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Abstract

Tuning the regularisation and kernel hyperparameters is a vital step in optimising the
generalisation performance of kernel methods, such as the support vector machine (SVM).
This is most often performed by minimising a resampling/cross-validation based model
selection criterion, however there seems little practical guidance on the most suitable form
of resampling. This paper presents the results of an extensive empirical evaluation of
resampling procedures for SVM hyperparameter selection, designed to address this gap in
the machine learning literature. We tested 15 different resampling procedures on 121 binary
classification data sets in order to select the best SVM hyperparameters. We used three very
different statistical procedures to analyse the results: the standard multi-classifier/multi-
data set procedure proposed by Demšar, the confidence intervals on the excess loss of each
procedure in relation to 5-fold cross validation, and the Bayes factor analysis proposed by
Barber. We conclude that a 2-fold procedure is appropriate to select the hyperparameters
of an SVM for data sets for 1000 or more datapoints, while a 3-fold procedure is appropriate
for smaller data sets.
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1. Introduction

The support vector machine (SVM) (Boser et al., 1992; Cortes and Vapnik, 1995) is a
powerful machine learning algorithm for statistical pattern recognition tasks, with strong
theoretical foundations (Vapnik, 1998) and excellent performance in a range of real-world
applications (e.g. Joachims, 1998; Furey et al., 2000; Fernández-Delgado et al., 2014). Per-
haps the most common variant of the SVM uses the radial basis function (RBF) kernel, as
recommended as a default approach in a popular guide to SVM (Hsu et al., 2010). The
application of the RBF SVM to a classification problem requires the selection of appropriate
values for two hyperparameters: a regularisation parameter, C, and a parameter governing
the sensitivity of the kernel, γ. Given values for these two hyperparameters and the training
data, an SVM solver, such as libSVM (Chang and Lin, 2011), can find the unique solution of
the constrained quadratic optimization problem defining the SVM formulation and return a
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classifier. We assume that the reader is familiar with the theory of SVMs and in particular
of the SVM with the RBF (also known as Gaussian) kernel.

Unfortunately, the situation is less straightforward for model selection; there is no sim-
ilarly principled means of optimising the hyperparameters. The simplest approach is to
divide the data set into training and testing sets, and for each C and γ from a suitable
set, select the pair that result in the SVM that when trained on the training set has lowest
error rate over the corresponding test set. More commonly, resampling approaches, such
as cross-validation, use multiple test/training sets in order to form a better model selection
criterion from the available data.

This paper presents an empirical investigation of the effects of different resampling ap-
proaches to hyperparameter tuning on the generalisation performance of the final classifier.
The investigation is focussed primarily on the SVM with an RBF kernel, but the main con-
clusions are repeated and validated for the linear and polynomial kernel SVM, as discussed
in Section 5.

1.1 Resampling Approaches to Performance Evaluation

Performance evaluation is a key component of model selection procedures typically used
in practical applications of support vector machines. Assume we have a sample of data,
G = {zi = (xi, yi)}ni=1, where xi ∈ X ⊂ Rd is a vector of attributes describing the ith

example and yi is the corresponding class label; for binary classification tasks, yi ∈ {−1,+1}.
Resampling procedures provide a performance estimate based on repeatedly dividing G to
form a training set and a test set (sometimes known as a validation set). More formally,
in the ith iteration of the resampling procedure, TRi represents the training set and TE i is
the test set, such that

TRi ∩ TE i = ∅ and TRi ∪ TE i ⊆ G.

Let ε(B | A, C, γ) represent the error rate of an SVM trained on the training sample A, using
hyperparameter values C and γ, evaluated on the test set B. The performance estimate
provided by resampling methods is then typically the mean of the error rates obtained on
the test set in each fold, i.e.

Error(C, γ) =
1

N

N∑
i=1

ε(TE i | TRi, C, γ),

where N is the number of iterations, or folds, of the resampling procedure. Different resam-
pling procedures, such as k-fold cross-validation, bootstrap and leave-one-out cross-validation
differ only in the way in which the data are partitioned to form TRi and TE i in each fold.
Some common resampling procedures include:

• k-fold cross-validation: Partition G to form k disjoint sets Fj of approximately similar
size, such that

⋃
j Fj = G. Then in each of the k iterations, a different set is used for

testing and the others for training, i.e. TE i = Fi and TRi =
⋃
j 6=i Fj . In stratified

cross-validation, G is partitioned such that each subset has a similar proportion of
patterns belonging to each class. In repeated k-fold cross-validation, this procedure
is performed repeatedly, with a different initial partitioning in each iteration.
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• Leave one out cross-validation: This is the most extreme form of k-fold cross-validation,
in which each set Fi consists of a single training pattern, i.e. TE i = {zi} and
TRi = G \ {zi}.

• Hold-out : A single training set, TR1, is defined, with size p× n, and TE 1 = G \TR1,
where p ∈ [0, 1]. In stratified hold-out, the partitioning is performed such that TE 1

and TR1 have a similar proportion of patterns of each class. In repeated hold-out
resampling, this procedure is performed repeatedly with different random partitions
of G.

• Bootstrap: In each iteration, TRi is obtained by sampling n items, with replacement
from G, and TE i = G \ TRi.

• Subsampling : A hold-out resampling procedure where TRi ∪TE i ⊂ G, that is, where
only a subset of the available data set is used in each iteration. This is useful where
a very large amount of data is provided.

Unfortunately, the names of these procedures are not well standardised. Appendix A dis-
cusses alternative names used for the concepts and procedures discussed in this paper.

Finally, resampling should be contrasted with resubstitution, a performance estimation
method that uses the same set for both training the SVM and measuring its error rate.
There are variations on the resubstitution procedure, where the data used to measure the
error rate is the same data used in training, but they are given different weights (Braga-Neto
and Dougherty, 2004).

1.2 Model Selection

The process of model selection, in the case of kernel learning methods, refers to the tun-
ing of the kernel and regularisation hyperparameters in order to maximise generalisation
performance. The generalisation error of a classifier can be expressed as an expectation
over random samples, z, drawn from the distribution D from which the training set was
obtained,

ε̆(C, γ) = Ez∼D [ε(z | G, C, γ)]

Ideally we would like to choose the hyperparameters C and γ so that ε̆ is minimized, that
is:

C∗, γ∗ = argmin
C,γ

ε̆(C, γ) (1)

Unfortunately, the distribution giving rise to the data is generally unknown, and so we are
unable to evaluate or directly optimise ε̆. The solution is to optimise instead an estimate,
ε̃, of the true generalisation error, ε̆. By far the most common approach is to optimise a
resampling-based estimate. The estimate, ε̃, of ε̆ for a particular resampling procedure rs
is defined as:

ε̃rs(C, γ) =
1

N

N∑
i=1

ε(TE i | TRi, C, γ).
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Given that a particular resampling procedure (rs) was selected, the choice of the SVM
hyperparameters is governed by:

C∗rs, γ
∗
rs = argmin

C,γ
ε̃rs(C, γ).

It would be computationally infeasible to evaluate every possible combination of the hyper-
parameters, C and γ, so in general the search evaluates combinations from a finite set S.

C∗rs, γ
∗
rs = argmin

C,γ∈S
ε̃rs(C, γ). (2)

Different model selection procedures adopt different methods to generate the set S; they can
be specified a-priori, as in the case of grid-search or random search, or successive elements
of S can be generated according to the results obtained from evaluating existing elements,
as in the case of Nelder-Mead simplex (Nelder and Mead, 1965), gradient descent (Chapelle
et al., 2002) or other non-convex methods (Friedrichs and Igel, 2005; De Souza et al., 2006).

