
Sequential change detection and
monitoring of temporal trends in
random-effects meta-analysis

Samson Henry Dogo, Allan Clark and Elena Kulinskaya*

Temporal changes in magnitude of effect sizes reported in many areas of research are a threat to the
credibility of the results and conclusions of meta-analysis. Numerous sequential methods for meta-
analysis have been proposed to detect changes and monitor trends in effect sizes so that meta-analysis
can be updated when necessary and interpreted based on the time it was conducted. The difficulties of
sequential meta-analysis under the random-effects model are caused by dependencies in increments
introduced by the estimation of the heterogeneity parameter τ2. In this paper, we propose the use of a
retrospective cumulative sum (CUSUM)-type test with bootstrap critical values. This method allows
retrospective analysis of the past trajectory of cumulative effects in random-effects meta-analysis and its
visualization on a chart similar to CUSUM chart. Simulation results show that the new method
demonstrates good control of Type I error regardless of the number or size of the studies and the amount
of heterogeneity. Application of the new method is illustrated on two examples of medical meta-analyses.
© 2016 The Authors. Research Synthesis Methods published by John Wiley & Sons Ltd.
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1. Introduction

Meta-analysis is a statistical technique used to combine results from related but independent studies in order to
provide an estimate of the overall treatment effect. In clinical applications, it is often used to synthesize and
strengthen evidence about treatment efficacy or harm and to provide evidence for decision making. It has
become increasingly important with the increasing number of clinical studies providing sometimes inconclusive
and inconsistent results. By combining information from different studies, meta-analysis increases the overall
sample size and achieves a higher statistical power for the outcome of interest compared with individual studies.

However, recent findings in many areas of research have shown that effect size estimates used in meta-
analyses may change significantly over time. For example, Hodgson et al. (1989) found a decline of about 1.4%
per annum in the sensitivity of chest X-rays in detecting hypersensitivity pneumonitis, which they attributed to
secular trends in knowledge and earlier diagnosis or changes in the disease itself. Nieuwkamp et al. (2009) found
a decrease in case fatality of aneurysmal sub-arachnoid haemorrhage during the period 1960–1995, which they
attributed to improvement in early diagnostic and treatment strategies. Similar temporal changes have been
reported in education (Hyde et al., 1990), medicine (Gehr et al., 2006), psychology (Brugger et al., 2011; Twenge
et al., 2008; Grabe et al., 2008), to mention but a few. These changes in effect sizes can be dramatic and often lead
to the loss or gain of statistical significance (Kulinskaya and Koricheva, 2010). Therefore, if meta-analysis is
conducted ignoring temporal changes, when such changes are actually present, its results and conclusions are
likely to be misleading. In case of a monotonic temporal trend, meta-regression with time as a covariate can be
used to evaluate such a trend and to adjust for it, see Shi and Copas (2004); Baker and Jackson (2010).
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We consider a different although related problem of sequential monitoring of changes in effect size estimates
in meta-analysis (Lau et al., 1992; Leimu and Koricheva, 2004; Pogue and Yusuf, 1997; Wetterslev et al., 2008;
Higgins et al., 2011; Whitehead, 1997b; Bollen et al., 2006; Kulinskaya and Koricheva, 2010; Lan et al., 2003). These
methods are aimed at gauging sufficiency of evidence (Lau et al., 1992; Pogue and Yusuf, 1997; Wetterslev et al.,
2008) or at monitoring effect size estimates (Leimu and Koricheva, 2004; Kulinskaya and Koricheva, 2010; Ioannidis
and Trikalinos, 2005). However, these methods were largely derived for fixed effect model (FEM), with or without
further empirical corrections for random-effects model (REM). In REM, the analysis incorporates the heterogeneity
variance, τ2, and its estimation creates dependency in consecutively estimated cumulative effects which violates
the assumed independence of increments in sequential methods.

In Dogo et al. (2015), we introduced the use of a (Gombay and Serban, 2005) truncated CUSUM-type test
(Gombay method) for sequential random-effects meta-analysis. For large within-study sample sizes, the Gombay
method is valid under the random-effects model of meta-analysis. However, the critical values for the Gombay test
are derived from asymptotic theory, and our simulations (Dogo et al., 2015) demonstrated that the test does not
control the Type I error satisfactorily.

