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Abstract Conventional action recognition algorithms ad-
opt a single type of feature or a simple concatenation of
multiple features. In this paper, we propose to better fuse
and embed different feature representations for action recog-
nition using a novel spectral coding algorithm called Ker-
nelized Multiview Projection (KMP). Computing the kernel
matrices from different features/views via time-sequential
distance learning, KMP can encode different features with
different weights to achieve a low-dimensional and seman-
tically meaningful subspace where the distribution of each
view is sufficiently smooth and discriminative. More cru-
cially, KMP is linear for the reproducing kernel Hilbert
space, which allows it to be competent for various practical
applications.We demonstrate KMP’s performance for action
recognition on five popular action datasets and the results are
consistently superior to state-of-the-art techniques.
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1 Introduction

Human action recognition has beenwidely applied to human-
computer interaction, human behavior analysis, video sur-
veillance, robotics and so on. Traditional action recognition
techniques are mainly based on single feature representa-
tions, either global (Shao et al. 2014) or local (Laptev et al.
2008). For local feature extraction, an unsupervised detec-
tion technique, such as: cuboid detector (Dollár et al. 2005),
is first applied to locate the spatio-temporal interest points
around which the salient features, e.g., histogram of 3D ori-
ented gradients (3DHOG) (Klaser and Marszalek 2008), 3D
scale invariant feature transforms (3DSIFT) (Scovanner et al.
2007), or histogram of optical flow (HOF) (Laptev et al.
2008), are extracted. Then, the bag-of-visual-words scheme
is employed to embed these local features into a whole his-
togram representation. On the one hand, local feature based
methods tend to be more robust and effective in challenging
scenarios, while this kind of representation is often not pre-
cise and informative because of the quantization error during
codebook construction and the loss of structural relationships
among local features. On the other hand, global representa-
tions (Bobick and Davis 2001; Ji et al. 2013; Taylor et al.
2010) describe the action clip as a whole. Thus, it would
be more informative to capture the discriminative features
along both spatial and temporal dimensions. Unfortunately,
global methods are sensitive to shift, scaling, occlusion, and
cluttering, which commonly exist in action sequences.

Notwithstanding the remarkable results achieved by both
local and global methods in some cases, most of them are
still based on single feature representations. Since variations
in lighting conditions, intra-class differences, complex back-
grounds and viewpoint and scale changes all lead to obstacles
for robust feature extraction and action classification, sin-
gle feature representations cannot handle the realistic tasks
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to a satisfactory extent. In some situations, the direct con-
catenation of different features such as (Wang et al. 2013)
can improve the performance over single features. How-
ever, the concatenation will make the representation quite
lengthy and the relationship between different features is not
exploited.

In practice, a typical action clip can be represented by dif-
ferent views/features, e.g., gradient, shape, color, texture and
motion. Generally speaking, these views from different fea-
ture spaces always maintain their particular statistical char-
acteristics. Accordingly, it is desirable to incorporate these
heterogeneous feature descriptors into one compact represen-
tation, leading to the multiview learning approaches (Long
et al. 2008; Xia et al. 2010; Xu et al. 2014, 2015). These tech-
niques have been designed for multiview data classification
(Zien and Ong 2007), clustering (Bickel and Scheffer 2004)
and feature selection (Zhao and Liu 2008). For such multi-
view learning tasks, the feature representations are usually
very high-dimensional for each view. However, little effort
has been paid to learning low-dimensional and compact rep-
resentations for multiview computer vision tasks. Thus, how
to obtain a comprehensively low-dimensional embedding to
discover the discriminative information from all views is a
worthy research topic, since the effectiveness and efficiency
of the methods drop exponentially as the dimensionality
increases, which is commonly referred to as the curse of
dimensionality.

In this paper, we propose to encode different feature
representations for action recognition using a novel multi-
view subspace learning method called Kernelized Multiview
Projection (KMP). Our preliminary study shows KMP can
produce outstanding results for image classification (Yu
et al. 2015). For action recognition, the spatio-temporal
nature of a video sequence has to be considered and rep-
resented in a meaningful manner. Particularly, each action
clip is first described by several individual views using
frame-based representations,which contain thewhole human
body with the complete information of spatial structure and
share the advantages with the global representation methods.
Therefore, the adopted representation can be regarded as a
semi-holistic representation of human actions. It inherits the
advantages of global features in the spatial dimension and
meanwhile has the superiority of local features in the tem-
poral axis. To further preserve the sequential information of
actions (Zhang and Tao 2012), for each view, the dynamic
time warping (DTW) (Berndt and Clifford 1994) technique
is applied to form radial basis function (RBF) sequential ker-
nels. Having obtained kernel values for each view in the
reproducing kernel Hilbert space (RKHS), KMP is able to
fuse the features from different views, which have differ-
ent dimensions, by exploring the complementary property of
different views and finally finds a unique low-dimensional
subspace where the distribution of each view is sufficiently

smooth and discriminative. Different from multiple kernel
learning methods (Gönen and Alpaydin 2011) which include
linear and nonlinear approaches to learn the fused kernel
matrix based on the maximum margin criterion, KMP also
investigate the similarity and local information of features
from each view.

The rest of this paper is organized as follows. In Sect. 2,
we give a brief review of the related work. The details of our
method are described in Sect. 3. Section 4 reports the exper-
imental results. Finally, we conclude this paper in Sect. 5.

2 Related Work

A simple multiview embedding framework is to concatenate
the feature vectors fromdifferent views together as a new rep-
resentation and utilize an existing dimensionality reduction
method directly on the concatenated vector to obtain the final
mulitiview representation. Nonetheless, this kind of concate-
nation is not physically meaningful because each view has
a specific characteristic. And, the relationship between dif-
ferent views is ignored and the complementary nature of
intrinsic data structure of different views is not sufficiently
explored.

