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tionally and numerically. The equations governing the hydrodynamics of the problem are 

derived from a variational principle for shallow water. The variational principle includes 

the effects of surface tension, linear momentum damping due to the proximity of the 

tank walls and incoming volume flux through one of the boundaries representing the 

generation of waves by a wave pump. The model equations are solved numerically us- 

ing (dis)continuous Galerkin finite element methods and are compared to exact linear 

wave sloshing and driven wave sloshing results. Numerical solutions of the nonlinear shal- 

low water-wave equations are also validated against laboratory experiments of artificially 

driven waves in the Hele-Shaw tank. 
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1. Introduction 

The study of water waves has been an important area of research for years; their significance becomes obvious when

looking at ocean and offshore engineering or naval architecture. A well known approach when studying the generation and

evolution of nonlinear water waves is to use potential flow theory; that is, to assume that the fluid velocity is incompressible

and irrotational, which allows to define it as the gradient of a scalar called the velocity potential. The potential flow model

results from the incompressible Euler equations (in which the effect of water viscosity is neglected) and consists of a Laplace

equation for the velocity potential coupled with nonlinear free surface boundary conditions. The dynamics of water waves

is Hamiltonian and the governing equations can be also obtained from Luke’s variational principle [1] or from its dynamical

equivalent presented by Miles [2] . 

A simplification of the classical potential flow theory can be obtained for shallow water waves. The shallow water theory

excludes dispersion and reduces the dynamics to the free surface only, by providing solutions for the free surface elevation

and the velocity potential at this free surface. There are, however, asymptotic theories which extend the shallow water

theory to include dispersive effects, for example the Boussinesq and Benney–Luke water-wave equations [3–7] . 

The variational principle for water waves can be extended to include forcing and/or dissipation, essentially by adding

time-dependent internal or boundary conditions. This is necessary for most practical problems involving waves generated by

a driven wavemaker or the removal of a sluice gate; for example, see Bokhove and Kalogirou [8] for a problem concerning
� This article belongs to the Special Issue: SI: ANMH 2015. 
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Fig. 1. Laboratory set-up of the Hele-Shaw cell used in the experiments. The water is highlighted with blue dye. In the middle section, water moves 

between two narrowly space glass plates, while on the left and right side two stilling wells are visible. The one on the left is connected via a hose to 

the pump, which is switched on and off periodically to create a wave. The hose on the right is open and not used for pumping. (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

water waves generated by removing a sluice gate in a wave tank. Likewise, dissipative wave problems were studied by

Thornton et al. [9] and Bokhove et al. [10] , who investigated the dynamics of gravity water waves in a vertical Hele-Shaw

cell with a moving interface between water and air. The Hele-Shaw cell [11] is a narrow wave tank consisting of two closely

spaced glass plates. The motion of waves in this cell is susceptible to momentum damping due to friction, which becomes

important because of the proximity of the two plates. Thornton et al. [9] presented results regarding damped wave sloshing,

while Bokhove et al. [10] also included a wave pump and studied the damped motion of driven water waves. 

Hele-Shaw flows are nearly two-dimensional and this is their great advantage considering that they have been mainly

used for visualisation of fluid flows. Such flows have become of interest in connection with applications in coastal engi-

neering [12] , biomedical engineering [13] and the oil industry [14] . Several researchers have investigated the stability of

the interface between two viscous fluids in a horizontal Hele-Shaw cell (e.g. Saffman and Taylor [15] , Park and Homsy [16] ,

Park et al. [17] ), but others also studied free surface waves (e.g. Rajchenbach et al. [18] ) or the Kelvin–Helmholtz instability

(e.g. Plouraboué and Hinch [19] ) in vertical Hele-Shaw cells. Classical Hele-Shaw flows are based on the assumption of low

Reynolds number (Taylor and Saffman [20] ) and the dominant flow velocity profile between the plates is parabolic, i.e. of

Poiseuille-type [21,22] . Based on the parabolic flow profile approximation in the lateral direction, the governing equations

in a vertical Hele-Shaw cell can be derived by width-averaging the Navier–Stokes equations. 

In this study, in contrast to the classical case, we retain inertial effects due to the proximity of the glass plates and

we extend the variational principle to include an exponential time-dependent term representing linear damping effects.