In the current paper, we review the existing sequential methods for meta-analysis and propose the use of
bootstrap-based critical values for use with the Gombay method. This results in a method allowing retrospective
analysis of the past trajectory of cumulative effects in random-effects meta-analysis and its visualization on a chart
similar to a CUSUM chart. The proposed method constitutes a useful tool for retrospective monitoring of effect
size estimates. The rest of the paper is organized as follows. In Section 2, we review the existing sequential
methods for meta-analysis. In Section 3, we formulate the Gombay test statistic for random effects model of
meta-analysis. In Section 4, we provide the algorithm to obtain the bootstrap critical values for the random-effects
model. In Section 5, we report on a simulation study to evaluate the performance of the new method. In Section 6,
we demonstrate the application of the new method to two examples of medical meta-analyses. Section 7 is the
summary and conclusions.

2. Existing sequential methods for monitoring temporal changes in effect sizes
in meta-analysis

In this Section, we recap the fixed effect and the random effects models of meta-analysis, summarize four existing
methods of estimation of the between-studies variance component τ2 before reviewing the existing sequential
methods for monitoring effect sizes.

2.1. Fixed effect and random effects models

To combine the results from K studies, the two main models are the FEM and the REM. The fixed effect model
assumes that all the included studies investigate the same population and therefore share a common location
parameter. Denote by y1, y2, …, yK the estimates of treatment effects derived from K studies. When yi’s are sample
means or mean differences, the fixed effect model is given by

yi ¼ θ þ ei; (1)

where θ is the common location parameter, ei∼N 0; σ2i
� �

are the sampling errors, σ2i are the within-study variances,
for i=1,⋯, K. For other effect measures, approximate normality of yi’s holds when the sample sizes ni of the studies
are reasonably large. Appropriate estimates of the variancesσ2i are easily calculated for all effect measures used in meta-
analysis and, for large within study sample sizes, can be treated as known constants (Viechtbauer, 2007). In FEM, each
study is assigned a weight proportional to the inverse of the within-study variance, which is denoted by wi ¼ 1=σ2i .
The combined effect is estimated as a weighted mean of the individual effect estimates given by

bθFEM ¼ ∑
K

i¼1
wiyi=WK ; (2)

where WK ¼ ∑
K

i¼1
wi . The variance of the combined effect is given by the inverse of the sum of weights, W�1

K .

Standard inference in FEM is based on approximate normality of the distribution of the combined effect,bθFEM∼N θ;W�1
K

� �
.

Cochran’s Q statistic

Q ¼ ∑
K

i¼1
wi yi � bθFEM

� �2
(3)

plays an important role in meta-analysis. It is widely used in inference on heterogeneity of treatment effects. The Q
statistic is routinely assumed to follow the chi-square distribution with K-1 degrees of freedom, χ2K�1, although this
is true only for very large sample sizes, see Hoaglin (2016) for details.
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Random effects model is generally preferred to the fixed effect model (Hunter and Schmidt, 2000) because of
its ability to account for variation in effects across the studies. Random effects model allows different mean effects
θi across the studies and it assumes that they are sampled from a population of parameters with mean θ. REM is a
two-level model given by

yi ¼ θi þ ei; ei∼N 0; σ2i
� �

;

θi ¼ θ þ εi; εi∼N 0; τ2ð Þ; (4)

where σ2i and τ2 are the within-study and between-study variances, respectively.
Marginally, the random effects model is defined by

yi ¼ θ þ ξ i; ξ i∼N 0; τ2 þ σ2i
� �

: (5)

