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FINITELY PRESENTED EXPONENTIAL FIELDS

JONATHAN KIRBY

Abstract. The algebra of exponential fields and their extensions is
developed. The focus is on ELA-fields, which are algebraically closed
with a surjective exponential map. In this context, finitely presented
extensions are defined, it is shown that finitely generated strong ex-
tensions are finitely presented, and these extensions are classified. An
algebraic construction is given of Zilber’s pseudo-exponential fields.
As applications of the general results and methods of the paper, it is
shown that Zilber’s fields are not model-complete, answering a ques-
tion of Macintyre, and a precise statement is given explaining how
Schanuel’s conjecture answers all transcendence questions about ex-
ponentials and logarithms. Connections with the Kontsevich-Zagier,
Grothendieck, and André transcendence conjectures on periods are
discussed, and finally some open problems are suggested.
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2 JONATHAN KIRBY

1. Introduction

An exponential field (or E-field) is a field F of characteristic zero
equipped with a homomorphism expF (also written exp, or x 7→ ex)
from the additive group Ga(F ) = 〈F ; +〉 to the multiplicative group
Gm(F ) = 〈F×; ·〉. The main examples are the real and complex expo-
nential fields, Rexp and Cexp, where the exponential map is given by the
familiar power series.
Zilber [23] gave axioms describing particular exponential fields which

he called “pseudo-exponential fields”. His construction is model-theoretic
and focuses mainly on the uncountable setting. In this paper we develop
the algebra of exponential fields leading, amongst other things, to an
algebraic construction of the pseudo-exponential fields which gives some
more information about them.
Some of the concepts in this paper appear also in Zilber’s paper, but

here we present them in a wider and more natural context. In particular,
we do not assume that our exponential fields satisfy the Schanuel property,
so much of what we do applies unconditionally to the complex setting.
The main method of the paper is the use of a predimension function δ.
These functions were introduced by Hrushovski [10] for various model-
theoretic constructions, but it appears they could have a significant use
in transcendence theory as well.
We consider mainly those exponential fields which are algebraically

closed and have a surjective exponential map, in this paper called ELA-
fields. In §2 we show that an exponential field F , or even a field with a
partially-defined exponential map, can be extended in a free way to an
ELA-field and, under some extra assumptions such as F being finitely
generated, this free extension is unique up to isomorphism.
In §3 we give a definition of an extension of ELA-fields being finitely

presented. The finite presentations take the form of algebraic varieties
which are the locus of a suitable generating set. Compare the situation
of a finitely generated extension of pure fields, where the extension is
determined up to isomorphism by the ideal of polynomials satisfied by the
generators, or equivalently by their algebraic locus over the base field. The
most important extensions of exponential fields are the so-called strong
extensions. In [12] it was shown that these are the extensions which
preserve the notion of exponential algebraicity. We prove that a finitely
generated, kernel-preserving, strong extension of ELA-fields is a finitely
presented extension. This theorem could be viewed as the analogue for
exponential fields of the Hilbert Basis Theorem, which implies that any
finitely generated extension of fields is finitely presented.
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The brief §4 explains the convention for defining finitely presented ELA-
fields (as opposed to finitely presented extensions). With this convention,
it follows at once that, if Schanuel’s conjecture is true, every finitely gen-
erated ELA-subfield of Cexp is finitely presented. We can give a similar,
unconditional result. By Theorem 1.2 of [12], we know that Cexp is a
strong extension of its countable subfield C0 of exponentially-algebraic
numbers. It is therefore an immediate consequence of Theorem 3.11 that
every finitely generated ELA-extension of C0 within Cexp is a finitely pre-
sented extension.
In §5 we show that whether or not a finitely presented extension is

strong can be detected from the algebraic variety which gives the presen-
tation, and a classification is given of all finitely generated strong ELA-
extensions.
The analogue of the algebraic closure of a field is the strong exponential-

algebraic closure F∼ of an exponential field F . Zilber’s pseudo-exponential
fields are the simplest examples of this construction. The main claim of
[23] was that the uncountable pseudo-exponential fields are determined
up to isomorphism by their cardinality. Unfortunately there is a mistake
in the proof there. In the proof of Proposition 5.15 in [23], there is no
reason why A′B′ should not lie in C, and then V ′ would not contain V0.
Indeed, that proposition as stated is false, because the definition of fini-
tary used there does not give sufficiently strong hypotheses. The stronger
hypotheses of Lemma 5.14 would be enough to prove the main result, but
no correct proof is known to me at the time of writing, even with these
hypotheses.
In §6 we construct F∼ and, under some basic assumptions including

countability, show that it is unique. In particular, we prove that the
countable pseudo-exponential fields are determined up to isomorphism
by their exponential transcendence degree. In fact the uniqueness of the
pseudo-exponential field Bℵ1

of cardinality ℵ1 then follows by Zilber’s
methods, as explained for example in [13, Theorem 2.1], but the higher
cardinalities are still problematic.
In §7 we answer a question of Macintyre by showing that Zilber’s

pseudo-exponential fields are not model-complete, and in §8 we show
that ELA-fields satisfying the Schanuel nullstellensatz are not necessar-
ily strongly exponentially-algebraically closed, in contrast to the situation
for pure fields where the Hilbert nullstellensatz characterises algebraically
closed fields.
In §9 we reflect on what the ideas of this paper show for transcendence

problems, and try to give a formal statement expressing the generally
accepted principle that Schanuel’s Conjecture answers all transcendence
problems about exponentials and logarithms. We write B to mean a
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pseudo-exponential field of cardinality 2ℵ0 . Zilber’s conjecture is that
Cexp

∼= B, which on the face of it makes sense only if B is well-defined,
but in fact the conjecture consists of the two assertions that Schanuel’s
conjecture is true and that Cexp is strongly exponentially-algebraically
closed, both of which make sense independently of the uniqueness of B.
Connections between Schanuel’s conjecture and conjectures on periods are
explored.
Finally, in §10 we suggest some open problems.
I am grateful to many people for discussions relating to this paper,

particularly to Michel Waldschmidt and Daniel Bertrand for discussions
about the relationship with transcendence problems.

2. Free extensions

As an intermediate stage in constructing exponential fields we need the
notion of a partial E-field.

Definition 2.1. A partial E-field F consists of a field 〈F ; +, ·〉 of charac-
teristic zero, a Q-linear subspace D(F ) of the additive group of the field,

and a homomorphism 〈D(F ); +〉 expF−→ 〈F ; ·〉.
D(F ) is the domain of the exponential map of F , and we write I(F ) =

expF (D(F )), the image of the exponential map.

A homomorphism of partial E-fields is a field embedding F
θ−→ F1

such that θ(D(F )) ⊆ D(F1) and for every x ∈ D(F ), expF1
(θ(x)) =

θ(expF (x)).

If X is a subset of a partial E-field F , we define the partial E-subfield
of F generated by X , written 〈X〉F , to have D(〈X〉F ) equal to the Q-
span of D(F ) ∩ X , and the underlying field of 〈X〉F to be the subfield
of F generated by D(〈X〉F ) ∪ I(〈X〉F ) ∪ X . Thus 〈X〉F contains all
the exponentials in F of elements of X , but does not contain iterated
exponentials. A different but equivalent definition of partial E-fields is
given in [12], where D(F ) is given as a separate sort.
In this paper we consider only those partial E-fields F which are alge-

braic over D(F ) ∪ I(F ).
Now let F be a partial E-field, x̄ a finite tuple from D(F ), and B a

subset of D(F ). We define the relative predimension function to be

δ(x̄/B) = td(x̄, exp(x̄)/B, exp(B))− ldimQ(x̄/B)

where by td(X/Y ) we mean the transcendence degree of the field extension
Q(XY )/Q(Y ) and by ldimQ(X/Y ) we mean the dimension of theQ-vector
space spanned by X ∪ Y , quotiented by the subspace spanned by Y .
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Definition 2.2. An extension F ⊆ F1 of partial E-fields is strong, written
F ⊳ F1, iff for every tuple x̄ from D(F1), we have δ(x̄/D(F )) > 0.
If B is a subset of D(F ), we define B ⊳ F iff 〈B〉F ⊳ F .

As explained in [12], strong extensions are essentially those for which
the notion of exponential algebraicity is preseved, and are thus the most
useful extensions to consider. In this paper we see they are intimately
connected with free or finitely presented extensions.
The following basic properties are easy to verify.

Lemma 2.3 (Basic properties of δ and strong extensions).

(1) [Addition Property] If x̄, ȳ ∈ D(F ) are finite tuples and B ⊆ D(F )
then

δ(x̄ ∪ ȳ/B) = δ(ȳ/B) + δ(x̄/ȳ ∪ B)

(2) Given a finite tuple x̄ from D(F ) and B ⊆ D(F ), there is a finite
tuple b̄ from B such that δ(x̄/B) = δ(x̄/b̄).

(3) The identity F ⊆ F is strong.
(4) If F1 ⊳ F2 and F2 ⊳ F3 then F1 ⊳ F3. (That is, the composite of

strong extensions is strong.)
(5) An extension F ⊆ F1 is strong iff for every tuple x̄ from F1, the

subextension F ⊆ 〈F, x̄〉F1
is strong.

(6) If F1⊳F2 ⊳ · · ·⊳Fn ⊳ · · · is an ω-chain of strong extensions then
F1 ⊳

⋃

n<ω Fn.
(7) If in addition each Fn ⊳M then

⋃

n<ω Fn ⊳M . �

We now explain how exponential maps can be constructed abstractly.
Let F be a field of characteristic zero, and D(F ) a Q-subspace. We will
construct an exponential map defined on D(F ).

Construction 2.4. Choose a Q-basis {bi | i ∈ I } of D(F ). For each
i ∈ I we will choose ci,1 ∈ F , and we will define exp(bi) = ci,1. The
value of exp(bi/m) must be an mth root of ci,1, so we have to specify
which. Furthermore, as m varies, we must choose these roots coherently.
So in fact for each i ∈ I and m ∈ N we much choose ci,m ∈ F such that
for any r,m ∈ N, we have cri,rm = ci,m. Every element of D(F ) can be

written as a finite sum 1
m

∑

ribi for some m ∈ N and ri ∈ Z, and we

define exp( 1
m

∑

ribi) =
∏

crii,m. The coherence condition shows that exp
is well-defined.

This coherence property for the roots is important enough that we
introduce some terminology for it.

Definition 2.5. Given c1, a coherent system of roots of c1 is a sequence
(cm)m∈N such that for every r,m ∈ N we have crrm = cm.
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Of course, for the exponential map to be non-trivial we need to have
some elements other than 1 (and 0) which have nth roots for all n. In
this case F will have to be infinite dimensional as a Q-vector space, so
there will be a vast number (indeed 2|F |) of different total exponential
maps which can be defined on F . Thus, for example there is no hope of
classifying or understanding even all the exponential maps on Qalg.
We will now explain how to construct exponential fields in as free a way

as possible.

Construction 2.6. Let F be any partial E-field. We construct an exten-
sion F e of F such that D(F e) = F . First, embed F in a large algebraically
closed field, C. Let {bi | i ∈ I } be a Q-linear basis for F/D(F ). Choose
{ci,n | i ∈ I, n ∈ N} ⊆ C such that the ci,1 are algebraically independent
over F , and for each i, (ci,n)n∈N is a coherent system of roots of ci,1. Each
r ∈ F is a finite sum of the form r0+

1
n

∑

mibi for some r0 ∈ D(F ), n ∈ N,

and some mi ∈ Z, and we define exp(r0 +
1
n

∑

mibi = expF (r0)
∏

cmi

i,n.
Then let F e be the subfield of C generated by F ∪ {ci,n | i ∈ I, n ∈ N}.
A straightforward calculation shows that the isomorphism type of the

extension F e of F does not depend on the choice of C, the choice of the
bi, or the choice of the ci,n.