The use of linear damping is validated in Thornton et al. [9] , where the authors compared numerical solutions to damped

wave sloshing experiments. The dynamics thus become non-autonomous due to the explicit time-dependence and therefore

this work is based on the theory developed in Bokhove and Kalogirou [8] for non-autonomous variational principles in

time. Starting from the one-dimensional shallow water equations, we add the effects of surface tension, linear damping and

forcing through the boundary (representing the motion of the wave pump). The continuum model is discretised in space

and time using a (dis)continuous Galerkin finite element method and the numerical model is then implemented using the

automated system Firedrake [23] . Preliminary results are first compared to exact solutions for validation purposes and then

to wave structures observed during laboratory experiments in a Hele-Shaw cell ( Fig. 1 ). 

The structure of the rest of this paper is as follows: Section 2 presents mathematical models for waves with surface

tension and forced-dissipative shallow water waves. In Section 3 , we provide the numerical methods and results, including

numerical validation for linear undriven and driven wave sloshing. Section 4 contains a description of the set-up and design

of the experiments and details about the analysis of the experimental data. We also compare results obtained numerically

to experimental observations. We conclude in Section 5 by summarising the outcomes of this study. 

2. Mathematical modelling 

2.1. Wave models with surface tension 

We consider an inviscid fluid in a one-dimensional domain x ∈ [0, L ] with hard walls at x = 0 and x = L . A variational

principle for the Lagrangian density L describing the dynamics of shallow water waves with surface tension can be obtained
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by extending the well-known Luke’s variational principle [1] and is given by: 

0 = δ

∫ T 

0 

∫ L 

0 

(
φ∂ t h − 1 

2 

h (∂ x φ) 2 − 1 

2 

g(h − h 0 ) 
2 − σ

ρ

(√ 

1 + (∂ x h ) 2 − 1 

))
d x + E L h (L, t) − E 0 h (0 , t) d t, (1)

with water depth h = h (x, t) and velocity potential φ = φ(x, t) as functions of the spatial coordinate x and time t . Partial

derivatives are denoted by ∂ x and ∂ t . Here, g is the acceleration of gravity, ρ is the density, σ is the surface tension, h 0 is

the rest water depth over a flat bottom and T > 0 is the final time. Dependence on the contact line angle between water, air

and the solid glass plates is imposed by prescribing constants E 0 and E L at x = 0 and x = L, respectively. The line element

d S = 

√ 

1 + (∂ x h ) 2 d x lies along the free surface and 

∫ L 
0 σ d S is the energy stored by surface tension. 

The variational principle in (1) is defined as: 

0 = δS[ h, φ] = δ

∫ T 

0 

L [ h, φ] d t ≡ lim 

ε→ 0 

∫ T 

0 

L [ h + εδh, φ + εδφ] − L [ h, φ] 

ε
d t, (2)

and requires the action δ of the integral S [ h, φ] to be stationary for arbitrary small changes in h or φ. Applying the varia-

tional operator in (1) thus yields: 

0 = 

∫ T 

0 

∫ L 

0 

([ 
∂ t h + ∂ x (h∂ x φ) 

] 
δφ −

[ 
∂ t φ + 

1 

2 

(∂ x φ) 2 + g(h − h 0 ) − σ

ρ
∂ x 

(
∂ x h √ 

1 + (∂ x h ) 2 

)] 
δh 

)
d x 

+ 

(
σ

ρ

∂ x h √ 

1 + (∂ x h ) 2 
− E 0 

)∣∣∣
x =0 

δh (0 , t) −
(
σ

ρ

∂ x h √ 

1 + (∂ x h ) 2 
− E L 

)∣∣∣
x = L 

δh (L, t) d t, (3)

where we have used the boundary conditions ∂ x φ = 0 at x = 0 and x = L, and end-point conditions δh = 0 at t = 0 and

 = T . Assuming that the variations δh, δφ are arbitrary, the dynamics emerge as: 

δh : ∂ t φ + 

1 

2 

(∂ x φ) 2 + g(h − h 0 ) − σ

ρ
∂ x 

(
∂ x h √ 

1 + (∂ x h ) 2 

)
= 0 , (4a)

δφ : ∂ t h + ∂ x (h∂ x φ) = 0 , (4b)

δh (0 , t) : E 0 = 

σ

ρ

∂ x h √ 

1 + (∂ x h ) 2 
at x = 0 , (4c)

δh (L, t) : E L = 

σ

ρ

∂ x h √ 

1 + (∂ x h ) 2 
at x = L. (4d)

Eq. (4) are the standard shallow water equations but with added surface tension [24,25] . 