One feasible solution is proposed in (Long et al. 2008),
namely, distributed spectral embedding (DSE). For DSE, a
spectral embedding scheme is first performed on each view,
respectively, producing the individual low-dimensional rep-
resentations. After that, a common compact embedding is
finally learned to guarantee that it would be similar with all
single-view’s representations as much as possible. Although
the spectral structure of each view can be effectively con-
sidered for learning a multiview embedding via DSE, the
complementarity between different views is still neglected.

To effectively and efficiently learn the complementary
nature of different views, multiview spectral embedding
(MSE) is introduced in (Xia et al. 2010). Themain advantage
ofMSE is that it can simultaneously learn a low-dimensional
embedding over all views rather than separate learning as in
DSE. Additionally, MSE shows better effectiveness in fusing
different views in the learning phase.

However, both DSE and MSE are based on nonlinear
embedding, which leads to a serious computational com-
plexity problem. In particular, when we apply them to
classification or retrieval tasks, the methods have to be re-
trained for learning the low-dimensional embedding when
new test data are used. Besides, this kind of mechanism
causes anuncertain trainingphase, since the low-dimensional
representations of training data are always changing after
retraining the model for a new test sample. Due to their non-
linearity nature, this will cause heavily computational costs
and even become impractical for realistic and large-scale sce-
narios.
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Fig. 1 Illustration of selected middle frames from actions “Handwaving” and “Diving”

Therefore, in this paper, we propose a robust linear pro-
jection embedding method for RKHS, namely, KMP. It is
noteworthy that, different from non-linear approaches, once
the learning phase of KMP is finished and the projection is
learned, it will be fixed and can be directly used to embed
the new test samples without any re-training (Fig. 1).

3 Methodology

Our recognition system is composed of the following main
stages: (1) Pose description: For each video sequence, a set of
visual features is extracted from each frame to represent the
pose appearing in it. (2) Sequential distance kernel learning:
Each feature view is computed into a kernel matrix via our
proposed Gaussian-sequential learning. (3) Kernelized Mul-
tiview Projection: KMP is able to successfully explore the
complementary property of different views and finally finds
a discriminative low-dimensional subspace to fuse all views
into a single feature vector. (4) Action recognition: the SVM
with the RBF kernel is finally applied to categorize actions
into different classes. The flowchart of the proposed method
is illustrated in Fig. 2. We will detail the above stages in the
following sections.

3.1 Notations

We are given N training video sequences {v1, . . . , vN }
and M different descriptors are used for multiview fea-
ture extraction. For the i-th view and p-th video sequence,
Xi

p represents the matrix composed of the feature column
vector of i-th view in time-sequential order. Since the dimen-
sions of various descriptors are different, kernel matrices
K1, . . . , KM ∈ R

N×N are constructed in Sect. 3.3 for the
fusion of different views. Our task is to output an optimal
projection matrix P ∈ R

N×d and weights {α1, . . . , αM }
(
∑M

i=1 αi = 1) for kernel matrices such that the fused fea-
ture matrix Y = [y1, . . . , yN ]T = K P = (

∑M
i=1 αi Ki )P

can represent original data comprehensively.

3.2 Incremental Naive Bayes Denoising

In a video sequence, however, not all of the poses are infor-
mative and discriminative for action recognition. Some poses
may carry neither complete nor accurate information and
would even contain common patterns shared by various
action types. Since these poses in a video sequence cannot
represent the action well and would cause confusion during
the classification phase, a weakly supervised method, termed
incremental Naive Bayes filter (INBF), has been carried out
to filter the noisy representation and keep the relatively rep-
resentative and discriminative poses, i.e., the key poses.

For each action category, ten action sequences are ran-
domly selected.Wechoose a small set of discriminative poses
for a certain action type from each action sequence as the
INBF initial positive samples (labeled as y = 1), and the
remaining frames are adopted as the negative ones (y = 0).
As illustrated in Fig. 1, the five frames in the middle of
an action sequence are selected as discriminative poses. We
repetitively apply the above procedure to each action type.
INBF is then regarded as an unsupervised online learning
strategy.

For the i-th feature view, the representation of each pose
(frame) s is xi (s) = (xi1(s), . . . , x

i
D(s)) ∈ R

D . Since all the
features we extracted are based on statistical histograms, we
assume all elements in xi are independently distributed and
model them with a naive Bayes classifier:

P(xi ) = log
ΠD

m=1 Pr(x
i
m |y = 1)Pr(y = 1)

ΠD
m=1 Pr(x

i
m |y = 0)Pr(y = 0)

=
D∑

m=1

log
Pr(xim |y = 1)

Pr(xim |y = 0)
.

(1)

Note that we make the assumption of a uniform prior, i.e.,
Pr(y = 1) = Pr(y = 0), and y ∈ {0, 1} is a binary variable
which represents the positive and negative sample labels,
respectively.

Furthermore, in either statistics or physics, real-world
data distribution empirically follows the same form, i.e.,
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Fig. 2 Working flow of the proposed method. Multiple features are
extracted from training video data for each frame. Based on the data
after incremental naive Bayes denoising, the dynamic time warping is

performed to construct the kernel matrices for each view. Then a projec-
tion matrix and weights for kernel matrices are derived by an EM-like
alternate optimization procedure

Gaussian distribution. Thus, the conditional distributions
xim |y = 1 and xim |y = 0 in the classifier P(xi ) are
assumed to be Gaussian distributed with the four-tuple
(μm

y=1, μ
m
y=0, σ

m
y=1, σ

m
y=0), which satisfy

xim |y = 1 ∼ N
(
μm
y=1, σ

m
y=1

)

and

xim |y = 0 ∼ N
(
μm
y=0, σ

m
y=0

)
.

