1 2

Supporting Information

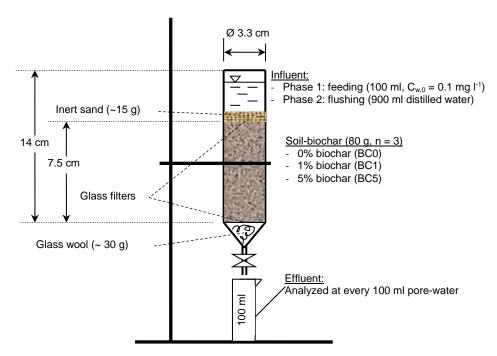
- 3 Application of a full-scale wood gasification
- 4 biochar as soil improver to reduce organic pollutant
- 5 leaching risks
- 6 Bao-Son Trinh a,b,c,*, David Werner c, Brian J. Reid b,d
- 7 a School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
- 8 b School of Civil Engineering and Geosciences, Newcastle University, Newcastle upon Tyne,
- 9 NE1 7RU, UK
- 10 ° Institute for Environment and Resources, Vietnam National University of Ho Chi Minh city,
- 11 Vietnam
- 12 d Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, P.R. China
- * Corresponding author: <u>son.trinh@newcastle.ac.uk</u>1

¹ Current address: Visiting researcher at Newcastle University; Permanent address: Institute for Environment and Resources, Vietnam National University of Ho Chi Minh city, HCMC, VN.

1. Materials and experimental methods

- Soil and biochar (BC). Skeletal densities were determined in a pycnometer (50 ml, n = 3). Bulk
- 17 densities were measured by weighting the mass introduced in a calibrated volume. For
- structure analysis, soil and biochar samples (10 g, n = 3) were pre-treated according to standard
- methods ¹. Particle distributions of soil and biochar samples were determined by the laser
- 20 scattering and diffraction method (Malvern Master 2000). Diameters of soil and biochar
- 21 particles were calculated as geometric mean.
- 22 Soil water content was determined according the standardized method ISO 11465 (2003) by
- 23 drying soil (10 g, n = 5) in an oven (Swallow, LTE Scientific Ltd., UK) at 105 °C until a
- 24 constant mass was reached. Then samples were re-weighted and the water content was
- 25 calculated as following:
- Water content = (Mass air dry Mass oven dry)/Mass air dry . 100
- 27 The soil organic matter content was determined (5 g, n = 5) by loss of ignition in an electrical
- 28 muffle furnace (Anderman, Cestradent Ltd., UK) at 450 °C overnight as follows:
- 29 % organic matter = (Mass oven dry Mass furnace dry) / Mass oven dry . 100
- 30

- 31 Chemicals. Sulfamethazine (SMZ), [benzene ring-UL-14C]-SMZ, phenanthrene (PHE), [9-
- 32 ¹⁴C]-PHE were purchased from Sigma-Aldrich (UK). Isoproturon (IPU) was purchased from
- 33 ARC (UK). [Benzene ring-U-14C]-IPU was purchased from Amersham Biosciences (UK).
- 34 Scintillation cocktail liquid (UltimaGold XR) and sample oxidiser cocktails (Carbosorb and
- 35 Permafluor) were obtained from Perkin Elmer (UK). Other chemicals were analytical grade
- 36 (99%). Table S1 presents the physico-chemical properties of these compounds.


