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Abstract
The three-dimensional steady problem of an elongated smooth body moving along the

water free surface at a constant speed is considered within the 2D+T approximation. The
corresponding unsteady two-dimensional problem describes both the water entry and the
subsequent exit of a smooth contour from the water. The shape of the contour varies
in time. The present paper is concerned with the exit stage. The draft of the body is
small compared with the body length and beam. The hydrodynamic loads during the
entry stage are evaluated by the original Wagner model of water impact. The linearized
exit model [5] is generalised to account for time-dependent acceleration of the body and
the body shape which also varies in time. The integral equation with respect to the size
of the wetted area of the body is solved numerically. The theoretical predictions of the
hydrodynamic forces acting on the body during its exit from the liquid are compared
with the numerical results obtained by solving the Navier-Stokes equations. A simplified
model of water exit with the body shape approximated by a parabolic contour with a
time-dependent radius of curvature is proposed and validated. It is shown that the lin-
earized water-exit model with non-linear correction terms predicts reasonably well the
hydrodynamic loads.
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1. Introduction

The present study is motivated by hydrodynamics of high-speed vessels and aircraft
ditching on the water surface, where the wetted part of the hull is streamlined and the hull
is elongated in the direction of the motion. Hydrodynamic loads over the wetted part of
the elongated hull are estimated by using the 2D+T approximation [6]. In this approxima-
tion, the three-dimensional nonlinear stationary problem is reduced to a two-dimensional
unsteady problem of water entry and exit. The latter problem can be linearized if the
draft of the body and the local deadrise angle of the body cross section are both small.
In particular, if the draft of the body is much smaller that the beam of the body. For
the stationary three-dimensional problem of a smooth body moving at a constant speed
along the water surface, we introduce a vertical plane perpendicular to the direction of
the body motion and consider the unsteady two-dimensional flow within this plane caused
by the body passing through the plane. The intersection of the moving body surface with
this control plane provides a two-dimensional contour which changes its shape in time
and penetrates the water surface. For a three-dimensional body with smooth surface the
entry stage ends when the two-dimensional contour stops expanding. During the next
stage, which is referred to below as the exit stage, the contour contracts and exits from
the water. The entry stage was investigated in [8] by the modified Logvinovich model [9].
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It was found that the theoretical results are very close to the computational fluid dynam-
ics (CFD) results obtained by numerical simulations of the Navier-Stokes equations (see
[10]-[12] for details of the simulations). During the exit stage, the von Karman model
was used in [8]. However, the theoretical results from [8] for the exit stage were not as
accurate as for the entry stage. Recently a linearized exit model was developed in [5].
Only symmetric rigid contours moving from the water surface with a constant accelera-
tion were considered. The exit model was formulated in terms of the linearized pressure
with the additional condition that the speed of the contact points is proportional to the
local speed of the flow. This model does not account for the shape of the body but still
corresponds quite well to the CFD results from [10]. The model was developed further
in [14] to account for a variable in time acceleration of the body. The bodies in [5] and
[14] were rigid, symmetric and only vertical motions were allowed. The two-dimensional
problem of a body whose shape varies in time was studied in [8] for an expanding and
contracting circular cylinder. The numerical and theoretical forces were very close to each
other during the expansion (entry) stage but rather different during the contraction (exit)
stage.

The forced constant acceleration exit of two-dimensional bodies through a free-surface
was numerically investigated in [15]. Cases of symmetric wedges, asymmetric wedges,
truncated wedges and boxes were considered. The problem was solved numerically by
means of a boundary-element method. The analytical added-mass force acting on a body
just after the body started to move was presented for the exit of symmetric wedges and
boxes with constant acceleration using conformal mappings. The numerical and analytical
results for added-mass force were compared and give good agreement for the exit of a
symmetric wedge but only moderate agreement for the box.

Fig. 1 Sketch of an elongated body moving along the water free surface at a fixed

penetration depth.

There have been numerous recent authors to study impact problems using fully non-
linear CFD-based techniques. The OpenFOAM opensource CFD toolkit is used in [2, 3]
to study the impact of rigid bodies with the calm-water surface. Results are provided for
pressure, force, and energy of the body during impact, and the numerical predictions are
validated with experimental measurements. In [1] CFD and the commercial structural-
analysis software ABAQUS are employed to study the impact of an elastic plate with
the water surface. A review of the capabilities of CFD to predict the impact of a wedge-
shaped body into the water surface can be found in [4]. All of these references focus on
impact, whereas the present work addresses specifically the exit phase of bodies from the
water.
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In the present paper, we apply the exit model from [5] to the bodies of varying shapes
and introduce some correction terms to the hydrodynamic loads to account for the shape
of the body (see [8]) and nonlinear effects. The entry stage is considered below within
the original Wagner theory of water impact. It is known (see [8]) that the modified
Logvinovich model [9] provides better predictions of the hydrodynamic loads during the
entry but here we are mainly concerned with the negative loads during the exit stage.

The linearized two-dimensional problem of water entry and exit is formulated in Sec-
tion 2. The relation of this problem to the three-dimensional problem of a smooth body
moving along water surface is explained. The CFD method is presented in Section 3.
The hydrodynamic force acting on a two-dimensional body, which enters the water with a
time-dependent speed and whose shape varies in time, is presented in Section 4. The lin-
earized model of water exit from [5] is reviewed in Section 5 together with the conditions
of its applicability and generalised to the case of non-constant acceleration of the body.
The water-exit model is generalised to the problem of varying in time shape of the body
in Section 6. The theoretical predictions are compared with the numerical solutions of
the Navier-Stokes equations and with the solutions of the exit problems for parabolic con-
tours. To improve the theoretical predictions, the shape of the body and some non-linear
terms in the Bernoulli equation for the hydrodynamic pressure are taken into account
within a weakly nonlinear model of water exit in Section 7. The obtained results and
developed models are applied in Section 8 to the steady problem of the ellipsoid moving
along the water surface with a small draft. The findings of the analysis are summarized
and conclusions are drawn in Section 9.

2. Formulation of water entry and exit problems

The three-dimensional problem of a smooth body moving horizontally along the water
free surface at the fixed penetration depth is considered in the Cartesian coordinate system
x, y, z, where the z-axis is in the direction of the body motion and the plane y = 0
corresponds to the equilibrium water level (Figure 1). The origin of the coordinate system
is placed on the equilibrium free surface. The nose of the body touches the plane z = 0
at a time instant taken as the initial one, t = 0. The elevation of the free surface in front
of the moving body is assumed to be zero. This is a drawback of the 2D+T model used
in this study. More details about the local flow in the region of the bow can be found in
[6, 7].

The liquid is assumed to be inviscid, incompressible and of infinite depth. The flow
caused by the moving body is potential, steady and three-dimensional. The body surface
is smooth. The body is elongated in the direction of its motion. The speed of the body
is constant. Gravity and surface tension effects are not taken into account in calculations
of the hydrodynamic loads acting on the body , which is a right approximation for large
dimensions of a body moving at a relatively high speed. The plane z = 0 is treated
here as a control plane (see [8]). Note that the position of the control plane is arbitrary
for the body moving with a constant speed. The flow within this plane is assumed two-
dimensional, which is an acceptable approximation for a three-dimensional body elongated
in the direction of its motion. The suitability of this assumption depends on how the
vertical sections of the body vary along the length, which is slowly for elongated bodies,
with exceptions limited to regions near the very front and back (see [6] and [8] for more
details). Within the control plane, z = 0, the 2D flow is caused by the moving contour
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which corresponds to the intersection curve between the surface of the moving body and
the plane z = 0. The contour is described by the equation

y = yb(x, t), (1)

where the function yb(x, t) is known. The function yb(x, t) is assumed smooth and even,
yb(−x, t) = yb(x, t), yb(0, t) = 0. For a body of length Lb moving with speed V , the time
interval of the body-fluid interaction is 0 < t < Lb/V within the 2D+T approximation.
This time interval is subdivided into four stages (see Figure 2): (1) 0 < t < t0, the contour
(1) is still above the water surface and there is no flow in the control plane; (2) t0 < t < t1,
during this stage the contour penetrates the water and its wetted area expands, this stage
is referred to as the entry stage; (3) t1 < t < t2, during this stage the wetted area shrinks
in time and the body surface is completely dry at t = t2, this stage is referred to as
the exit stage; (4) t > t2, after the end of the exit stage the flow in the control plane
continues with the body being above the water surface, this flow is not taken into account
in calculations of the hydrodynamic loads acting on the three-dimensional body within
the 2D+T approximation.