The choice of resampling procedure depends on two possibly conflicting criteria: firstly
we would like to maximise generalisation performance, and secondly reduce computational
expense. The error of a resampling estimate of generalisation consists of two components,
bias and variance. The bias component represents the degree to which the estimate dif-
fers on average from the true value, over a large number of datasets of the same size as
G sampled from the same underlying distribution, D. The generalisation performance of
classifiers tends to improve as the size of the training set increases. Resampling estimates
therefore tend to have a pessimistic bias, systematically underestimating the generalisation
performance of a classifier trained on G, as in each fold a classifier is trained on only a subset
of G. The optimal hyperparameters for an SVM, particularly the regularisation parameter
(C), can also demonstrate some degree of dependence on the size of the training set, which
also leads to a bias in the hyperparameter estimates from resampling based model selection
procedures. The variance component reflects the difference between the estimated and true
values due to the particular sample of data on which the estimate was computed (and also
due the random partitioning of the sample). As the model selection procedure directly
minimises the resampling estimate, the presence of a non-negligible variance component in-
troduces a risk of over-fitting in model selection (Cawley and Talbot, 2010), which results in
suboptimal hyperparameter selection. Let us define the true excess loss (el) of a resampling
procedure rs, as

el(rs) = Ez∼D [ε(z | G, C∗rs, γ∗rs)− ε(z | G, C∗, γ∗)] ,

where C∗ and γ∗ are the choices of optimal hyperparameters defined in Equation 1. The
first important consideration in the choice of procedure is then to minimise the excess loss.

Unfortunately, the true excess loss is unknowable: Firstly we do not know the true values
of γ∗ and C∗, i.e. the values minimizing the generalisation error (1), indeed if these values
were known, model selection using resampling methods (2) would be entirely redundant.
Secondly, we do not know the true distribution of the data, D, so we cannot perform the
expectation involved in evaluating the generalisation error (1). The best we can do is to
estimate the generalisation error using a finite test sample and compare the performance
obtained using model selection based on a given resampling method against model selection
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using some sensible baseline method, such as five-fold cross-validation. We therefore define
the excess loss relative to five-fold cross-validation as the observed difference in the error rate
on a fixed test set for classifiers trained with hyper-parameters adjusted so as to minimise
a given resampling based performance estimate and so as to minimise the five-fold cross-
validation estimate. This gives a relative indication of the improvement in generalisation
performance due to the resampling method used to tune the hyper-parameters.

The second consideration in the choice of resampling procedure is the computational
cost. The different resampling procedures have very different computational costs for the
hyperparameter search. For example, for each possible pair of values C and γ, 10-fold
cross-validation will require the fitting of 10 separate SVM classifiers, each with a training
set of 0.9×|G|. For 5-fold cross validation, for each pair of hyperparameters, there will be 5
classifiers trained, each with a training set of size 0.8×|G| — not only fewer support vector
machines need be constructed, but each is fitted to a smaller training sample, with lower
computational expense. If one is using a batch SVM solver, such as SVMlight (Joachims,
1999) or libSVM (Chang and Lin, 2011), one can assume that the learning time is at least
quadratic in relation to the training size (Bottou and Lin, 2007).

A trade-off between these two criteria must be reached in selecting a suitable resampling
estimator. We would like to minimise the number of folds to reduce computational expense,
however the variance of resampling estimators is generally reduced by increasing the number
of folds, resulting in improved hyperparameter estimates. Again, we would like to reduce
the size of the training set to reduce training time, but this also tends to increase the
variance of the estimator. If the training set is made smaller, the uncertainty in estimating
the model parameters will be greater, and hence the test set error more variable. However
this leaves more data available for the test set, which tends to reduce the variance of the
estimator. In reaching a compromise, we must ensure that the training and test sets are
both sufficiently large, and a sufficient number of folds are used, for the estimator to have a
suitably low variance, whilst at the same time limiting computational expense so that the
procedure remains practical. The goal of this research is to understand the balance of these
two conflicting considerations.

We must point out that this paper evaluates different fixed resampling procedures, as
opposed to adaptive resampling (Kuhn, 2014; Krueger et al., 2015) to select the SVM hy-
perparameters. Fixed resampling will use the same resampling procedure for each of the
possible hyperparameter combinations being tested, by far the most common procedure.
However there has been some recent work on adaptive resampling where, for example, the
full resampling procedure is not performed for some of the hyperparameter combination if
the results for tests sets so far indicate that one can be sure that the results are suboptimal
(Kuhn, 2014), or where a small subsampling is used first for all hyperparameter combi-
nations and as one becomes increasingly sure that some of the combinations have better
results than others, subsampling with increasing larger training sets are tested (Krueger
et al., 2015).

1.3 Related Literature

The problems of the computational cost of hyperparameter selection for the SVM, and the
generalisation performance of the resulting classifier, have been discussed in the literature in
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many forms. There are in general three alternatives to improve hyperparameter selection,
which will be discussed separately:

• Use a different metric derived from the training set, typically a lower bound on gen-
eralisation performance, such as Xi-alpha, span and radius/margin bounds to select
the hyperparameters (e.g. Vapnik and Chapelle, 2000; Keerthi, 2002; Joachims, 2000;
Wahba, 1999).

• Use different search/optimisation procedures such as random search, Nelder-Mead
simplex, non-convex optimization procedures, to select the combinations of C and γ
to be evaluated during model selection (e.g. Bergstra and Bengio, 2012; Huang et al.,
2007; Friedrichs and Igel, 2005; De Souza et al., 2006).

• Use different resampling procedures to estimate ε̃ (e.g. Anguita et al., 2005, 2012).

The first approach, given above, optimises an alternative metric, rather than the error
rate, ε, i.e.:

C∗, γ∗ = argmin
C,γ∈S

φ(G, C, γ)

The metric, φ, is sometimes called an internal metric or a model selection criterion and
they are computed from the training set alone. Internal metrics, proposed in the literature
include: the span bound (Vapnik and Chapelle, 2000); the radius/margin bound (Keerthi,
2002); the Xi-Alpha bound (Joachims, 2000); GACV (Wahba, 1999); and maximal dis-
crepancy (Anguita et al., 2005). Duan et al. (2003) compare 5-fold cross-validation with
some internal metrics, such as Xi-alpha and GACV as methods to select SVM hyperpa-
rameters on five data sets and find that the 5-fold has lower excess loss. Anguita et al.
(2005) compare many cross-validation procedures and some internal metrics (maximal dis-
crepancy and compression bound) for hyperparameter selection on 13 data sets, and find
that cross-validation based procedures have lower excess loss than the internal metrics.

The second approach to improving the hyperparameter selection procedure usually fixes
a particular model selection criterion, say 10-fold cross-validation, and proposes different
means by which the C, γ are selected from the S set, and more generally, how the S set
is dynamically computed given the error for the previously selected pairs C, γ. We will
call this approach, the hyperparameter search procedure. Most search procedures are based
on the fact that the error response surface, that is the error for each value of C and γ, is
generally non-convex, and thus methods based on gradient descent can only be guaranteed
to find a local minima. The standard, or most common search procedure is a simple grid
search, where the set S is predefined, usually a geometrically spaced grid in both C and
γ, i.e. the S points are taken from a uniform 2-dimensional grid in the logC × log γ space.
This is the search procedure used in this research. Bergstra and Bengio (2012) propose a
random search in the space logC × log γ. Huang et al. (2007) propose selecting from fixed
points in the logC × log γ space following the principles of uniform design (Fang et al.,
2000). Keerthi and Lin (2003) discuss the asymptotic behaviour of the error surface for
an SVM in the logC × log γ space and proposes a method by which the C is optimized
in a 1D grid search for the linear SVM problem, which yields a Ĉ value, and the C and
γ for the RBF SVM is selected using a 1D grid search on the line that satisfies log γ =
logC − log Ĉ. Davenport et al. (2010) propose that one should see the non-convexity of
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the error surface for different C and γ as a noisy convex surface, and proposes a filtered
coordinate descent search where the “true value” of the error at a particular point C, γ
is a Gaussian filtered value of the error rate in a neighbourhood of C, γ. Keerthi et al.
(2007) define an approximation to the gradient of the error surface and proposes that
a gradient descent search should be performed to select the optimal C and γ. Finally,
many researchers have proposed the use of non-convex optimization procedures to select
the optimal hyperparameters, including evolutionary algorithms (Friedrichs and Igel, 2005),
and particle swarm optimisation (De Souza et al., 2006; Li and Tan, 2010)

The third approach, selection of different resampling procedures, is the one explored in
this paper. We know of few papers that discuss relative merits of resampling procedures
and the selection of hyperparameters: The closest to this research is Anguita et al. (2005).
Anguita et al. (2005) compare 9-fold cross-validation (kf9), 10-fold cv (kf10), 10 repetitions
of the bootstrap procedure (10xboot), 100 repetitions of the bootstrap (100xboot), leave-
one-out (loo), and 70/30 hold-out on 13 data sets (along with two internal metrics) for
hyperparameter selection. They use a different experimental procedure — a fixed test set
(in our notation a fixed F data set) and thus they can estimate ε(F | G, C∗, γ∗) and the
excess loss using the fixed test set. They average the relative excess loss across the data
sets (for each procedure). They report that the k-fold procedures have lower relative excess
loss, followed by the 100xboot, the 10xboot, the loo and the 70/30 in that order. They did
not include any discussion on whether the differences can be considered negligible. Another
result reported in the paper is that 100xboot has the lower estimate error for ε(F | G, C∗, γ∗),
followed by loo, 10xboot, 70/30, and last kf.