The exponential map on F e will be a total map only when F is already
a total E-field (and so F e = F ). However, we can iterate the construction
to get a total E-field.

Construction 2.7. We write FE for the union of the chain

F →֒ F e →֒ F ee →֒ F eee →֒ · · ·

and call it the free (total) E-field extension of F .

We can also produce E-rings, and algebraically closed E-fields by slight
variations on this method. It is convenient (albeit rather ugly) to intro-
duce some terminology for the latter.

Definition 2.8. An EA-field is an E-field whose underlying field is alge-
braically closed.

Construction 2.9. For any partial E-field F , let F a be the algebraic
closure of F , with D(F a) = D(F ).
We write FEA for the union of the chain

F →֒ F e →֒ F ea →֒ F eae →֒ F eaea →֒ · · ·

and call it the free EA-field extension of F .
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These constructions can intuitively be seen to be free in that at each
stage there are no unnecessary algebraic or exponentially algebraic rela-
tions introduced. In the case of exponential rings (rather than fields), the
analogous construction of the free E-ring extension can be seen to have
the right category-theoretic universal property of a free object. In [18], a
universal property of the free E-field is given in terms of E-ring special-
izations. The extension FEA has non-trivial automorphisms over F , so
cannot have a category-theoretic universal property, but later we prove
uniqueness statements about these extensions making the intuitive notion
of freeness precise.

Logarithms. A logarithm of an element b of an exponential field F is
just some a such that exp(a) = b. Of course such a logarithm will only
exist if b is in the image of the exponential map, and will be defined only
up to a coset of the kernel. In this algebraic setting there is no topology to
make sense of a branch of the logarithm function, as in the complex case.
We want to consider exponential fields, like Cexp, in which every nonzero
element has a logarithm, so we extend our terminology conventions.

Definition 2.10. An L-field is a partial exponential field in which every
non-zero element has a logarithm. An EL-field is a (total) exponential
field in which every non-zero element has a logarithm. It is an LA-field
or ELA-field respectively if, in addition, it is algebraically closed.

The additive group of a field of characteristic zero is just a Q-vector
space, whereas the multiplicative group has torsion, the roots of unity, so
an L-field must have non-trivial kernel. The most important case is when
the kernel is an infinite cyclic group.

Construction 2.11. Let Q0 be the partial E-field with underlying field
Q, and D(Q0) = {0}. Write Qab for the maximal abelian extension of Q,
given by adjoining all roots of unity. Let Qab(τ) be a field extension with
τ a single element, possibly in Qab but non-zero. Let CKτ be the partial
E-field with underlying field Qab(τ), with D(CKτ) the Q-vector space
spanned by τ and the exp(τ/m) forming a coherent system of primitive
mth roots of unity. Then CKτ is defined uniquely up to isomorphism by
the minimal polynomial of τ over Q. The letters “CK” stand for “cyclic
kernel”. In the special case where τ is transcendental, we write SK for
CKτ , meaning “standard kernel”.

More generally, following Zilber we say that a partial exponential field
F has full kernel if the image of the exponential map contains the sub-
group µ of all roots of unity (so, in particular, F extends Qab). The next
proposition is implicit in [23] and shows that the terminology is justified
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because the property of F having full kernel depends only on the isomor-
phism type of the kernel of the exponential map as an abelian group.

Proposition 2.12. Let F be a partial E-field extending Qab, and let K
be the kernel of its exponential map. Then the following are equivalent.

(1) F has full kernel
(2) QK/K ∼= µ
(3) For each n ∈ N+, K/nK is a cyclic group of order n
(4) For each n ∈ N+, |K/nK| = n
(5) 〈K; +〉 is elementarily equivalent to 〈Z; +〉.

Furthermore, if F is a field extending Qab, and K is a subgroup of its
additive group which satisfies the equivalent properties (2) — (5), then
there is a partial exponential map on F with kernel K.

We give the proof for the sake of completeness.

Proof. Note that for x ∈ D(F ), we have expF (x) ∈ µ iff x lies in the
Q-linear span of the kernel. Thus (1) =⇒ (2). But also µ has no proper
self-embeddings, so (2) =⇒ (1).
Consider the “multiply by n map” n : QK → QK. For any x ∈ QK,

exp(x) lies in the n-torsion of QK/K iff nx ∈ K, so the n-torsion group
of QK/K is isomorphic to n−1K/K. Since QK is divisible and torsion-
free, this is isomorphic under the multiply by n map to K/nK. But the
n-torsion of µ is the cyclic group of order n, so we have (2) =⇒ (3). In
fact, µ is defined up to isomorphism by being a torsion abelian group with
this n-torsion for each n, so (3) =⇒ (2). Clearly (3) =⇒ (4). For the
converse, it suffices to prove it where n = pr, a prime power. But then
we have pr elements of K/prK of order dividing pr and only pr−1 have
order dividing pr−1, and hence there is an element of order pr, so K/prK
is cyclic of order pr.
Property (4), together with being a torsion-free abelian group, gives a

complete axiomatization of the elementary theory of 〈Z; +〉 by Szmielew’s
Theorem [9, Theorem A.2.7], so (4) ⇐⇒ (5).
For the “furthermore” statement, by property (2) there is a homomor-

phism from QK onto µ with kernel K which makes F into a partial E-field
with full kernel. �

In this paper we are mainly interested in exponential fields with a sur-
jective exponential map, so most partial E-fields we consider will have
full kernel. We also assume that extensions of partial E-fields are kernel-
preserving (that is, do not add new kernel elements) unless otherwise
stated.
Any partial E-field F with full kernel can be extended to an ELA-field

without adding new kernel elements. Indeed, we can produce free L-field,
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LA-field, EL-field, and ELA-field extensions of F , written FL, FLA, FEL,
and FELA in analogy to before.
Construction 2.13. Let F be a partial E-field with full kernel. We start
by constructing a partial E-field extension F l of F in which every element
of F has a logarithm, and there are no new kernel elements. Embed F
in a large algebraically closed field, C. Inside C we have F rad, the field
extension of F obtained by adjoining all roots of all elements of F and
iterating this process. The multiplicative group (F rad)× is divisible, and
the image expF (D(F )) contains the torsion and is divisible, so the quotient
(F rad)×/ expF (D(F )) is a Q-vector space.
Choose (bi)i∈I from F such that the cosets bi · expF (D(F )) form a

Q-linear basis of (F rad)×/ expF (D(F )). In other words, the bi form a
multiplicative basis of (F rad)× over expF (D(F )). Now choose (ai)i∈I from
C, algebraically independent over F , and for each i ∈ I, choose a coherent
system of roots (bi,m)m∈N of bi.
Let D(F l) be the Q-subspace of C spanned by D(F ) and the ai. Define

exp(ai/m) = bi,m and extend the exponential map appropriately. Let F l

be the subfield of C generated by D(F l) and exp(D(F l)). Then every
element of F has a logarithm in F l. The isomorphism type of F l may
depend on the choices made, but we write F l for any resulting partial
E-field.
Now we define FELA to be the union of any chain

F →֒ F e →֒ F el →֒ F ela →֒ F elae →֒ F elael →֒ · · ·
iterating the three operations. The chain and its union are not necessarily
uniquely defined because the operation F 7→ F l is not necessarily uniquely
defined. Where the union is uniquely defined we call it the free ELA-field
extension of F . The extensions FL, FLA, and FEL of F are defined in
the obvious way.

Lemma 2.14. For any partial E-field, F , the extensions F →֒ F e, F →֒
F a, F →֒ FE and F →֒ FEA are strong. If F l, FELA are any results
of Construction 2.13 then the extensions F →֒ F l and F →֒ FELA are
strong.

Proof. By construction, for any ȳ from D(F e), δ(ȳ/D(F )) = 0. Hence
F ⊳ F e. F ⊳ F l by the same argument. It is immediate that F ⊳ F a

because the domain of the exponential map does not extend. The rest
follows from Lemma 2.3. �

In Construction 2.6 of F e from F we made choices, but in fact the
isomorphism type of F e as an extension of F did not depend on those
choices. In Construction 2.13 of F l and FELA we again made choices, but
in this case the isomorphism types of the extensions do in general depend
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on those choices. Before giving conditions where the extensions do not
depend on the choices, so are well-defined, we illustrate the problem. Let
F = CKa

τ , so D(F ) is spanned by τ . We want to define an extension
F1 of F in which 2 has a logarithm. So let F1 = F (a) as a field, with a
transcendental over F . We define exp(a/m) to be an mth root of 2. There
is no problem in doing this, but all of these roots lie in F because it is
algebraically closed, so if we make one choice of roots and produce F1,
and then make a different choice of roots and produce F2, then F1 and
F2 will not be isomorphic as partial E-field extensions of F . In fact these
different choices will all be isomorphic as partial exponential fields and
even as extensions of CKτ . The problem is just that we had fixed all the
roots of 2 in F before we defined the logarithms of 2. The way to solve the
problem is to put in the logarithms earlier in the construction. In fact it
is often possible to do this because of an important fact about pure fields
known as the Thumbtack Lemma. (An explanation of the name can be
found in [3, p19].)
The Thumbtack Lemma was proved by Zilber [24, Theorem 2] (with

a correction by Bays and Zilber [4, Theorem 2.3]). We will give three
versions of it in this paper as we need them. All are special cases of the
two quoted theorems, but we prefer to state exactly the form we need
each time. Given an element b of a field, we write

√
b for the set of all the

mth roots of b for all m ∈ N.

Fact 2.15 (Thumbtack Lemma, version 1).
Let F = Qab(a1, . . . , ar,

√
b1, . . . ,

√
br), an extension of Qab by finitely

many generators together with all the roots of some of those generators.
Now suppose that c lies in some field extension of F and is multiplicatively
independent from b1, . . . , br. Then there is m ∈ N and an mth root cm of
c such that there is exactly one isomorphism type of a coherent system
of roots of cm over F . That is, if F1 and F2 are both obtained from F
by adjoining cm and any coherent system of roots of cm, then there is an
isomorphism from F1 to F2 over F which sends the chosen system of roots
in F1 to the chosen system in F2.

Note that if c is transcendental over F then the result is trivial. How-
ever, when c is algebraic over F then there is something to prove, and the
condition that c is multiplicatively independent of the bi is essential. Note
also that we cannot necessarily take m = 1. For example, if F = Qab and
c = 9 then F certainly knows the difference between ±3, so we must take
m > 2. Another version of the thumbtack lemma applies to extensions of
an algebraically closed field.

Fact 2.16 (Thumbtack Lemma, version 2).
Let F = K(a1, . . . , ar,

√
b1, . . . ,

√
br), where K is an algebraically closed
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field of characteristic zero. Suppose that c lies in some field extension of
F and is multiplicatively independent from K× · 〈b1, . . . , br〉. Then there is
m ∈ N and an mth root cm of c such that there is exactly one isomorphism
type of a coherent system of roots of cm over F .

Definition 2.17. Let F ⊆ F1 be an extension of partial E-fields. Then
F1 is finitely generated as an extension of F iff there is a finite subset
X ⊆ F1 such that F1 = 〈F ∪X〉F1

.

Now let F be an ELA-field, and X ⊆ F a subset. We define 〈X〉ELA
F to

be the smallest ELA-subfield of F which contains X . Note that it always
exists, as the intersection of ELA-subfields of F is again an ELA-subfield
of F .