Fig. 2 Four stages of the flow in the control plane:
(a) The body appears in the control plane but is above the water surface;

(b) The 2D body touches the undisturbed free surface at a single point at t = t0;
(c) the body penetrates the water during the entry stage, t0 < t < t1;

(d) the wetted part of the body surface shrinks during the exit stage, t1 < t < t2;
(e) the body surface touches the elevated water at a single point at the end of the exit stage;

(f) the body is above the water surface and continues shrinking after t2.

The problem of the flow in the control plane is considered under the assumption that
the linear size of the body cross sections, Lc, is much greater than the penetration depth
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of the body, h0, but much smaller than the length of the body, Lb, introduced above.
The characteristic time T of both the entry and exit stages is estimated as Lb/V and the
velocity of the contour in the control plane is estimated as h0/T = h0V/Lb. The scale of
the velocity potential ϕ(x, y, t) is Lsh0/T and the linear scale is Lc. The hydrodynamic
pressure p in the control plane, which is used to evaluate the sectional loads acting on the
moving body, is given by the Bernoulli equation

p(x, y, t) = −ρ(ϕt +
1

2
|∇ϕ|2), (2)

where |∇ϕ|2/ϕt = O
(
(h0/T )2/(Lsh0/T

2)
)

= O
(
h0/Ls

)
and ρ is the liquid density. There-

fore, the nonlinear term in the Bernoulli equation (2) can be neglected if the penetration
depth is small, h0/Lc � 1. Correspondingly, the elevation of the free surface η(x, t)
caused by the moving body is scaled with h0 and can be neglected compared with the
characteristic length, Lc, of the flow in the control plane. As a result, the boundary con-
ditions on both the liquid free surface and on the wetted part of the contour, y = yb(x, t),
can be linearized and imposed on the equilibrium position of the water surface.

The linear boundary-value problem with respect to the velocity potential ϕ(x, y, t) is
given by

∇2ϕ = 0 (y < 0), (3)

ϕt = 0 (y = 0, |x| > c(t)), (4)

ϕy = yb,t(x, t) (y = 0, |x| < c(t)), (5)

ϕ→ 0 (x2 + y2 →∞), (6)

where the positions of the contact points, x = ±c(t), in the symmetric case, are described
by a single function c(t). This function is unknown in advance and should be determined
as part of the solution. Initially, c(t0) = 0. During the entry stage, t0 < t < t1, the
contact region, |x| < c(t), between the liquid and the section of the body expands with
dc/dt being positive. By the end of the entry stage, the contact points decelerate and
dc/dt(t1) = 0. During the exit stage, t1 < t < t2, the contact region contracts with
dc/dt < 0 and c(t2) = 0. The function c(t) is determined during the entry stage with the
help of the Wagner condition [16]. This condition requires that the elevation of the free
surface at the contact points, η[±c(t), t], is equal to the vertical position of the body at
these points, yb[±c(t), t]. During the exit stage the function c(t) is determined by using
the condition that the speed of the contact point dc/dt is proportional to the local velocity
of the flow, ϕx(c(t), 0, t), along the body section at this contact point (see [5]).

The boundary condition (4) is the linearized dynamic boundary condition, p = 0, on
the free surface. This condition can be integrated in time during the entry stage subject
to the initial condition, ϕ(x, y, t0) = 0, giving ϕ(x, 0, t) = 0, where |x| > c(t). During
the exit stage, we use the free-surface condition in the form (4). The hydrodynamic force
F (t) during both stages is calculated by the formula

F (t) =

c(t)∫
−c(t)

p(x, 0, t)dx, p(x, 0, t) = −ρϕt(x, 0, t). (7)

The theoretical prediction of the force F (t) during the entry stage can be significantly
improved by using the nonlinear Bernoulli equation (2) in combination with the linearized
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hydrodynamic model (3)-(6) (see [9] and [8] for more details). However, the present
analysis is focused on the exit stage. This is why we do not use the more developed
entry model from [9] in this paper. Some corrections to the linear model (3)-(7) will be
introduced in Section 7.

The force F (t) given by (7) corresponds to the vertical force acting on the section of
the 3D body, which is at the distance V t from the leading edge of the body. The total
vertical force Fv acting on the 3D body is obtained by integration of the sectional forces
along the body (see Figure 1)

Fv =

−V t0∫
−V t2

F (t)d(−V t) = V

t2∫
t0

F (t)dt. (8)

The integral in (8) is the integral of the force with respect to time and is known as the
impulse J . The total impulse J can be decomposed into the impulse Ji during the entry
stage,

Ji =

t1∫
t0

F (t)dt, (9)

and the impulse Je during the exit stage,

Je =

t2∫
t1

F (t)dt, (10)

where J = Ji + Je. Within the Wagner model of water entry, it will be shown in Section
4 that Ji = 0 for any shape of the 3D body. The torque M acting on the 3D body is
calculated with respect to the section z = −V t1, which separates the sections in entry,
−V t1 < z < −V t0, and the sections in exit, −V t2 < z < −V t1 (see Figure 1). The torque
is positive if it rotates the body in the anti-clockwise direction. The torque is calculated
by using the sectional forces (7), where z = −V t,

M =

−V t0∫
−V t2

F (−z/V )(z − z1)dz = V 2

t2∫
t0

F (t)(t1 − t)dt. (11)

The total torque can be decomposed as M = Mi +Me, where

Mi = V 2

t1∫
t0

F (t)(t1 − t)dt, Me = V 2

t2∫
t1

F (t)(t1 − t)dt, (12)

Mi is evaluated by using the force F (t) provided by the Wagner model (see section 3)
and Me is the contribution to the torque from the sections which are in exit from the water.

3. Computational Fluid Dynamics Method

The exit models presented in this paper are evaluated by comparing to fully nonlinear
numerical results computed using the OpenFOAM open-source CFD library. A custom

6



CFD solver is used that numerically solves the incompressible Navier-Stokes equations.
The air and water are considered as a single-fluid with spatially varying mechanical prop-
erties of density and viscosity. The governing equations are solved using the finite-volume
method in the Arbitrary Eulerian-Lagrangian (ALE) form for moving and deforming
meshes. The body force due to gravity is included and surface tension is neglected.

The governing equations are solved in the earth-fixed (stationary) coordinate system.
In other words the body moves relative to the coordinate system in which the unknowns
are expressed. Three cases are studied in this paper: the motion of a parabolic contour
(2D), the expansion and contraction of a circular body (2D), and the translation of an
ellipsoid (3D). The parabola and ellipsoid move rigidly so that the mesh moves as a
solid. The expanding and contracting cylinder requires that the mesh deforms during the
simulation. For the deforming mesh case, the mesh motion is governed by the Laplacian
of the mesh displacement.

The interface between the air and water is tracked using the Volume-of-Fluid method.
A special interface compression algorithm is used to ensure that the interface remains
sharp throughout the entry and exit stages. The volume-fraction field is α. The algo-
rithm adaptively determines the compression coefficient depending on the relative velocity
between the fluid and the mesh. The compression coefficient is calculated as

Cα = max

(
− ur · ∇α
|ur||∇α|+ ε

, 0

)
,

where ur is the relative velocity between the fluid and the mesh, u − umesh, and ε is a
small number 10−8 to ensure that the denominator does not go to zero. Additional details
about the volume-of-fluid implementation in OpenFOAM and the adaptive compression
can be found in [21, 13]. The water properties are density of 1000 kg/m3 and kinematic
viscosity of 1 × 10−6 m2/s. The air properties are density of 1.5 kg/m3 and kinematic
viscosity of 1.5× 10−5 m2/s.

The interface between the air and water is tracked using the Volume-of-Fluid method.
A special interface compression algorithm is used to ensure that the interface remains
sharp throughout the entry and exit stages [13]. The water properties are density of
1000 kg/m3 and kinematic viscosity of 1 × 10−6 m2/s. The air properties are density of
1.5 kg/m3 and kinematic viscosity of 1.5× 10−5 m2/s.