2. Methods and data

This paper describes an experimental evaluation of different resampling-based model selec-
tion criteria, using 121 different data sets (described in detail in Section 2.2). The error
rate of the SVM trained with the choice of hyperparameters selected using the different re-
sampling procedures (discussed in Section 2.1) are evaluated using a 2-fold cross-validation.
That is, each data set is divided into two halves, the different resampling procedures are
used to select the hyperparameters using the first half, the SVM is trained in this first half
and its error rate evaluated for the second half. The procedure is repeated using the second
half as training set and the first half as test set. The estimate of the error rate for the
resampling procedure (or more precisely the error rate of the SVM with hyperparameters
selected by the resampling procedure) is the average of the two measured error rates. If i
denotes a data set, ia and ib two halves of the data set, then the estimated error rate for a
resampling procedure rs is

eer(rs, i) =
ε(ib | ia, C∗rs,a, γ∗rs,a) + ε(ia | ib, C∗rs,b, γ∗rs,b)

2
(3)

where C∗rs,a and γ∗rs,a are computed as described in Equation 2, where the ia half of the
data set i corresponds to G (we discuss the candidate set S below).

For the 112 smallest data sets, we used three different statistical methods to compare
the estimated error rate for each resampling procedure with that of a baseline procedure, in
this case the 5-fold cross-validation (details of the comparison methods in Section 3). We
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used the 9 remaining large data sets, for which the experiments above would require too
much computational time, to verify the conclusions derived from the experiments on the
smaller data sets.

The time required to perform hyperparameter selection for each procedure, for each
data set, was also recorded and the ratio with 5-fold cross-validation calculated. The time
ratio was also averaged over all procedures to compute an “expected time ratio” of the
resampling procedures in relation to that of 5-fold cross-validation.

For all procedures and data sets, the hyperparameter search procedure used an 11×10
grid search (the S set) following the ranges and steps popularized by libsvm (Hsu et al.,
2010) i.e. C = {2−5, 2−3, . . . , 215}, and γ = {2−15, 2−13, . . . , 23}.

2.1 Resampling Procedures

The following resampling procedures are investigated:

1. 2-fold cross-validation (kf2)

2. 3-fold cross-validation (kf3)

3. 5-fold cross-validation (kf5)

4. 10-fold cross-validation (kf10)

5. 2 times repeated 5-fold (2xkf5)

6. 2 times repeated 10-fold (2xkf10)

7. 5, 10, and 20 times repeated bootstrap (5xboot, 10xboot, 20xboot)

8. 80/20 hold-out (80/20) — a training set of size approximately 80% of the original
data, and test set of 20%, with similar proportion of classes

9. resubstitution (resub), training and testing in the whole data set

10. inverted 5-fold (invkf5): learning on a single fold, and testing on the remaining.

11. 20/20 hold out (20/20) — training and test sets of 20%

12. 5 times repeated 20/20 hold out (5x20/20)

13. 20/10 holdout (20/10)

14. 10/10 hold out (10/10)

15. 5 times repeated 10/10 hold out (5x10/10)

We describe procedures 3 to 8 as large-training set resampling procedures. If n is the size of
the G set (n = |G|) then the large-training procedures will perform training on sets ranging
from 0.8× n for the kf5, 2xkf5, 80/20, to n for the bootstrap1. The 3-fold and 2-fold (item

1. Technically the size of the training set for the bootstrap depends on the details of the implementation.
The set TRi has size n, but some of the data are necessarily repeated. If one uses a naive implementation,
the training set has size n, but if one makes use of weights for each data point to account for the repetition
of the data, then the training size for the bootstrap is on average 0.632n.
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1 and 2 in the list) will be called medium-training set procedures, since they will perform
training on 0.67n to 0.5n data points. The other procedures are called small-training set
procedures, since the training size ranges from 0.1n (10/10 and others) to 0.2n (20/20 and
others). Somewhat counter-intuitively, the small-training set procedures are more useful for
large data sets, When it is the case that a small fraction of G can represent the underlying
data-generating distribution, such resampling procedures can obtain good accuracy at a
tiny fraction of the computational cost of resampling procedures that build larger training
sets.

2.2 Data sets

The 121 data sets used in this study were collected from the UCI repository (Lichman,
2013), processed and converted by the authors of Fernández-Delgado et al. (2014) into a
unified format. The data is derived from the 165 available at UCI repository in March
2013. From this set, they discarded 56, mainly because they were too large (number of
data and/or number of features), or because they were not in a “common UCI format”.
Four further data sets were added to those from the UCI repository, and finally some data
sets that had two or more definitions of “classes” were converted into different problems.
For example the data set cardiotocography defined two classification problems, one with 3
classes and the other with 10 classes — each became a different data set. The names of
the data sets are a simplification of the original UCI name. For each data set, categorical
features were converted to numerical data, and each feature was standardised to have a
mean of zero and unit standard deviation. No further pre-processing or feature selection
was performed by Fernández-Delgado et al. (2014). We used the data generated by the
authors of Fernández-Delgado et al. (2014), downloaded in November 2014. In 19 data sets
the data were divided into a training and test set, but the test set was not standardized (in
the data available in Nov 2014). In these cases we standardized the test set (independently
of the training set) and joined the two into a single data set. Some of the 121 original
data sets are multi-class. Since the SVM is essentially a binary classification procedure, we
converted the multi-class problems into binary problems by ordering each of the original
classes according to their names and alternately assigned the original classes to the new
positive and negative classes. Finally, we used all the data sets with less than 10,000 data
for the experiments, and used the 9 data sets with more than 10,000 data to verify the
conclusions from the experiments.

The characteristics of all data sets used are reported in Appendix B. The tables report
the size of each half of the data set. The average data set size is 2250 patterns (median 341.5,
max 65030); the average number of features is 30 (median 17, max 263). The proportion
of samples belonging to the positive class is displayed in the histogram in Figure 6 in
Appendix B. The proportions are approximately normally distributed with mean 0.60 and
standard deviation of 0.17.

3. Metrics and statistical procedures

We perform three different statistical analyses of the results. The first is the standard
multi-classifier/multiple-data set comparison procedure proposed by Demšar (2006), where
the multiple resampling procedures play the part of the multiple classifiers. The second
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analysis computes confidence intervals for the excess loss of different resampling procedures
in relation to kf5, and verify whether this interval is within a range of equivalence. If the
confidence interval on the excess loss is smaller than a threshold the error rates of the two
different resampling procedures are considered to be “equivalent”. This second analysis
addresses some of the general criticism of procedures based on the “null hypothesis signif-
icance test” (NHST) framework and is in consonance of what is usually referred to in the
medical literature as “practical significance” (as opposed to mere “statistical significance”).
The final form of analysis is the Bayes factor test proposed by (Barber, 2012, chapter 12).