2.2. Forced-dissipative shallow water flow 

We modify the variational principle (1) to add in- and out-flow at x = 0 and linear momentum damping. The former

is a simple model of a wave pump and the latter models the bulk friction in a Hele-Shaw cell, following the derivation

in Thornton et al. [9] and Bokhove et al. [10] . This Hele-Shaw cell consists of two narrowly-placed glass plates of 6 mm

thickness and it has an open top with a water–air interface. A periodic wave motion is created via pumping of water

into the tank by a stilling-well pump. The centrepiece of the wave tank is 57 cm in length, 20 cm in height and 2.2 ±
0.1 mm in width (the glass plates are clamped into a perspex frame using spacers of 2.2 mm, to secure a constant width at

every height). A summary of the dimensions of the Hele-Shaw cell, as well as the fluid’s physical properties as used in the

experiments, can be found in Table 1 . 
Table 1 

Details about the Hele-Shaw experiment, including 

cell dimensions and fluid properties at a room tem- 

perature of 25 °C. 

Cell length L = 57 cm 

Cell height H = 20 cm 

Cell width W = 2 . 2 mm 

Average water level h 0 = 8 . 9 cm 

Water viscosity ν = 10 −6 m 

2 / s 

Water density ρ = 997 kg / m 

3 

Water surface tension σ = 0 . 072 N / m 
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We non-dimensionalise the problem by rescaling horizontal and vertical lengths with typical length scales L x and H 0 ,

respectively. The following transformations are thus introduced: 

x = L x x 
∗, h = H 0 h 

∗, t = 

L x √ 

gH 0 

t ∗, σ = ρgL 2 x σ
∗, γ = 

√ 

gH 0 

L x 
γ ∗

φ = L x 
√ 

gH 0 φ
∗, E = gH 0 L x E 

∗, Q = H 0 

√ 

gH 0 Q 

∗, (5) 

where superscript stars are used to denote dimensionless coordinates and variables. A modified variational principle for the

Hele-Shaw dynamics then arises by integrating the term ( φ∂ t h )e γ t by parts (the first term in (1) with added damping γ )

and is given below (note that for simplicity the stars are dropped from all terms): 

0 = δ

∫ T 

0 

∫ L 

0 

h∂ t (φe γ t ) + 

(
1 

2 

h (∂ x φ) 2 + 

1 

2 

(h − h 0 ) 
2 + 

σ

2 

(∂ x h ) 2 
)

e γ t d x + 

(
E(t ) h (0 , t ) + Q(t ) φ(0 , t ) 

)
e γ t d t . (6)

Here, γ = 3 ν/
 2 is the damping factor, in which ν is the viscosity and 2 
 = W is the width of the Hele-Shaw cell. In ad-

dition, Q ( t ) is the volume flux in or out of the Hele-Shaw cell at x = 0 , such that the volume flow rate is 2 
 Q . A time

dependent contact angle E ( t ) is also used at x = 0 , while at the other end x = L we set E L = 0 . We further replace the term(√ 

1 + (∂ x h ) 2 − 1 
)

by its leading order approximation 

1 
2 (∂ x h ) 

2 . 

Using suitable boundary and end-point conditions, variation of (6) gives: 

0 = 

∫ T 

0 

∫ L 

0 

((
∂ t (φe γ t ) + 

1 

2 

(∂ x φ) 2 e γ t + (h − h 0 )e γ t − σ∂ xx h e γ t 
)
δh − (∂ t h + ∂ x (h∂ x φ))e γ t δφ

)
d x 

+ 

(
E(t) − σ∂ x h 

)∣∣
x =0 

δh (0 , t)e γ t + 

(
Q(t) − h∂ x φ

)∣∣
x =0 

δφ(0 , t )e γ t d t . (7) 

The equations of motion follow from the arbitrariness of the variations in (7) and are given by: 

δh : ∂ t (φe γ t ) + 

1 

2 

(∂ x φ) 2 e γ t + (h − h 0 ) e 
γ t − σ∂ xx h e γ t = 0 

⇔ ∂ t φ + γφ + 

1 

2 

(∂ x φ) 2 + (h − h 0 ) − σ∂ xx h = 0 , (8a) 

δφ : ∂ t h + ∂ x (h∂ x φ) = 0 , (8b) 

δh (0 , t) : E(t) = σ∂ x h at x = 0 , (8c) 

δφ(0 , t) : Q(t) = h∂ x φ at x = 0 . (8d) 

The second term in the momentum Eq. (8a) represents the effect of linear damping, causing the wave energy to damp

out in time. 