The discretization of the fluid domain is performed using the semi-automatic mesh
generation tool snappyHexMesh. Boundary layer prisms are used on the body to enhance
the accuracy in the computation of the gradient of the unknowns in the direction normal
to the body contour. Refinement is used in regions where the air-water interface passes.
A mesh refinement study is conducted for each case, and results on the fine mesh are
presented herein. The fine grid for the parabolic contour simulations uses 1,013,760 cells,
and the cell size in the region where the interface passes is 6.3×10−4B, where B is a half-
width of the contour. The fine grid for the expanding cylinder contains 1,635,109 cells,
and the smallest cell size is 1.5 × 10−4R0, where R0 is the initial radius of the cylinder.
The ellipsoid simulations use a grid that contains more than 7.5 million cells, and the cell
size in the region where the body intersects the air-water interface is 1.5× 10−4L, where
L is the largest dimension of the ellipsoid.

The boundary conditions for the flow variables on the body are zero-normal gradient
for the volume fraction and dynamic pressure, and no-slip for velocity. The conditions on
the far-field or extent of the domain, with the exception of the horizontal top portion and
symmetry plane, are zero-normal gradient for the volume fraction and dynamic pressure,
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and zero for the velocity. On the top of the domain the conditions are zero-normal gradient
for the velocity, and zero for the volume fraction and the dynamic pressure.

4. Water-entry problem for a body of varying shape

The hydrodynamic force F (t) acting on a two-dimensional symmetric body, which
enters water and at the same time changes its shape, was derived in [17] (see eq.(6)):

F (t) = 2ρ
d2

dt2

c2 π/2∫
0

yb

(
c(t) sin θ, t

)
sin2 θ dθ

 , (13)

where the function c(t) is the solution of the equation

π/2∫
0

yb

(
c(t) sin θ, t

)
dθ = 0. (14)

Equations (13) and (14) yield

F (t) = −2ρ
d

dt

c2(t) π/2∫
0

yb,t

(
c(t) sin θ, t

)
cos2 θ dθ

 . (15)

Equations (9) and (15) provide that the impulse Ji during the entry stage,

t1∫
t0

F (t)dt = −2ρc2(t1)

π/2∫
0

yb,t

(
c(t1) sin θ, t1

)
cos2 θ dθ,

is equal to zero if the contour stops expanding at the end of the entry stage, yb,t(x, t1) = 0,
where |x| < c(t1) and (dc/dt)(t1) = 0. By using the fact that the time t is proportional to
the longitudinal coordinate z of a section in the front part of the three-dimensional body,
we can conclude that the contribution of the body sections in entry to the total vertical
force (8) acting at the 3D body is zero. During the exit stage negative forces should
be expected. This suggests that the total vertical force acting on a 3D body moving
horizontally at a constant penetration depth is directed into the water forcing the body
to sink. This results is valid for any shape of the body.

The torque Mi given by (12) is calculated by using (13),

Mi = 2ρV 2

t1∫
t0

(t1 − t)
d2Y (t)

dt2
dt = 2ρV 2

(t1 − t)
dY

dt

∣∣∣∣t1
t0

+

t1∫
t0

dY

dt
(t) dt

 = 2ρV 2Y (t1),

(16)
where

Y (t) = c2(t)

π/2∫
0

yb

(
c(t) sin θ, t

)
sin2 θ dθ (17)
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and Y (t0) = 0, dY
dt

(t0) = 0, which follow from (17) and (14). Equations (16), (17) and
(14) show that the torque Mi depends only on the shape of the body section at distance
V t1 from the body nose, where t1 and c(t1) are determined by (14) and the equation

π/2∫
0

yb,t

(
c(t1) sin θ, t1

)
dθ = 0, (18)

which follows from (14) and the equation (dc/dt)(t1) = 0.
The sign of the function Y (t) at t = t1 is not clear. We evaluate Y (t) for a parabolic

contour yb(x, t) = x2/(2R(t)) + h(t) which penetrates the liquid with speed ḣ(t) and
changes its radius of the curvature, R(t), with time. Here h(t0) = 0, h(t) < 0 where
t > t0, and ḣ(t) ≤ 0 where t0 < t < t1. The functions h(t) and R(t) are assumed given.
Equation (14) gives for the parabolic contour

c2

2R(t)

π/2∫
0

sin2 θdθ +
π

2
h(t) = 0

and
c2(t) = −4h(t)R(t). (19)

The equation ċ(t1) = 0 with respect to t1 provides

ḣ(t1)R(t1) + h(t1)Ṙ(t1) = 0. (20)

The function Y (t) is evaluated for the parabolic contour by using (17) and (19)

Y (t) = c2(t)

 c2

2R(t)

π/2∫
0

sin4 θdθ + h(t)

π/2∫
0

sin2 θdθ

 =

c2(t)

[
3π

32

c2

R(t)
+ h(t)

π

4

]
=
π

2
R(t)h2(t). (21)

Therefore, Y (t) is positive during the entry stage and the torque Mi given by (16) rotates
the body anti-clockwise. The function Y (t) given by (21) for the parabolic contour and
the equation (13) for the hydrodynamic force during the entry stage yield

F (t) = πρ
d2

dt2

(
R(t)h2(t)

)
. (22)

If the sections of the 3D body can be approximated in the contact regions, |x| < c(t), by
the parabolic contour with two given functions of time, R(t) and h(t), then the sectional
forces are given by (22) and the size of the contact region by (19). The torque Mi is
equal to πρV 2R(t1)h

2(t1), where t1 is the solution of equation (20). Equation (20) shows
that, in general, the time derivatives ḣ(t) and Ṙ(t) are not equal to zero at the end
of the entry stage, when ċ(t1) = 0. However, in this paper we consider only the case
where both derivatives, ḣ and Ṙ are equal to zero at t1. In the general case, without
approximation of the body sections by parabolic contour of varying curvature, we will
assume that yb,t(x, t1) = 0 where |x| < c(t1). In this case, the entry and exit stages are
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separated in time one from another and the exit stage starts at t = t1 with ϕ(x, y, t1) = 0
in the flow region (see the problem (3)–(6)). However, the size of the contact region at
the beginning of the exit stage is that at the end of the entry stage and the free surface
at t = t1 is not horizontal.

To explain how the linearised exit model can be applied to the 2D+T problem under
consideration in this study, we consider the problem of water exit on its own with both
the liquid and the body being initially, t = t1, at rest.

5. Water exit of a rigid body

A two-dimensional problem of a symmetric rigid body with small deadrise angle, which
is lifted from the liquid surface with a prescribed acceleration, is considered within the
linearized exit model [5]. The liquid is of infinite depth, inviscid and incompressible.
Initially, t = t1, the liquid is at rest. The free surface of the liquid is flat and horizontal.
The body starts to move suddenly upwards from the liquid with a prescribed acceleration
ḧ(t) which varies in time. Gravity and surface tension effects are not included in the
model. Boundary conditions on the liquid surface are linearized and imposed on the
equilibrium position of the liquid surface. The hydrodynamic pressure is continuous at
the periphery of the wetted area which shrinks monotonically with time. The unknown
size of the wetted area is determined by the condition that the speed of the contact
points is proportional to the local velocity of the flow. Hydrodynamic forces acting on a
lifting body are determined within the proposed linearized model and compared with the
numerical results obtained by solving the Navier-Stokes equations. It is shown that the
linearized water-exit model accurately predicts the hydrodynamic loads.

A linearized model of exit was suggested in [5] and applied successfully to the problems
of exit with constant acceleration. In this model, the flow is assumed potential and linear.
The shape of the wetted part of the body is simplified by using the so-called “flat-plate
approximation”. Only inertia forces are included in this exit model. Viscous effects are
taken into account through the equation for the velocity of the contact points, which is
assumed to be proportional to the local speed of the flow at these points.

Within the present model of water exit, the pressure p(x, y, t) is given by the linearized
Bernoulli equation, p(x, y, t) = −ρϕt(x, y, t), where the velocity potential ϕ(x, y, t) is a
solution of the boundary-value problem (3)-(6) with yb,t(x, t) = ḣ(t) and the function c(t)
calculated by using the equation

dc

dt
= γϕx(c(t), 0, t), c(t1) = c0, (23)

where c0 is given. The coefficient γ in (23) is undetermined in the present model and
is chosen by using the numerical results from [10]. It was found that the theoretical
predictions with γ = 2 well correspond to all available numerical results. Eq. (23) assumes
that the relation between the speed of the contact point ċ(t) and the local tangential
velocity of the flow is linear with the coefficient γ being dependent, in general, on the
physical characteristics of both the liquid and the body surface, such as wettability of the
body surface and viscosity of the liquid.