Up to now, for a certain feature view, we can initialize
a group of naive Bayes models for each action type, and
the training sequence is successively employed through all
the models. The Gaussian parameters in INBF can be then
incrementally updated as follows:

μm
y=1 ← λμm

y=1 + (1 − λ)μy=1,

σm
y=1 ←

√

λ
(
σm
y=1

)2 + (1 − λ)(σy=1)2+λ(1 − λ)
(
μm
y=1−μy=1

)2
,

(2)

where λ > 0 denotes the learning rate of INBF, μy=1 =
1
S

∑
s|y(s)=1 x

i
m(s), σy=1 =

√
1
S

∑
s|y(s)=1(x

i
m(s) − μy=1)2

and S = |{s|y(s) = 1}|. And μm
y=0 and σm

y=0 have similar
update rules. The above solutions are easily obtained bymax-
imum likelihood estimation. In this way, we can use INBF
to keep the representative frames for the later learning phase
and discard irrelevant frames to decrease the influence of
noise.

3.3 RBF Sequential Kernel Construction

For the i-th view, since we extract features from the frames
of video sequences, each video sequence can be described
by a set of features with a sequential order (along the tem-
poral axis). The similarity between video vp and video
vq under view i : ki (vp, vq) can be measured via DTW
(Berndt and Clifford 1994). Therefore, the kernel function

can be defined as: ki (vp, vq) = exp(− DTW (Xi
p,X

i
q )2

2σ 2 ), where

DTW (Xi
p, X

i
q) indicates the sequential distance computed

via DTW and σ is a standard deviation in the RBF kernel. In
thisway,we can easily obtain the kernelmatrices for different
views using the above equation.
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Fig. 3 Illustration of the
similarity matrix construction

Similarty matrix

Gaussian kernel

The procedure of DTW
B 

fr
am

es
 o

f v
id

eo
 p

A frames of video q

Wi

3.4 Kernelized Multiview Projection

Based on the above kernel construction, we can obtain ker-
nel matrices K1, . . . , KM ∈ R

N×N with the same size for
M views with different dimensions. Furthermore, we use the
label of training video sequences to supervise the calcula-
tion of the similarity matrix Wi for the i-th view. Then each
component of Wi is computed as follows:

(Wi )pq =

⎧
⎪⎨

⎪⎩

exp

(

− DTW (Xi
p,X

i
q )2

2σ 2

)

, C(p) = C(q)

0, otherwise

, (3)

where C(p) is the label function which indicates the label of
video vp and p, q = 1, . . . , N . In fact, the similarity matrix
Wi is a blockmatrix consisting of some submatrices of kernel
matrix Ki as illustrated in Fig. 3. Then we have the diagonal
matrix Di in which (Di )pp = ∑

q(Wi )pq and the Laplacian
matrix Li = Di − Wi for each view i .

Due to the complementary nature of different descrip-
tors, we assign different weights for different views. The
goal of KMP is to find the basis of a subspace in which
the lower-dimensional representation can preserve the intrin-
sic structure of original data. Therefore, we impose a set
of nonnegative weights α = (α1, . . . , αM ) on the similar-
ity matrices W1, . . . ,WM and we have the fused similarity
matrix W = ∑M

i=1 αiWi and the fused Laplacian matrix
L = ∑M

i=1 αi Li .
For the kernel matrix, since we use the same method

(DTW) to compute kernel values and similarities, we can
also define the fused kernel matrix K = ∑M

i=1 αi Ki . In
fact, suppose φi is the substantial feature map for kernel Ki ,
i.e., Ki = φi (Xi )Tφi (Xi ), then the fused kernel value is
computed by the feature vector concatenated by the mapped
vectors via φ1, . . . , φM , since we have

K =
M∑

i=1

αi Ki =
M∑

i=1

αiφi (X
i )Tφi (X

i )

=
⎡

⎢
⎣

√
α1φ1(X1)

...√
αMφM (XM )

⎤

⎥
⎦

T ⎡

⎢
⎣

√
α1φ1(X1)

...√
αMφM (XM )

⎤

⎥
⎦

= φ(X)Tφ(X),

where φ(·) = [√α1φ1(·)T , · · · ,
√

αMφM (·)T ]T is the fused
feature map and X = (X1, . . . , XM ) is the M-tuple consist-
ing of features from all the views.

To preserve the fused locality information, we need to
find the optimal projection for the following optimization
problem:

arg min
v

∑

i j

‖vTψi − vTψ j‖2(W )i j , (4)

where ψi is the fused mapped feature, i.e., [ψ1, . . . , ψN ] =
φ(X). Through simple algebra derivation, the above opti-
mization problem can be transformed to the following form:

arg min
v

Tr(vTφ(X)Lφ(X)T v). (5)

With the constraint Tr(vTφ(X)Dφ(X)T v) = 1, minimizing
the objective function in Eq. (5) is to solve the following
generalized eigenvalue problem:

φ(X)Lφ(X)T v = λφ(X)Dφ(X)T v. (6)

Note that each solution of problem (6) is a linear combination
ofψ1, . . . , ψN , and there exits N -tuple p = (p1, . . . , pN ) ∈
R

N such that v = ∑N
i=1 piψi = φ(X)p. For matrix V

consisting of all the solutions, there exists a matrix P such
that V = φ(X)P . Therefore, with the additional constraint
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Tr(PTφ(X)Dφ(X)T P) = 1, we can formulate the new
objective function as follows:

arg min
P,α

Tr(PT K LK P)

s.t. Tr(PT K DK P) = 1,
M∑

i=1

αi = 1, αi ≥ 0,
(7)

or in the form without the trace constraint:

arg min
P,α

Tr(PT K LK P)

Tr(PT K DK P)
, s.t.