3. Numerical discretisation 

3.1. Time discrete weak formulations 

To discretise the variational principle (6) , a Galerkin–Ritz finite element expansion is introduced by writing: 

h (x, t) ≈h h (x, t) = h k (t) ϕ k (x ) , φ(x, t) ≈ φh (x, t) = φ
 (t) ϕ 
 (x ) , (9) 

with basis functions ϕ k ( x ) and indices k , 
 covering the degrees of freedom. The Einstein summation convention over re-

peated indices is also adopted. The resulting discretisation is implemented in the finite element package Firedrake [23] . The

weak formulations arise from the discrete variational principle (6) , but this time we do not integrate by parts like before;

we have the following instead: 

0 = 

∫ T 

0 

∫ L 

0 

(
∂ t (φh e 

γ t ) + 

1 

2 

(∂ x φh ) 
2 e γ t + (h h − h 0 )e γ t 

)
δh h + σ∂ x h h ∂ x (δh h )e γ t − (∂ t h h δφh − h h ∂ x φh ∂ x (δφh ))e γ t d x 

+ 

(
E(t) δh h (0) + Q(t) δφh (0) 

)
e γ t d t. (10) 

Note that here we choose to discretise the variational principle directly and not the resulting system of nonlinear evolution

equations. The two approaches can be equivalent; in our chosen way, the weak formulations arise by taking the arbitrary

variations δh h , δφh to be equal to the test functions, i.e. δh h = ϕ 
 , δφh = 0 or δh h = 0 , δφh = ϕ 
 . 

As in Bokhove and Kalogirou [8] , the time stepping scheme is put in the standard “Kamiltonian” form for variational prin-

ciples with explicit time dependence by a coordinate transformation P h = φh e 
γ t and Q h = h h . On implementing the scheme,

let �t be the time step, T the final time and N = T / �t; then t n = n �t, for n = 0 , 1 , 2 , . . . , N, are the time levels at which
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the solutions φh and h h will be calculated. A Störmer–Verlet time discretisation (Hairer et al. [26] ) for this “Kamiltonian”

formulation then consists of a half step to update φh in time, 

0 = 

∫ L 

0 

( (φn +1 / 2 

h 
e γ t n +1 / 2 − φn 

h 
e γ t n ) 

�t/ 2 

+ 

1 

2 

(∂ x φ
n +1 / 2 

h 
) 2 e γ t n +1 / 2 + (h 

n 
h − h 0 )e γ t n +1 / 2 

)
δh h 

+ σ∂ x h 

n 
h e 

γ t n +1 / 2 

∂ x (δh h ) d x + E(t n +1 / 2 )e γ t n +1 / 2 

δh h (0) , (11a)

a full step to update h h , 

0 = 

∫ L 

0 

h 

n +1 
h 

− h 

n 
h 

�t 
δP h −

1 

2 

(
h 

n 
h + h 

n +1 
h 

)
∂ x φ

n +1 / 2 

h 
∂ x (δP h ) d x − Q(t n +1 / 2 ) δP h (0) , (11b)

and a final half step for φh , 

0 = 

∫ L 

0 

( (φn +1 
h 

e γ t n +1 − φn +1 / 2 

h 
e γ t n +1 / 2 

) 

�t/ 2 

+ 

1 

2 

(∂ x φ
n +1 / 2 

h 
) 2 e γ t n +1 / 2 + (h 

n +1 
h 

− h 0 )e γ t n +1 / 2 
)

δh h 

+ σ∂ x h 

n +1 
h 

e γ t n +1 / 2 

∂ x (δh h ) d x + E(t n +1 / 2 )e γ t n +1 / 2 

δh h (0) . (11c)

Note that the test functions δh h and δP h are space dependent functions only. The conserved Hamiltonian, in the absence

of the pump when Q(t) = 0 , at each time step is defined by the sum of kinetic and potential energies and is given by: 

H(t) = 

∫ L 

0 

(
1 

2 

h 

n 
h (∂ x φ

n 
h ) 

2 + 

1 

2 

(h h − h 0 ) 
2 + 

σ

2 

(∂ x h 

n 
h ) 

2 
)

e γ t n d x. (12)

3.2. Numerical validation 

To verify the numerical implementation, we compare numerical solutions with a standing wave solution of the linearised

equations. The linear code is further verified in comparison with an exact steady state solution emerging from the forced

shallow water equations with a (nearly) harmonic forcing for Q ( t ). The effect of surface tension on such driven waves is

also investigated. Note that in the rest of this paper we use the condition ∂ x h = 0 at x = 0 , such that the contact angle

E(t) = 0 . All simulations were done on a uniform mesh, to third-order in space using quadratic Lagrange polynomials and

second-order in time using Störmer–Verlet or modified-midpoint symplectic schemes. Unless otherwise stated, 50 elements

are used with time step �t = 0 . 0028 (chosen such that to satisfy the stability criterion | ω�t | < 2, where ω is the maximum

frequency for a wave to travel from one grid point to another). 