The estimates obtained in [5] provide that the hydrodynamic problem can be linearized
if aT 2/c0 � 1, where a is the scale of the vertical acceleration of the body cross sections
and T is the time-scale. The surface tension and the liquid viscosity can be neglected if
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c0 > 3 mm for water at 20◦ C. The gravity can be neglected if g/a � 1 and there is no
cavitation in the wetted area during water exit if c0a < 98m2s−2. For a 3D body moving
along the water surface at speed V with the body length Lb, characteristic size of the
body sections Lc and the penetration depth h0 we obtain

aT 2 = O(h0), c0 = O(Lc), T =
Lb
V
,

aT 2

c0
= O

(
h0
Lc

)
.

Therefore, the linearized model of water exit is justified if the penetration depth h0 is
smaller than the size Lc of the body cross sections. The estimates above yield a =
O(h0V

2/L2
b) which is much greater than the gravitational acceleration only for large

Froude number, V 2/(gLb) � Lb/h0. For example, for Lb = 10 m, h0 = 20 cm we find
V > 70 m/s. For V > 100 m/s we calculate T = 0.1 s, a ∼ 20 m/s2 and c0a < 20 m2/s2.
Thus, the gravity can be neglected only for a very high speed of the body. However, if
the speed of the body is too high, then cavitation may start in the contact region at the
end of the entry stage and the present linearized model is no longer appropriate.

Note that the linearized pressure also satisfies the Laplace equation in y < 0, is equal
to zero on the free surface, y = 0, |x| > c(t), and py = −ρḧ(t) in the contact region,
y = 0, |x| < c(t). The latter condition has been obtained by differentiating the body
boundary condition (5) in time.

The solution of the boundary problem with respect to the pressure provides (see [5])

p(x, 0, t) = −ρḧ(t)
√
c2(t)− x2 (|x| < c(t)), F (t) =

c(t)∫
−c(t)

p(x, 0, t)dx =−maḧ(t), (24)

where ma = 0.5πρc2(t) is the added mass of the equivalent flat plate. It is seen that the
hydrodynamic force can be evaluated if the size of the wetted area, which is described by
the function c(t), is known.

The velocity potential and the velocity of the flow along the body surface are given by

ϕ(x, 0, t) =

t∫
t1

ḧ(τ)
√
c2(τ)− x2 dτ ϕx(x, 0, t) = −x

t∫
t1

ḧ(τ) dτ√
c2(τ)− x2

. (25)

Equations (23) and (25) yield the following integro-differential equation for the function
c(t)

dc

dt
= −γc(t)

t∫
t1

ḧ(τ)dτ√
c2(τ)− c2(t)

. (26)

Equation (26) can be solved numerically for a given function h(t) but we could not find
a stable algorithm to discretize equation (26). Below we transform equation (26) to a
system of two equations with respect to two new unknown functions, as it was suggested
in [5], and discretize these two equations with account for the initial asymptotic behaviour
of its solution.

To solve equation (26) with a given function h(t) and the initial condition c(t1) = c0,
we introduce new non-dimensional variables α and σ such that c2(t) = c20(1− σ), c2(τ) =
c20(1− α), where α and σ are equal to zero when t = t1 and τ = t1, correspondingly, and
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α = σ at τ = t (see [5] for details). A new unknown function f(σ) is introduced by the
equation

ḧ = f(σ)
dc2

dt
.

Then equation (26) leads to two equations with respect to f(σ) and t(σ), 0 < σ < 1,

ḣ(t) = −c20

σ∫
0

f(α)dα, ḧ(t) = 2γc30(1− σ)f(σ)

σ∫
0

f(α)dα√
σ − α

. (27)

The system (27) is not ready yet for its numerical analysis. Indeed, if ḧ(0) 6= 0, then
f(σ) → ∞ as σ → 0 which follows from the second equation of the system. To prove
this asymptotic behaviour, let us assume that f(σ) tends to a constant as σ → 0. Then
the integral in the second equation tends to zero and the right-hand side of this equation
tends to zero but the left-hand side, ḧ(t), is not zero as t→ t1. To cover a general case of
the body motion, we assume that the body displacement h(t) behaves as h(t) ∼ A(t−t1)m
when t → t1. Here A > 0 and m > 1. The latter inequality implies that ḣ(0) = 0. The
asymptotic behaviour of the function f(σ) as σ → 0 is sought in the form f(σ) ∼ −qoσ−k.
The system (27) provides as σ → 0 and t(σ)→ t1:

A m
(
t(σ)− t1

)m−1 ∼ q0 c
2
0

σ∫
0

α−k dα, (28)

A m (m− 1)
(
t(σ)− t1

)m−2 ∼ 2γ q20 c
3
0 σ
−k

σ∫
0

α−k dα√
σ − α

. (29)

The integrals in (28) and (29) are evaluated as

σ∫
0

α−k dα =
σ1−k

1− k
,

σ∫
0

α−k dα√
σ − α

= σ1/2−kχk, χk =

1∫
0

u−k du√
1− u

. (30)

The right-hand side in (29) is of the order of O
(
σ1/2−2k) as σ → 0. Therefore,

t(σ)− t1 = O
(
σ

1/2−2k
m−2

)
and the asymptotic estimate (28) gives

q0 c
2
0

σ1−k

1− k
= O

(
σ

(1/2−2k)(m−1)
m−2

)
. (31)

The order of the right-hand side and left-hand side in (31) as σ → 0 are equal if

1− k =
m− 1

m− 2

(1

2
− 2k

)
which yields the formula for the power k

k =
3−m

2m
. (32)
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If the contour starts to exit water with ḧ(0) 6= 0, then m = 2 and k = 1/4, which is the
result from [5]. If m ≥ 3, then the function f(σ) is regular at σ = 0.

The definition of the variable σ, c2(t) = c20(1 − σ), and equations (28), (32) provides
the asymptotic behaviour of the coordinate of the contact point as t→ t1,

c(t) = c0
√

1− σ = c0

(
1− 1

2
σ +O(σ2)

)
=

= c0 −
1

2
c0

(
Am (1− k)

c20 q0

) 1
1−k (

t− t1
)m−1

1−k +O
(∣∣t− t1∣∣2m−1

1−k

)
, (33)

where (m − 1)/(1 − k) = 2m/3. It is seen that the initial velocity of the contact point,
ċ(t1), is zero if m > 3/2. Eliminating t(σ)− t1 from (28), (29) and using (32), we obtain
the coefficient q0

q0 =
2m

3c0

(
9

4

m− 1

m

A

c0

)1/m (
2γχk

) 1−m
m . (34)

For a body lifted from the water surface at a constant acceleration a, we have m = 2,
A = 1

2
a and equation (34) provides

q0 =

(
a

2γχ1/4c
3
0

)1/2

,

which is the formula from [1].
By using the obtained asymptotic behaviour of the function f(σ) as σ → 0, we intro-

duce new non-dimensional function G(σ) by

f(σ) = −q0σ−kG(σ), (35)

where G(σ) is regular at σ = 0 and G(0) = 1. Substituting (35) in (27) and introducing
non-dimensional velocity V (t) = ḣ(t)/(c20q0) and acceleration W (t) = ḧ(t)/(2γc30q

2
0) of the

body, we arrive at the system

V (t) =

σ∫
0

α−kG(α) dα, W (t) = (1− σ)σ−kG(σ)

σ∫
0

G(α)
α−k dα√
σ − α

(36)

in the non-dimensional variables, where 0 < σ < 1, G(0) = 1 and the functions V (t) and
W (t), t > t1, are given. The system (36) is suitable for numerical analysis.