M∑

i=1

αi = 1, αi ≥ 0. (8)

3.5 Alternate Optimization via Relaxation

In this section, we employ a procedure of alternate optimiza-
tion (Bezdek and Hathaway 2002; Tao et al. 2007) to derive

the solution of the optimization problem. To the best of our
knowledge, it is difficult to find its optimal solution directly,
especially for the weights in (8). To optimize α, we derive
a relaxed objective function from the original problem. The
output of the relaxed function can ensure that the value of
the objective function in (8) is in a small neighborhood of
the true minimum.

For a fixed α, finding the optimal projection P is simply
reduced to solve the generalized eigenvalue problem

K LKp = λK DKp, (9)

and set P = [p1, . . . ,pd ] corresponds to the smallest d
eigenvalues based on the Ky-Fan theorem (Bhatia 1997).

Next, we fix the projection P to update α individually.
Without loss of generality, we first consider the condition that
M = 2, i.e., there are only two views. Then the optimization
problem (8) is reduced to

arg min
P,α

Tr(PT K LK P)

Tr(PT K DK P)
, α1 + α2 = 1, α1, α2 ≥ 0.

(10)

For simplicity, we denote Li jk = Tr(PT Ki LkK j P) and
Di jk = Tr(PT Ki DkK j P), i, j, k ∈ {1, 2}. Then we can
simply find that Li jk = L jik and Di jk = Djik .

With the Cauchy-Schwarz inequality (Hardy et al. 1952),
the relaxation for the objective function in (10) is shown in
Eq. (11),

Tr(PT K LK P)

Tr(PT K DK P)
=

Tr
(
PT (α1K1 + α2K2)(α1L1 + α2L2)(α1K1 + α2K2)P

)

Tr
(
PT (α1K1 + α2K2)(α1L1 + α2L2)(α1K1 + α2K2)P

)

= α3
1L111 + 2α2

1α2L121 + α1α
2
2L221 + α2

1α2L112 + 2α1α
2
2L122 + α3

2L222

α3
1D111 + 2α2

1α2D121 + α1α
2
2D221 + α2

1α2D112 + 2α1α
2
2D122 + α3

2D222

≤ 1

α3
1L111 + 2α2

1α2L121 + α1α
2
2L221 + α2

1α2L112 + 2α1α
2
2L122 + α3

2L222

×
((

α3
1L111

)2

α3
1D111

+
(
2α2

1α2L121
)2

2α2
1α2D121

+
(
α1α

2
2L221

)2

α1α
2
2D221

+
(
α2
1α2L112

)2

α2
1α2D112

+
(
2α1α

2
2L122

)2

2α1α
2
2D122

+
(
α3
2L222

)2

α3
2D222

)

= 1

α3
1L111 + 2α2

1α2L121 + α1α
2
2L221 + α2

1α2L112 + 2α1α
2
2L122 + α3

2L222

×
(

α3
1L111

L111

D111
+ 2α2

1α2L121
L121

D121
+ α1α

2
2L221

L221

D221
+ α2

1α2L112
L112

D112
+ 2α1α

2
2L122

L122

D122
+ α3

2L222
L222

D222

)

=
∑

i, j,k∈{1,2}
wi jk(α1, α2)

Li jk

Di jk
, (11)

where wi jk is the coefficient of
Li jk
Di jk

and
∑

i, j,k∈{1,2} wi jk =
1. In this way, the objective function in (10) is relaxed to a
weighted sum of

Li jk
Di jk

. Thus, minimizing theweighted sum of
the right-hand-side in (11) can lower the objective function
value in (10). Note that

α2
1α1 = 1

2
α1 · α1 · 2α2 ≤ 1

2

(
α1 + α1 + 2α2

3

)3

= 4

27
,

and then theweightswithout containingα3
1 andα3

2 are always
smaller than a constant. Therefore, we only ensure that a part
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of the terms in the weighted sum is minimized, i.e., to solve
the following optimization problem:

arg min
α1,α2

w111
L111

D111
+ w222

L222

D222
. (12)

Since w111 and w222 are the functions of (α1, α2), we first
find the optimal weights without parameters. To avoid trivial
solution, we assign an exponent r > 1 on each weight. The
relaxed optimization will be

arg min
β1,β2

βr
1
L111

D111
+ βr

2
L222

D222
, s.t. β1 + β2 = 1, β1, β2 ≥ 0.

(13)

For (13), we have the Lagrangian function with the
Lagrangian multiplier η:

L(β1, β2, η) = βr
1
L111

D111
+ βr

2
L222

D222
− η(β1 + β2 − 1). (14)

We only need to set the derivatives of L with respect to β1,
β2 and η to zeros as follows:

∂L

∂β1
= rβr−1

1
L111

D111
− η = 0, (15)

∂L

∂β2
= rβr−1

2
L222

D222
− η = 0, (16)

∂L

∂η
= β1 + β2 − 1 = 0. (17)

Then β1 and β2 can be calculated by

β1 = (L222D111)
1

r−1

(L222D111)
1

r−1 + (L111D222)
1

r−1

,

β2 = (L111D222)
1

r−1

(L222D111)
1

r−1 + (L111D222)
1

r−1

.

