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SUMMARY 

 

1. Marine systems and their biota are always changing, in response to environmental and human 

pressures such as climate variation and change, eutrophication, fisheries exploitation, litter, 

noise and accidental releases or regular discharges of contaminants, radioactivity and 

hazardous substances. Studies, surveys and monitoring help to describe and understand 

system responses to these pressures, and provide evidence to assess the needs for, and effects 

of, management interventions. Studies, surveys and monitoring are often costly, especially 

offshore, so small investments in preliminary data collection and systematic planning of these 

activities can help to make best use of resources and inform trade-offs between budgets and 

expectations.  

2. To meet recognised needs for accessible tools to plan some aspects of studies, surveys and 

monitoring, we developed the R package emon. Emon includes routines for study design 

through power analysis (assuming independence of observations) and feature detection; 

which are the focus of this paper. 

3. We hope that access to the functions in emon, many drawing on work which was previously 

published but without code for implementation, will raise awareness of what marine studies, 

surveys and monitoring can achieve, thus encouraging cost-effective, needs- and evidence-

based designs. 
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Introduction 

Studies, surveys and monitoring are fundamental methods for describing (i) the state of marine 

systems, (ii) human and environmental impacts on those systems and (iii) the needs for, and effects of, 

management measures. Surveys are used to characterise the abundance, distribution and occurrence of 

biota or concentrations of chemicals. Surveys may be synoptic, to provide a one-off characterisation 

of the distribution of habitats or contaminants or to search for a rare or invasive species, for example. 

But surveys may also be repeated – when this is done regularly, we describe the process as 

monitoring. Monitoring can fulfil single or multiple functions, depending on frequency, scale and 

range of measurements made. These range from describing the timing of single or cyclical events 

(phenology), to describing changes in biological, chemical and physical states and processes, which 

may provide feedback on the effects of human and environmental pressure and the response of a 

system to management intervention.  

 

Sampling at sea can be particularly challenging and expensive when the sea is deep, opaque, 

inaccessible, rough and/or seasonally and spatially variable. While sampling and monitoring methods 

are increasingly automated, many methods are still ship-based or require ship support, and costs can 

range from £500 per day for a smaller inshore vessel to >£10K for larger vessels working offshore, 

with additional costs for staff time, consumables, sample and data processing. Thus, as well as 

ensuring studies, surveys and monitoring are likely to meet their intended objectives, small 

investments in preliminary data collection and systematic planning can save significant costs by 

contributing to designs that use resources as efficiently as possible and informing the choice of 

options based on quantified trade-offs between budgets and expectations. There is a reasonably large 

literature focused on the design of studies, surveys and monitoring the sea (e.g. Underwood & 

Chapman 2013; Kimura & Somerton 2006; Underwood 2000; Nicholson, Fryer & Ross 1997), that 

contributes to a wider set of questions about the rationale and objectives of surveys and monitoring 

(e.g. Lindenmayer & Likens 2010; Nichol & Williams 2006; Hellawell 1991).  
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Several recurring questions emerge when designing studies, surveys and monitoring, but the tools to 

address many of these questions are not readily available to practitioners or rely on assumptions that 

are violated in many circumstances. These include questions about the probabilities that studies and 

surveys detect specified effects and differences (statistical power), the probabilities of detecting 

different types of environmental change or trend when monitoring, and the probabilities of detecting 

individuals or patches with a given sampling density and design. Several methods specifically 

developed to design and improve marine monitoring programmes are described in the literature. For 

instance, Nicholson, Fryer & Ross (1997) outlined approaches to detect year-to-year differences and 

linear trends in contaminant levels in fish and shellfish and Fryer & Nicholson (1999) extended this to 

show how smoothers could be used to assess the power of detecting more complex trends. Fryer & 

Nicholson (1993) considered power to detect linear trends and incidents where between-year variation 

was modelled by a random effect. Other research has assessed the power of a large-scale annual 

monitoring survey to detect changes in community metrics (Nicholson & Jennings 2004) or increases 

and decreases in fish abundance (Maxwell & Jennings 2005), and Blanchard, Maxwell and Jennings 

(2008) extended these approaches to compare the power of different survey designs to detect specified 

trends in abundance. Often, the survey objective is to determine whether a given region contains an 

important feature – for example, a plant or animal of conservation interest or a non-indigenous species 

that one wishes to eradicate. Barry and Nicholson (1993) calculated this probability on the assumption 

that the feature was a single circle and that the sampling pattern is either random, square lattice, 

triangular lattice or randomly placed on transects. This work was developed by Nicholson and Barry 

(1996), with the design objective that if one or more patches exceeded some specified size, then the 

probability of patch detection should be high. 

 

Emon R package 

To better meet needs for accessible statistical tools to plan studies, surveys and monitoring, we 

developed the R package emon (Barry & Maxwell, 2015). Emon (short for “environmental 

monitoring”) makes accessible, generalises and extends methods of power analysis and feature 

detection which were formerly published without code for application. The functions in emon also 
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address the limitations of many parametric methods for assessing power. To fully understand the uses 

of emon we recommend that readers download the emon library and use the help facilities as a 

supplement to the information provided here. 