The interval 0 < σ < 1 is divided into subintervals (σn−1, σn) of length ∆σ, where
n ≥ 1, σn = n∆σ and σ0 = 0. The function G(σ) is linearly interpolated in each
subinterval. Then the first equation of the system (36) gives

V (tn)− V (tn−1) =

σn∫
σn−1

α−kG(α)dα ≈

σn∫
σn−1

α−k
(
Gn−1 +

Gn −Gn−1

∆σ
(α− σn−1)

)
dα = αnGn − βnGn−1,
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where Gn = G(σn), tn = t(σn) and αn, βn are the known coefficients. We obtain

Gn = (V (tn)− V (tn−1) + βnGn−1)/αn. (37)

Equation (37) defines G(σn) as a function of tn once tn−1 and Gn−1 have been deter-
mined in the previous time step. The second equation in (36) at σ = σn gives

W (tn) = (1− σn)σ−kn Gn

n∑
j=1

σj∫
σj−1

G(α)
α−kdα√
σn − α

≈

(1− σn)σ−kn Gn

Gn

∆σ

σn∫
σn−1

α−k(α− σn−1) dα√
σn − α

+ Pn

 ,

where Pn depends on Gj with 1 ≤ j ≤ n− 1. The resulting equation is

W (tn) = (1− σn)σ−kn Gn(GnAn + Pn), An =
√

∆σ

1∫
0

(σn−1 + ∆σξ)−k
ξ dξ√
1− ξ

. (38)

Substituting (37) in (38) we obtain the non-linear equation with is respect to tn, which is
solved by the bisection method.

Computations are performed for the parabolic contour y = x2/(2R)−h0 +h(t), where
R ≈ 1.4 m, h0 = 1 cm, t1 = 0 and ḧ(t) = a + 2bt, a = 1 m/s2, b = ±1 m/s3. Initially,
t = 0, the contour is submerged at depth h0. Both the liquid and the body are initially
at rest. Here c0 =

√
2Rh0 ≈ 17 cm. The theoretical force does not depend on the body

shape but on c0 and the body displacement h(t). The size of the contact area, c(t), is
calculated by (37) and (38) with ∆σ = 5 · 10−3. The force is calculated by equation (24),
which provides

F (tn) = −πγρ c50 q20(1− σn)W (tn). (39)

In the present case, m = 2, A = a/2 and equations (32) and (34) give k = 1/4 and

q20 =
a

2γc30 χ1/4

. (40)

Equations (39) and (40) show that the magnitude of the force F (t) is independent of the
parameter γ. Below we take γ = 2 as in [5].

Fig 3. The dimensional force in N/m acting on a half of the body as a function of time
in seconds for a = 1 m/s2, g = 0 and b = 1 m/s3 (a), b = −1 m/s3 (b).
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The problem of water exit for the same conditions is also solved numerically with a
VOF-based Navier-Stokes solver from the OpenFOAM library. Gravity is not included in
the computations. The results for the vertical force on the body are presented in Figure 3.
It is seen that the theoretical model well describes the evolution of the hydrodynamic force.
However, the model does not describe all details of the force just after the start of the
body motion, and the interaction lasts longer in CFD than in the theory for b = 1 m/s3.

The shape of the free surface predicted by the numerical solution for a = 1 m/s2 and
b = 1 m/s3 at several time instants is shown in Figure 4. The wetted part of the body
surface is much larger in the numerical solution than in the linearized exit model. This
explains why the numerical force lasts longer than the theoretical one (see Figure 3a).
However, the distance travelled by the body by t = 0.3 s is 5.4 cm which is not small
compared with the horizontal size of the contact region c0. The linearized model of water
exit is not accurate for large displacements of the lifting body. On the other hand, the
forces at the end of the exit stage are rather small (see Figure 3) and can be neglected in
calculations of the body dynamics but not of the flow, which is nonlinear and complicated
at the end of the exit stage (see Figure 4). Note that the system (27) can be used only for
motions with positive acceleration, ḧ(t) > 0. Only for such motions the function f(σ) can
be introduced. The function f(σ) is singular as σ → 1 (see [5] for details). The solution
of the system (27) is not reliable at the end of the exit stage when σ → 1 and c(t)→ 0.
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Fig 4. CFD prediction of free-surface position for the case shown in Figure 3a.

Equation (32) shows that the function f(σ) is regular at σ = 0 for m = 3. The case
with m = 3 corresponds to the motion of a floating body with linear in time acceleration,
h(t) = at3. In this case, k = 0 and the system (36) can be written in the form independent
of any parameters

τ 2

4
=

σ∫
0

G(α)dα, τ = (1− σ)G(σ)

σ∫
0

G(α)dα√
σ − α

, (41)

where t = τ(c0/48γa)
1
3 , G(0) = 1 and the force F (t) = Fscτ(σ)(σ − 1) with the scale

Fsc = 0.25πρ(36a2c70/γ)
1
3 . The computations were performed for the same shape as in

Figures 3 and 4. The system (41) is solved by the power series method similar to that
from [5]. The results are shown in Figure 5a. It was found that the difference between
the numerical, Fnum(t), and theoretical, Fth(t), solutions can be approximated by 5.5t
(see Figure 5b). This implies that the added mass in the CFD results differs from the
theoretical one by a constant. One could expect that this constant describes the effect
of the liquid left on the lifting surface. The latter effect is not taken into account in the
theoretical model.

Fig 5. The dimensional force in N/m acting on a half of the parabolic contour lifted
from water with linear acceleration, h(t) = at3, where a = 1 m/s3.

6. Water exit of a body with time-varying shape

In this section, we study the problem of water exit, (3)-(6), with the condition (23)
and a given function yb(x, t) in the body boundary condition (5). The problem was solved
in [8] by using the von Karman model [18], where the positions of the contact points,
x = ±c(t), are determined as the intersection points between the moving surface of the
body and the initial position of the free surface. Here we employ the linearized model of
water exit generalized in Section 5.
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6.1 Reformulation of Boundary Value Problem

The problem (3)–(6) is reformulated with respect to the analytic function

W (z, t) = (ϕxt − iϕyt)
√
z2 − c2(t)

in the lower half-plane, y < 0, where z = x + iy and W (z, t) → 0 as z → ∞. On the
boundary, y = 0, we calculate

W (x− i0, t) =


−iϕyt

√
x2 − c2(t) x > c(t),

−i
√
c2(t)− x2(ϕxt − iyb,tt(x, t)) |x| < c(t),

iϕyt
√
x2 − c2(t) x < −c(t).

(42)

and

Re[W (x− i0, t)] =

{
−
√
c2(t)− x2yb,tt(x, t) |x| < c(t),

0 |x| > c(t).

The Hilbert formula (which relates the real and imaginary parts of an analytic function
in the lower half-plane, y < 0) written for the interval |x| < c(t) provides

ϕxt(x, 0, t) =
1

π
√
c2 − x2

p.v.

c(t)∫
−c(t)

yb,tt(ξ, t)

√
c2 − ξ2 dξ
ξ − x

. (43)

The horizontal component of the flow velocity on the boundary, y = 0, is given by

ϕx(x, 0, t) =

t∫
t1

ϕxt(x, 0, τ) dτ. (44)

Note that ϕ(x, y, t1) = 0 within the linearized model of water exit. Equations (23), (44)
and (43) yield

dc

dt
= γϕx[c(t), 0, t] =

γ

π

t∫
t1

1√
c2(τ)− c2(t)

p.v.

c(τ)∫
−c(τ)

yb,tt(ξ, τ)

√
c2(τ)− ξ2 dξ
ξ − c(t)

dτ, (45)

where c(t1) = c0. This is the equation with respect to the size of the wetted part of the
body surface, c(t), for given yb(x, t) and c0.

The integral with respect to ξ in (45) is the Cauchy Principal Value integral, where
c(t) < c(τ) for t > τ . This integral can be transformed as

p.v.

c(τ)∫
−c(τ)

yb,tt(ξ, τ)

√
c2(τ)− ξ2 dξ
ξ − c(t)

=

= [c2(τ)− c2(t)] p.v.

c(τ)∫
−c(τ)

yb,tt(ξ, τ)
dξ

(ξ − c(t))
√
c2(τ)− ξ2

−
c(τ)∫

−c(τ)

yb,tt(ξ, τ)
(ξ + c(t)) dξ√
c2(τ)− ξ2

,
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where the first integral is zero if yb,tt(ξ, τ) does not depend on ξ. In the second integral, ξ
in the numerator gives zero contribution because yb,tt(ξ, τ) is even function of ξ. To solve
equation (45), we introduce a new function

H(τ) =
2

π

c(τ)∫
0

yb,tt(ξ, τ) dξ√
c2(τ)− ξ2

, (46)

a new variable σ = σ(t), such that c2(t) = c20(1 − σ) and σ(t1) = 0, and a new function
f(σ) related to H(t) by

H(t) = f(σ)
dc2(t)

dt
= −c20f(σ)

dσ

dt
, (47)

which is similar to the analysis in Section 5. Letting c2(τ) = c20(1 − α), we can write
equation (45) in the form

dc

dt
= −γc(t)

t∫
t1

H(τ) dτ√
c2(τ)− c2(t)

+ γS(t) = γc0c(t)

σ∫
0

f(α) dα√
σ − α

+ γS(t), (48)

where

S(t) =

t∫
t1

√
c2(τ)− c2(t)

[
1

π

c(τ)∫
−c(τ)

yb,tt(ξ, τ)− yb,tt(c(t), τ)

(ξ − c(t))
√
c2(τ)− ξ2

dξ

]
dτ. (49)

If yb,tt(x, τ) = ḧ(τ) as in Section 5, then S(t) ≡ 0, H(t) = ḧ(t) and equation (48) coincides
with (26).