3.2.1. Damped wave sloshing 

We linearise around the rest solution h = h 0 , φ = 0 and use a hard–wall boundary condition ∂ x φ = 0 at x = 0 , so that

Q(t) = 0 . In the absence of damping, i.e. for γ = 0 , the linear equations can be solved exactly and a standing wave solution

is found to be: 

h (x, t) = h 0 + A cos (ωt) cos (kx ) , φ(x, t) = − Aω 

h 0 k 2 
sin (ωt) cos (kx ) , (13)

with k = 

2 πm 

L (for integer m > 0), wave amplitude A and frequency ω 

2 = h 0 k 
2 (1 + σk 2 ) . 

The above solution is used in a comparison with the numerical solution of the linearised undamped shallow water

equations (with γ = 0 ). The visual comparison after two wave periods is illustrated in Fig. 2 , where several snapshots of

the numerical solution (plotted with solid line) and the exact solution (plotted with circles) can be seen. Moreover, the

deviation of the total energy H ( t ) (as defined in Eq. (12) ) from the initial energy H(0) = H(t = 0) can be seen in the bottom

panel of the figure, which remains bounded and shows no drift, as expected. 

In the presence of damping, dissipation of energy is observed due to the side-wall friction. This can be explained by

looking at the dispersion relation, which is now given by ω 

2 + iγω − h 0 k 
2 (1 + σk 2 ) = 0 and admits the complex solutions:

ω 1 , 2 = − iγ

2 

± 1 

2 

√ 

4 h 0 k 2 (1 + σ k 2 ) − γ 2 , (14)

(assuming that the determinant is positive). The negative imaginary part of the dispersion coefficient causes a decay in the

wave amplitude over time, and therefore it is responsible for the loss of energy. Mathematically, the energy can be cast

into a conserved form by adding an exponential factor e γ t and calculating the Hamiltonian as in (12) . Fig. 3 demonstrates

a comparison between the energies for linear undamped waves with γ = 0 and linear damped waves with γ = 0 . 058 ; the

former is shown in the top panel and the latter in the middle and bottom panels. The dissipation of energy due to damping

is obvious when looking at the middle panel, where the energy is computed without the exponential factor e γ t . Neverthe-

less, the energy including the exponential factor (as in (12) ) is conserved, up to bounded oscillations vanishing when �t →
0, as shown in the bottom panel. 
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Fig. 2. Comparison between numerical solution and the exact standing wave solution in Eq. (13) of the linearised shallow water equations. Snapshots of 

the solutions of h ( x, t ) (top left panel) and φ( x, t ) (top right panel) are portrayed at t = 0 . 0 , 0 . 08 , 0 . 16 , 0 . 23 , 0 . 31 , 0 . 39 , 0 . 46 sec (see also videos h _ exact.avi 

and phi _ exact.avi ). Solid lines represent numerical solutions and circles correspond to exact solutions. The parameter values used are L = 0 . 52 , h 0 = 0 . 09 , 

σ = 0 , γ = 0 , m = 2 , A = 0 . 009 , T = 3 . 47 . The relative energy | H(t) − H(0) | is plotted in the bottom panel, in dimensional units. 

Fig. 3. Hamiltonian of the solution without/with damping (in dimensional units). Top panel: conservation of energy for linear undamped waves with γ = 0 . 

Middle panel: energy dissipation for linear damped waves with γ = 0 . 058 (Hamiltonian computed without factor e γ t ). Bottom panel: energy conservation 

for linear damped waves with γ = 0 . 058 (Hamiltonian computed with factor e γ t , as in (12) ). 

 

 

 

 

 

 

3.2.2. Driven wave sloshing 

We solve the linearised shallow water equations while imposing a flux boundary condition at x = 0 given by Q(t) =
q sin (ωt) , such that Q(t) = h 0 ∂ x φ at x = 0 . The exact standing wave solution in this case is found to be: 

h (x, t) = h 0 − qk 

ω 

cos (ωt ) 
cos (k (x − L )) 

sin (kL ) 
, φ(x, t ) = 

q 

h 0 k 
sin (ωt ) 

cos (k (x − L )) 

sin (kL ) 
, (15)

with k = 

(2 m +1) 
2 

π
L (for integer m > 0) and again ω 

2 = h 0 k 
2 (1 + σk 2 ) . This exact solution is compared against the numerical

solution of the linearised and driven shallow water equations and the result of the comparison is shown in Fig. 4 . The

fluctuations in the plot of the total energy are again small and bounded. 