Table S1. Physico-chemical properties of the tested chemicals

	Sulfamethazine	Isoproturon	Phenanthrene
CAS No.	57-68-1	34123-59-6	85-01-8
Formula	$C_{12}H_{14}N_4O_2S$	$C_{12}H_{18}N_2O$	$C_{14}H_{10}$
IUPAC name	4-amino- <i>N</i> -(4,6-dimethylpyrimidin-2-yl) benzenesulfonamide	3 - (4-isopropylphenyl) -1,1- dimethylurea	Phenanthrene
Molecular Weight (MW) (g mol ⁻¹)	278.33	206.29	178.2
Water Solubility (mg l-1)	1500 (29 °C) ²	65 (22 °C) ³	1.18 (25 °C) ⁴
Partition coefficients:			
$Log~K_{OW}(20~^{0}C)$	0.28 5	2.50 ³	4.46 4
			4.52 5
Density (g cm ⁻³)		1.2 ³	1.1147 ⁴
Vapour pressure (25 °C, Pa)	1.15×10^{-6} ²	8.1×10^{-6} ³	5.23×10^{-2} ⁴
Henry's Law constant at (25 °C, Pa.m³ mol-1)	3.1×10^{-8} ²	1.46×10^{-5} ³	$3.9 \times 10^{-5.6}$

42 Column leaching experiment

45 46

- Figure S1 presents a set-up of the column leaching experiments. After water-saturating the
- columns overnight, flow rate was measured for BC0, BC1, and BC5 column (n = 3).

Figure S1. A set-up of the column leaching experiments

Figure S2. Profile of phenanthrene retained in the soil-biochar mixture along the length of the leaching column (n = 3)

53 model

Variables and input parameters	Description	Input parameter values	Source
t (s)	Time	0 – 30.86400	Measured
r (m)	Radial distance from the BC particle centre	$0 - 0.1 \times 10^{-3}$	Measured
C_w (moles m ⁻³) $C_{w,\theta}$ (moles m ⁻³)	Pollutant concentration in external water Initial concentration of C_w	Dependant variable 0.1/MW with MW = 278.33 (SMZ); 206.29 (IPU); 178.2 (PHE)	Simulated Measured
C _{s,rev} (moles kg ⁻¹)	Reversibly bound pollutant concentration associated with the soil solids	Dependant variable	Simulated
C _{s,irrev} (moles kg ⁻¹)	Irreversibly bound pollutant concentration associated with the soil solids	Dependant variable	Simulated
C _{BC,ippw} (moles m ⁻³)	Pollutant concentration in the BC intraparticle pore-water	Dependant variable	Simulated
K_s (m ³ kg ⁻¹)	Reversible soil-water partitioning coefficient for a specific pollutant	$3.46 \times 10^{-3} \text{ (SMZ)}$ $6.41 \times 10^{-3} \text{ (IPU)}$ $20.55 \times 10^{-3} \text{ (PHE)}$	Measured
K_{BC} (m ³ kg ⁻¹)	Reversible BC-water partitioning coefficient for a specific pollutant	$1500 \times 10^{-3} \text{ (SMZ)}$ $4000 \times 10^{-3} \text{ (IPU)}$ $600 \times 10^{-3} \text{ (PHE)}$	Measured and calibrated
$V_w(\mathrm{m}^3)$	Water volume in the batch outside of particles	30 × 10 ⁻⁶	Measured
M _{pol} (moles)	Amount of pollutant added to the batch	3×10^{-6} /MW	Measured
M_s (kg)	Dry soil mass in the batch	$3(1 - x) \times 10^{-3}$ with $x = 0$, 0.01, 0.05 and 1 for BC0, BC1, BC5, and BC100	Measured
M_{BC} (kg)	Dry BC mass in the batch	$3x \times 10^{-3}$ with $x = 0$; 0.01; 0.05 and 1 for BC0, BC1, BC5, and BC100	Measured
R_{BC} (m)	BC particle radius	0.1×10^{-3}	Measured
$\theta_{BC,w}$ (-)	Water-filled BC intraparticle porosity	0.65	Literature ⁷
d_{BC} (kg m ⁻³)	Solid density of the BC skeleton	1.5×10^3	Measured

Table S2: Independent and dependant variables and input parameters for the batch sorption kinetic

model (continued)