Next we divide both sides of equation (48) by ċ(t) and multiply by H(t)

H(t) = γc0
c(t)

ċ(t)
H(t)

σ∫
0

f(α) dα√
σ − α

+ γ
H(t)

ċ(t)
S(t),

where

c0
c(t)

ċ(t)
H(t) = 2c30(1− σ)f(σ),

H(t)

ċ(t)
= 2c(t)f(σ).

Then

H(t) = 2γc30(1− σ)f(σ)

σ∫
0

f(α) dα√
σ − α

+ 2γc0f(σ)S(t)
√

1− σ. (50)

Equation (50) has to be solved with respect to f(σ) and t(σ) together with the equation
which follows from (47)

t∫
t1

H(τ)dτ = −c20

σ∫
0

f(α)dα. (51)

The system (50), (51) reduces to the system (27) if the body exits water without changing
its shape in time, yb,tt(x, t) = ḧ(t).
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Once the system (50), (51) has been solved, we obtain c = c(t) and can compute
the hydrodynamic force F (t) acting on the body of variable shape during the exit stage.
Within the linearized exit model

F (t) =

c(t)∫
−c(t)

p(x, 0, t) dx = ρ

c(t)∫
−c(t)

xϕtx(x, 0, t) dx, (52)

where ϕtx(x, 0, t) in the contact region is given by (43). Substituting this formula for
ϕtx(x, 0, t) in (52) we find

F (t) =
1

π
ρ

c(t)∫
−c(t)

x√
c2 − x2

[
p.v.

c(t)∫
−c(t)

yb,tt(ξ, t)

√
c2 − ξ2 dξ
ξ − x

]
dx =

1

π
ρ

c(t)∫
−c(t)

yb,tt(ξ, t)
√
c2 − ξ2

[
p.v.

c(t)∫
−c(t)

x dx√
c2 − x2(ξ − x)

]
dξ,

which gives

F (t) = −2ρc2(t)

π/2∫
0

yb,tt(c(t) sin θ, t) cos2 θ dθ. (53)

If the body shape does not change in time, then yb,tt(c(t) sin θ, t) = ḧ(t),
∫ π/2
0

cos2 θdθ =
π/4 and (53) gives

F (t) = −π
2
ρc2(t)ḧ(t)

which is equation (24) from Section 5.

6.2 Solution of Boundary Value Problem

The system (50), (51) with respect to two unknown functions, f(σ) and t(σ) is solved
numerically by a σ-marching procedure similar to that described in Section 5. Note
that the integral in (46) depends on t(α) through τ in the numerator and α through
c(τ) = c0

√
1− α. It is convenient in the following to change H(t) in (50) to H(σ, t(σ))

showing explicitly the functions to be determined. Then equation (50) takes the form

H
(
σ, t(σ)

)
= 2γc30(1− σ)f(σ)

σ∫
0

f(σ)√
σ − α

R
(
σ, α, t(α)

)
dα, (54)

H
(
σ, t(σ)

)
=

2

π

π/2∫
0

yb,tt

(
c0
√

1− σ sin θ, t(σ)
)
dθ,

R
(
σ, α, t(σ), t(α)

)
= 1− 2(σ − α)

L
(
σ, α, t(α)

)
H
(
α, t(α)

) ,
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L
(
σ, α, t(α)

)
=

π/2∫
0

yb,tt

(
c0
√

1− α sin θ, t(α)
)
− yb,tt

(
c0
√

1− σ, t(α)
)

(1− α) sin2 θ − (1− σ)
dθ.

For a rigid body with yb,tt(x, t) = ḧ(t) we have L(σ, α, t(α)) ≡ 0, R ≡ 1, H(σ, t(σ)) =
ḧ[t(σ)]. Correspondingly, equation (51) takes the form

t(σ)∫
t(0)

H
(
σ(τ), τ

)
dτ = −c20

σ∫
0

f(α) dα. (55)

and equation (54) is reduced to the second equation in (27).
For a parabolic contour with a time-dependent curvature, yb(x, t) = x2B(t)−h0+h(t),

calculations provide
yb,tt(x, t) = x2B̈(t) + ḧ(t),

H
(
σ, t(σ)

)
=
c20
2

(1− σ)B̈
(
t(σ)

)
+ ḧ
(
t(σ)

)
, L

(
σ, α, t(α)

)
=
π

2
c20B̈

(
t(α)

)
.

The system (54), (55) is studied here only for the case H(0, t1) = a > 0. The unknown
function f(σ) behaves as f(σ) = −q0σ−1/4 when σ → 0 (see Section 5), where q0 =(
a/[2γc30 χ1/4]

)1/2
. We introduce the new unknown function G(σ) by (35), G(0) = 1, and

write the system (54), (55) in the form suitable for its numerical analysis

H
(
σ, t(σ)

)
= w(1− σ)σ−1/4G(σ)

σ∫
0

α−1/4G(α)√
σ − α

R
(
σ, α, t(α)

)
dα, (56)

t(σ)∫
t(0)

H
(
σ(τ), τ

)
dτ = v

σ∫
0

α−1/4G(α) dα, (57)

where w = 2γq20 c
3
0 = a/χ1/4 is the scaled initial acceleration of the body and v = c20 q0 is

a characteristic velocity.
The system (56), (57) is solved by the collocation method similar to that from Sec-

tion 5. Within this method the equations are satisfied at σ = σj, j = 1, ...N , where
∆σ = 1/(N + 1). Then σN = 1−∆σ. The end point σ = 1, where the contact region is
a single point, is not included in computations. The time instant corresponding to σj is
denoted by tj, tj = t(σj). Equations (56) and (57) provide

H
(
σj, tj

)
= w(1− σj)σ−1/4j Gj

[ σj∫
σj−1

α−1/4G(α)
√
σj − α

R
(
σj, α, t(α)

)
dα+

+

σj−1∫
0

α−1/4G(α)
√
σj − α

R
(
σj, α, t(α)

)
dα,

]
(58)

tj∫
tj−1

H
(
σ(τ), τ

)
dτ = v

σj∫
σj−1

α−1/4G(α) dα, (59)
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where Gj = G(σj), Hj = H(σj, tj), Rji = R(σj, σi, ti), 1 ≤ j ≤ N , i ≤ j, Rjj = 1. The
function H(σ(τ), τ) in the interval tj−1 < τ < tj and the function G(α) in the interval
(σj−1, σj) are approximated by linear functions. Then equation (59) yields

1

2
(Hj +Hj−1)(tj − tj−1) ≈ v

(
Gj−1aj + [Gj −Gj−1]bj),

which gives Gj as a function of tj,

Gj =
1

2bjv
(Hj +Hj−1)(tj − tj−1) +Gj−1(1−

aj
bj

), (60)

where Hj−1, Gj−1, tj−1 are assumed known from the previous step of calculations, and

aj =

σj∫
σj−1

α−1/4 dα =
4

3

(
σ
3/4
j − σ

3/4
j−1
)
,

bj =
1

∆σ

σj∫
σj−1

α−1/4(α− σj−1) dα =
4

3
σ
3/4
j −

16

21

σ
7/4
j − σ

7/4
j−1

∆σ
.

In equation (58), the integrals are evaluated approximately by using linear approximations
of the product G(α)R

(
σj, α, t(α)

)
in the intervals (σi−1, σi), where i ≤ j,

G(α)R
(
σj, α, t(α)

)
= Gi−1Rj,i−1 +

GiRj,i −Gi−1Rj,i−1

∆σ
(α− σi−1).