Note also that 〈X〉ELA
F and (〈X〉F )ELA have different meanings. The

first is the smallest ELA-subfield of F which contains X , and the sec-
ond is a free ELA-field extension of the smallest partial E-subfield of F
containing X , which may not be uniquely defined. In favourable circum-
stances (as below) the latter is well-defined and then the two ELA-fields
will sometimes be isomorphic, but neither is generally true.
We now give sufficient conditions on F for FELA to be well-defined. For

example, from the first case we deduce that CKELA
τ is well-defined. We

only consider the case where F is countable here. The general case seems
to be more difficult.

Theorem 2.18. If F is a partial E-field with full kernel which is either
finitely generated or a finitely generated extension of a countable LA-field,
F0, and F⊳K, F⊳M are two strong extensions of F to ELA-fields which
do not extend the kernel, then 〈F 〉ELA

K
∼= 〈F 〉ELA

M as extensions of F . In
particular:

(1) The free ELA-closure FELA of F is well-defined.
(2) The extension F ⊳K factors as F ⊳ FELA ⊳K.

Proof. Statements (1) and (2) are immediate from the main part of the

theorem. For the main part, enumerate 〈F 〉ELA
K as s1, s2, s3, . . ., such that

for each n ∈ N, either

i) sn+1 is algebraic over F ∪ {s1, . . . , sn}; or
ii) sn+1 = expK(a) for some a ∈ F ∪ {s1, . . . , sn}; or
iii) expK(sn+1) = b for some b ∈ F ∪ {s1, . . . , sn}.
This is possible by the definition of 〈F 〉ELA

K . We will inductively construct
chains of partial E-subfields

F = K0 ⊆ K1 ⊆ K2 ⊆ · · ·
of K and

F = M0 ⊆ M1 ⊆ M2 ⊆ · · ·
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of M , and nested isomorphisms θn : Kn → Mn such that for each n ∈ N+

we have sn ∈ Kn, Kn ⊳K and Mn ⊳M . We also ensure that, as a pure

field, each Kn has the form F0(ᾱ,
√

β̄) for some finite tuples ᾱ, β̄, and F0

either Qab or a countable algebraically closed field.
We start by taking θ0 to be the identity map on F . Now assume we

have Kn, Mn, and θn.
Case 1). sn+1 is algebraic over Kn (including the case where sn+1 ∈ Kn).
Let p(X) be the minimal polynomial of sn+1 over Kn. The image pθ

of p is an irreducible polynomial over Mn, so let t be any root of pθ in
M . Let Kn+1 = Kn(sn+1), Mn+1 = Mn(t), and let θn+1 be the unique
field isomorphism extending θn and sending sn+1 to t. We make Kn+1

and Mn+1 into partial exponential fields by taking the graph of expo-
nentiation to be the graph of expK or expM intersected with K2

n+1 or
M2

n+1 respectively. Suppose that (a, expK(a)) ∈ K2
n+1. Since Kn ⊳ K,

we have td(a, expK(a)/Kn) − ldimQ(a/D(Kn)) > 0. But Kn+1 is an al-
gebraic extension of Kn, so it follows that ldimQ(a/D(Kn)) = 0, that
is, that a ∈ D(Kn). Hence D(Kn+1) = D(Kn). The same argument
shows that D(Mn+1) = D(Mn). Now if x̄ is any tuple from K, we
have δ(x̄/D(Kn+1)) = δ(x̄/D(Kn)) > 0, and hence Kn+1 ⊳K, and simi-
larly Mn+1 ⊳M . It is immediate that the pure field Kn+1 is of the form

F0(ᾱ,
√

β̄) because Kn is of that form.
Case 2). sn+1 is transcendental over Kn and sn+1 = expK(a) for some a ∈
Kn. Let Kn+1 = Kn(

√
sn+1) and Mn+1 = Mn(

√

expM(θn(a))). Extend θn
by defining θn+1(expK(a/m)) = expM(θn(a)/m), and extending to a field
isomorphism. This is possible because sn+1 is transcendental over Kn

and expM(θn(a)) is transcendental over Mn (the latter because Mn⊳M),
and so there is a unique isomorphism type of a coherent system of roots
of sn+1 over Kn, and of expM(θn(a)) over Mn. Then td(Kn+1/Kn) = 1,
a ∈ D(Kn+1) r D(Kn), and Kn ⊳K, so D(Kn+1) is spanned by D(Kn)
and a. Similarly, D(Mn+1) is spanned by θn(a) over D(Mn), so θn+1 is an
isomorphism of partial E-fields.
Now if x̄ is any tuple from K, we have

δ(x̄/D(Kn+1)) = δ(x̄, a/D(Kn))− δ(a/D(Kn)) = δ(x̄, a/D(Kn))− 0 > 0

as Kn ⊳ K, so Kn+1 ⊳ K. The same argument shows that Mn+1 ⊳ M .
Again, it is immediate that the pure field Kn+1 is of the required form.
Case 3). sn+1 is transcendental over Kn, not of the form expK(a) for any
a ∈ Kn, but expK(sn+1) = b for some b ∈ Kn. By hypothesis, Kn

has the form F0(ᾱ,
√

β̄) for some finite tuples ᾱ, β̄, and F0 either Qab

or a countable algebraically closed field. Hence, by either version 1 or
version 2 of the Thumbtack Lemma, there is N ∈ N+ and c such that
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cN = b and there is a unique isomorphism type of a coherent sequence
of roots of c over Kn. Let t ∈ M be such that expM(t) = θn(c). Let

Kn+1 = Kn(sn+1,
√
c) and Mn+1 = Mn(t,

√

θn(c)). Extend θn by defining
θn+1(sn+1) = Nt, and θn+1(expK(sn+1/Nm)) = expM(t/m), and extend-
ing to a field isomorphism. This is possible by the choice of N , the fact
that sn+1 is transcendental over Kn and (since Mn ⊳ M) the fact that
t is transcendental over Mn. As in Case 2 above, we have Kn+1 ⊳ K,
Mn+1 ⊳M , and the pure field Kn+1 of the required form.
Conclusion. That completes the induction. Let Kω =

⋃

n∈N Kn. Then

Kω = 〈F 〉ELA
K because Kω is an ELA-subfield of K containing F and is

the smallest such because at each stage we add only elements of K which
must lie in every ELA-subfield of K containing F . The union of the maps
θn gives an embedding of Kω into M , and, for the same reason, the image
must be 〈F 〉ELA

M . Hence 〈F 〉ELA
K

∼= 〈F 〉ELA
M as required. �

3. Finitely presented extensions

We say that a partial E-field F is finitely generated if there is a finite
subset X of F such that F = 〈X〉F . We restrict now to those par-
tial E-fields F which are generated as fields by D(F ) ∪ I(F ) (call them
exponential-graph-generated). Similarly, an ELA-field F is finitely gener-

ated as an ELA-field if F = 〈X〉ELA
F for some finite subset X of F . An

extension F ⊆ F1 of ELA-fields is finitely generated iff there is a finite
subset X of F1 such that F1 = 〈F ∪X〉ELA

F1
, and similarly for partial

E-fields.
Let F ⊆ F1 be a finitely generated extension of exponential-graph-

generated partial E-fields, say generated by a1, . . . , an ∈ D(F1). Then the
isomorphism type of the extension is given by the algebraic type of the
infinite tuple (ā, exp(ā/m))m∈Z over F . Let

I(ā) =
{

f ∈ F [X̄, (Ym,i)m∈Z,i=1,...,n]
∣

∣ f(ā, (eai/m)) = 0
}

and for m ∈ N+, let

Im(ā) =
{

f ∈ F [X̄, Ȳm, Ȳ
−1
m ]

∣

∣ f(ā/m, eā/m, e−ā/m) = 0
}

.

The ideal I(ā) contains all the coherence polynomials of the form Y r
mr,i−

Ym,i for each m, r ∈ Z, and each i = 1, . . . , n, which force each sequence
eai , eai/2, eai/3, . . . to be a coherent system of roots. Including the negative
powers ensures that they are nonzero. The ideal I(ā) determines all the
ideals Im(ā) and if m1 divides m2 then Im1

(ā) is determined by Im2
(ā).

Definition 3.1. An ideal I of the polynomial ring F [X̄, (Ym,i)m∈Z,i=1,...,n]
is additively free iff it does not contain any polynomial of the form

∑n
i=1 riXi−

c with the ri ∈ Z, not all zero, and c ∈ D(F ). It is multiplicatively free
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iff it does not contain any polynomial of the form
∏n

i=1 Y
ri
1,i − d with the

ri ∈ Z, not all zero, and d ∈ exp(D(F )). Similarly we say that Im is addi-
tively free or multiplicatively free if it does not contain any polynomials
of these forms.

If F ⊆ F1 is a finitely generated extension of exponential-graph-generated
partial E-fields, we may choose the generators a1, . . . , an to be Q-linearly
independent over D(F ), and this corresponds to the ideal I(ā) being ad-
ditively free. Conversely, if I is any prime ideal of the polynomial ring
F [X̄, Ȳ1, Ȳ2, Ȳ3, . . .] which contains the coherence polynomials and is ad-
ditively free, then it defines an extension FI of F , the field of fractions
of the ring F [X̄, Ȳ1, Ȳ2, Ȳ3, . . .]/I, with exponentiation defined in the ob-
vious way. All we have really done is translated Construction 2.4 into the
language of ideals.

Lemma 3.2. If I is a prime ideal containing the coherence polynomials
and is additively free, then the extension FI it defines has the same kernel
as F iff I is multiplicatively free.

Proof. Write ai for the image of Xi in FI . If I is not multiplicatively
free then for some ri ∈ Z, not all zero, and some c ∈ D(F ), we have
∏n

i=1 e
riai = ec, so c − ∑n

i=1 riai lies in the kernel of expFI
. Since I is

additively free, this element does not lie in D(F ), in particular it does
not lie in the kernel of expF . Conversely, if I is multiplicatively free
and exp(c + 1/m

∑n
i=1 riai) = 1 with c ∈ D(F ) and m, ri ∈ Z, then

∏n
i=1 exp(ai)

ri = exp(c)m, so ri = 0 for each i, and c lies in the kernel of
expF . �

Definition 3.3. We say that an extension F ⊆ F1 of partial E-fields is
finitely presented iff it has a finite generating set a1, . . . , an, which is Q-
linearly independent from D(F ), such that I(ā) is generated as an ideal by
the coherence polynomials together with a finite set of other polynomials.

Definition 3.4. An additively free prime ideal J of F (X̄, Ȳ1, Ȳ
−1
1 ) is said

to be Kummer-generic iff there is only one additively free prime ideal I of
F [X̄, (Ym,i)m∈Z,i=1,...,n], containing the coherence polynomials, such that
J = I1, as defined above.

The term Kummer-generic is due to Martin Hils, [8, p10]. The usage
here is not exactly the same as in that paper, because there they consider
only adding new points to the multiplicative group, whereas here we are
adding ā to the additive group as well as eā to the multiplicative group.
The connection with Kummer theory can be seen from [4, Lemma 5.1].
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Lemma 3.5. If F ⊆ F1 is a finitely presented extension of partial E-
fields, then it has a generating set a′1, . . . , a

′
n such that the ideal I1(ā

′) is
Kummer-generic.

Proof. Let g1, . . . , gr ∈ I(ā), together with the coherence polynomials,
be a generating set for I(ā). Let N ∈ N be the least common multiple
of the m such that some variable Ym,i occurs in some gj. Then I(ā) is
determined by IN(ā). Take ā′ = ā/N , so I1(ā

′) = IN(ā). Then I1(ā
′) is

Kummer-generic, as required. �

Example 3.6. Take an extension of an EA-field F generated by a1, a2,
such that ea1/2 = a2, e

a2 = a1 + 1. Then

I1 =
〈

Y1,1 = X2
2 , Y1,2 = X1 + 1

〉

and

I2 =
〈

Y2,1 = X2, Y
2
2,2 = X1 + 1.