(18)

Having acquired β1 and β2, we can obtain α1 and α2 by
the corresponding relationship between the coefficients of
the functions in (12) and (13):

α3
1L111

α3
2L222

= w111

w222
= βr

1

βr
2
. (19)

With the constraint α1 + α2 = 1, we can easily find that

α1 =
(
βr
1L222

) 1
3

(
βr
1L222

) 1
3 + (

βr
2L111

) 1
3

,

α2 =
(
βr
2L111

) 1
3

(
βr
1L222

) 1
3 + (

βr
2L111

) 1
3

.

(20)

Hence, for the general M-view situation, we also have the
corresponding relaxed problems:

arg min
∑M

i=1 αi=1

∑

i, j,k∈{1,...,M}
wi jk(α1, . . . , αM )

Li jk

Di jk
(21)

and

arg min
β1,...,βM

M∑

i=1

βr
i
Liii

Diii
, s.t.

M∑

i=1

βi = 1, βi ≥ 0. (22)

The coefficients (β1, . . . , βM ) and (α1, . . . , αM ) can be
obtained in similar forms:

βi = (Diii/Liii )
1

r−1

∑M
j=1(Dj j j/L j j j )

1
r−1

, i = 1, . . . , M (23)

and

αi =
(
βr
i /Liii

) 1
3

∑M
j=1

(
βr
j /L j j j

) 1
3

, i = 1, . . . , M. (24)

Although the weight α obtained in the above procedure is
not the global minimum, the objective function is ensured in
a range of small values. We let F1 and F2 be the objective
functions in (8) and (21), respectively, and let

F3 =
∑

i= j=k

wi jk
Li jk

Di jk
=

M∑

i=1

wi i i
Liii

Diii
. (25)

We can find that F1 ≤ F2 and if there exists αi = 1 for
some i , then F1 = F2 = F3. During the alternate procedure,
for optimizing P , F1 is minimized, and for optimizing α, F3
is minimized. Denote m1 = max(F1 − F3) and (P1, α1) =
arg max(F1 − F3), then we have

min F3 + m1 ≤ F3(P1, α1) + (F1 − F3)(P1, α1)

= F1(P1, α1) ≤ max F1,

and we can define the following nonnegative continuous
function:

F4(P, α) = max
(
F1(P, α),min

α

(
F3(P, α) + m1

))
. (26)

Note that minα

(
F3(P, α) + m1

)
is independent of α,

thus for any P , there exists α0, such that F1(P, α0) =
minα

(
F3(P, α)+m1

)
. If we impose the above alternate opti-

mization on F4, F4 is nonincreasing and therefore converges.
Thoughα dose not converge to a certain point, the range of F1
is reduced to a small district, i.e., smaller than minα F3 plus
a constant. It is also worthwhile to note that F3 is actually
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the weighted sum of the objective functions for preserving
each view’s locality information. However, the optimization
for F3 still learns information from each view separately, i.e.,
the locality similarity is not fused. We summarize the KMP
in Algorithm 1.

Algorithm 1 Kernelized Multiview Projection
Require: The training video sequences {v1, . . . , vN } and parameter

r > 1.
Ensure: The projection matrix P ∈ R

N×d and the weights α =
(α1, . . . , αM ) ∈ R

M for kernel matrices.
1: Extract multiple features from each training video and obtain clean

data matrices Xi
p , p = 1, . . . , N , i = 1, . . . , M via the INBF in

time-sequential order.
2: Compute the kernel matrices K1, . . . , KM ∈ R

N×N and the Lapla-
cian matrices L1, . . . , LM ∈ R

N×N via DTW for M views.
3: Initialize α ← ( 1

M , · · · , 1
M );

4: repeat
5: Compute the fused kernel matrix K = ∑M

i=1 αi Ki and the fused
Laplacian matrix L = ∑M

i=1 αi Li ;
6: Compute P by solving the generalized eigenvalue problem (9);
7: Compute coefficients β = (β1, · · · , βM ) by Eq. (23);
8: Transform β to α by Eq. (24);
9: until F4 defined in Eq. (26) converges.

During the testing phase, having acquired the data from
each view X1

test , · · · , XM
test of a test video sequence vtest , we

first compute the kernel values to form the representation of
vtest in RKHS of each view:

kitest = (ki (v1, vtest ), · · · , ki (vN , vtest )), i = 1, . . . , M,

where ki (·, ·) is the kernel functiondefined inSect. 3.3.Using
theweights (α1, . . . , αM )optimized byAlgorithm1,wehave
the fused representation of vtest : ktest = ∑M

i=1 αikitest . Then
the final fused representation of vtest in the reduced space is
ytest = ktest P .

4 Experiments and Results

In this section, we evaluate our KMP systematically on five
action datasets: KTH (Schuldt et al. 2004), UCF YouTube
(Liu et al. 2009), UCF Sports (Rodriguez et al. 2008), Hol-
lywood2 (Marszalek et al. 2009) and HMDB51 (Kuehne
et al. 2011) respectively. Some representative frames of these
datasets are illustrated in Fig. 4. In the rest of this section, we
will first introduce the details of the used datasets and their
corresponding experimental settings. After that, the com-
pared results will be presented and discussed.

4.1 Datasets

The KTH dataset is the benchmark dataset commonly used
for action recognition with 599 video clips. Particularly, it

contains six different action classes (i.e., boxing, handclap-
ping, handwaving, jogging, running and walking), which are
performed by 25 subjects under 4 different scenarios. Follow-
ing the pre-processing step mentioned in (Yao et al. 2010),
the coarse 3D bounding boxes are extracted from all the raw
action sequences and further normalized into an equal size of
100 × 100 of each frame. In our experiments, we adopt two
usually used settings to compare the final results. The first
one is the original experimental setting of the authors, i.e.,
divide the data into a test set with nine subjects: 2, 3, 5, 6, 7, 8,
9, 10, 22 and the rest form the training set. We finally report
the average accuracy over all classes as the performancemea-
sure. The other setting is the common leave-one-person-out
cross-validation.