3.1 Demšar procedure

Demšar (2006) proposed a method to determine whether a statistically significant differ-
ence exists in the performance of multiple classifiers on many data sets. In our case, the
different resampling procedures used in hyperparameter optimisation play the role of the
different classifiers. Demšar suggests using the Friedman test as an omnibus nonparametric
paired test (the pairing is each data set). This test computes the p-value based on the null
hypothesis that all classifiers are “equivalent” in terms of their true rankings. If the p-value
is low enough one would reject the claim that the classifiers are “equivalent” and should
proceed to determine which differences are “statistically significant” or not. In the case that
all classifiers are being compared on an equal basis, Demšar (2006) proposes the Nemeyi
post-hoc test. In our case, we are not interested in comparing all pairs of procedures, but
only in comparing each resampling procedure with the baseline provided by kf5. In this
case, Demšar (2006) proposes pairwise Wilcoxon signed-rank tests (the paired version of
the non-parametric Wilcoxon test), but with the correction to the resulting p-values due to
the multiple comparison. He proposes either the Bonferroni-Dunn procedure, or one of the
step-up/down procedures of Holm, Hochberg, or Hommel.

3.2 Confidence interval on the excess loss

The Demšar’s procedure falls under the null hypothesis significance testing framework, that
is, one assumes that there are no differences among the resampling procedures and declare
that there is a “statistically significant” difference if the probability of a difference in mean
rankings at least as large as that actually observed is below a pre-determined threshold
(usually 0.05). However, even if a “statistically significant” difference exists, the effect size
may be sufficiently small that it is of no relevance to practical applications. For example, it
may be that the difference between one procedure and another is a decrease of (say) 0.0001
in the error rate. This difference could be “statistically significant” but would be unlikely
to be “practically significant” (Kirk, 1996). One possible way of determining if there is a
practically significant variation between a resampling procedure and kf5 (for instance) for
selecting SVM hyperparameters would be to determine a confidence interval for the excess
loss and show that (with 95% confidence) the excess loss exceeds a threshold of equivalence.

The important aspect of the confidence interval procedure is the definition of a “equiv-
alence” threshold — above what level of excess loss should a difference be considered a
“practically relevant” change in the error rate? In this paper we will propose a method
to determine this threshold of equivalence. Besides the resampling procedures described in
Section 2.1, we also evaluated another procedure which was a repetition of the kf5 procedure
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but with different folds; we call it the kf5bis procedure. The difference between the kf5 and
kf5bis procedure was the random generator seed, and thus the “luck/bad luck” the experi-
menter has in creating the folds. Thus, in some sense the excess loss of the kf5bis procedure
is a limit of equivalence, not necessarily because it is small, but because it is an excess
loss one cannot further reduce, since it represents the effect of “luck” in the resampling
procedure for selecting the hyperparameter. Thus, in this paper we use the mean excess
loss of the kf5bis procedure as the threshold of equivalence. Table 2 in Section 4.2 reports
among the other resampling procedures, the mean excess loss of the kf5bis procedure as
−0.0031. Thus in this paper we will consider excess loss within the range [−0.0031, 0.0031]
as irrelevant. Simplifying, the NHST approach would compute the confidence interval for
the excess loss and declare that the excess loss is statistically significant if the confidence
interval does not cross the zero. A “practical significance” approach computes the same
confidence interval for the excess loss, but declares that the excess loss is “irrelevant” if the
interval is fully contained in the [−0.0031, 0.0031] range.

3.3 Bayes factor

The third method to compare error rates across different data sets is the Bayesian analysis
proposed by Barber (2012, chapter 12). The excess loss analysis above is based solely on
the value of the error rate. The Bayesian method is based on both the magnitude of the
error rate and the number of samples used in evaluating that error rate. For example, one
will be more willing to assume that a classifier a which made 50 errors over 500 samples is
equivalent to a classifier b that made 55 errors in 500, than if the first made 700 errors in
7000 samples, while the second made 770. Although the change in error rate is the same
in both cases (0.10 versus 0.11), nevertheless, because of the larger test set, one is less
sure that the two classifiers are equivalent in the second scenario. The Bayesian analysis
measures the ratio between the probability that the classifiers are the equivalent versus the
probability that they are not equivalent (given the data), and this Bayes factor should be
much lower in the second scenario.

Given two classifiers evaluated on the same data set (or in our case the classifiers based on
the different choices of hyperparameters derived using different resampling procedures), the
method computes “How much evidence is there that the two samples of correct and incorrect
predictions in the test set comes from independent multinomial distributions?” which is a
possible rephrasing of the question “How much evidence is there supporting the contention
that the two classifiers are performing differently?” Let us assume that classifier a when
applied to the test set results in ea = 〈ca, ia〉 where ca is the number of correct predictions,
and ia the number of incorrect predictions, and similarly for classifier b. P (Hsame | ea, eb) is
the posterior probability that the pairs of correct and incorrect results ea and eb come from
the same (unknown) binomial distribution, which would indicate that both classifiers are
equivalent. P (Hindep | ea, eb) is the posterior probability that they came from independent
distributions and therefore that the two classifiers are not equivalent (more precisely, it will
be very unlikely that the two independent distributions are the same). The Bayes factor
(BF) is the ratio of these two probabilities:

BF =
P (Hsame | ea, eb)
P (Hindep | ea, eb)

(4)
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The larger the Bayes factor, the higher is the evidence towards the hypothesis that the two
classifiers are equivalent. If Z(x) is the beta function of a pair, and u = 〈1, 1〉, then the BF
is calculated as

BF =
Z(u)Z(u+ ea + eb)

Z(u+ ea)Z(u+ eb)
(5)

Appendix C contains the derivation of this formula. In our case, we will consider 5-fold
cross-validation as the baseline, and we will compare all other procedures to it, and thus
we will calculate for each resampling procedure its Bayes factor in relation to 5-fold cross-
validation.

We will report the 2 logeBF as defined in Equation 4. The reason to use the log is that
the BF is a multiplicative factor, and for the mean and confidence interval calculations we
need an additive factor. The use of the constant 2 is to follow the table of Kass and Raftery
(1995) regarding the interpretation of strength of the evidence in favour of one or the other
hypothesis, which is based on 2 loge.

3.4 Computational Expense

Considering the time consumed for hyperparameter selection via the different resampling
procedures, we ran all of the procedures for a single data set in sequence on a single core (of
a multiple core machine). Different data sets were distributed to different cores of the same
machine. We collected the total time to perform the resampling procedure to select the
hyperparameters — the time to learn the final classifier with the optimal hyperparameters
and to apply it to the other half of the data set was not included in the time measure. Again
we use 5-fold cross-validation as baseline, and report the ratio of the execution time of each
procedure and the 5-fold cross-validation execution time. The statistical calculations are
performed with the log of the time ratio, which was then converted back to report the mean
and confidence interval.

3.5 Statistical procedure

Besides the statistical tests performed by the Demšar procedure, we are interested in estima-
tion of the mean excess loss, the log BF, and the ratio of execution time for each resampling
procedure, in relation to the 5-fold. To evaluate the confidence interval of the mean of
each of these measures, we use a bootstrap procedure with the “BCA” (bias- corrected and
accelerated) evaluation method for the confidence interval (Efron, 1987). We use a 95%
confidence level and 5, 000 replications of the bootstrap procedure.

3.6 Reproducibility

The 121 data sets, the program used to run the hyperparameter search, the raw results for
each resampling procedure and data set, the program to analyse the results and generate
the figures in this paper are available at https://dx.doi.org/10.6084/m9.figshare.

1359901.
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4. Results

In this section we report the results obtained from all experiments using the 112 smallest
data sets, for which the experiments were computationally feasible.

4.1 Demšar procedure

We performed the Friedman test (as implemented in the libraries of the R programming
language) with the following results: Friedman χ2 = 382.8071, d.f. = 17, p-value < 2.2e-
16. Thus, we reject the hypothesis that all resampling procedures are equivalent. We then
performed the Wilcoxon signed-rank test for each procedure against kf5. The resulting
p-values are given in Table 1. The first column is the average rank of each resampling
procedure. The table includes kf5 as the first entry. The results indicate that there is no
clear winner among the different resampling procedures. Notice that all average ranks for
the medium and large training set procedures are similar (around 7) with the exception of
the resubstitution (average rank of 15.2). Note that the average rank for the kf5 procedure
itself is 7.2; thus procedures with average rank less than 7.2 are “better” then kf5, while a
larger average rank indicates ”worse” resampling procedures.

