into a 

view-invariant sparse representation, facilitating an arbitrary 

view action classifier. Due to the abundant availability of 

training data and the use of 3D information, our system 

performs robustly and its accuracy suppresses that of 

previous work. 

One advantage of our framework is that it separates the 

training of the transfer dictionary and classifier into two 

separate processes using different sources of training data. 

The view-invariant transfer dictionary is trained solely with 

synthesized data. As a result, it is possible to produce an even 

larger synthetic 2D dataset to cover all possible viewpoints. 

On the other hand, the action classifier is trained with real 

world 2D video data, and we do not require view information 

to be known, which relaxes the requirement of obtaining real 

world data. 

Dictionary learning can be considered as a linear projection 

algorithm, and can be limited in representing the view-

invariance of 3D video. In the future, we are interested in 

apply non-linear algorithms such as Neural Networks with 

synthetic training data to achieve better results. 

Another piece of future work is to investigate the impact of 

2D projection selection when creating the synthetic 2D video. 

Instead of uniformly sample the projection angle, it may be 

possible to learn an optimal set of projections per action class. 
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