〉

In this case, I1 is not Kummer-generic because it does not resolve
whether ea1/2 = ±a2.

There are finitely generated kernel-preserving extensions of some partial
E-fields which are not finitely presented. However, another version of the
thumbtack lemma gives conditions when this pathology does not occur.

Fact 3.7 (Thumbtack Lemma, version 3). Let F = K(a1, . . . , ar,
√
b1, . . . ,

√
br),

where K is an algebraically closed field of characteristic zero. Suppose that
c1, . . . , cn lie in some field extension of F and are multiplicatively inde-
pendent from K× ∪ {b1, . . . , br}. Then there is N ∈ N and N th roots c′i of
ci such that there is exactly one isomorphism type over F of an n-tuple of
coherent systems of roots of the (c′i).

As an immediate corollary, we have:

Corollary 3.8. If F is an LA-field, F1 is a finitely generated partial E-
field extension of F , and F2 is a finitely generated partial E-field extension
of F1, which does not extend the kernel, then F2 is a finitely presented
extension of F1. In particular, every finitely generated kernel-preserving
partial E-field extension of an ELA-field is finitely presented. �

Our main interest is not with partial E-fields, but with ELA-fields.

Definition 3.9. A finitely generated extension F ⊆ F1 of countable ELA-
fields is said to be finitely presented iff there is a finite generating set ā such
that, taking K = 〈F, ā〉F1

, the partial E-field extension of F generated by

ā, we have F1
∼= KELA.



16 JONATHAN KIRBY

Note that KELA is well-defined by Proposition 2.18. From Construc-
tion 2.4 it is clear that most finitely generated extensions of ELA-fields
are not finitely presented. Indeed there are only countably many finitely
presented extensions of a given countable ELA-field, but 2ℵ0 finitely gen-
erated extensions.
We introduce a notation for finitely presented extensions. Since these

are given by Kummer-generic ideals I1, which are ideals in a polynomial
ring with finitely many indeterminates, we can consider instead their as-
sociated varieties as subvarieties of (Ga ×Gm)

n.

Definition 3.10. Let F be an ELA-field. An irreducible subvariety V of
(Ga × Gm)

n defined over F is said to be additively free, multiplicatively
free, and Kummer-generic iff the corresponding ideal I(V ) is.

Suppose that V satisfies all three conditions. Then there is a uniquely
determined partial E-field extension K of F which is generated by a tuple
(ā, eā) which is generic in V over F . We write F |V , read “F extended by
V ”, for the ELA-extension KELA of F .

Theorem 3.11. Let F⊳F1 be a finitely generated kernel-preserving strong
extension of ELA-fields. Then F1 is a finitely presented extension of F .

Proof. Let ā be a finite set of generators of F1 over F . By extending ā
if necessary, we may assume that 〈F, ā〉F1

⊳ F1. By Corollary 3.8, the
extension F ⊆ 〈F, ā〉F1

is a finitely presented extension of partial E-fields.

By Theorem 2.18, F1
∼= (〈F, ā〉F1

)ELA, so is a finitely presented ELA-
extension of F . �

Note that there are finitely generated strong extensions of partial E-
fields, of E-fields, of EA-fields, and of EL-fields which are not finitely
presented, due to the issue of uniqueness of coherent systems of roots.
This is the main reason why we work with ELA-fields. It is also important
that the kernel does not extend, as if a is a new kernel element then the
values of exp(a/m) for m ∈ N+ cannot all be specified by a finite list of
equations.

4. Finitely Presented ELA-fields

So far we have defined finitely presented extensions of ELA-fields, but
it is natural also to ask about finitely presented ELA-fields. The useful
convention is as follows.

Definition 4.1. An ELA-field F is said to be finitely presented iff there
is a finitely generated partial E-field F0 (with full kernel) such that F =
FELA
0 .
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Note that a finitely presented ELA-extension of a finitely presented
ELA-field is still finitely presented, since if F = FELA

0 , V ⊆ (Ga×Gm)
n is

defined over F , additively free, multiplicatively free, and Kummer-generic,
and (ā, eā) ∈ V generates the extension F ⊆ F |V and F1 = 〈F0 ∪ ā〉F |V
then F |V ∼= FELA

1 .
The definition is just a convention since there is no way to specify any

partial E-field with full kernel within the category of partial E-fields, just
by finitely many equations between a given set of generators. Within the
subcategory of partial E-fields with full kernel, one might view the CKτ

as finitely presented, with explicit finite presentations

exp(τ/2) = −1, f(τ) = 0

where f is the minimal polynomial of the cyclic generator τ . However
it does not follow that exp(τ/m) is a primitive mth root of 1 for each m
and this cannot be specified by finitely many polynomial equations, for
example τ/p could be the cyclic generator for any odd prime p. On the
other hand, within the category of partial E-fields with cyclic kernel and
named generator τ , the minimal polynomial of τ does indeed determine
CKτ precisely. So the matter of what constitutes a finite presentation
is somewhat dependent on the axioms specifying the category, and the
convention in Definition 4.1 is the useful one for the purposes of this
paper.

5. Classification of strong extensions

It follows from Theorem 3.11 that finitely generated kernel-preserving
strong extensions of ELA-fields are all of the form F ⊳ F |V where V
is additively and multiplicatively free, and Kummer-generic. We next
discuss the properties of the varieties V which occur in this way.
Let G = Ga × Gm. Each matrix M ∈ Matn×n(Z) defines a homomor-

phism Gn M−→ Gn by acting as a linear map on Gn
a and as a multiplicative

map on Gn
m. If V ⊆ Gn, we write M · V for its image. Note that if V is a

subvariety of Gn, then so is M · V .

Definition 5.1. An irreducible subvariety V of Gn is rotund iff for every
matrix M ∈ Matn×n(Z)

dimM · V > rkM.

A reducible subvariety is rotund iff at least one of its irreducible compo-
nents is rotund.
A subvariety V of Gn is perfectly rotund iff it is irreducible, dimV = n,

for every M ∈ Matn×n(Z) with 0 < rkM < n,

dimM · V > rkM + 1
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and also V is additively free, multiplicatively free, and Kummer-generic.

Note that a reducible subvariety may satisfy the dimension property of
rotundity without being rotund. For example, take n = 2, V1 given by
x1 = y1 = 1, V2 given by x2 = y2 = 1, and V = V1 ∪ V2.

Proposition 5.2. Let F ⊆ F |V be an extension of ELA-fields, with V
additively and multiplicatively free, and Kummer-generic. Then the ex-
tension is strong iff V is rotund.

Proof. Let ā be the tuple generating F |V over F such that (ā, eā) ∈
V . Suppose F ⊳ F |V , let M ∈ Matn×n(Z), and let b̄ = Mā. Then

LocF (b̄, e
b̄) = M · V and ldimQ(b̄) = rkM , so

dimM · V − rkM = δ(b̄/F ) > 0

and hence V is rotund.
Conversely, suppose that V is rotund, let F1 = 〈F, ā〉F |V , the partial

E-field extension of F generated by ā, and let b̄ be any tuple from D(F1).
The tuple ā spans D(F1)/F , so there is M ∈ Matn×n(Z) such that there
is an equality of Q-vector spaces 〈Mā〉 /F =

〈

b̄
〉

/F . Then

δ(b̄/F ) = δ(Mā/F ) = dimM · V − rkM > 0

so F ⊳ F1. But F |V = FELA
1 , so F ⊳ F |V as required. �

Definition 5.3. A strong extension F ⊳ F1 of ELA-fields is simple iff
whenever F ⊳ F2 ⊳ F1 is an intermediate ELA-field then F2 = F or
F2 = F1.

It is easy to see that every simple extension of ELA-fields is finitely
generated. For, suppose ā is a non-empty finite tuple from F1 r F . Then
there is a finite tuple ā′, extending ā, such that 〈F, ā′〉F1

⊳ F1. Then

F ⊳F2 := 〈F, ā′〉ELA
F1

and F2⊳F1, so by simplicity F2 = F1 and the exten-
sion is finitely generated. However, simple extensions are not necessarily
generated by a single element.
It is important to distinguish between exponentially algebraic and ex-

ponentially transcendental extensions. The full definition of exponential
algebraicity is given in [12], but all we will use is the following fact:

Fact 5.4 ([12, Theorem 1.3]). Let F be an E-field and suppose C ⊳ F is
some strong subset, and ā is a finite tuple from F . Then the exponential
transcendence degree of ā over C in F satisfies

etdF (ā/C) = min
{

δ(ā, b̄/C)
∣

∣ b̄ is a finite tuple from F
}

.

Exponential transcendence degree is the dimension notion of a prege-
ometry, analogous to transcendence degree in pure fields. An element a
is exponentially algebraic over C iff etdF (a/C) = 0.
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Lemma 5.5. There is a unique simple exponentially transcendental ex-
tension of any ELA-field.

Proof. Let F ⊳ F1 be simple, with a ∈ F1, exponentially transcendental
over F . Then td(a, ea/F ) = 2, so the partial E-field extension 〈F, a〉F1

is
determined uniquely up to isomorphism. But 〈F, a〉F1

⊳ F1 by the above
characterization of exponential transcendence degree so, by Theorem 2.18,
〈F, a〉ELA

F1

∼= (〈F, a〉F1
)ELA. Then 〈F, a〉ELA

F1
⊳ F1, so 〈F, a〉ELA

F1
= F1 be-

cause the extension is simple. �

Note that if a is exponentially transcendental over F then Loc(a, ea/F ) =
G (recall that G = Ga ×Gm), so the simple exponentially transcendental
extension of F can be written in our notation as F |G.

Proposition 5.6. If V is perfectly rotund then the strong extension of
ELA-fields F ⊳ F |V is simple and exponentially-algebraic.
Conversely, if F ⊳ F ′ is a simple, exponentially-algebraic extension of

ELA-fields then F ′ ∼=F F |V for some perfectly rotund V .

Proof. Let ā be the tuple generating F |V over F such that (ā, eā) ∈ V ,
and let F1 = 〈F, ā〉F |V , the partial E-field extension of F generated by ā.

Since V is rotund and additively and multiplicatively free, F ⊳ F |V
is exponentially algebraic iff dim V = n. Now suppose F ⊳ F2 ⊳ F |V ,
a proper intermediate ELA-field. Then (F2 ∩ D(F1))/F is a non-trivial
proper subspace ofD(F1)/F , which must be the span ofMā for someM ∈
Matn×n(Z), with 0 < rkM < n. Since V is rotund, dimM · V > rkM .
Extend Mā to a spanning set Mā, b̄ of D(F1)/F . Then δ(b̄/F,Mā) > 0,
because F2 ⊳ F |V . But

δ(b̄/F,Mā) = td(b̄, eb̄/F,Mā, eMā)− ldimQ(b̄/F,Mā)

= [n− dimM · V ]− [n− rkM ]

so dimM · V 6 rkM . Thus dimM · V = rkM , and V is not perfectly
rotund.
For the converse, choose ā a tuple of smallest length which generates F ′

over F and such that F1 := 〈F, ā〉F ′ ⊳F ′, and let V = Loc(ā, eā/F ) ⊆ Gn.
Then F ′ ∼= FELA

1 . Since n is minimal, V is additively and multiplica-
tively free. By replacing ā by ā/m for some m ∈ N, we may assume V
is Kummer-generic. Since the extension is strong and exponentially al-
gebraic, V is rotund and dimV = n. If V is not perfectly rotund then
there is a matrix M with 0 < rkM < n such that dimM · V = rkM . Let
F2 = 〈F,Mā〉ELA

F ′ . Then F ⊳F2⊳F ′, but F2 6= F and F ⊳F ′ is simple, so
F2 = F ′. But F2 is generated by Mā, which is Q-linearly dependent over
F , so by a basis for it which is a tuple shorter than ā. This contradicts
the choice of ā. So V is perfectly rotund. �
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We now consider the problem of when two extensions F |V and F |W
are isomorphic. Suppose ā is a generator of F |V , with (ā, eā) ∈ V . Then
if b̄ is a different choice of basis of the extension, so F ∪ b̄ has the same
Q-linear span as F ∪ ā, and W = Loc(b̄, eb̄/F ), then clearly F |W ∼= F |V ,
but there is no reason why W should be equal to V . Essentially this is
the only way an isomorphism can happen.