The second column of Table 1 displays the original p-value (from the Wilcoxon test)
without any correction for multiple comparisons. The third column shows the result of
Holm’s correction, followed by the results of the Hochberg, Hommel, and Bonferroni-Dunn
corrections, where p-values below 0.05 (which indicates a 95% confidence) are in bold. Again
the results of these tests suggest that resubstitution, and the small training set procedures
(except 5x20/20) are inferior to kf5, and the other methods are statistically equivalent, or
more precisely, we cannot show that the other methods are statistically dissimilar. Table 1
shows that besides resub, all other large and medium training procedure are not statistically
significantly different from kf5.

4.2 Excess loss

Table 2 reports the mean and 95% confidence interval of the excess losses for each of the
resampling procedures. Figure 1 repeats the excess loss data of Table 2, removing the
resubstitution data. The result of the mean excess loss for the kf5bis is −0.0031. As
discussed, the absolute value of that excess loss is our threshold of equivalence; excess losses
with absolute value lower than 0.0031 are considered in this paper as irrelevant.

4.3 Bayes factor

Table 3 reports the results of the Bayes factor calculations. Most of the results for the log
BF are within the range from 5.5 to 6.1 in favour of the hypothesis that the error rate of
each of the resampling procedures are the same as kf5. Following the scale of interpretation
given by Kass and Raftery (1995), if the 2 loge of the Bayes factor is in the range from 2 to 6,
the evidence should be considered “positive”, and from 6 to 10 “strong”. Thus most of the
results are in the direction of a positive evidence in favour that the resampling procedures
results are the same as the 5-fold results.

A more specific threshold is derived from the kf5 and kf5bis results (first two lines in
Table 3). kf5 is the result of calculating the Bayes factor for the kf5 procedure itself, so we
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procedure mean rank original Holm Hochberg Hommel Bonferroni

kf5 7.2

kf5bis 6.7 0.08 0.51 0.51 0.40 1.00

kf2 6.8 0.66 1.00 0.78 0.78 1.00
kf3 6.3 0.04 0.39 0.36 0.30 0.74

2xkf5 6.2 0.23 0.99 0.71 0.68 1.00
kf10 6.5 0.04 0.39 0.36 0.30 0.76
5xboot 7.2 0.78 1.00 0.78 0.78 1.00
10xboot 5.8 0.20 0.99 0.71 0.60 1.00
20xboot 5.8 0.06 0.41 0.41 0.35 0.99
80/20 9.3 0.01 0.14 0.14 0.14 0.24
resub 15.2 0.00 0.00 0.00 0.00 0.00

invkf5 7.8 0.24 0.99 0.71 0.71 1.00
20/80 8.8 0.00 0.02 0.02 0.02 0.02
20/20 10.6 0.00 0.00 0.00 0.00 0.00
5x20/20 10.3 0.01 0.14 0.14 0.12 0.21
20/10 10.3 0.00 0.00 0.00 0.00 0.00
10/10 11.1 0.00 0.00 0.00 0.00 0.00
5x10/10 10.3 0.00 0.00 0.00 0.00 0.00

Table 1: The result of the Demšar procedure comparing the resampling procedures. First
column names the procedure, second display the average rank. The following
columns display the p-value of the Wilcoxon signed rank test when compared
with kf5: the original p-value, and then after the Holm, Hochberg, Hommel, and
Bonferroni corrections

are sure that both procedures have exactly the same expected generalization error, and yet
for this case, the log Bayes factor is on average 5.89. Thus, 5.89 is the mean theoretical
maximum of the log Bayes factor for the data sets used in the experiment. Thus, the results
in Table 3 are very close to the mean maximum. The kf5bis provides a limit to what is
a “relevant” certainty. By design, the kf5bis results should be irrelevantly different than
their kf5 counterpart — it could be that for one data set, the kf5bis result is sufficiently
different to the kf5 result, but we are averaging over 112 data sets. So, we would like to
make the claim that Bayes factor above 5.70, which is the average of the kf5bis, show that
the differences are irrelevant to this problem. Figure 2 repeats the Bayes factor data Table 3
for data points around the 5.70 threshold above which one should consider that there is
enough evidence that the resampling procedure is equivalent to the 5-fold.

4.4 Computational Expense

Table 4 reports the mean and confidence interval of the ratio of the time required for
each resampling procedure and that for kf5. We would like to point out some anomalies or
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procedure mean (95%CI)

kf5bis −0.0031 −0.0073 , 0.0002

kf2 −0.0012 −0.0056 , 0.0024
kf3 −0.0031 −0.0094 , 0.0002

2xkf5 −0.0014 −0.0043 , 0.0019
kf10 −0.0020 −0.0054 , 0.0023
5xboot 0.0014 −0.0021 , 0.0053
10xboot −0.0022 −0.0065 , 0.0009
20xboot −0.0018 −0.0047 , 0.0016
80/20 0.0053 −0.0003 , 0.0115
resub 0.1354 0.1105 , 0.1632

invkf5 0.0009 −0.0038 , 0.0044
20/80 0.0074 0.0009 , 0.0133
20/20 0.0191 0.0102 , 0.0323
5x20/20 0.0052 −0.0012 , 0.0162
20/10 0.0217 0.0118 , 0.0357
10/10 0.0255 0.0154 , 0.0372
5x10/10 0.0160 0.0083 , 0.0274

Table 2: Excess loss in relation to kf5 for all the resampling procedures. The second column
is the mean excess loss (in relation to kf5) of each procedure; the third and fourth
columns are the 95% confidence interval for the mean. In bold, the mean excess
losses that are of practical significance.

unexpected results regarding the computational expense. The first one is that resubstitution
is slower than kf5. A second one is that the 5-times repeated 20/20 and 10/10 are only
three times as expensive as the corresponding non-repeated procedure. We do not know
how to explain these results, but it is possible that they are also due to interference between
different runs; as discussed in Section 3.4 the many cores of the machines were executing
the experiments in different data sets at the same time.

5. Discussion

The results for the medium-training procedures (kf2 and kf3) are a welcome surprise. The
Demšar analysis shows that they are not significantly different to those obtained using kf5.
Furthermore, the excess loss confidence interval shows that their excess loss is mostly within
the irrelevance threshold, and the Bayes factor indicates that there is good evidence that
their performances are equivalent to that of kf5. However, these two procedures select
the SVM hyperparameters in 33% and 55% of the time of the kf5 procedure — a useful
computational saving.

Most of the large-training procedures have a negative mean excess loss, that is, they
select hyperparameters that result in slightly lower error rates for the future data. The two
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Figure 1: Excess loss in relation to kf5 for the resampling procedures (resubstitution not
included). The dotted line indicates the limit for what is considered an irrelevant
change in the loss.

exceptions are the 80/20 and the resub procedures discussed below. But for all procedures
that result in a better selection of the hyperparameters the mean excess loss it is still
within our range of equivalence to kf5. That is, even using computationally more expensive
procedures such as 20- and 10-times bootstrap, 2 times repeated 5-fold, on average it is not
likely that there will be relevant changes in the final error rate of the classifier. This result
is consistent with the Demšar analysis, which show no statistically significant differences
between these procedures and kf5. The two large-training resampling procedures that have
positive excess loss are the 20% hold-out (80/20) and the resubstitution estimator. The
result for resubstitution is widely known—the use of the same data for training and testing
causes severe overfitting—but we have shown that the overfitting is also severe in regards
to hyperparameter selection.

The small-training procedures all incur positive excess losses, to varying extents, and
thus are in general “worse” than kf5, but the inverse-kf5 and the 20/80 holdout have the
lowest mean excess loss. The excess loss for the 20/20 procedures (sample 20% for training
and 20% for testing), and for the 20/10 and 10/10 procedures are very significant. We
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procedure mean (95%CI)

kf5 5.89 5.52 , 6.33

kf5bis 5.70 5.33 , 6.11

kf2 5.61 5.24 , 6.05
kf3 5.73 5.35 , 6.16

2xkf5 5.74 5.37 , 6.19
kf10 5.67 5.30 , 6.11
5xboot 5.67 5.29 , 6.11
10xboot 5.73 5.35 , 6.16
20xboot 5.72 5.34 , 6.15
80/20 5.32 4.88 , 5.75
resub −150.53 −274.41 , −81.73

invkf5 5.48 5.05 , 5.94
20/80 5.19 4.69 , 5.70
20/20 3.14 −1.49 , 4.45
5x20/20 4.93 3.85 , 5.52
20/10 −2.85 −30.38 , 3.26
10/10 2.97 1.26 , 4.05
5x10/10 4.51 3.45 , 5.16

Table 3: 2 loge of the Bayes factor of the hypothesis that the resampling procedure results
are the same as the kf5 results versus the hypothesis that they are independent.
The numbers in the table are the mean difference of the log of the Bayes factor
between the procedures indicated in the left column and the kf5. The last two
columns are the 95% confidence interval for the mean.

conclude from these observations, that there seems to be no real gain in using resampling
procedures more costly than 5-fold cross-validation. On the other hand, the kf2 and kf3
procedures seem to achieve a similar result to kf5, with lower computational costs.