TheUCFYouTube dataset contains 1168 video clipswith
11 action categories: basketball shooting, biking/cycling,
diving, golf swinging, horse back riding, soccer juggling,
swinging, tennis swinging, trampoline jumping, volleyball
spiking, and walking with a dog. We also extract the bound-
ing boxes according to the original paper (Liu et al. 2009).
Each frame of the sequences is further normalized into the
size of 100 × 100. This dataset is relatively challenging
due to large variations in camera motion, object appear-
ance and pose, object scale, viewpoint, cluttered background,
and illumination conditions. Following the original setup in
(Liu et al. 2009), a leave-one-out scheme is adopted. The
average accuracy over all classes is reported as the final per-
formance.

The UCF Sports dataset has 10 classes of human actions
with 150 collected broadcast videos. This collection repre-
sents a natural pool of actions featured in a wide range of
scenes and viewpoints with a large intra-class variability. For
this dataset, we use the provided bounding boxes and resize
each video frame to a normalized size of 100 × 100. In our
experiments, we use a fivefold cross- validation setup men-
tioned in (Rodriguez et al. 2008), adopting 4/5th of the total
number of sequences in each category for training and the
rest for testing. The final recognition rate is averaged over
the fivefolds.

The Hollywood2 dataset is a collection of 1707 action
samples comprising 12 types of action from 69 different
Hollywood movies. For this dataset, we deliberately use the
full-sized sequences without any bounding boxes. In our
experiments, we use the proposed KMP on a training set of
823 sequences and a test set with 884 sequences following
the original setting.

The HMDB51 dataset contains 6849 realistic action
sequences collected from a variety of movies and online
videos. Specifically, it has 51 action classes and each has at
least 101 positive samples. In our experiments, coarse bound-
ing boxes have been extracted from all the sequences through
masks released with the dataset and initialized into the size
of 100 × 120 for each frame. We adopt the official setting
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Fig. 4 Some example frames of five datasets: KTH, UCF YouTube, UCF Sports, Hollywood2 and HMDB51 (ordered from the top to the bottom)

of (Kuehne et al. 2011) with three train/test splits. Each split
has 70 training and 30 testing clips for each class.

4.2 Multiview Pose Feature Extraction

With the increasing complexity of recognition scenarios,
using a single type of feature representation is difficult to
satisfy the required accuracies in vision tasks, especially for
some realistic applications.

Given a frame containing one pose, we would like to first
describe it with multiview informative features. The descrip-
tors are expected to capture the gradient, motion, texture
and color information, which are the main cues of a pose.
We, therefore, employ the HOF (Laptev et al. 2008), the
histogram of oriented gradients (HOG) (Dalal and Triggs
2005), the local binary pattern (LBP) (Ahonen et al. 2004)
and color histogram (ColorHist), respectively, for pose rep-
resentation.

HOF: A fast and effective algorithm to capture the action
movement based on the Lucas-Kanade optical flow. Specif-

ically, we calculate HOF between any adjacent frames and
each motion region is divided into sub-regions with a 5 × 5
grid. For each sub-region, a 12-bin histogram is computed to
accumulate the motion orientation within 360 degrees. Thus,
the length of the final vector of HOF is 5 × 5 × 12 = 300.

HOG: A powerful gradient descriptor. In particular, a
9-bin histogram over [0,180] degrees is computed to accu-
mulate the gradient orientation over a 5 × 5 cell. The length
of the vector is 5 × 5 × 9 = 225.

LBP: LBP features tolerate against illumination changes
and are computationally efficient. The operator labels the
pixels of an image by thresholding a 3 × 3 neighborhood of
each pixel with the center value and considering the results as
a binary number and a 256-bin histogram of the LBP labels
computed over a region is used as a texture descriptor.

Note that, all the above three features are extracted on the
gray-scale frames.

ColorHist: For each channel of RGB, a 64-bin histogram
is used. Thus the final ColorHist has 3 × 64 = 192 dimen-
sions.
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Table 1 Dimensions of four features for action recognition

Feature representation Dimension

Histogram of oriented gradients (HOG) 225

Histograms of optical flow (HOF) 300

Local binary pattern (LBP) 256

Color histogram (ColorHist) 192

Total dimension 973

In thisway, each pose from a video frame is represented by
four different feature views which can describe the thorough
information of this frame/pose.

4.3 Compared Methods and Settings

For action recognition, a video sequence can be usually
described using differentfeature representations, i.e., mul-
tiview representation, in high dimensional feature spaces.
In this paper, we adopt four different feature representa-
tions (i.e., HOG, HOF, LBP, ColorHist) to describe a video
sequence. Table 1 illustrates the original dimensions of these
features.We systematically compare our proposedKMPwith
two related multi-kernel fusion methods. In particular, KMP
denotes that the RBF sequential kernels are combined by the
proposed method:

K =
M∑

i=1

αi Ki ,

where the weight αi is obtained via alternate optimization.
AM indicates that the kernels are combined by arithmetic
mean:

KAM = 1

M

M∑

i=1

Ki ,

and GMdenotes the combination of kernels through geomet-
ric mean:

KGM =
(

M∏

i=1

Ki

) 1
M

.