Definition 5.7. Suppose V ⊆ Gn, W ⊆ Gm are two perfectly rotund
varieties, defined over F . Write V ∼F W iff n = m, there are M1,M2 ∈
Matn×n(Z) of rank n, and there is c̄ ∈ F n, such that M1 · V = M2 ·W +
(c̄, ec̄) (where + means the group operation in Gn, so multiplication on
the Gm coordinates), and furthermore M1 · V is Kummer-generic.

Proposition 5.8. If V and W are perfectly rotund and defined over F
then F |V ∼=F F |W iff V ∼F W .

Proof. Firstly suppose that V ∼F W , and let V ′ = M1 · V where M1 is as
above. Let K = 〈F, ā〉F |V , where (ā, eā) ∈ V is the generating tuple. Let

b̄ = M1ā. Then
〈

F, b̄
〉

F |V = K, and (b̄, eb̄) is generic in V ′. Furthermore,

since V ′ is Kummer-generic (by assumption), K is well-defined by V ′.
Hence F |V ∼= F |V ′. Similarly, translating V ′ to V ′ − (c̄, ec̄) for some
c̄ ∈ F n does not change K. So F |V ∼=F F |W .
Conversely, suppose F |V ∼= F |W . Let (ā, eā) ∈ V be a generating tuple

for F |V . Let F1 = 〈F, ā〉F |V , and write F |V as the union of a chain of
partial E-fields

F ⊳ F1 ⊳ F2 ⊳ F3 ⊳ · · ·
where for n ∈ N+ we have ldimQ(D(Fn+1)/D(Fn)) = 1, which is possible

since F |V = FELA
1 . There is b̄ ∈ F |V such that Loc(b̄, eb̄/F ) = W .

Suppose that b̄ isQ-linearly independent overD(F1). Then, since F1⊳F |V
we have Loc(b̄, eb̄/F1) = W . Now each D(Fn+1) is generated over D(Fn)
by a single element cn+1 such that either cn+1 or e

cn+1 is algebraic over Fn.
By perfect rotundity of W , no b in the Q-linear span of b̄ satisfies this,
so inductively we see that b̄ is linearly independent over D(Fn) for all n,
a contradiction. So b̄ is not Q-linearly independent over D(F1). Write
B for the Q-linear span of F ∪ b̄. Then D(F1) ⊳ F |V and B ⊳ F |V , so
D(F1) ∩ B ⊳ F |V , and hence, since V and W are perfectly rotund, we
must have B = D(F1), and V ∼F W as required. �

We can give a normal form for a finitely generated strong ELA-extension
F ⊳ F ′. The key is that the order of making simple extensions can often
be interchanged.
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Lemma 5.9. Let F be a countable ELA-field, and V ⊆ Gn, W ⊆ Gr two
additively and multiplicatively free, irreducible, Kummer-generic subvari-
eties, defined over F . Then

(F |V )|W ∼= (F |W )|V ∼= F |(V ×W )

as extensions of F .

Proof. First note that the extension (F |V )|W makes sense, since in the
base change from F to F |V , the variety W remains free, irreducible, and
Kummer-generic, because both F and F |V are algebraically closed. Sim-
ilarly (F |W )|V makes sense. Now let ā, b̄ be the tuples in F1 = (F |V )|W
such that (ā, eā) ∈ V determines the first extension and (b̄, eb̄) ∈ W
determines the second extension. Similarly, let ā′, b̄′ be the equivalent
tuples in F2 = (F |W )|V . Then the partial E-fields K1 =

〈

F ā, b̄
〉

F1
and

K2 =
〈

F ā′, b̄′
〉

F2
are isomorphic extensions of F , because both (ā, eā, b̄, eb̄)

and (ā′, eā
′

, b̄′, eb̄
′

) are generic in V ×W over F . Now K1⊳F1 and K2⊳F2,
hence the result follows by Theorem 2.18. �

Indeed the extensions F |V and F |W can be freely amalgamated over
F , and the free amalgam is in fact given by F |(V ×W ).
Now consider a finitely generated strong extension of countable ELA-

fields F ⊳ F ′. Let ā1 be some tuple from F ′, Q-linearly independent
over F , such that V1 := Loc(ā1, e

ā1/F ) is perfectly rotund. If it does not

exists, then F = F ′. So we have F = F0 ⊳ F1 = 〈F, ā1〉ELA
F ′ ⊳ F ′. Now

iteratively choose tuples āi, Q-linearly independent over Fi−1, such that
Vi := Loc(āi, e

āi/F ) is perfectly rotund and defined over Fj where j is

as small as possible, and define Fi = 〈Fi−1, āi〉ELA
F ′ . At some finite stage

we will exhaust F ′. The previous propositions show there is only a very
limited scope for choosing the tuples āi. Thus we have a Jordan-Hölder-
type theorem, showing how a finitely generated extension decomposes as
a chain of simple extensions, and the extent to which the chain is unique.

Theorem 5.10. If F⊳F ′ is a finitely generated strong extension of count-
able ELA-fields, then it can be decomposed as:

F = K0 ⊳K1 ⊳K2 ⊳ · · ·⊳Kr = F ′

such that Ki = Ki−1|Vi with Vi = Vi,1 × · · ·Vi,mi
with each Vi,j perfectly

rotund and defined over Ki−1 but not defined over Ki−2. Furthermore, if
there is another decomposition

F = K0 ⊳K ′
1 ⊳K ′

2 ⊳ · · ·⊳K ′
s = F ′
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such that K ′
i = K ′

i−1|V ′
i with V ′

i = V ′
i,1 × · · ·V ′

i,qi
then s = r and, for

each i, qi = mi and there is a permutation σ of {1, . . . , mi} such that
V ′
i,j ∼F ′ Vi,σ(j). �

A finer analysis is possible, in which one takes into account for each Vi,j

precisely which of the Vs,t for s < i are involved in the field of definition
of Vi,j, to produce a partial order on the simple extensions.

6. The strong exponential-algebraic closure

We now consider the analogue for exponential fields of the algebraic
closure of a field.

Definition 6.1. An exponential field F is said to be strongly exponentially-
algebraically closed iff it is an ELA-field and for every finitely generated
partial E-subfield A of F , and every finitely generated kernel-preserving
exponentially algebraic strong partial E-field extension A⊳B, there is an
embedding B →֒ F fixing A.

The word strongly in this definition actually does not refer to the strong
extensions, but rather signifies that the property is stronger than another
property, called exponential-algebraic closedness, which was also consid-
ered by Zilber. Exponential-algebraic closedness is a model-theoretic ap-
proximation to strong exponential-algebraic closedness which is first-order
axiomatizable, but strong exponential-algebraic closedness is the sensible
notion from the algebraic point of view taken in this paper.
We now show that every countable ELA-field has a well-defined strong

exponential-algebraic closure.

Theorem 6.2. Let F be a countable ELA-field. Then there is a strongly
exponentially-algebraically closed F∼ with F ⊳F∼ such that if F ⊳K, K
is strongly exponentially-algebraically closed, and ker(K) = ker(F ) then
there is a strong embedding F∼ ⊳K such that

F ⊂ ⊳✲ F∼

K

△

❄

∩
⊂

⊳
✲

commutes. Furthermore, F∼ is unique up to isomorphism as an extension
of F . We call it the strong exponential-algebraic closure of F .

The key property we need is the amalgamation property, which follows
from Lemma 5.9.

Proof of Theorem 6.2. Let F be a countable ELA-field. List the triples
(nα, Vα, Aα)α<ω such that nα ∈ N+, Vα is a perfectly rotund subvariety of
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Gnα(F ), Aα is a finitely generated subfield of F over which Vα is defined,

and F does not contain b̄ such that (b̄, eb̄) is generic in Vα over Aα. Note
that if F is not strongly exponentially-algebraically closed then there will
be ℵ0 such triples.
Let F1 be the ELA-extension of F obtained by making the simple ELA-

extensions determined by each Vα in turn. By Lemma 5.9 (and a back
and forth argument), F1 does not depend on the choice of well-ordering.
Now iterate the process to produce a chain

F ⊳ F1 ⊳ F2 ⊳ F3 ⊳ · · ·
and let F∼ be the union of this chain.
By construction, F∼ is strongly exponentially-algebraically closed, and

F ⊳ F∼. Furthermore if F is strongly exponentially-algebraically closed
then F = F∼. The primality property and the uniqueness of F∼ follow
from a standard back-and-forth argument. �

If F is a partial E-field such that FELA is well-defined, then we also
write F∼ for (FELA)

∼
.

Note that if F∼ 6= F then F∼ will not be minimal over F , that is, it
will be isomorphic over F to a proper subfield of itself. This is because
we adjoin ℵ0 copies of the extension of F defined by V1 in constructing
F1, and if we miss out co-countably many of those realisations, we get a
proper ELA-subfield of F1 which is isomorphic over F to F1.

Definition 6.3. Zilber’s pseudo-exponential fields are precisely the expo-
nential fields F satisfying the following properties:

(1) F is an ELA-field;
(2) F has standard kernel;
(3) The Schanuel property holds;
(4) F is strongly exponentially-algebraically closed;
(5) For any countable subset A ⊆ F , the exponential-algebraic closure

eclF (A) is countable.

Of course these are genuine exponential fields in our algebraic sense.
The prefix “pseudo” refers to Zilber’s programme of pseudo-analytic or
pseudo-complex structures.

Construction 6.4 (Zilber’s pseudo-exponential fields). Let B0 = SK∼.
For each ordinal α, define Bα+1 = (Bα|G)∼. For limit α, take unions. It
is easy to see that the exponential transcendence degree of Bα is |α|, and
that the isomorphism type of Bα depends only |α|. For a cardinal κ we
write Bκ for the model of exponential transcendence degree κ.

By construction, the Bκ satisfy Zilber’s axioms, and hence are pseudo-
exponential fields. Although Bκ exists for all cardinals κ, we have only
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proved that FELA and hence F∼ are uniquely defined for countable F ,
and hence the arguments of this paper only show that Bκ is well-defined
for countable κ.
We now proceed to examine strong exponential-algebraic closedness

in more detail before proving that the Bκ for countable κ are the only
countable pseudo-exponential fields.
The property of strong exponential-algebraic closedness is most useful

when there is a proper subset of F which is strongly embedded in F , and
especially when a finite such subset exists.

Definition 6.5. An E-field F is said to have ASP, Almost the Schanuel
Property, iff there is a finite tuple c̄ from F such that 〈c̄〉F ⊳ F .

Lemma 6.6. Any strong extension of a finitely presented ELA-field has
ASP.

Proof. If F is a strong extension of a finitely presented ELA-field, then it
is a strong extension of a finitely generated partial E-field F0, and we can
take c̄ to be a generating tuple for F0. �

Example 6.7. Consider the exponential field C2x = 〈C; +, ·, 2x〉. Then
C2x does not satisfy the Schanuel property because 2

1 = 2, but if Schanuel’s
conjecture is true then it does satisfy ASP.