3.2.3. Driven waves with surface tension 

We also solve the forced nonlinear shallow water equations (undamped) for zero and positive values of the surface

tension in order to investigate its effect on the flow. The fluid initially is at rest and then the wavemaker is switched on at

http://h_exact.avi
http://phi_exact.avi
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Fig. 4. Comparison between numerical solution and the exact standing wave solution in Eq. (15) of the linearised driven shallow water equations. Snapshots 

of the solutions of h ( x, t ) (top left panel) and φ( x, t ) (top right panel) are portrayed at t = 0 . 0 , 0 . 08 , 0 . 16 , 0 . 23 , 0 . 31 , 0 . 39 , 0 . 46 sec (see also videos h _ flux.avi 

and phi _ flux.avi ). Solid lines represent numerical solutions and circles correspond to exact solutions. The parameter values used are L = 0 . 52 , h 0 = 0 . 09 , 

σ = 0 , γ = 0 , m = 1 , q = 0 . 0027 , T = 4 . 62 . The relative energy | H(t) − H(0) | can be seen in the bottom panel, in dimensional units. 

Fig. 5. Effect of surface tension on the free surface h ( x, t ). The nonlinear forced shallow water equations are solved with parameter values L = 0 . 52 , 

h 0 = 0 . 09 , γ = 0 , m = 1 , q = 0 . 0027 , T = 1 . 73 . Solid lines represent numerical solutions and circles correspond to exact solutions. Top panel: σ = 0 ; both 

solutions are plotted at t = 0 . 67 sec (see also video h _ fromrest _ nosigma.avi ). Bottom panel: σ = 0 . 027 ; the two solutions are shown at t = 0 . 36 sec (see 

also video h _ fromrest _ sigma.avi ). 

 

 

 

 

 

 

 

 

 

 

t > 0. The generated wave comes in from the left and propagates to the right. The result can be seen in Fig. 5 . The exact

standing wave solutions of the linearised equations are also plotted at a specific time (different in each case because the

wave frequency changes for σ � = 0, see Eq. (15) ) to show that even though the numerical solution is nonlinear, it still tends

to behave like the analytical solution. We have further verified that the energy variations remain small and bounded. Note

that simulating water waves with surface tension comes with a time step restriction of the order of ( �x ) 2 . 

The observed effect of surface tension follows the Young–Laplace equation �p = σκ, which states that the variations in

hydrostatic pressure are proportional to the curvature of a surface. In the absence of surface tension (top panel), the free

surface at the right end of the tank remains almost flat before the wave reaches that area, because in this case there are

no variations in the pressure and �p = 0 . The free surface in the same region has a bigger curvature if surface tension

is present (bottom panel), and in this case the hydrostatic pressure is increased. Note that in the latter case the value of

surface tension used is relatively large compared to the surface tension of water (about 10 −5 in dimensionless units), chosen

such that to study its effect on the free surface. 

http://h_flux.avi
http://phi_flux.avi
http://h_fromrest_nosigma.avi
http://h_fromrest_sigma.avi
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4. Hele-Shaw experiments 

4.1. Experimental set-up 

To validate our variational finite element model, we will compare simulations thereof against laboratory measurements

of a new Hele-Shaw cell for wave–beach interactions, see Fig. 1 (the new tank is an alteration of the Hele-Shaw tank in

[9,10] ). In this study, we are only interested in the hydrodynamics and not the beach dynamics, so we operate it without

the beach particles and only with water. A similar comparison has been presented by Sun and Hsu [27] who also carried out

experiments in a vertical Hele-Shaw device and computed the wave number and rate of decay along propagation distance

of free surface waves. However, their setting was different from ours in the sense that the waves were generated far away

from the Hele-Shaw cell (which was installed at the centre of a wind–wave channel), and this resulted in the creation of

incident, reflected and diffracted waves. Here we conduct the experiments in a way such that the waves come from one

direction only and reflect on the hard walls of the wave tank. 

The generation of waves in our Hele-Shaw tank is controlled by a stilling-well pump described next. On the left and right

sides of the tank there are two stilling-well chambers of width 13.5 ± 0.1 mm, connected to two hoses. The left stilling well

is connected to two aquarium pumps via hoses, placed in parallel in a bucket of water hanging below the table on which

the wave tank has been placed, such that the height between bucket and wave tank can be adjusted. The two aquarium

pumps are connected to a motor controller, fed by a power supply of 12 V and 2 A maximum, which can be loaded onto

an Arduino board and programmed by a laptop using the Arduino program. These pumps operate one way and the pump

action is repeated in loops. When the pumps do not operate, the wave tank empties out till the pumps get turned on again.