Then equation (58) can be approximated by

Hj = w(1− σj)σ−1/4j Gj

[
GjAj +Qj

]
, (61)

where the coefficients Aj were introduced in (38) and Qj depends on Gi with 1 ≤ i ≤ j−1.
The resulting system (60), (61) is similar to the system (37), (38) from Section 5. Substi-
tuting Gj from (60) in (61), we arrive at the equation with respect to tj, which is solved
by the bisection method.

6.3 Analysis of Expanding and Contracting Cylinder

The derived exit model (53)–(55) is applied to the problem of expanding and contract-
ing circular cylinder [8] with the time-varying shape of the body given by

yb(x, t) = R0 −
√
R2(t)− x2, R(t) = R0 +R1t+R2t

2, (62)

where t0 = 0 (see Figure 2) and R0 is the initial radius of the cylinder. Initially the
liquid is at rest and occupies the lower half-plane, y < 0, with the horizontal free surface
at y = 0. The cylinder touches the free surface at a single point at t = 0 and then
starts expanding with the initial velocity R1. The cylinder penetrates the liquid in the
interval 0 < t < t1, where R′(t1) = 0. In this problem, the time t1, initial radius R0 and
k = R(t1)/R0 are given (see [8] for more details of the problem formulation). Starting
from t = t1 the cylinder is contracting, which corresponds to the exit of the cylinder from
the liquid (see Figure 6).
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Fig. 6 Sketch of expanding and contracting circular cylinder.

The non-dimensional hydrodynamic force acting on the cylinder,

F ∗(t∗) = F (t∗t1)
t21

4ρR3
0(k − 1)2

,

is evaluated as a function of the non-dimensional time t∗ = t/t1 by using equations (14)
and (15) of the Wagner model during the expansion stage and the equations (53)–(55)
during the contraction stage.

Equation (14) for the size of the contact region during the expansion stage, 0 < t < t1,
and the shape function (62) provide

E
( c(t)
R(t)

)
=
π

2

R0

R(t)
, (63)

where E(m) =
π/2∫
0

√
1−m2 sin2 θ dθ is the complete elliptic integral of the second kind. In

the non-dimensional variables, R(t) = R0r(t
∗), r(t∗) = 1+(k−1)(2t∗−t∗2), c(t) = mR(t),

where m(t∗) is the solution of the equation E(m) = π/(2r(t∗)). The force evaluated for
the shape functions (62) is given by

F ∗(t∗) = 2r(t∗)(1− t∗)2
(

m2K2(m)

K(m)− E(m)
+ (m2 − 2)K(m) + 2E(m)

)

−r
2(t∗)

k − 1

(
(m2 − 1)K(m) + E(m)

)
(64)

and for the parabolic approximation with yb(x, t) ≈ x2/(2R(t)) +R0−R(t) by using (22)
with h(t) = R0 −R(t),

F ∗par(t
∗) = π

[
(1− t∗)2(6r(t∗)− 4)− (3r(t∗)− 1)(t∗ − t∗2/2)

]
, (65)

where K(m) is the complete elliptic integral of the first kind and 0 < t∗ < 1. During the
contraction stage, t1 < t < t2, the hydrodynamic force is given by (53) which provides

F ∗(t∗) = 2r(t∗)(t∗ − 1)2
(

(m2 − 2)K2(m) + 2E(m)
)
−

−r
2(t∗)

k − 1

(
(m2 − 1)K(m) + E(m)

)
, (66)
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where m = c(t)/R(t) and c(t) is computed by (54) and (55) for the shape function (62).
In the parabolic approximation, the force is given by

F ∗par(t
∗) = − π

32
m2r(t∗)

[
4m2(t∗ − 1)2 +

8−m2

k − 1
r(t∗)

]
. (67)

where m = c(t)/R(t). The size of the contact region, c(t), is provided by (54) and (55),
where now

yb,tt(x, t) =
x2

2

(
1

R

)′′
−R′′(t),

H
(
σ, t(σ)

)
=
c20 (1− σ)

4

(
1

R

)′′
−R′′(t), L

(
σ, α, t(α)

)
=
πc20
4

(
1

R

)′′(
t(α)

)
.

Equations (65) and (67) at t∗ = 1 give F ∗par(1) = −π(3k−1)/2. Asymptotic analysis of
equations (64)–(67) for k → 1, when the linear model and the parabolic approximations
are justified, provides

F ∗(1)− F ∗par(1) ∼ 3

4
π(k − 1).

Therefore, the accuracy of the parabolic approximation is of order O(k − 1) as k → 1.
The hydrodynamic forces (64)–(67) obtained within the present linearised models of water
entry and exit are compared with the CFD and theoretical predictions from [3] in Figure 7
for R = 0.65 m, t1 = 0.5 sec, k = 1.025 and k = 1.1. For k = 1.1 the cylinder expands
from R0 = 0.65 m to R(t1) = 0.715 m in 0.5 s. Equation (19) yields that c(t1) ≈ 0.43 m at
the end of the expansion stage. This result implies that the size of the contact region for
k = 1.1 is comparable with the radius of the cylinder and that the nonlinear effects matter.
For k = 1.025 we have c(t1) ≈ 0.2 m and the present linearised model is applicable.

Figure 7 shows that the linearised model of water exit predicts the forces which are
closer to the CFD results than the predictions by the von Karman model from [8]. The
theoretical force in [8] was computed by using the Modified Logvinovich Model (MLM) [9]
for 0 < t∗ < 1 and the von Karman approach [18] for the contraction stage. Here t∗ = 1
correspond to the beginning of the contraction stage. The parabolic approximation of the
circular cylinder provides the forces which are very close to those calculated for the actual
shape function (62). However, the minimum of the force at t∗ = 1 is overpredicted by the
linearised model. Note that the boundary conditions in the linearised model are imposed
on the equilibrium level of the liquid and are linearised at this level.

Fig. 7 The non-dimensional hydrodynamic force acting on the expanding /contracting

cylinder as a function of the non-dimensional time t∗ for (a) k = 0.025 and (b) k = 1.1. The

CFD results from [8] are shown by thin black lines, the theoretical predictions from [8] are

shown by large dashed lines. The force by the present model (64), (66) is shown by thick black

lines, and the corresponding parabolic approximation (65), (67) is shown by the dotted lines.
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7. Weakly nonlinear model of water exit

In this section, we estimate the hydrodynamic loads during water exit by taking into
account some non-linear effects and the shape of the body. The ideas from the Modified
Logvinovich Model [9] and Generalized Wagner Model [19] of water entry are used.

7.1 Pressure and Force on Body
Combining the Bernoulli equation (2) and the original condition, ϕy = yb,xϕx+yb,t, on

the wetted part of the moving body surface Eq.(1), we obtain the pressure distribution
along the wetted surface

p(x, yb(x, t), t) = −ρ
(
φt −

yb,t yb,x
1 + y2b,x

φx +
1

2

φ2
x − y2b,t

1 + y2b,x

)
, (68)

where φ(x, t) = ϕ
(
x, yb(x, t), t

)
is the velocity potential on the wetted surface (see [9]

for more details). Within the linearized model of water exit the right-hand side in
Eq.(68) is approximated by −ρφt(x, t) and φt(x, t) ≈ ϕt(x, 0, t), where ϕt is the solu-
tion of the boundary-value problem (3)–(6). Within the MLM [9], we keep all terms in
Eq.(68) and approximate φ(x, t) by the two-terms Taylor expansion, φ(x, t) ≈ ϕ(x, 0, t) +
ϕy(x, 0, t)yb(x, t), where ϕy(x, 0, t) ≈ yb,t(x, t) and ϕ(x, y, t) is the solution of Eqs.(3)–(6).