Besides, we also include the best performance of the single-
view-based spectral projection (BSP), the average perfor-
mance of the single-view-based spectral projection (ASP)
and concatenation ofmultiview embeddings in our compared
experiments. All of AM, GM , BSP, ASP and multiview
embedding concatenation are based on the locality preserv-
ing projections (LPP) (He and Niyogi 2004) technique. In
addition, two non-linear embedding methods DSE and MSE

Table 2 Runtime(seconds) of the training and test phases with d = 80
on different datasets

Datasets Training time (s) Test time (s)

KTH 460.15 1.89

UCF YouTube 1533.0 4.12

UCF Sports 170.9 1.01

Hollywood2 1220.5 4.03

HMDB51 3250.8 12.95

are adopted in our comparison, as well. In DSE and MSE,
the Laplacian embedding (LE) (Belkin and Niyogi 2001) is
adopted.

All of the above methods are evaluated on seven different
lengths of codes (20, 30, 40, 50, 60, 70, 80). Under the same
experimental setting, all the parameters used in the compared
methods have been strictly chosen according to their original
papers. For KMP/MSE, the optimal balance parameter r for
each dataset is selected from one of {2, 3, 4, 5, 6, 7, 8, 9, 10
} with the step of 1, which yields the best performance by
ninefold cross-validation on the training data. The best σ in
kernel construction is also selected by the cross-validation
on the training data. All experiments are performed using
Matlab 2013a on a server configuredwith a 12-core processor
and 128 G of RAM running the Linux OS (Table 2).

4.4 Results

In Table 3, we first illustrate the performance of the single-
view representation on all five datasets. In detail, we compute
theRBF sequential kernel andweightmatrix for a certain sin-
gle view and input them to our KMP system. Since only a
single view is used in KMP, it can be regarded as the proce-
dure of kernelized LPP. From the comparison, we can easily
observe that the HOG and HOF features consistently outper-
form the LBP descriptor in low dimensional feature space.
The lowest accuracy is always obtained by ColorHist. Fur-
thermore, we also include the long representation, which is
concatenated by all the four low-dimensional feature rep-
resentations, and the proposed KMP for multiview fusion
based reduction into this comparison. It is shown that the con-
catenated representation can reach better performance than
any of the single views, but is significantly lower than our
KMP. Specifically, the best accuracies achieved by KMP are
97.5, 87.6, 95.8, 64.3 and 49.8 % on KTH, UCF YouTube,
UCF Sport, Hollywood2 and HMDB51, respectively. Addi-
tionally, the results of the multiple kernel learning based on
SVM (MKL-SVM) (Gönen and Alpaydin 2011) are listed in
Table 3 using the same four feature descriptors. The train-
ing time and the test time of KMP are listed in Table 2. The
runtime of the training phase includes the multiview fea-
ture extraction, the INBF process, the construction of kernel
matrices via DTW and the optimization of KMP.
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Table 3 Performance
comparison (%) between the
proposed KMP and single
feature representations

Accuracy Dataset

KTH UCF YouTube UCF sports Hollywood2 HMDB51

HOG 92.3 (50) 82.6 (70) 91.5 (50) 52.9 (70) 42.3 (50)

HOF 91.6 (70) 81.9 (70) 90.7 (50) 56.7 (70) 39.7 (50)

LBP 80.2 (50) 70.5 (40) 74.6 (30) 32.1 (30) 22.4 (30)

ColorHist 42.7 (20) 31.1 (30) 37.2 (30) 19.4 (20) 18.1 (30)

Concatenation 93.8 (190) 85.4 (210) 93.1 (160) 60.5 (190) 46.0 (160)

MKL-SVM 91.4 82.5 94.3 58.9 47.5

KMP 97.5 (60) 87.6(80) 95.8 (50) 64.3 (80) 49.8 (70)

The numbers in parentheses indicate the dimensions of the representations. For MKL-SVM, DTW is also
used to construct the kernel matrix (as illustrated in Fig. 3) for each view and then MKL-SVM is applied to
final classification
Bold values indicate highest performance

In Tables 4, 5 and 6, six different multiview embedding
schemes are compared with the proposed KMP on the KTH,
UCF YouTube and UCF Sports respectively. From the whole
tendency, the proposed KMP always leads to the best perfor-
mance for action recognition. Meanwhile, arithmetic mean
(AM) and geometric mean (GM) achieve higher recognition
accuracies than the best performance of the single-view-
BSP and the ASP. DSE produces worse performance than
MSE and sometimes even obtains lower results than AM, but
generates better performance than others, since amoremean-
ingful multiview combination scheme is adopted in DSE.

Beyond these, it is obviously observed that, with different
target dimensions, the final results change a lot. Although
both KMP and MSE consider the similarity matrix of each
view, KMPmaps data into the RKHS which is more suitable
for linearly inseparable data in realistic situations. Usually,
the best results via KMP appear from d = 50 to d = 80. For
instance, the highest accuracy on the KTH dataset is on the
dimension of 60 and the best performance on the UCF Sports
and UCF YouTube happens when d = 50 and d = 80, respec-
tively (Fig. 5).

Table 4 Performance
comparison (%) on the KTH
dataset with different feature
fusion methods

Dimension Method

Arithmetic mean (AM) Geometric mean (GM) BSP ASP DSE MSE KMP

d = 20 86.8 84.5 85.6 72.4 85.9 86.0 88.9

d = 30 88.7 83.6 88.4 74.4 88.0 87.7 91.4

d = 40 91.6 86.2 91.0 71.3 89.6 91.7 93.7

d = 50 93.0 90.4 92.3 73.6 92.5 93.9 95.0

d = 60 93.3 90.7 91.5 75.3 93.8 94.2 97.5

d = 70 93.6 92.0 91.8 74.8 93.8 93.5 96.2

d = 80 92.5 91.1 92.1 75.0 93.3 93.7 96.8

Bold values indicate highest performance

Table 5 Performance
comparison (%) on the UCF
YouTube dataset with different
feature fusion methods