Their strength is determined by analog dials for the current and voltage on the power supply. The mean water level can

be set by adjusting the frequency of the pump, the current and voltage applied, and the distance of the water level in the

bucket below the wave tank. Every time we set up the wave tank, this requires some heuristic adjustment: when the pump

action is too strong the wave tank floods, meaning that either the current, the voltage and/or the bucket must be lowered.

An equilibrium state with a mean water level can be found within a certain parameter range. 

We performed several runs lasting between 20–60 s each. The frequency of the generated waves was in the range of

0.07–0.83 Hz, with the low frequency waves being smooth and of small amplitude, while the ones with higher frequency

were much steeper and even breaking waves in some cases. We therefore choose to concentrate on a case with observed

waves being smooth (non-breaking) and of relatively high amplitude. 

4.2. Data analysis 

The goal is to validate the mathematical model by comparing our numerical results with the experimental ones. To this

end, we need to estimate the volume flow rate by analysing the snapshots from the experiment and accurately compute

the volume flux function Q ( t ) used in the model (e.g. see Eq. (6) ). This was achieved by using image processing techniques

in Matlab. Knowing the camera’s resolution (1080 × 1920 pixels) allowed us to estimate the number of pixels that define

the Hele-Shaw cell in the horizontal and vertical directions. We then used an edge detection code to detect discontinuities

in brightness, essentially specifying the coordinates of the free surface for every snapshot. The integral of the line defining

the free surface (i.e. the area under the free surface) times the width of the tank, defines the volume of water contained in

the tank at each time. We finally calculated the displaced area at sufficient discrete times t i and over a few wave periods. 

The plot of the displaced area of water A against time can be seen in Fig. 6 . From the figure we can extract useful

information about the experiment, like the wave frequency F and the mean water depth h 0 . For this particular case, we

find F = 0 . 7042 Hz, while the mean water level is determined by the time average of A over a suitable number of periods.
Fig. 6. Variation of the displaced area of water defined by the free surface over time (stars). The wave frequency is F = 0 . 7042 Hz and the corresponding 

initial water level is H 0 = 8 . 9 cm. We also superimpose a sinusoidal function (dotted line) defined by ˜ A (t) = A a sin (2 πF t − π
2 
) , where the amplitude 

A a = 0 . 0046 m 

2 is calculated as half the distance from trough to crest. 
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Fig. 7. Snapshots from Hele-Shaw experiment (left) and simulations (right) with F = 0 . 7042 Hz. Numerical solutions obtained with a finite volume solver 

(FV) are overlaid with the finite element method results (FEM), shown with dots and circles, respectively. For the corresponding videos see experiment _ 

F0-7.avi and h _ experiment _ F0-7.avi , respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Here, we have A = 0 . 0507 m 

2 = 0 . 57 m (length) × 0 . 089 m (height) , therefore we find that h 0 = 8 . 9 cm (the overbar denotes

time average). The superimposed curve is a sinusoidal function of the form 

˜ A (t) = A a sin (2 πF t − π
2 ) , with amplitude A a =

0 . 0046 m 

2 . 

4.3. Comparison with numerical simulations 

To determine the boundary conditions for the numerical model, we calculate the area A = A (t) and the water height

h (0, t ) on the left side of the wave tank with the operable stilling-well pump. We can then determine the volume flux

Q ( t ) ∝ d A /d t at x = 0 into the tank. We finally solve the mathematical model numerically with a volume flux boundary

condition Q(t) = Q a sin (2 πF t) , where Q a is the amplitude and F is the frequency of the observed wave during the ex-

periment. To find the amplitude Q a of the volume flux, we take the derivative of the artificial signal ˜ A (t) and thus find

Q a = A a × 2 πF = 0 . 0204 m 

2 /s. 