Variables and input parameters	Description	Input parameter values	Source
τ (-)	BC pore network tortuosity factor	BC1: 14000 (SMZ); 9000 (IPU); 1600 (PHE) BC5: 1200 (SMZ); 1000 (IPU); 1500 (PHE) BC100: 300 (SMZ); 400 (IPU); 1000 (PHE)	Fitted
D_{aq} (m ² s ⁻¹)	The molecular diffusion coefficient of the pollutant in water	$2.7 \times 10^{-8} / MW^{0.71}$	Literature ⁸
k _{s,rev} (s ⁻¹)	First-order kinetic sorption rate for reversibly bound pollutants	$0.8 \times 10^{-6} \text{ (SMZ)}$ $10 \times 10^{-6} \text{ (IPU)}$ $20 \times 10^{-6} \text{ (PHE)}$	Fitted
k _{s,irrev} (s ⁻¹)	First-order kinetic sorption rate for irreversibly bound pollutants	0.1 (SMZ) 0.01 (IPU) 0.05 (PHE)	Fitted
C _{s,irrev,max} (moles kg ⁻¹)	Maximum concentration of a specific pollutant which can be irreversibly sorbed by soil particles	$\begin{array}{c} 0.022 K_s C_{w,0} \;\; (SMZ) \\ 0.015 K_s C_{w,0} \;\; (IPU) \\ 0.038 K_s C_{w,0} \;\; (PHE) \end{array}$	Fitted

MW – Molecular Weight

Table S3: Independent and dependant variables and input parameters of the column transport models

Variables and input parameters	Description	Values	Source
<i>t</i> (s)	Time: Feeding time	$0 - 0.1 \times 10^{-3} / Q_{BC}$	Measured
	Eluting time	$0.1 \times 10^{-3}/Q_{BC} - 1 \times 10^{-3}/Q_{BC}$	
Q_{BC} (m ³ s ⁻¹)	Infiltration flow rates of BC0, BC1, and BC5 columns	0.4401×10 ⁻⁶ (BC0) 0.1895×10 ⁻⁶ (BC1) 0.0773×10 ⁻⁶ (BC5)	Measured
x (m)	Distance from the column inlet	0 – 0.075	Measured
r (m)	Radial distance from the BC particle centre	0 – 0.1×10 ⁻³	Measured
C_w (moles m ⁻³)	Pollutant concentration in interparticle water between soil and BC particles	Dependant variable	Simulated
$C_{in} = C_{w,\theta}$ (moles m ⁻³)	Feeding pollutant concentration	0.1/MW with MW = 278.33 (SMZ); 206.29 (IPU); 178.2 (PHE)	Measured
$C_{s,rev}$ (moles kg ⁻¹)	Reversibly bound pollutant concentration associated with the soil solids	Dependant variable	Simulated
$C_{s,irrev}$ (moles kg ⁻¹)	Irreversibly bound pollutant concentration associated with the soil solids	Dependant variable	Simulated
$C_{BC,ippw}$ (moles m ⁻³)	Pollutant concentration in the BC intraparticle pore-water	Dependant variable	Simulated
K_s (m ³ kg ⁻¹)	Reversible soil solid-water partitioning coefficient for the pollutant	3.46×10 ⁻³ (SMZ) 6.41×10 ⁻³ (IPU) 20.55×10 ⁻³ (PHE)	Measured
K_{BC} (m ³ kg ⁻¹)	Reversible BC solid-water partitioning coefficient for the pollutant	1500×10 ⁻³ (SMZ) 4000×10 ⁻³ (IPU) 600×10 ⁻³ (PHE)	Measured
<i>L</i> (m)	Length of the column	0.075	Measured
R_{C} (m)	Radius of the column	0.0165	Measured
v_x (m s ⁻¹)	Pore-water velocity between the soil and BC particles in the <i>x</i> (downward) direction	$= Q_{BC}/(\pi R_C^2 \theta)$ with θ is the interparticle porosity of BC	Measured
D_{disp} (m ² s ⁻¹)	Hydrodynamic dispersion coefficient for pollutants in the water in between the soil and BC particles	3.1×10 ⁻⁸	Literature ⁹

Table S3: Independent and dependant variables and input parameters of the column transport models