 

Emon includes five main groups of functions for running calculations to support study, survey and 

monitoring design (Table 1). Function power.groups calculates the power for detecting difference in 

the mean between two ‘groups’ (e.g. two areas or time points). Function power.BACI calculates 

power for BACI designs. Function power.trend is used with a function generate.trend to determine 

the power to detect linear, incident, step and “updown” trends. Functions detect and detect.prop 

calculate sample sizes and probabilities for detection of patches and features with different spatial 

sampling patterns. Other functions in the package support the main functions and deal with topics not 

covered here. 

 

Power analysis 

Statistical power analysis can be used when planning studies, surveys or monitoring to assess the 

feasibility of detecting a change and to achieve efficient designs given resources available (Gerrodette 

1987; Holt, Gerrodette & Cologne 1987; Peterman 1990; Peterman & M’Gonigle 1992; Steidl, Hayes 

& Schauber 1997; Ellis et al. 2015). There are several algebraic expressions which define power for 

common methods of analysis (e.g. Cohen 1988). The advantage of using these expressions is that they 

are quick to compute. The disadvantages are that they apply to only a subset of potential survey 

designs and they make specific assumptions about the statistical distribution of the data, usually that it 

is Normal with constant variance. Consequently, the expressions lack flexibility to deal with many 

observed distributions and survey designs. Power analysis by simulation provides greater flexibility, 

because any appropriate distribution can be assumed. Emon uses the simulation approach and data can 

take any of four distributions: Normal, Poisson, Negative Binomial or Lognormal. The power 

functions assume that data are statistically independent. Valid power calculations depend on 

appropriate choice of secondary parameters (Supporting Information, Text S1). For example, if 

measurements have a Normal distribution, will the standard deviation remain the same if the mean 
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increases or will it also increase?  Selection of secondary parameters in power calculations should be 

based on statistical experience and biological knowledge. 

 

When pairs of surveys are planned, investigators often seek to assess the power to detect given 

differences between ‘groups’. The function power.groups calculates the power to detect a difference 

between means for two groups. These groups could be different areas or the same area at two points in 

time. For power.groups, either parametric or nonparametric randomisation tests can be used to test for 

differences between means. For parametric tests, if the data are assumed to be Normally distributed, a 

t-test is used; for the other distributions, likelihood ratio tests are performed based on the relevant 

Generalized Linear Model. 

 

If a study is planned to detect the impact of changes in pressures or management measures then a 

Before-After Control-Impact (BACI) design is widely used (Smith 2002). Observations are taken in 

control and impacted areas before and after a change. The function power.BACI calculates power for 

simple BACI designs. If we define the factor treatment which indicates whether an observation is 

from the control or impact area and a factor time, which indicates whether sampling occurred before 

or after the change then the effect is assessed by the interaction between treatment and time. The p-

value for this interaction is determined using the appropriate Generalized Linear Model for the 

response distribution. The interaction can also be calculated non-parametrically using a randomisation 

procedure - emon uses unrestricted permutation of the raw data (Anderson and Ter Braak, 2003). An 

example of the application of power.BACI is provided in the Supporting Information (Example S1). 

 

The design, improvement and evaluation of monitoring can often be informed by knowledge of the 

power to detect changes in a quantity through time. The function power.trend is used with 

generate.trend to determine the power to detect trends. Four types of trend for the mean function can 

be created by generate.trend: linear, incident, step and updown with parameters in generate.trend 

defining slopes and change-points. Alternatively, a user may create their own mean function. Within 

power.trend, realisations of the data can be created assuming Normal, Poisson or Negative Binomial 
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probability distributions. Options for analysis of the trend include linear regression for monotonically 

increasing or decreasing trends, the nonparametric Mann-Kendall method (Mann, 1945; Kendall 

1975), with significance determined through a randomisation test, and Generalised Additive Models 

(Wood, 2006) with time as the dependent variable. These latter models are fitted using the function 

gam in the R-library mgcv. 

 

Detecting features 

Often, point sample surveys are conducted to find features of interest. These may be, for example, 

habitats or non-indigenous species. Emon considers situations where the feature is (i) in the form of a 

circular patch and (ii) where it occupies some proportion of the survey area. 

 

For patches, the factors governing the probability of detection are (i) the size of the patch (ii) the 

number and size of sampling points and (iii) the pattern of sampling points. The function detect 

calculates the probability of detection of a circular patch of specified radius for a specified density of 

sampling points, the sampling density needed to achieve a specified probability of detection or the 

radius of the feature that will be detected with specified probability and sampling density. There are 

options for random, square lattice, and triangular lattice spatial sampling designs. When the feature is 

not a patch but occupies a proportion θ of the survey area, the function detect.prop is used. However, 

the calculations done by this function are appropriate only when the sampling points are located 

randomly on the survey area. 