The between-study variance, τ2, describes the degree of heterogeneity among the effect estimates. The special
case where τ2 = 0 implies that the effect sizes, θ1 = θ2 =…= θK, are homogeneous, and the resulting model
reduces to FEM in Equation (1). The weights assigned to studies in REM are inverse variance weights defined

by w�
i ¼ wi τ2ð Þ ¼ τ2 þ σ2i

� ��1
. Estimated values of τ2 and σ2i are substituted in practice. Similar to FEM, the

combined effect in REM is estimated as a weighted mean of the individual effect estimates, bθREM ¼ ∑
i
w�

i yi=W
�
K ,

whereW�
K ¼ ∑K

i¼1w
�
i . Once more, typically the inference is based on the approximate normality of the combined

effect.
Estimation of the between-study variance, τ2 plays a crucial role in REM. There exist a number of methods for

estimating τ2, (Veroniki et al., 2016), but we describe here only the most commonly used methods by DerSimonian
and Laird (1986), Mandel and Paule (1970), and the restricted maximum likelihood (REML) method along with the
method by Higgins et al. (2011) proposed specifically for sequential testing in meta-analysis. Each of these
methods differs in terms of precision and bias in estimating τ2, and in Section 4, we examine by simulation
how this affects the sequential testing.

DerSimonian and Laird (1986) method
The DerSimonian and Laird (1986) estimator is given by

bτ2DL ¼ max
Q� K � 1ð Þ

WK � ∑
K

i¼1
w2

i =WK

; 0

0BB@
1CCA: (6)

Higgins et al. (2011) method
The Higgins et al. (2011) estimator is a modification of the DerSimonian and Laird (1986) method using semi-

Bayes approach. It is defined by

bτ2H ¼ 2λþ Kbτ2DL
2ηþ K � 2

; (7)

where λ and η are parameters of an inverse gamma prior distribution for τ2.
Mandel and Paule (1970) method
The Mandel and Paule (1970) estimator denoted by bτ2MP (see also Paule and Mandel (1982)) is calculated from

the solution of the estimating equation for the expected value of the Q(τ2) statistic given by

Q τ2
� � ¼ ∑

K

i¼1
wi τ2
� �

yi � bθ τ2
� �� �2

; (8)

where bθ τ2ð Þ and wi(τ
2) are functions of τ2. For known variances σ2i and τ2, the Q(τ2) statistic has the chi-square

distribition with K-1 degrees of freedom, and the Mandel–Paule estimator bτ2MP is found from the estimating
equation Q bτ2MP

� � ¼ K � 1, if the solution exists. If Q(0)< K� 1, we set bτ2MP ¼ 0.
Restricted maximum likelihood method
The restricted maximum likelihood estimator of τ2 is given by an iterative solution of the equation

bτ2REML ¼ max

∑
K

i¼1
w�2

i yi � bθ� �2 � σ2i

� �
∑
K

i¼1
w�2

i

þ 1

∑
K

i¼1
w�

i

; 0

0BBB@
1CCCA: (9)

2.2. Sequential methods in meta-analysis

Several methods have been proposed for sequential monitoring of temporal trends in meta-analysis. Historically,
the first method proposed by Lau et al. (1992) was cumulative meta-analysis (CMA), which can be described as an
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open sequential test. The method involves pooling effect size estimates in a cumulative manner as new trial
results are published. Lau et al. (1992) had proposed the use of the method for monitoring interventions
across several randomized controlled trials, with the goal to understanding when evidence becomes definitive.
CMA is routinely used for monitoring temporal changes in effect sizes, see Lau et al. (1992); Ioannidis and
Trikalinos (2005); Leimu and Koricheva (2004). However, CMA involves repeated analysis of the accumulating
evidence, and thus, even if there is no treatment effect, the multiple testing involved leads to the inflation of
Type I error.

A second group of methods is the sequential meta-analysis (SMA). These methods involve the use of formal
group sequential boundaries to monitor CMA and were proposed by Pogue and Yusuf (1997) to address the issue
of inflated Type I error in CMA. SMA involves calculation of an optimum information size (OIS) and then
determines the monitoring boundaries using an alpha spending function (Lan and DeMets, 1983) and stochastic
curtailment. However, the calculation of the OIS is based on a fixed effect model, and hence, the method is only
appropriate for FEM. A number of methods were developed to correct for this. Wetterslev et al. (2008, 2009) used a
heterogeneity inflated OIS, but this method is problematic (Kulinskaya and Wood, 2013). Whitehead (1997a)
describes the use of the standard stopping boundaries for random-effects meta-analysis. Bollen et al. (2006) used
the double triangular test in a retrospective meta-analysis. Higgins et al. (2011) proposed a sequential method for
random-effects meta-analysis that uses a semi-Bayes procedure to update evidence on the between-study
variance, starting with an informative prior distribution that may be based on findings from a previous meta-
analysis. A common issue for these methods is that the monitoring boundaries are generally defined based on
FEM and do not incorporate the presence of heterogeneity in treatment effects. As a result, as revealed by
simulations, these methods lead to a considerable inflation of the Type I error when the values of τ2 are large,
Higgins et al. (2011); Wetterslev et al. (2008).