An important issue is whether the results for the equivalence, for practical purposes, of
the kf2, kf3 and kf5 procedures carries forward to larger and higher dimensional data. We
tested the kf2 and kf3 on the 9 largest data sets. The results are in Table 5. The table shows
the excess loss in relation to kf5, the log BF of both procedures and the kf5 log BF (which
indicates the maximum value) and the time ratios in relation to kf5. With the exception
of the nursery data set, all excess losses are within our limit or irrelevance, and the BF are
close to the maximum, a very strong evidence that these procedures perform equally well
for larger size data sets. Figures 3 and 4 show the values of the excess loss as a function of
the data set size and the number of dimensions of the data. For data sets with sizes beyond
the examples tested, one can look at the trend of excess loss as a function of the data set
size in Figures 3 and 4: there is a compelling trend of diminishing excess loss as the data
set size increase. Therefore we are very confident that one can safely use kf2 or kf3 to tune
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Figure 2: Bayes factor of the ratio of the probabilities that the resampling procedure and
the 5-fold are equivalent. Data around the 5.7 threshold, above which one should
consider that there is enough evidence to claim the equivalence.

SVM hyperparameters in large data sets. Note that as the size of the dataset increases,
the bias and variance of most resampling procedures tend to decrease, so this is entirely in
accord with a-priori intuition.

The evidence of a decreasing trend for larger dimensionality is less compelling for the
kf2 than it is for the kf3. For one data set with larger dimensionality, the excess loss of
kf2 is outside our range of irrelevance, but that is not true for the kf3. It should be noted
though that the RBF kernel is often unsuitable for high-dimensional datasets and a linear
kernel is often preferable in such cases (Hsu et al., 2010).

Another important issue is whether the practical equivalence of the kf2 and kf3 to kf5 is
also valid for an SVM with other kernels. We evaluated the excess loss of kf2 and kf3 on the
112 smallest datasets on SVM with polynomial and linear kernels. The results are displayed
in Table 6. The data are also displayed in Figure 5. The results are not too different than
the excess loss for the RBF SVM, with the exception of a somewhat higher excess loss for
the kf2 for linear SVM. So we believe that the conclusions of practical equivalence of the kf2
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procedure mean (95%CI)

kf2 0.35 0.31 , 0.39
kf3 0.54 0.52 , 0.57

2xkf5 1.95 1.90 , 2.01
kf10 2.39 2.32 , 2.45
5xboot 1.24 1.20 , 1.28
10xboot 2.28 2.21 , 2.35
20xboot 4.43 4.28 , 4.56
80/20 0.31 0.30 , 0.32
resub 1.45 1.37 , 1.52

invkf5 0.46 0.40 , 0.51
20/80 0.22 0.19 , 0.25
20/20 0.11 0.09 , 0.13
5x20/20 0.33 0.27 , 0.39
20/10 0.17 0.14 , 0.20
10/10 0.09 0.07 , 0.12
5x10/10 0.28 0.22 , 0.35

Table 4: Time ratio between the resampling procedure and the kf5.

db size kf2 loss kf3 loss kf2 BF kf3 BF kf5 BF kf2 time kf3 time

pendigits 5496 −0.0004 0.0002 11.8 11.7 11.9 0.56 0.40
nursery 6480 0.0014 0.0014 10.2 10.2 10.8 0.21 0.44
magic 9510 −0.0004 0.0018 8.8 8.7 8.8 0.20 0.40
letter 10000 0.0007 −0.0000 10.4 10.6 10.6 0.20 0.39
chess-krvk 14028 0.0073 0.0000 6.6 8.8 8.8 0.13 0.31
adult 24421 −0.0002 −0.0008 9.6 9.6 9.6 0.14 0.31
statlog-shuttle 29000 −0.0001 0.0 15.5 15.6 15.6 0.32 0.45
connect-4 33778 0.0012 0.0012 9.9 9.9 10.1 0.27 0.36
miniboone 65032 −0.0002 −0.0005 11.3 11.2 11.4 0.17 0.52

Table 5: kf2 and kf3 excess loss in relation to kf5, the 2*log BF of kf2, kf3 and kf5 (which
shows the maximum value of the BF) and the time ratio for kf2 and kf3

and kf3 resampling procedures in relation to the kf5 resampling to select hyperparameters
are also valid for the linear and polynomial SVM.

5.1 Limits of this research

The strength of the conclusions of this research rests on the assumption that the set of 121
data set used are a good sample of “real life” data sets. There are limits to this assumption.
Fernández-Delgado et al. (2014) did not include large data sets (large number of data points
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Figure 3: The excess loss of the kf2 procedure in relation to the dataset size and dimen-

sionality. The dotted horizontal line is our threshold of irrelevance. The dashed
transparent vertical line indicates that there is a data point at that position that
was clipped from the graph.

Kernel procedure mean min max

Polynomial kf2 0.006 0.002 0.010
kf3 0.001 -0.003 0.004

Linear kf2 0.002 0.000 0.005
kf3 0.002 0.000 0.007

Table 6: Excess loss for the kf2 and kf3 procedures on SVm with Polynomial and Linear
kernels.

or large number of features). Thus, our sample does not reflect large data sets (especially
text-classification datasets which also have a high dimensionality). Practitioners working
with these kinds of data sets are advised to check our conclusions before following them.

It has been suggested that the outer 2-fold procedure to estimate ε̆ was probably too
noisy since kf2 is a high variance estimator. Appendix E shows that even using a 5xkf2 (on
the 42 data sets with at most 400 data) the results do not change significantly — but the
confidence intervals are somewhat reduced. Therefore, even if a lower variance estimator of
ε̆ was used, we do not believe the results would change substantively.

This research assumed that kf5 was the “standard” resampling procedure for hyperpa-
rameter selection, and compared all other procedures against kf5. The many results in the
paper show, among others, kf2 and kf3 are equivalent from a practical point of view to kf5.
But that might not be the case for more costly, low variance procedures such as kf10 or
20xboot. Appendix F shows the result of the Nemenyi test for comparing all resampling
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Figure 4: The excess loss of the kf3 procedure in relation to the dataset size and dimen-

sionality. The dotted horizontal line is our threshold of irrelevance. The dashed
transparent vertical line indicates that there is a data point at that position that
was clipped from the graph.

procedures against each other. None of the large-training and medium-training procedures
are statistically significantly different from each other, with the exception of 80/20 and
resub which were also not equivalent to kf5.

5.2 Methodological discussion

We believe that besides the important result of a strong suggestion of using 2-fold or 3-
fold cross validation to select the hyperparameters of an SVM this research also opens
an important methodological discussion on at least three topics. The first is the use of a
Bayesian framework for the comparison of classifiers. The second is the use of concepts of
“practical irrelevance” or “practical equivalence” in machine learning, and in particular the
use of the kf5bis to discover the threshold of equivalence. The final issue, is whether it is
methodologically sound to average excess losses. The Bayes factor approach resulted in a
metric that is not very sensitive. Most of the results in Table 3 are similar to each other
and almost all are in the range of positive evidence, but as we have shown using the results
of kf5, this seems to be the strongest evidence possible in this problem. Our decisions
regarding the BF should be reviewed by future researchers in search of a more sensitive
metric. For example, we used only the number of correct and incorrect predictions in the
Bayesian calculations. Barber (2012) implicitly suggest both these measures and also using
the 4-tuple of true positives, true negatives, false positives, and false negatives.