ASP is a slight weakening of the Schanuel Property which allows for
some extra generality such as this example, but such that the theory works
almost unchanged.

Lemma 6.8. Suppose F is an ELA-field. Then the following are equiva-
lent.

(1) F is strongly exponentially-algebraically closed.
(2) For each n ∈ N, every perfectly rotund subvariety V ⊆ Gn(F ), and

every finitely generated subfield A of F over which V is defined,
there is (b̄, exp(b̄)) in F , generic in V over A.

(3) For each n ∈ N, every additively and multiplicatively free, rotund
subvariety V ⊆ Gn(F ), and every finitely generated subfield A
of F over which V is defined, there are infinitely many distinct
(b̄, exp(b̄)) in F , generic in V over A.

Furthermore, if F satisfies ASP then the next three conditions are also
equivalent to the first three.

(4) For each n ∈ N, every perfectly rotund subvariety V ⊆ Gn(F ),
and every finitely generated ELA-subfield A of F over which V is
defined, there is (b̄, exp(b̄)) in F , generic in V over A.
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(5) For each finitely-generated ELA-subfield A of F , and each finitely
generated exponentially-algebraic strong ELA-extension A⊳B, there
is an embedding B →֒ F fixing A.

(6) For each finitely-generated strong ELA-subfield A ⊳ F , and each
simple exponentially-algebraic strong ELA-extension A⊳B, there
is an embedding B →֒ F (necessarily strong) fixing A.

Proof. (1) ⇐⇒ (2) by Proposition 5.6. (3) =⇒ (2) is trivial. To show
(2) =⇒ (3), first note that every finitely generated strong extension is
the union of a chain of simple strong extensions, so to find a point in
an additively and multiplicatively free rotund subvariety it is enough to
find points in perfectly rotund subvarieties. Now we show by induction
on r ∈ N that there are at least r many such b̄. The case r = 1 is (2).
Now suppose we have b̄1, . . . , b̄r. Then by (2) there is a b̄r+1 such that
(b̄r+1, exp(b̄r+1)) is generic in V over A ∪ {b̄1, exp(b̄1), . . . , b̄r, exp(b̄r)} In
particular, b̄1, . . . , b̄r+1 are distinct.
It is immediate that (4) implies (2), that (4) implies (5), and that (5)

implies (6). We now assume that there is a finite c̄ ⊳ F . Assume (2),

and let A = 〈ā, c̄〉ELA
F be a finitely generated ELA-subfield of F . Since

c̄⊳ F , we may assume that A⊳ F by extending the tuple ā if necessary.
By (2), there is (b̄, exp(b̄)) in F , generic in V over ā. By Lemma 5.9,

the ELA-subfield
〈

ā, b̄
〉ELA

F
of F is isomorphic to A|V , and (b̄, exp(b̄)) is

generic in V over A. Hence (4) holds.
Now assume (6), let V be perfectly rotund, and let A be a finitely-

generated ELA-subfield over which V is defined. Then there is a finitely-
generated ELA-subfield A′ of F containing A and c̄ such that A′ ⊳F . By
(6), there is a realisation of A′|V in F over A′, say generated by (b̄, exp(b̄)),
generic in V over A′. But then (b̄, exp(b̄)) is generic in V over A as A ⊆ A′,
hence (4) holds. �

Proposition 6.9. Let F0 be a finitely generated partial E-field with full
kernel (or a finitely presented ELA-field), and let F0 ⊳ F be a countable,
kernel-preserving, strongly exponentially-algebraically closed strong exten-
sion of F0. Then F is determined up to isomorphism as an extension of
F0 by the exponential transcendence degree etd(F/F0).

Proof. Suppose F0 is as above and let C(F0) be the category of all count-
able strong kernel-preserving ELA-extensions of F0, with strong embed-
dings fixing F0 as the morphisms. Let C<ℵ0(F0) be the full subcate-
gory of finitely generated ELA-extensions of F0. Then C(F0) is an ℵ0-
amalgamation category, that is:

• Every arrow is a monomorphism;
• C0(F ) has unions of ω-chains (by Lemma 2.3);
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• C<ℵ0(F0) has only countably many objects up to isomorphism (by
Theorem 3.11);

• For each A ∈ C<ℵ0(F0), there are only countably many extensions
of A in C<ℵ0(F0) up to isomorphism (also by Theorem 3.11);

• C<ℵ0(F0) has the amalgamation property (by Lemma 5.9); and
• C<ℵ0(F0) has the joint embedding property (since FELA

0 embeds
in all of the strong ELA-extensions of F0, by Theorem 2.18).

Thus by the Fräıssé amalgamation theorem, specifically the version in
[11, Theorem 2.18], there is a unique extension F0 ⊳ F in C(F0) which
is C<ℵ0(F0)-saturated, that is, such that for any finitely generated ELA-
extension A of F0 inside F , and any finitely generated strong ELA exten-
sion A⊳B, there is a (necessarily strong) embedding of B into F over A.
Using part (6) of Lemma 6.8, this property is the same as being strongly
exponentially-algebraically closed together with etd(F/F0) being infinite.
Thus the proposition is proved in the case where etd(F/F0) = ℵ0.
Now suppose F0 ⊳ F is as in the proposition with etd(F/F0) = n ∈ N.

Let a1, . . . , an be an exponential transcendence base for F over F0, and let
F1 = 〈F0, a1, . . . , an〉ELA

F . Then F1
∼=F0

F0|Gn, and etd(F/F1) = 0. So it is
enough to consider the case etd(F/F0) = 0. Let C0(F0) be the subcategory
of C(F0) consisting of the exponentially-algebraic extensions. The same
argument as above shows that C(F0) is an ℵ0-amalgamation category, and
we deduce that up to isomorphism there is a unique countable, kernel-
preserving, strongly exponentially-algebraically closed strong extension of
F0, which of course is F0

∼. �

Corollary 6.10. The countable pseudo-exponential fields are precisely Bκ

for κ a countable cardinal.

Proof. The pseudo-exponential fields are all kernel-preserving strongly
exponentially-algebraically closed strong extensions of SK. �

From the proof of Proposition 6.9 one can see that much of the machin-
ery of ℵ0-stable first-order theories can be brought to bear on the cate-
gory C(F0) for any finitely presented ELA-field F0. Indeed, the strongly
exponentially-algebraically closed kernel-preserving strong extensions of
F0 (at least those with the countable closure property) should be thought
of as analogous to the algebraically closed pure field extensions of a finitely
generated field. They are the “universal domains” which are saturated and
ℵ0-homogeneous for the category C(F0). Of course this is not saturation
nor ℵ0-stability in the sense of first-order model theory, because we are
only considering extensions which do not extend the kernel. Also the ℵ0-
stability is with respect to counting types over strong ELA-subfields of F ,
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not over arbitrary subsets. Developing the homogeneity property further,
we make some observations about extending automorphisms.

Proposition 6.11. Suppose that F is a partial E-field with full kernel,
which is finitely generated or a finitely generated extension of a countable
LA-field, and that σ is an automorphism of F . Then:

(1) σ extends uniquely to an automorphism of FE.
(2) σ extends to automorphisms of FEA, FELA, and to any countable

strongly exponentially-algebraically closed kernel-preserving strong
extension of F , including F∼.

Proof. To extend an automorphism σ of F to an automorphism of F e we
must have σ(ci,n) = exp(σ(bi)/n), in the notation of Construction 2.6.
This does define a partial automorphism since the ci are algebraically
independent over F , and it extends uniquely to an automorphism of F e

because F e is generated over F by the ci,n. Thus, by induction, σ extends
uniquely to an automorphism of FE .

We have an extension F
θ
✲ FELA where θ is the inclusion map, and a

second extension F
θ◦σ
✲ FELA. The partial E-field F satisfies the hypoth-

esis of Theorem 2.18, so by that theorem there is a map FELA σ̄
✲ FELA

which restricts to σ on F . The image of σ̄ is an ELA-subfield of FELA

containing F , so must be all of FELA. Hence σ̄ is an automorphism
of FELA extending σ. The restriction of σ̄ to FEA is an automorphism
of FEA extending σ. Similarly, we can use the C<ℵ0(F0)-saturation and
C<ℵ0

0 (F0)-saturation properties to extend σ̄ from FELA to an automor-
phism of F∼ or of another countable strongly exponentially-algebraically
closed kernel-preserving strong extension of F . �

The partial E-field SK embeds in Cexp, so the restriction, σ0, of complex
conjugation is an automorphism of SK, and it is easy to see that it and
the identity map are the only automorphisms of SK. By Proposition 6.11,
σ0 extends to automorphisms of Bκ for any countable κ, and in [14], these
extensions of σ0 are used to identify the algebraic numbers which are
pointwise definable in pseudo-exponential fields. However, the extensions
of σ0 are far from being unique, so this argument does not give an analogue
of complex conjugation on any Bκ.

7. Non-model completeness

In this section we show that the Bκ, and other strongly exponentially-
algebraically closed E-fields, are not model complete. We use the submod-
ularity property of δ which is well-known from Hrushovski’s amalgamation
constructions, and some simple consequences.
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Lemma 7.1 (Submodularity). Let F be a partial E-field, and let C,X, Y
be Q-subspaces of D(F ) such that C ⊆ X ∩ Y and ldimQ(X ∪ Y/C) is
finite. Let x̄, ȳ, z̄ be finite tuples such that x̄∪C spans X, ȳ ∪C spans Y ,
and z̄ ∪ C spans X ∩ Y . Then

(1) δ(x̄ ∪ ȳ/C) + δ(z̄/C) 6 δ(x̄/C) + δ(ȳ/C)

More prosaically, the predimension function δ(−/C) is submodular on the
lattice of Q-linear subspaces of D(F ). We write

δ(XY/C) + δ(X ∩ Y/C) 6 δ(X/C) + δ(Y/C).

Proof. Note that if δ is replaced by td then (1) holds, and if δ is replaced
by ldimQ then it holds with 6 replaced by =. Subtracting the latter from
the former gives (1). �

Lemma 7.2. Suppose F is a partial E-field, and C ⊳ F . For each finite
tuple ā from F , there is a smallest Q-vector subspace ⌈C, ā⌉F of F contain-
ing ā and C, called the hull of C∪ ā, such that ⌈C, ā⌉F ⊳F . Furthermore,
⌈C, ā⌉F is finite-dimensional as an extension of C.

Proof. Since C⊳F , there is a finite-dimensional extension C ⊆ A ⊆ D(F )
with ā ∈ A such that δ(A/C) is minimal, say equal to d. If A1 and A2

are two such, then by submodularity we see that δ(A1 ∩ A2/C) 6 d, and
hence we can take ⌈C, ā⌉F to be the intersection of all such A. �

Remark 7.3. Often in amalgamation-with-predimension constructions,
the analogue of what is here called the hull is called the strong closure
or, when self-sufficient is used in place of strong, the self-sufficient clo-
sure. While the notion of a self-sufficient subset makes semantic sense
(X is self-sufficient in F if no witnesses outside X are needed to realise
its full type in F ), the sense is lost when dealing with extensions rather
than subsets because in “F is a self-sufficient extension of X”, the “self”
should semantically refer to X rather than F , in conflict with the syn-
tactic construction of the phrase. Since the focus here is on extensions
rather than subsets, we do not use the terminology of self-sufficiency. Sim-
ilarly, the terminology “strong closure” conflicts with the notion here of
strong exponential-algebraic closure. The simplest amalgamation-with-
predimension construction is that of the universal acylic graph, and there
the concept corresponding to our hull is exactly the convex hull of a set
in the sense of the graph, that is, the hull of X is the union of all paths
between elements of X .