Dimension Method

Arithmetic mean (AM) Geometric mean (GM) BSP ASP DSE MSE KMP

d = 20 72.9 71.8 71.5 58.2 72.1 73.6 76.0

d = 30 75.0 74.2 72.8 59.4 74.0 75.2 78.6

d = 40 79.5 77.4 77.7 62.5 78.2 80.8 82.0

d = 50 82.3 80.8 80.3 61.8 81.3 82.5 84.2

d = 60 82.1 81.3 80.9 64.2 81.7 82.5 85.6

d = 70 82.9 82.2 82.6 66.0 83.0 83.3 85.0

d = 80 84.2 83.0 82.3 66.3 83.5 84.5 87.6

Bold values indicate highest performance
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Table 6 Performance
comparison (%) on the UCF
Sports dataset with different
feature fusion methods

Dimension Method

Arithmetic mean (AM) Geometric mean (GM) BSP ASP DSE MSE KMP

d = 20 82.8 82.0 81.3 65.2 83.2 86.2 88.5

d = 30 87.3 86.5 87.0 68.3 87.5 88.0 91.6

d = 40 93.0 92.4 89.6 71.0 93.2 93.0 94.7

d = 50 93.0 92.9 91.5 73.4 93.8 95.8 95.8

d = 60 93.8 92.7 90.8 73.0 94.0 94.5 95.5

d = 70 93.2 93.0 91.2 71.7 93.6 95.1 94.8

d = 80 92.3 91.6 90.2 72.8 90.7 92.6 94.3

Bold values indicate highest performance

Fig. 5 Illustration of low-dimensional distributions of three different multi-kernel fusion schemes (illustrated with data of five actions from the
HMDB51 dataset)
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Fig. 6 Performance comparison (%) on the Hollywood2 dataset with
different feature fusion methods

Similar behaviors can also be seen on the Hollywood2 and
HMDB51 datasets. From Fig. 6, we can observe that with
the increase of the dimension, all the curves of compared
methods on the Hollywood2 dataset are climbing up except
for ASP and BSP, both of which have a decrease when the
dimension exceeds 70. However, on the HMDB51 dataset,
the results in comparison always climbup then go downwhen
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Fig. 7 Performance comparison (%) on the HMDB51 dataset with
different feature fusion methods

the length of dimension increases (see Fig. 7). Besides, from
these figures, we can also discover that all the curves have the
same tendency of change. All of the above compared meth-
ods including MKL-SVM are trained on the same multiview
features after INBF.

Furthermore, Table 7 illustrates the performance varia-
tion of KMP with respect to the balance parameter r ; the
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Table 7 Performance (%) of KMP with different r values on the KTH
dataset

Dimension Parameter value

r = 2 r = 3 r = 4 r = 5 r = 6 r = 7 r = 8 r = 9 r = 10

d = 20 87.0 87.0 87.5 87.8 88.9 88.7 88.0 88.0 87.4

d = 30 89.4 90.1 90.5 91.0 91.3 91.4 91.4 90.7 89.3

d = 40 87.2 89.0 89.4 91.2 92.0 93.5 93.5 93.7 93.2

Bold values indicate highest performance

Table 8 The effectiveness (%) for INBF with d = 80 on different
datasets

Datasets KMP with INBF KMP without INBF

KTH 96.8 95.2

UCF YouTube 87.6 84.8

UCF Sport 94.3 91.5

Hollywood2 64.3 62.2

HMDB51 47.1 45.8

dimensionality of the low-dimensional embedding d is fixed
at 20,30 and 40 respectively on theKTHdataset. By adopting
the ninefold cross-validation scheme on the training data, it
is demonstrated that the higher dimension prefers a larger r
in our KMP.Moreover, Fig. 5 shows the low-dimensional (2-
dimensional) embeddings obtained byAM,GMandKMPon
the HMDB51 dataset. Our proposed KMP can well separate
different categories, since it takes the semantically meaning-
ful data structure of different views into consideration for
embedding. The effectiveness of the INBF procedure in the
training phase is demonstrated in Table 8.

At last, we also compare our results with the state-of-the-
art approaches published in major vision conferences and
journals in Table 9. In a sense, this kind of comparison is not
fair enough, since different features with different methods
are applied in different publications. Thus, we only treat this
as a general evaluation of recent results. For the four datasets:
KTH, UCF YouTube, UCF Sports and Hollywood2, our
KMP approach either outperforms state-of-the-art methods
or achieves the competitive results compared with published
results. For the HMDB51 dataset, the proposed KMP has
not shown better results than that reported in Wang and
Schmid (2013) and Simonyan and Zisserman (2014) due
to the powerful features they introduced, but doubles the
result shown in the original paper that introduced this dataset
(Kuehne et al. 2011). As a dimensionality reduction method,
the proposed KMP can also adopt trajectory-based features
or deep-learned features as different views for multiview
learning. Considering that our action representation is semi-
holistic and does not require an interest points detection
phase, the results achieved by KMP are outstanding. Ta
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5 Conclusion

In this paper, we have presented an effective subspace
learning framework based on KMP for action recognition.
KMP can encode a variety of features in different ways,
to achieve a semantically meaningful embedding. Specifi-
cally,KMP is able to successfully explore the complementary
property of different views and finally finds a unique low-
dimensional subspace where the distribution of each view is
sufficiently smooth and discriminative. KMPcan be regarded
as a fused dimensionality reduction method for multiview
data.

We have systematically evaluated our approach on five
human action datasets: KTH, UCF YouTube, UCF Sports,
Hollywood2 and HMDB51, and the corresponding results
show that the proposed approach achieves better or compet-
itive results with state-of-the-art methods. For future work,
we plan to combine the current KMP approach with semi-
supervised learning for other computer vision tasks.
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