The new weakly nonlinear model of water exit is based on Eq.(68), where the terms
with φx and y2b,x are neglected similar to the linearized exit model [5] and the derivative
φt(x, t) is approximated by the two-terms Taylor expansion about the splash-up level
y = yb

(
c(t), t

)
,

φt(x, t) ≈ ϕt(x, 0, t) + ϕty(x, 0, t)
(
yb(x, t)− yb(c, t)

)
, (69)

similar to the model from [19]. Here ϕt(x, 0, t) is the solution of Eqs.(3)–(6) and ϕty(x, 0, t) =
yb,tt(x, t). Note that the boundary conditions are linearized and imposed now on the
splash-up height yb(c, t). The linear problem (3)–(6) is not affected by the height at
which the boundary conditions are imposed. Therefore, the potential ϕ in Eq.(69) does
not depend on the level, at which the linearization is performed, and this level enters
Eq.(69) only through the term yb(c, t). The formula for the pressure distribution reads
now

p
(
x, yb(x, t), t

)
= −ρϕt(x, 0, t)− ρ

(
yb,tt(x, t)

(
yb(x, t)− yb(c, t)

)
− 1

2
y2b,t(x, t)

)
. (70)

The first term in Eq.(70), −ρϕt(x, 0, t), corresponds to the pressure distribution provided
by the linearized exit model. The hydrodynamic force is decomposed as

F (t) = FL(t) + Fb(t), (71)

where FL(t) is the force predicted by the linearized exit model and Fb(t) is the correction
term,

Fb(t) = ρ

c(t)∫
0

(
y2b,t(x, t)− 2yb,tt

(
yb(x, t)− yb(c, t)

))
dx, (72)

and the size of the contact region c(t) is given by Eqs. (54), (55). The present model of
the hydrodynamic force (71), (72) is simpler than that by MLM [9] but more accurate
compared with the linearized model from [5].
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7.2 Results for Expanding and Contracting Cylinder

Fig. 8 The non-dimensional hydrodynamic force acting on the expanding/contracting

cylinder as a function of the non-dimensional time t∗ for (a) k = 1.025 and (b) k = 1.05. The

CFD results from [8] are shown by thin black lines, the theoretical predictions F ∗L are shown

by the dashed lines. The force by the nonlinear model Eqs.(71), (72) is shown by thick black

lines, and the corresponding non-linear parabolic approximation is shown by dotted lines.

The formulae (71), (72) are applied to the problem of expanding/contracting cylinder
described in Section 6 during both the expansion and contraction stages. The forces pre-
dicted by the weakly nonlinear model (71), (72) are compared with both the forces FL(t)
by the linearized model and the forced by CFD in Fig. 8 for k = 1.025 and k = 1.05. It is
seen that the correction term Fb(t) improves the comparison of the theoretical predictions
with the numerical results by CFD. The theoretical results are obtained by using the
parabolic approximation. Calculations with the actual shape of the cylinder (62) were
also performed to demonstrate that the accuracy of the parabolic approximation is of
order O(k − 1) as k → 1.

8. Forces on a planing ellipsoid

The developed models are applied to the three-dimensional steady problem of a rigid
ellipsoid (see Fig. 1)

x2/b2 + (y − h0)2/c2 + (z − V t)2/a2 = 1. (73)

The ellipsoid (73) with semi-axes a, b and c is slightly submerged at c−h0 and moves along
the water surface with constant speed V in the z-direction. The problem is considered
within the 2D+T approximation (see Section 2). The hydrodynamic loads are determined
for each section of the body by using the Wagner theory, if the section penetrates water,
and the linearized exit model, if the section exits from the water. The correction (72)
is applied. The control plane is introduced at z = a. The forces are calculated for the
two-dimensional sections

y = yb(x, t) = h0 − c
√
τ(2− τ)− x2/b2, τ = V t/a,

which are approximated by the parabolic shapes yb(x, t) ≈ x2/(2R(t)) + h(t). The distri-
butions of both the pressure at x = 0 and sectional forces are shown in Fig. 9 together
with CFD results obtained within the Navier-Stokes three-dimensional model without
gravity and surface tension. Calculations were performed for a = 10m, b = c = 1m and
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V = 50m/s. The present linearized model with the correction (72) over-predicts the loads
for the sections in entry but well corresponds to the CFD predictions for the sections in
exit. The loads for the sections in entry can be potentially improved by using the MLM
and a local three-dimensional model close to the jet overturning region. This improve-
ment of the loads for the entry stage has not been pursued here. The present analysis is
focused on the models of the exit stage.

Fig. 9 The hydrodynamic sectional force (a) and the pressure along the keel, x = 0, (b) as

functions of the longitudinal coordinate z. The CFD results are shown by the thin black line,

the theoretical predictions for the parabolic approximation by the linearized entry/exit model

are shown by dashed lines and by the weakly nonlinear model are shown by thick black lines.

The total vertical force Fv acting on the moving ellipsoid is evaluated by Eqs.(8)–
(10) both for the linear model and weakly non-linear model of Section 7. The force is
decomposed into the force acting on the sections entering water, from the nose of the body
to its middle, Fvi, and the force, Fve, acting on the sections which exit from the water
within the 2D+T approach. The force components, Fvi and Fve, are computed within
the linearized entry/exit model and the weakly nonlinear model. Within the linearized
Wagner model of water entry Fvi = 0, as it was shown in Section 2. The numerical
values within the linearized model are Fvi ≈ 0.2 kN and Fve ≈ −77.05 kN giving the
total force Fv ≈ −76.85 kN. The corresponding values for the weakly nonlinear model
are Fvi ≈ 34.4 kN, Fve ≈ −46.7 kN and Fv ≈ −12.3 kN. The total force predicted by
CFD calculations is larger in magnitude then −12.3 kN. The hydrodynamic torque M
acting on the moving ellipsoid is also decomposed in two components, M = Mi + Me,
according to equation (12). The linearized entry/exit model predicts Mi ≈ 175.4 kN m,
Me ≈ 165.6 kN m and M ≈ 341 kN m. The weakly nonlinear model provides Mi ≈
253 kN m, Me ≈ 80.33 kN m and M ≈ 333.33 kN m. Despite the components Mi and
Me are rather different in these two models, the total torque, M , is well predicted by the
linearized model. The negative hydrodynamics loads acting in rear part of the body and
described by the exit models significantly contribute to the total torque.

The shape of the contact region between the ellipsoid (73) and water is given by the
Wagner model of water entry, where z−V t > 0, and by the linearized model of water exit
(see Section 6), where z− V t < 0. The boundary of this region is shown in Fig.10 by the
red line. As a reference, the intersection line between the ellipsoid and the equilibrium
water level, y = 0, is shown in blue. The Fig. 10 shows that the actual wetted area of
this planing body is bigger than that expected without account for the elevation of the
free surface.
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Fig. 10 The wetted part of the body surface predicted by the linearized entry/exit model

(red line) and without account for the free surface deformations (blue line) in the moving

coordinate system.
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9. Conclusion
The linearized model of water exit [5] has been generalized to include body motions

with time-dependent acceleration and lifting of a body with time-varying shape from a
liquid surface. A weakly non-linear model of water exit has been presented. The later
model accounts for some nonlinear terms in the Bernoulli equation for the hydrodynamic
pressure and the shape of the body. The model employs the solution of the linearized
exit problem and the size of the wetted area of the body surface predicted by the lin-
earized model of water exit. It was shown that the weakly nonlinear model of water exit
predicts the hydrodynamic loads which are closer to the numerical loads by CFD than
the predictions by the linearized model of water exit. The developed models of water
exit were combined with the 2D+T approximation and applied to the steady problem of
an elongated ellipsoid moving along the water free surface. The obtained theoretical re-
sults were compared with the three-dimensional numerical simulations by a Navier-Stokes
solver from Open FOAM library in terms of sectional forces and the pressure distribution
along the keel of the moving body. The hydrodynamic loads on the body sections behind
the middle of the ellipsoid are well predicted by the present weakly nonlinear model of
water exit. The theoretical loads acting on the front part of the ellipsoid from the nose
to the middle of it are rather different from the CFD results. The loads on this part of
the body were evaluated by using the original linearized Wagner model of water entry.
More accurate models, such as MLM and the Generalized Wagner Model, can significantly
improve the theoretical predictions.

Three-dimensional unsteady problems of a smooth elongated body moving along the
water surface can be solved by using the exit models of the present study. The unsteady
problems are of interest for analysis of aircraft ditching (emergency landing on water)
and performance of high-speed boats. Unsteady motions of such bodies in uni-directional
waves (head and following sea) can be also described by the entry/exit models of this
paper.

The entry and exit models of the present paper cannot be used for large penetrations
of the planing body. The forces on the front sections of the body, which are in entry,
can be calculated by using the Generalized Wagner Model [19] with account for the flow
separation from the surfaces of the sections. The sections in the rear part of the body,
which are in exit, require more elaborated models if the section exits water from large
depth.
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