Proposition 7.4. Suppose F is an E-field, C⊳F , and ā is a tuple from F .
Suppose K ⊆ F is an E-subfield of F , containing C, such that ⌈C, ā⌉F ∩K
is spanned by C ∪ ā. Let r = δ(ā/C)− δ(⌈C, ā⌉F/C). Then etdK(ā/C) =
etdF (ā/C) + r.
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Proof. By Fact 5.4 and the definition of the hull,

etdK(ā/C) = min
{

δ(ā, b̄/C)
∣

∣ b̄ ⊆ K
}

= δ(⌈C, ā⌉K/C)

and similarly
etdF (ā/C) = δ(⌈C, ā⌉F/C).

So we must show that δ(⌈C, ā⌉K/C) = δ(ā/C), or equivalently that for
any b̄ from K, δ(ā, b̄/C) > δ(ā/C).
Let A be the Q-span of C ∪ ā, H = ⌈ā, C⌉F , and let B ⊆ K be an

extension of A, generated by some tuple b̄. Then, by the assumption on
K, B ∩H = A. By the submodularity of δ,

δ(B/C)− δ(A/C) > δ(BH/C)− δ(H/C)

but the right hand side is positive as H = ⌈A⌉F . Hence δ(B/C) > δ(A/C)
as required. �

Proposition 7.5. Let F be a countable strongly exponentially-algebraically
closed E-field satisfying ASP, and of exponential transcendence degree at
least 1. Then there is K ⊆ F , a proper E-subfield such that K ∼= F but
the inclusion K →֒ F is not an elementary embedding. In particular, F
is not model-complete.

Proof. 1 Using the ASP assumption, let c̄ be a finite tuple such that c̄⊳F
and etd(F/c̄) > 1, and let F0 = 〈c̄〉ELA

F . So F0 is a finitely generated
strong ELA-subfield of F .
The precise variety V we use is not so important so we take a simple

example, the intersection of three generic hyperplanes in G3. That is, let
α1, . . . , α18 ∈ F0 be algebraically independent and let V be the subvariety
of G3 given by

α1X1 + α2X2 + α3X3 + α4Y1 + α5Y2 + α6Y3 = 1

α7X1 + α8X2 + α9X3 + α10Y1 + α11Y2 + α12Y3 = 1

α13X1 + α14X2 + α15X3 + α16Y1 + α17Y2 + α18Y3 = 1

where X1, X2, X3 are the coordinates in Ga and Y1, Y2, Y3 are the coordi-
nates in Gm.

Claim. V is perfectly rotund.

Proof. Certainly V is irreducible and has dimension 3. The projections
to G3

a and to G3
m are dominant, so V is additively and multiplicatively

free. Similarly, for any M ∈ Mat3×3(Z), if rkM = 2 then dimM · V = 3
and if rkM = 1 then dimM · V = 2. V must be Kummer-generic from

1My thanks to Alf Onshuus who noticed a mistake in an earlier version of this proof.
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its simple structure, but in any case we could replace it by the locus
of (X1/m,X2/m,X3/m, m

√
Y1,

m
√
Y1,

m
√
Y1) for a suitably large integer m

(where (X1, X2, X3, Y1, Y2, Y3) is generic in V ) without affecting the rest
of the argument. �

Choose (a1, a2, a3) ∈ F 3 such that (a1, a2, a3, e
a1 , ea2 , ea3) is generic in

V over F0. Since F is strongly exponentially-algebraically closed and has
ASP, such a point exists by Lemma 6.8. Now let t ∈ F be exponentially
transcendental over F0, let F1 = 〈F0(t)〉ELA

F , and let K1 = 〈F0(a1)〉ELA
F .

Claim. a2, a3 /∈ K1.

Proof. The intuition here is that V already gives the maximum three
constraints between a1, a2, and a3. If a2 or a3 were to lie in K1 that
would be an extra constraint, or perhaps r + 1 extra constraints with r
extra witnesses, which would contradict F0 being strong in F .
Suppose for a contradiction that a2 ∈ K1. Then there is a shortest

chain of subfields of K1

aclF (F0(a1, e
a
1)) = L0 ⊂ L1 ⊂ L2 ⊂ · · · ⊂ Lr

such that a2 ∈ Lr and, for each i ∈ {1, . . . , r}, there are xi, e
xi ∈ Li such

that Li = aclF (Li−1(xi, e
xi)) and either xi ∈ Li−1 or exi ∈ Li−1.

For each i ∈ {1, . . . , r}, we have td(Li/Li−1) = 1. We can consider each
Li as a partial exponential field by taking the intersection of the graph
of expF with L2

i . Then for each i, Li 6= Li−1, so xi ∈ D(Li) r D(Li−1),
so in particular a1, x1, . . . , xr are Q-linearly independent over F0, and
ea1 , ex1, . . . , exr are multiplicatively independent over F0.
Let V ′ ⊆ G2 be the fibre of V given by fixing the coordinates X1 = a1

and Y1 = ea1 . So V ′ is the locus of (a2, a3, e
a2 , ea3) over L0. Also dimV ′ =

1, and V ′ projects dominantly to each coordinate, so a2, a3, e
a2 , ea3 are

interalgebraic over L0. In particular, they all lie in Lr, and their locus
over Lr−1 is V

′. Since V is additively and multiplicatively free, so is V ′. So
a2, a3 areQ-linearly independent over Lr−1 and ea2 , ea3 are multiplicatively
independent over Lr−1.
Thus if xr ∈ Lr−1 then a1, a2, a3, x1, . . . , xr are Q-linearly independent

over F0. Otherwise, exr ∈ Lr−1, and ea1 , ea2 , ea3 , ex1, . . . , exr are multi-
plicatively independent over F0, but then again (since the kernel of the
exponential map lies in F0) a1, a2, a3, x1, . . . , xr are Q-linearly independent
over F0.
So we have

td(a1, a2, a3, x1, . . . , xr, e
a1 , ea2 , ea3 , ex1, . . . , exr/F0)

= td(Lr/L0) + td(L0/F0) = r + 2



FINITELY PRESENTED EXPONENTIAL FIELDS 31

and thus

δ(a1, a2, a3, x1, . . . , xr/F0) = r + 2− (r + 3) = −1

which contradicts F0 ⊳ F . Hence a2, a3 /∈ K1. �

Indeed, the proof of the claim shows that a2, a3 must be Q-linearly
independent over K1 since their locus over K1 is the same as over L0.
Now ⌈F0, a1⌉F is spanned by F0, a1, a2, a3, so by Proposition 7.4,

etdK1(a1/F0) = etdF (a1/F0)+ δ(a1/F0)− δ(a1, a2, a3/F0) = 0+1−0 = 1.

Thus etdK1(a1/F0) = etdF1(t/F0) = 1, so there is an isomorphism θ1 :
F1 → K1 taking t to a1 and fixing F0 pointwise. Now choose an ω-chain
of ELA-subfields of F

F1 ⊳ F2 ⊳ F3 ⊳ · · ·⊳ F

such that Fn+1 is a simple strong ELA-extension of Fn, for each n, and
⋃

n∈N Fn = F . Inductively we construct chains of ELA-subfields (Kn)n∈N
of F and isomorphisms θn : Fn → Kn, and we also prove that etd(F/Fn)+
1 = etd(F/Kn). (If etd(F ) is infinite this is trivially true since both sides
will be equal to ℵ0.) We already have K1 and θ1. Note that etd(F/F1) +
1 = etd(F/K1) since {t} is an exponential transcendence base for eclF (F1)
over eclF (K1).
Suppose we have Kn and θn. If Fn⊳Fn+1 is an exponentially transcen-

dental simple extension, then choose any b ∈ F which is exponentially
transcendental over Kn, and take Kn+1 = 〈Kn(b)〉ELA

F . This b exists be-
cause etd(F/Fn) 6 etd(F/Kn). Also etd(F/Fn+1) + 1 = etd(F/Fn) and
etd(F/Kn+1) + 1 = etd(F/Kn), so etd(F/Fn+1) + 1 = etd(F/Kn+1). By
Lemma 5.5, θn extends to an isomorphism θn+1

: Fn+1 → Kn+1. Now
suppose that Fn ⊳Fn+1 is exponentially algebraic. Let Vn+1 be the corre-
sponding perfectly rotund subvariety, say given by some equations fi = 0,
with coefficients in Fn. Let Wn+1 be the subvariety obtained from Vn+1

by applying θ−1
n to all the coefficients of the fi. Then Wn+1 is a perfectly

rotund subvariety defined over Kn, and Kn is a finitely generated ELA-
subfield of F , which satisfies ASP, so by Lemma 6.8 there is a realization of
the ELA-extension of Kn corresponding toWn+1 in F . Let Kn+1 be such a
realization, and let θn+1 be any isomorphism from Fn+1 to Kn+1 extending
θn. Also etd(F/Fn+1) = etd(F/Fn) and etd(F/Kn+1) = etd(F/Kn).
Let K =

⋃

n∈NKn and θ =
⋃

n∈N θn. Then θ : F → K is an iso-
morphism. But the inclusion K ⊆ F is not an elementary embedding,
because

F |= ∃x2, x3[(a1, x2, x3, e
a1 , ex2, ex3) ∈ V ]
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but K1 ⊳K, so etdK(a1) = 1, and hence

K |= ¬∃x2, x3[(a1, x2, x3, e
a1 , ex2, ex3) ∈ V ]

�

Note that we have shown more than non-model-completeness in the
language of exponential fields. We have shown that even if one adds
symbols for every definable subset of the kernel, then the result is still not
model-complete.
We can now prove:

Theorem 7.6. Zilber’s pseudo-exponential fields (of exponential transcen-
dence degree at least 1) are not model-complete.

Proof. Proposition 7.5 shows that Bκ is not model-complete when 1 6

κ 6 ℵ0. By [23, Theorem 5.13], every pseudo-exponential field of infinite
exponential transcendence degree is Lω1,ω-equivalent to Bℵ0

, so in partic-
ular elementarily equivalent, and hence also not model-complete. �

8. The Schanuel nullstellensatz

D’Aquino, Macintyre and Terzo [6] and also Shkop [20] have shown that
every strongly exponentially-algebraically closed exponential field satisfies
the Schanuel nullstellensatz :

Definition 8.1. An ELA-field F is said to satisfy the Schanuel nullstel-
lensatz iff whenever f ∈ F [X1, . . . , Xn]

E is an exponential polynomial over
F , not equal to exp(g) for any exponential polynomial g, then there are
a1, . . . , an ∈ F such that f(a1, . . . , an) = 0.

This statement was conjectured by Schanuel to hold in Cexp, and Henson
and Rubel [7, Theorem 5.4] proved that it does indeed hold there.
To show that a pure field is algebraically closed it is enough to know

that every non-trivial polynomial has a root. The Schanuel nullstellensatz
is an analogue of that statement, but it does not characterize strongly
exponentially-algebraically closed exponential fields.

Theorem 8.2. There are ELA-fields satisfying the Schanuel nullstellen-
satz which are not strongly exponentially-algebraically closed.