We perform numerical simulations using the finite element methods presented in Section 3 with 100 elements and time

step �t = 0 . 001 ; the methods utilise quadratic Lagrange polynomials, yielding third-order in space, and the second-order

Störmer–Verlet time integrator. We also employ a first-order Godunov finite volume method for the shallow water equations,

applying the HLL-flux and using 800 cells (the finite volume solver uses h (0, t ) and Q(t) = hu | x =0 as boundary conditions

at x = 0 ). We concentrate on the experiment associated with Fig. 6 , where the wave frequency is F = 0 . 7042 Hz. The result

of the comparison between experiment and numerical simulations is demonstrated in Fig. 7 , where on the left we show

three snapshots from the experiment and on the right we plot the corresponding simulated wave profiles. The snapshots

on the left are chosen from Fig. 6 and are associated with states of roughly minimum, average and maximum volume of

water in the cell, respectively. In particular, the presented snapshots correspond to approximate times t = 1 . 5 , 1 . 75 , 2 . 0 s

and illustrate three stages of the wave propagation: first a smooth wave comes in from the left and the water level slowly

increases; the wave then travels along the tank and when it reaches the right end, it reflects on the wall and travels to the

opposite direction. 

The numerically computed wave profiles were chosen after the required tuning to match the position of the wave front.

We plot the profiles obtained via the finite element method, as well as the finite volume solver to confirm the steepness of

http://experiment_F0-7.avi
http://h_experiment_F0-7.avi
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Fig. 8. Dimensional energy H ( t ) for the Hele-Shaw simulations with F = 0 . 7042 Hz. The energy plotted with dashed line corresponds to the finite element 

method (FEM), while the one with solid line to the finite volume method (FV). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the wave, which is close to becoming a shock. The observed ripples ahead of the wave front are resolved, and we believe

these to be due to the effect of surface tension (absent in the finite volume computations). The simulation is left to run

for approximately 4 wave periods and we plot the numerically computed total energy in Fig. 8 , where the dashed and solid

curves correspond to the energy obtained using the finite element method and the finite volume method, respectively. The

energy computed with the finite element method is slightly higher than the one we get with the finite volume method, due

to the presence of surface tension which adds the last term in Eq. (12) . Note that the total energy is computed without the

exponential term e γ t and clearly remains bounded due to the balance between forcing and damping. 

5. Conclusions 

The motion of the free water surface in a Hele-Shaw cell is studied by variational modelling and experiments. Despite

the popularity of horizontal Hele-Shaw cells, the use of a vertical Hele-Shaw cell to study the hydrodynamics of water

waves is fairly novel [18,27] , and takes advantage of the fact that the flow becomes nearly two-dimensional and offers

better visualisation of the wave phenomena. In this paper, we derive a mathematical model to describe the hydrodynamics

of shallow water waves in such a Hele-Shaw tank. Novel features in this model (compared to the usual shallow water

equations) include the effect of surface tension, linear momentum damping and in- or out-flow conditions at one boundary

representing the motion of a driven wavemaker. 

The model is discretised in space using finite element methods and in time using symplectic integrators. As a validation,

we compare numerical solutions to wave sloshing and driven wave sloshing exact solutions. We finally simulate the motion

of driven and damped water waves in a Hele-Shaw tank and compare against wave shapes observed in experiments using

our own device. A qualitative comparison between the numerical and experimental waves shows a reasonable agreement

between the two, even though the numerically computed profiles have a steeper wave front (confirmed by comparisons

with a finite volume solver) and capillary waves – the characteristic surface tension ripples – appear ahead of the wave.

Nonetheless, this preliminary validation of simulations against the observed waves in the Hele-Shaw cell is satisfactory, and

could be improved by using the actual boundary data for Q ( t ) and h (0, t ) in the simulations instead of the artificial data

used here. Furthermore, the difference between the observed profile, the computed hydraulic jump in the shallow water

model and the dispersed capillary waves in the finite element model suggests that long-wave dispersion may be needed,

and possibly also damping due to the contact line. 

During the experiments, we noticed that for frequencies higher than about 1 Hz, the free surface was very steep and for

even higher values of the frequency breaking waves emerged. The mathematical model breaks down in these cases because

it is derived based on the assumption of irrotational waves with a smooth free surface. To overcome this problem, the two-

phase Navier–Stokes equations or other approximations thereof should be considered. This will be essential also in terms of

adding wave dispersion, which is absent in shallow water modelling. Furthermore, in order to incorporate the assumption of

a Poiseuille-type lateral flow profile in the width-averaged Navier–Stokes equations [9,18] , the factor of β = 

6 
5 should appear

in front of the nonlinear terms in the Navier–Stokes and continuity equations. We leave this as future work. 

A further extension of this subject is the study of beach formation by breaking waves in a Hele-Shaw cell [12] . This

can be achieved by adding small particles in the tank, essentially representing a “slice” of beach. The Hele-Shaw beach

configuration can be useful in benchmark modelling of one-dimensional breaking waves and also in the study of dynamic

shingle beaches. 
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