 

The function detect is mainly based on the approach of Barry and Nicholson (1993), who give the 

probabilities that at least one sampling point detects a patch for random, square lattice and triangular 

lattice designs. These probabilities are a function of the standardised patch radius R=r(A/N)0.5, where r 

is the actual patch radius, N is the sample size and A is the survey area. The only difference is that 

detect uses a more exact formula for the random design of 
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N
r Aap )/1(1 −−=          (1) 

 

where a is the patch area. Note that these formulae assume that the sampling unit radius is of 

negligible size and that sampling units can overlap. However, if the sampling unit radius has some 

finite value rs, r is replaced by r’ = r + rs. 

 

The approach can be turned around to ask “which value of N is needed to obtain a specified 

probability of patch detection?” For the random design, we rearrange equation (1) to give 

 

)/1log(

)1log(ˆ
Aa

p
N r

−
−

=          (2) 

 

For the other designs, numerical methods are used to calculate N̂ . 

 

A third approach is to consider the value of r that would be detected with probability p given sample 

size N. As before, numerical methods must be used for the two lattice designs. For the random design, 

we get the expression 

 

π))1(1( )/1( N
rpAr −−=         (3) 

 

For a random sampling pattern, if the object of interest is not a patch, but comprises individuals or a 

feature which covers some proportion θ of the survey area A, we use the function detect.prop. The 

probability of at least one sampling point detecting the object is: 

 

N
propp )1(1 θ−−=          (4) 
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A similar expression was given by McArdle (1990) and extended into a Bayesian context by 

Nicholson and Barry (1995). Function detect.prop can calculate values for θ and N given those of the 

other two parameters. 

 

Conclusions 

 

Emon provides easy access to a range of flexible methods to support the design of studies, monitoring 

or surveys. Our approaches have focused on questions and challenges relating to the marine 

environment, but some of the methods for assessing power and probabilities of detection may also 

have relevance to questions encountered when monitoring terrestrial biota. We hope that access to the 

functions in emon will raise awareness of what marine monitoring and surveys can be expected to 

achieve, thus encouraging cost-effective, needs- and evidence-based designs. 

 

An obvious future extension to emon is to build a suite of functions to design surveys based on the 

desired precision of estimates. Currently this is available only for the simple case of estimating a 

mean abundance. Other extensions include power for models that allow for temporal and spatial 

correlations (Elston et al. 2011) and/or incorporate the precision of estimates of variance components 

used in the power simulations (Sims et al. 2007). In terms of detecting features, if the sampling points 

are of some finite area then the probability of detecting the feature will depend on the spatial 

aggregation of the feature. Theory or simulations to quantify this would be a useful addition to emon. 

Similar work on comparing sampling grab sizes for sampling is reported in Boyd, Barry & Nicholson 

(2006). 
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Supporting information 

File: Secondary parameters and examples contains 

Text S1: Treatment of secondary parameters in power analysis; 

Example S1: Power study for Dogger Bank survey; 

Example S2: Detecting non-indigenous species at the Port of Dover. 

 

File: R code for examples 1 and 2.R 

Gives code to run the examples above. 

 

Table 1. Summary of user-manipulated functions in emon described in this paper. 

 

Function Purpose References 

power.BACI Tests power of BACI designs to detect 

differences between a control and a treatment. 

Manly (2006); Shen, Brown & 

Zhi (2006) 

permute.BACI  

 

Non-parametric randomisation test of 

treatment effect in BACI design. 

Manly (2006) 

power.groups   Calculates power by simulation for 

comparing the mean of two groups of 

independent observations. 

Fryer & Nicholson (1993,1999)  

 

permute.groups Non-parametric randomisation test for Manly (2006) 
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comparing the means of two groups. 

power.trend Calculates power by simulation for a 

specified trend. The time and mean value of 

the trend can use input from generate.trend. 

The distribution of the data is created by 

addnoise. The user can specify the statistical 

method to detect the trend to be either linear 

regression, the Mann-Kendall statistic or a 

Generalised Additive Model. 

Fryer & Nicholson (1993, 

1999); Wood (2006). 

generate.trend Generates one of four scenarios for the 

change in mean value as function of time. 

Results can be used in power.trend. 

addnoise Used in power.trend to add random variation 

to the mean values. The distribution, with 

mean given by the mean values, can be either 

Normal, Poisson or Negative Binomial. 

mannkendall Calculates the Mann-Kendall statistic for a 

monotonic trend and the p-value by 

simulation against the null hypothesis of no 

trend. 

Mann (1945); Kendall (1975) 

detect Calculates either the: (i) probability of 

detection of a circular patch of specified 

radius for a specified density of points; (ii) 

density needed to achieve a specified 

probability of detection; or (iii) radius of the 

patch that will be detected with specified 

probability and sampling density. The user 

can choose either random, square lattice, and 

triangular lattice spatial sampling designs. 

Barry & Nicholson (1993) 

detect.prop Calculate the probability of detecting: (i) a McArdle (1990) 
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feature that occupies a proportion θ  of the 

sampling area and where the number of 

sampling points is specified; (ii) the number 

of sampling points needed to achieve a 

specified probability of detection, where θ  is 

also specified; or (iii) the value of θ  that will 

be detected with specified probability and 

sampling density. 

 