We must explain why we used two other analysis procedures beyond the usual Demšar
proposal. As we discussed, the Demšar (2006) procedure falls within the NHST framework,
and other empirical sciences realized that NHST are rarely the correct tool to analyse data
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Figure 5: The excess loss of the kf2 and kf3 procedures for Linear and Polynomial SVM,
measured on the 112 smallest dataset. The dotted line is the threshold of practical
equivalence.

(Gardner and Altman, 1986; Thompson, 2002; Woolston, 2015). Significance tests can tell
us that two samples are different enough that it is unlikely that they came from the same
population, but not whether the difference matters for any practical purpose. Alternatively,
significance tests can tell us that there is not enough evidence to make the claim that the
two samples came from the same population, which in no way means that the two samples
are “the same.” Our proposal of using a confidence interval on an effect size and a measure
of practical equivalence is one possible direction, as is our usage of Barber (2012) Bayesian
analysis.

Another methodological proposal was to use the kf5bis (a different random selection for
the kf5) as a way of determining a threshold of equivalence. The differences between kf5
and kf5bis should on average over many data sets be irrelevant, either because they are too
small to matter or because there is no way to reduce them.

The final discussion is whether computing the mean (and confidence interval) of a ex-
cess loss is a sound procedure. An argument against it is that error rates (and therefore
differences in error rates) cannot be compared across different data sets. One can argue
that an improvement of 0.05 in the error rate would be a substantial improvement if the
error rate was originally 0.08; however an improvement of 0.05, where the original error rate
was 0.28, is rather less significant. The same number (0.05) seems to mean different things
in these two situations, and therefore adding those two numbers (to compute the average)
does not seems a reasonable operation. We believe that the source of this problem is that
the variance of the error rates across different resampling procedures, for example, varies
as a function of the error rate itself. If the variance of error rates for low error rates is low,
then 0.05 is a considerable magnitude (in standard deviations) for an error rate of 0.08. The

22



Resampling procedures for SVM hyperparameter search

variance should be much larger for an error rate of 0.28, which in turn means that 0.05 is
not such a large change in that case. But as Appendix D shows, the variance of the excess
loss (for all procedures) does not increase as the error rate (for the kf5 procedure) increases.
In fact the variance can be seen as constant across the different error rates, and that would
allow one to compute the average of the excess losses.

6. Conclusions

This research has evaluated the impact of different resampling procedures in the selection
of SVM hyperparameters, by comparing 17 different procedures in 121 data sets. The
conclusion is that the 2-fold procedure should be used in data sets with more than 1000
points. In these cases the user may expect a difference of −0.0031 to 0.0031 in the error
rate of the classifier if a 5-fold procedure was used, which we believe is the limit of what one
should consider an irrelevant change in the classifier error rate. For smaller data sets, we
could not detect any significant difference (on average) between 5-fold and computationally
more costly procedures such as 10-fold, 5 to 20 times repeated bootstrap, or 2 times repeated
5-fold. We believe that a 3-fold is appropriate for smaller data sets.
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Appendix A. Terminology

resampling vs cross-validation. What we called resampling is frequently called cross-
validation. We decided to use resampling instead of the most common term cross-validation,
because we understand that the ”cross” term in cross validation implies a subset that is used
in training and then again in testing, as in the k-fold procedure. That is not necessarily true
for the bootstrap procedure — there is no subset that is by construction used in the training
and then in the testing. Resampling procedures are also called out-of-sample techniques
(Anguita et al., 2012).

k-fold also known as k-fold cross validation or cross-validation by itself (Kuhn et al.,
2014).

hold out is sometimes called leave group out (Kuhn et al., 2014) or split sample (Moli-
naro et al., 2005).

model selection (Cawley and Talbot, 2010) is also called selection of hyperparame-
ters or hyperparameter optimization (Bergstra and Bengio, 2012) or hyperparameter tuning
(Duan et al., 2003)

bootstrap: in the version of bootstrap described here the error rate is measured solely
on the test set which contains only the data not included in the training set. Two other
variations of bootstrap are commonly used: the .632-bootstrap (Efron, 1983) and the .632+-
bootstrap (Efron and Tibshirani, 1997). For these methods the error estimate is calculated
using not only the test set, but also the error rate of the training set itself.

Appendix B. Data sets

Table 7 lists the characteristics of all data sets, ordered by size. The name of the data set
is the same as those used in Fernández-Delgado et al. (2014). The size refers to one half
of the data set (please refer to section 2 regarding the methodology to compute the excess
log loss). The nfeat column is the number of features or number of dimensions of the data
in the data sets; ndata the number of patterns; prop the proportion of data in the positive
class. Notes has the following values:

• r the data set was removed from all analysis because all cross validation tests have
less than 5 examples of a particular class

• s some of the experiments did not run because their test sets had less than 5 examples
of a particular class

• m the data set describes a multiclass problem, and so was converted to a binary
problem using the procedure discussed in section 2

• l the data set has more than 5000 patterns so it was used in the large data set
validation.

• t the data set was originally divided into a test and train set, where the test set was
not standardized (see section 2).

Figure 6 displays the histogram of the proportion of the positive class.
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Table 7: The data sets

data set nfeatures ndata prop note

trains 30 5 0.40 r
balloons 5 8 0.50 r
lenses 5 12 0.83 r
lung-cancer 57 16 0.56 r
pittsburg-bridges-SPAN 8 46 0.52 m
fertility 10 50 0.96 s
zoo 17 50 0.62 m
pittsburg-bridges-REL-L 8 51 0.82 m
pittsburg-bridges-T-OR-D 8 51 0.86
pittsburg-bridges-TYPE 8 52 0.62 m
breast-tissue 10 53 0.53 m
molec-biol-promoter 58 53 0.49
pittsburg-bridges-MATERIAL 8 53 0.94 ms
acute-inflammation 7 60 0.52
acute-nephritis 7 60 0.67
heart-switzerland 13 61 0.38 m
echocardiogram 11 65 0.74
lymphography 19 74 0.46 m
iris 5 75 0.72 m
teaching 6 75 0.64 m
hepatitis 20 77 0.22
hayes-roth 4 80 0.57 mt
wine 14 89 0.60 m
planning 13 91 0.74
flags 29 97 0.47 m
parkinsons 23 97 0.25
audiology-std 60 98 0.64 mt
breast-cancer-wisc-prog 34 99 0.77
heart-va 13 100 0.52 m
conn-bench-sonar-mines-rocks 61 104 0.54
seeds 8 105 0.64 m
glass 10 107 0.40 m
spect 23 132 0.67 mt
spectf 45 133 0.19 t
statlog-heart 14 135 0.53
breast-cancer 10 143 0.69
heart-hungarian 13 147 0.63
heart-cleveland 14 151 0.75 m
haberman-survival 4 153 0.75
vertebral-column-2clases 7 155 0.68

continued in the next page
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Table 7: The data sets (continued)

data set nfeatures ndata prop note

vertebral-column-3clases 7 155 0.67 m
primary-tumor 18 165 0.68 m
ecoli 8 168 0.64 m
ionosphere 34 175 0.30
libras 91 180 0.51 m
dermatology 35 183 0.64 m
horse-colic 26 184 0.64 t
congressional-voting 17 217 0.59
arrhythmia 263 226 0.67 m
musk-1 167 238 0.58
cylinder-bands 36 256 0.38
low-res-spect 101 265 0.25 m
monks-3 7 277 0.48 t
monks-1 7 278 0.51 t
breast-cancer-wisc-diag 31 284 0.63
ilpd-indian-liver 10 291 0.72
monks-2 7 300 0.64 t
synthetic-control 61 300 0.51 m
balance-scale 5 312 0.53 m
soybean 36 341 0.42 mt
credit-approval 16 345 0.43
statlog-australian-credit 15 345 0.32
breast-cancer-wisc 10 349 0.66
blood 5 374 0.76
energy-y1 9 384 0.80 m
energy-y2 9 384 0.75 m
pima 9 384 0.66
statlog-vehicle 19 423 0.52 m
annealing 32 449 0.81 mt
oocytes trisopterus nucleus 2f 26 456 0.41
oocytes trisopterus states 5b 33 456 0.98 m
tic-tac-toe 10 479 0.34
mammographic 6 480 0.56
conn-bench-vowel-deterding 12 495 0.53 mt
led-display 8 500 0.51 m
statlog-german-credit 25 500 0.72
oocytes merluccius nucleus 4d 42 511 0.31
oocytes merluccius states 2f 26 511 0.93 m
hill-valley 101 606 0.49 t
contrac 10 736 0.79 m