62 (continued)

Variables and input parameters	Description	Values	Source
M_s (kg)	Dry soil mass in the columns	$80(1 - x) \times 10^{-3}$ with $x = 0$, 0.01, and 0.05 for BC0, BC1, and BC5	Measured
d_s (kg m ⁻³)	Solid density of the soil particles	2.49×10 ³	Measured
M_{BC} (kg)	Dry BC mass in the columns	$80.x \times 10^{-3}$ with $x = 0, 0.01$, and 0.05 for BC0, BC1, and BC5	Measured
R_{BC} (m)	BC particle radius	0.1×10 ⁻³	Measured
$\theta_{BC,w}$ (-)	Water-filled BC intraparticle porosity	0.65	Literature ⁷
d_{BC} (kg m ⁻³)	Solid density of the BC skeleton	1.5×10 ³	Measured
τ (-)	BC pore network tortuosity factor	BC1: 14000 (SMZ); 9000 (IPU); 1600 (PHE) BC5: 1200 (SMZ); 1000 (IPU); 1500 (PHE) BC100: 300 (SMZ); 400 (IPU); 1000 (PHE)	Fitted from batch experiments
D_{aq} (m ² s ⁻¹)	The molecular diffusion coefficient of the pollutant in water	2.7×10 ⁻⁸ /MW ^{0.71}	Literature ⁸
k _{s,rev} (s ⁻¹)	First-order kinetic sorption rate for reversibly bound pollutants	0.8×10 ⁻⁶ (SMZ) 10×10 ⁻⁶ (IPU) 20×10 ⁻⁶ (PHE)	Fitted from batch experiments
$k_{s,irrev}$ (s ⁻¹)	First-order kinetic sorption rate for irreversibly bound pollutants	0.1 (SMZ) 0.01 (IPU) 0.05 (SMZ)	Fitted
C _{s,irrev,max} (moles kg ⁻¹)	The maximum concentration of pollutant which can be irreversibly sorbed by the soil particles	$\begin{array}{c} 0.022 K_s C_{w,0} \;\; (SMZ) \\ 0.015 K_s C_{w,0} \;\; (IPU) \\ 0.038 K_s C_{w,0} \;\; (PHE) \end{array}$	Fitted

64 References

- Pansu M and Gautheyrou J, Handbook of soil analysis: mineralogical, organic and inorganic methods. Springer, Berlin (2006).
- 67 2. NCBI, National Center for Biotechnology Information. PubChem Compound 68 Database; CID=5327, https://pubchem.ncbi.nlm.nih.gov/compound/5327, Accessed 69 on 16 Dec 2015 (2015).
- 70 3. Tomlin C, The pesticide manual : a world compendium. Alton : British Crop Protection Council (2006).
- Yaws CL, Chemical Properties Handbook: Physical, Thermodynamic, Environmental,
 Transport, Safety, and Health Related Properties for Organic and Inorganic Chemicals.
 McGraw-Hill, New York (1999).
- Sangster J, Octanol-Water Partition Coefficients: Fundamentals and Physical
 Chemistry, in Wiley Series in Solution Chemistry. John Wiley & Sons, Chichester New York (1997).
- 78 6. Riser_Roberts E, Remediation of Petroleum Contaminated Soils: Biological, Physical, and Chemical Processes. Lewis Publishers (1998).
- 80 7. Brewer CE, Chuang VJ, Masiello CA, Gonnermann H, Gao X, Dugan B, Driver LE, Panzacchi P, Zygourakis K and Davies CA, New approaches to measuring biochar density and porosity. *Biomass and Bioenergy* **66**: 176-185 (2014).
- 83 8. Schwarzenbach RP, Gschwend PM and Imboden DM, Environmental Organic Chemistry. Wiley-Interscience, Hoboken, N.J. (2003).
- 25 9. Zheng C and Bennett GD, Applied contaminant transport modeling : theory and practice. Wiley-Interscience, New York (2002).