Proof. Suppose that F is an ELA-field and F →֒ F ′ is a partial E-field
extension generated by a solution a1, . . . , an to an exponential polyno-
mial f (allowing iterations of exponentiation), not of the form exp(g).
Following Shkop, F ′ is also generated over F by a tuple b̄ such that
Vf := Loc(b̄, eb̄/F ) ⊆ Gm is rotund, additively and multiplicatively free,
and of dimension m + n − 1. In particular, the extension is strong. The
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method is to add extra variables to remove the iterations of exponenti-
ation, and then to remove variables to ensure freeness. It follows that
some choice of n− 1 of the ai are exponentially-algebraically independent
over F , and the remaining one (say a1) satisfies an exponential polyno-
mial equation in one variable over F ∪{a2, . . . , an}. Thus if F has infinite
exponential transcendence degree, then it satisfies the Schanuel nullstel-
lensatz iff it satisfies the same statement just for exponential polynomials
in one variable.
Now if F ⊳ F ′ is an E-field extension given by adjoining a root a of an

exponential polynomial f in one variable, then F ′ = 〈F, a〉EF ′. That is, as
an E-field extension it is generated by the single element a.
Define a perfectly rotund variety V to have depth 1 iff in an extension

F ⊳ F |V with generating tuple ā, there is a single element c such that ā

is contained in 〈F, c〉E . Equivalently, F ⊳ 〈F, c〉E ⊳ F |V . Since 〈F, c〉E is
an E-field but not an ELA-field, such an intermediate field is possible.
Let C<ℵ0

1 be the smallest category of finitely generated strong ELA-
extensions F of SKELA which is closed under simple extensions which are
either exponentially transcendental or given by perfectly rotund varieties
of depth 1. Let C1 be the closure of C<ℵ0

1 under unions of ω-chains. Then,
as in the proof of Proposition 6.9, C1 is an amalgamation category and
hence has a unique Fräıssé limit, say U . Then U satisfies the Schanuel
nullstellensatz. However, there are perfectly rotund varieties V which do
not have depth 1 such as the generic hypersurface in G3 used in the proof
of Proposition 7.5. By Theorem 5.10, for such V there is no (ā, eā) in U
which is generic in V over a field of definition of V , and hence U is not
strongly exponentially-algebraically closed. �

9. Transcendence problems

Schanuel’s conjecture has many consequences in transcendence theory.
Ribenboim [19, pp323–326] gives a few examples of easy consequences,
one being that the numbers e, π, eπ, log π, ee, πe, ππ, log 2, 2π, 2e, 2i, ei,

πi, log 3, log log 2, (log 2)log 3, and 2
√
2 are all algebraically independent.

When Lang first published Schanuel’s conjecture [17, p31], he wrote:

“From this statement, one would obtain most statements
about algebraic independence of values of et and log t which
one feels to be true.”

We strengthen this empirical observation, and make it precise. To make
a precise statement we need a precise definition.

Definition 9.1. A particular transcendence problem is a problem of the
following form:
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Given complex numbers a1, . . . , an with some explicit construction, what
is the transcendence degree of the subfield Q(a1, . . . , an) of C?

The example above of Ribenboim is clearly of this form. All the num-
bers there are explicitly constructed from the rationals Q by the opera-
tions of exponentiation, taking logarithms, taking roots of polynomials,
and field operations.
Let C0 = eclCexp(∅) be the field of exponentially-algebraic complex num-

bers. By Fact 5.4, for any ā = (a1, . . . , an) ∈ Cn such that no Q-linear
combination of them lies in C0, we have td(ā, eā/C0) > n + 1. Thus
Schanuel’s conjecture (for Cexp) is equivalent to its restriction to C0. Re-
call that SK embeds in C0, and so Schanuel’s conjecture for C0 is equiva-
lent to the assertion that SK ⊳C0. By Proposition 6.9, if SK ⊳C0 then
B0

∼= C0
∼ (recall B0 = SK∼). Thus Schanuel’s conjecture is equivalent

to the assertion that C0 embeds in B0. If in addition C0 were strongly
exponentially-algebraically closed, that is, C0 = C0

∼, then there would
be an isomorphism C0

∼= B0. Since the automorphism group of B0 is very
large, such an isomorphism would be very far from being unique.

Theorem 9.2. Schanuel’s conjecture decides all particular transcendence
problems where the complex numbers a1, . . . , an ∈ C are given by an ex-
plicit construction from Q by the operations of exponentiation, taking log-
arithms, taking roots of polynomials, field operations, and taking implicit
solutions of systems of exponential polynomial equations.

Proof. The conditions on the ai are equivalent to them all lying in C0, that
is, being exponentially-algebraic complex numbers. Assuming Schanuel’s
conjecture, C0 embeds in B0. Any explicit description of the ai defines
a finitely generated partial E-subfield F of B0, the smallest one contain-
ing all the coefficients of the exponential polynomial equations used in the
given descriptions of the ai. F is necessarily strong in B0, since it contains
witnesses of all of its elements being exponentially algebraic. When tak-
ing logarithms or, more generally, taking implicit solutions of systems of
equations, there are countably many solutions in B0, but the homogeneity
of B0 for strong partial E-subfields (which follows from the Fräıssé theo-
rem used in the proof of Proposition 6.9) shows that these choices do not
affect the isomorphism type of F . Thus Schanuel’s conjecture determines
the isomorphism type of F as a partial E-field, and hence it determines
the transcendence degree of its subfield Q(a1, . . . , an). �

Note that if we do not allow taking implicit solutions of systems of
exponential polynomial equations then the construction stays inside the
field SKELA, and the proof depends only on section 2 of this paper. In
particular this covers the field SKEL which, under Schanuel’s conjecture,
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is the field of all of what Chow [5] calls EL-numbers, that is, those complex
numbers which have a closed-form representation using 0, +, ·, −, ÷, exp
and the principal branch of the logarithm.
The construction will produce a generating set b̄ for D(F ), and poly-

nomial equations with rational coefficients determining the locus V of
(b̄, exp(b̄)). If we had an algorithm to determine the Q-linear relations
holding on b̄ and the multiplicative relations holding on exp(b̄), that would
give an algorithm for answering particular transcendence problems of this
form.
There are other transcendence problems which are more general in na-

ture, for example the four exponentials conjecture which states that if
x1, x2, y1, y2 ∈ C and ldimQ(x1, x2) = ldimQ(y1, y2) = 2, then

td(ex1y1 , ex1y2 , ex2y1 , ex2y2) > 1.

The four exponentials conjecture is not a particular transcendence prob-
lem as defined above, but nonetheless it can easily be seen to follow from
Schanuel’s conjecture. So the statement of Theorem 9.2 is not a complete
answer to formalising Lang’s observation. Nonetheless, the method of
proof above does apply. The four exponentials conjecture can be viewed
as the conjunction of a set of particular transcendence problems, namely
every specific instance of the problem. More generally, suppose P is a
transcendence problem, such as the four exponentials conjecture, which
asserts that some transcendence degree is large given suitable conditions
(about exponentials, logarithms, and algebraic equations). Then either
(every instance of) P is true in B0 so it follows from Schanuel’s conjec-
ture that it is true in C0, or P is false in B0, in which case, since B0 is
constructed in as free a way as possible, P cannot be true in any expo-
nential field F (unless it is true trivially because the hypotheses are not
satisfied by any numbers in F ).

Connection with conjectures on periods. The two main conjectures
about Cexp are:

(1) Schanuel’s conjecture, equivalently Cexp embeds in B, equivalently
C0 embeds in B0;

(2) Cexp is strongly exponentially-algebraically closed, equivalently that
Cexp = Cexp

∼

Together, they form Zilber’s conjecture that Cexp
∼= B. As shown in [12],

using work of Ax [2], Schanuel’s conjecture is equivalent to its restriction
to C0. In the light of Lemma 7.2 and Proposition 7.4, the restriction of the
conjecture to C0 is equivalent to the assertion that if a is an exponentially
algebraic complex number then there is a unique reason for that, meaning
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a unique smallest finite-dimensional Q-vector subspace ⌈a⌉ of C containing
a such that δ(⌈a⌉) = 0.
This formulation of Schanuel’s conjecture makes a visible connection

with the conjecture of Kontsevich and Zagier on periods [16, §1.2]. They
conjecture that if a complex number is a period then there is a unique
reason for that, up to three rules for for manipulating integrals: additivity,
change of variables, and Stokes’ formula. Kontsevich and Zagier give an
alternative formulation of their conjecture in [16, §4.1]. There is a canon-
ical surjective homomorphism from a formal object, the vector space of
effective periods, to the space of complex periods. The periods conjecture
is equivalent to this homomorphism being an isomorphism. In the expo-
nential case, the existence of automorphisms of B0 means there can be
no canonical isomorphism from the formal object B0 to C0. Furthermore,
since the objects in question are fields rather than vector spaces, there
cannot be a non-injective map between them so if the conjecture is false
then there is no map at all from B0 to C0, although one could repair this
by taking suitable subrings of B0 instead. Finally, the open question of
strong exponential-algebraic closedness of C0 means that any map should
go from C0 to B0 rather than the other way round, or that the subrings
of B chosen should be restricted in some way. The power of the pred-
imension method, as used in this paper, is that such considerations are
not necessary.
The Kontsevich-Zagier conjecture does not imply Schanuel’s conjecture,

because for example e is (conjecturally) not a period. Even the expanded
conjecture on exponential periods [16, §4.3] does not say much about
Schanuel’s conjecture, because (again conjecturally) ee is not an exponen-
tial period. Furthermore Schanuel’s conjecture does not just refer to C0

but to all of C whereas periods form a countable subset of C. André has
observed [1, §4.4] that the Kontsevich-Zagier conjecture is equivalent to
Grothendieck’s conjecture on periods, and André himself proposed a con-
jecture which encompasses both Grothendieck’s periods conjecture and
Schanuel’s conjecture [1, §5.8.1], and applies to all of C.

10. Open Problems

We end with some open problems. Schanuel’s conjecture is known to
be very difficult, and the conjecture that Cexp is strongly exponentially-
algebraically closed is also widely open (even assuming Schanuel’s conjec-
ture). We suggest some questions about complex exponentiation which
may be easier.



FINITELY PRESENTED EXPONENTIAL FIELDS 37

(1) Define an ELA-field F to be locally finitely presented iff every
finitely generated ELA-subfield of F is finitely presented. Is Cexp

locally finitely presented?
(2) Is there any finitely presented exponential subfield of Cexp?
(3) Is there an exponential subfield C of C, and a finitely presented

proper extension of C realised inside C0, the subfield of exponen-
tially algebraic numbers in C? Since C0 ⊳ Cexp, the question is
resolved outside C0.

(4) Let V ⊆ Gn(C) be perfectly rotund. The theorem of Henson
and Rubel [7, Theorem 5.4] implies that if n = 1 then there is
(a, ea) ∈ V in Cexp. How about n = 2, or n = 3? Indeed, for
which V can one show there are any solutions in Cexp?

(5) Is there any perfectly rotund V which is not of depth 1 with
(a, ea) ∈ V in Cexp?

An apparently difficult problem is to construct an ordered analogue of
pseudo-exponentiation which should be conjecturally elementarily equiv-
alent to the real exponential field Rexp. Since the real exponential func-
tion is determined just by its being a homomorphism which is order-
preserving, continuous, and by the cut in the reals of e, one would have
to assume Schanuel’s conjecture for Rexp to construct an Archimedean
model. The following problem is of the same nature, but may perhaps be
more straightforward.

(6) Can the automorphism σ0 on SK be extended to an automorphism
of order 2 on a subfield of Bℵ0

larger than SKE , such as SKEA,
SKELA, B0, or even Bℵ0

itself, in such a way that the exponential
map is order-preserving on the fixed field (which will necessarily
be real-closed, and hence ordered)?

Finally, the predimension method used in this paper is very powerful,
and can be extended beyond the exponential setting, for example to the
exponential maps of semi-abelian varieties [11] and to sufficiently generic
holomorphic functions known as Liouville functions [22], [21], and [15].
The periods conjecture of André encompasses the first of these settings
and also the Grothendieck-Kontsevich-Zagier periods conjecture.

(7) Is there a way to formulate André’s conjecture as the non-negativity
of some predimension function, satisfying the essential properties
such as the addition formula and submodularity?

References
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