continued in the next page
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Table 7: The data sets (continued)

data set nfeatures ndata prop note

yeast 9 742 0.55 m
semeion 257 796 0.50 m
plant-texture 65 799 0.50 m
wine-quality-red 12 799 0.56 m
plant-margin 65 800 0.52 m
plant-shape 65 800 0.52 m
car 7 864 0.28 m
steel-plates 28 970 0.66 m
cardiotocography-10clases 22 1063 0.39 m
cardiotocography-3clases 22 1063 0.86 m
titanic 4 1100 0.66
image-segmentation 19 1155 0.58 mt
statlog-image 19 1155 0.55 m
ozone 73 1268 0.97
molec-biol-splice 61 1595 0.75 m
chess-krvkp 37 1598 0.48
abalone 9 2088 0.68 m
bank 17 2260 0.88
spambase 58 2300 0.61
wine-quality-white 12 2449 0.48 m
waveform-noise 41 2500 0.66 m
waveform 22 2500 0.68 m
wall-following 25 2728 0.78 m
page-blocks 11 2736 0.92 m
optical 63 2810 0.51 mt
statlog-landsat 37 3217 0.56 t
musk-2 167 3299 0.85 m
thyroid 22 3600 0.94 mt
ringnorm 21 3700 0.49
twonorm 21 3700 0.49
mushroom 22 4062 0.51
pendigits 17 5496 0.51 mlt
nursery 9 6480 0.68 ml
magic 11 9510 0.65 l
letter 17 10000 0.50 ml
chess-krvk 7 14028 0.53 ml
adult 15 24421 0.76 lt
statlog-shuttle 10 29000 0.84 mlt
connect-4 43 33778 0.75 l
miniboone 51 65032 0.28 c
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Figure 6: Histogram of the proportion of the positive class for the 121 data sets analysed.

Appendix C. Derivation of the Bayes factor formula

The derivation below is taken from chapter 12 of Barber (2012) by fixing the data for
each classification (ei) to be a pair number-of-correct-predictions and number-of-incorrect-

predictions, and by computing the BF as p(Hsame|ea,eb)
p(Hindep|ea,eb) instead of

p(hindep|ea,eb)
p(hsame|ea,eb) . Let us assume

that classifier a when running on the test set results in ea = 〈ca, ia〉 where ca is the number
of correct predictions, and ia the number of incorrect predictions, and similarly for classifier
b. The standard Bayesian model selection method is to calculate:

P (H1 | ea, eb)
P (H2 | ea, eb)

=
P (ea, eb | H1)

P (ea, eb | H2)

P (H1)

P (H2)
.

In this case, H1 is the hypothesis that the two data ea and eb come from independent multi-
nomial distributions (Hindep) and H2 that they come from the same distribution (Hsame).
Also let us assume that there is no prior preference for choosing any of these two hypothesis,
and thus P (Hindep) = P (Hsame).

For both hypothesis we will assume that the two values ci and ii are sampled from a
multinomial distribution, P (〈ca, ia〉 = 〈a1, a2〉 | α =〉α1, α2〉) = αa11 α

a2
2 , with an unknown

α. α is sampled from a Dirichlet distribution:

P (α) =
1

Z(u)
αu1−11 αu2−12 ,

where Z(u) is the normalizing constant

Z(u) =
Γ(u1)Γ(u2)

Γ(u1 + u2)
,

Γ(.) is the gamma function and u = 〈u1, u2〉 is the parameters of the Dirichelet distribution.
u = 〈1, 1〉 results in a uniform distribution over the possible values of α1 and α2. The same
is assumed for cb and ib.
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For the independent hypothesis, we assume that the two data ea and eb comes from
independent distributions, with independent α and β, that is

P (ea, eb | Hindep) =

∫
P (ea, eb | α, β,Hindep)P (α, β | Hindep)dαdβ,

=

∫
P (ea | α,Hindep)P (α | Hindep)dα

∫
P (eb | β,Hindep)P (β | Hindep)dβ,

=
Z(u+ ea)

Z(u)

Z(u+ eb)

Z(u)
.

For the same hypothesis, we assume that both ea and eb were sampled from the same
(unknown) multinomial distribution:

P (ea, eb | Hsame) =

∫
P (ea, eb | α,Hsame)P (α, | Hsame)dα,

=

∫
P (ea | α,Hsame)P (eb | α,Hsame)P (α | Hsame)dα,

=
Z(u+ ea + eb)

Z(u)
.

Thus, the Bayes factor is:

BF =
p(Hsame | ea, eb)
p(Hindep | ea, eb)

=
Z(u)Z(u+ ea + eb)

Z(u+ ea)Z(u+ eb)
. (6)

Appendix D. Variance of the excess loss

Figure 7 is a scatter plot of all excess losses for all procedures as a function of the kf5 error
rate. The figure seems to indicate that the variance is does not increase as the error rate
increases, as discussed in the text. Figure 8 computes the variance of the excess losses for
all procedures for different kf5 error rates. The kf5 error rate was divided into 20 equal
ranges, and the variance of the excess loss was computed for each range. The figure places
the variance at the mean kf5 error rate for each range. Not all ranges are represented in
the figure because 3 of them fall between the last two kf5 error rates.

Appendix E. The outer loop

The outer loop in the experiments is a 2-fold, that is we run the experiments in half of the
data set and measure the error rate in the second half, then we change the train and test
halves, and average the two measures. But kf2 is a high variance estimation. To evaluate
the consequence of this choice, we ran an experiment where the outer loop is a 5xkf2, a
5-times repeated kf2, for all data sets with less than 400 points. The results are reported
in Figure 9. The figure plots the mean and confidence intervals for the original experiment
with a kf2 outer loop and the 5xkf2 experiment, for 42 data sets with less than 400 data.
The results show that there was a reduction in the confidence interval for the large- and
mid-training procedures, but no systematic difference in the mean excess loss. For the small
training procedures there seems to be a small decrease in the mean excess loss, and usually
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Figure 7: Scatter plot of all excess losses (for all procedures) as a function of the kf5 error
rate.
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Figure 8: Variance of all excess losses for different kf5 error rates.

a small decrease in the confidence intervals, but not for all procedures. These differences
should diminish as the data set increases in size. Thus had we used a repeated kf2 in the
outer loop, the results would likely be similar, with maybe a small reduction on the sizes of
the confidence intervals.

Appendix F. The full significance test comparison of all procedures
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Figure 9: Comparison of using kf2 and 5xkf2 for the outer loop, for the 42 data sets with
less than 400 data.
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Léon Bottou and Chih-Jen Lin. Support vector machine solvers. In Large Scale Kernel
Machines, pages 301–320, 2007.

Ulisses Braga-Neto and Edward Dougherty. Bolstered error estimation. Pattern Recognition,
37(6):1267–1281, 2004.

Gavin C. Cawley and Nicola L.C. Talbot. On over-fitting in model selection and subsequent
selection bias in performance evaluation. Journal of Machine Learning Research, 11:2079–
2107, 2010.

32



Resampling procedures for SVM hyperparameter search

Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector machines.
ACM Trans. Intell. Syst. Technol., 2(3):27:1–27:27, 2011.

Olivier Chapelle, Vladmir Vapnik, Olivier Bousquet, and Sayan Mukherjee. Choosing multi-
ple parameters for support vector machines. Machine Learning, 46(1–3):131–159, January
2002.

Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine Learning, 20(3):
273–297, 1995.

Mark A. Davenport, Richard G. Baraniuk, and Clayton D. Scott. Tuning support vector
machines for minimax and Neyman-Pearson classification. IEEE Transactions on Pattern
Analysis and Machine Learning, 32(10):1888–1898, 2010.
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