A third group of methods involves the ‘penalized Z-test’ introduced by Lan et al. (2003). This is an alternative
approach to address the issue of inflated Type I error in CMA. The method is based on the law of iterated
logarithm to ‘penalize’ for the multiple testing in CMA. The usual Wald-test statistic for significance of the
combined effect at the k-th interim analysis is adjusted by a constant factor and is defined by

Z� kð Þ ¼ ∑k
1w

�
i yiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λW�
k ln ln

p
Wkð Þ ; (10)

where λ is the adjustment factor determined using simulation. Lan et al. (2003) claim that the penalized Z-test
exhibits a good control of the Type I error in CMA both in FEM and REM when a reasonable value of λ is used.
For example, the value of λ=1.5 was found to control the Type I error in FEM, while the value of λ= 2 was found
to control the Type I error in REM when relative risks, odds ratios or risks differences were used as effect measures
and meta-analyses included up to 25 studies (Hu et al., 2007). The choice of λ is important in controlling the Type I
error; however, its value varies according to the type of effect measure, number of studies, average study size and
the amount of heterogeneity in the treatment effects. Therefore, the determination of the ‘reasonable value of λ’
can be difficult in practice.

Recently, Kulinskaya and Koricheva (2010) proposed the use of quality control charts for detection of outliers
and temporal trends in meta-analysis. The use of QC charts in meta-analysis is straightforward if the sequential
effect estimates are independent and their distribution can be approximated by the normal distribution. This is
true in FEM, but in random effects model, the estimation of τ2 introduces dependency between the sequential
effect estimates, and hence, their distribution is not consistent with the standard assumptions of the QC charts.

In this paper, we propose the use of Gombay (2003) truncated CUSUM-type test statistic with critical values
estimated by the bootstrap. The between-study variance component τ2 is treated as a nuisance parameter, and
it is included in the determination of the bootstrap critical values.

3. Formulation of Gombay test statistic for random effects model

In this Section, we describe the Gombay test (Gombay, 2003) in its generality before formulating the Gombay test
statistic for sequential random-effects meta-analysis.

3.1. Gombay test

The Gombay test described below was introduced as test II in Gombay (2003). It is a sequential change detection
test for parametric models in the presence of a vector nuisance parameter. Consider a sequence of independent
random variables (r.v.) X1, X2,…,∼f θi ;ηi, where f is a probability density function, θ is a (vector) parameter of interest
and η is a nuisance parameter. Consider a test for the composite hypothesis

S. H. DOGO ET AL.

© 2016 The Authors. Research Synthesis Methods published by John Wiley & Sons Ltd. Res. Syn. Meth. 2016



H0 : θi ¼ θ0; ηi ¼ η; i ¼ 1; 2; …against alternatives H1r :
θi ¼ θ0; ηi ¼ η; i ¼ 1; 2;…r;

θi ¼ θ0 þ Δ; ηi ¼ η; i ≥ r þ 1;

	
where r ≥ 1 is an unknown time of change, and the values of Δ and η are also unknown.

Denote ψ = (θ, η). The log-likelihood function at the k-th interim analysis is l ψð Þ ¼ ∑k
i¼1 ln f Xi;ψð Þ, and the score

vector for θ and η is defined by

Vk θ0; ηð Þ ¼ ∂l ψð Þ
∂ψ

¼ ∑
k

i¼1

∂
∂ψ

ln In f θ0η Xið Þ: (11)

In order to define a test statistic for the hypotheses about θ, a Fisher information matrix I for k observations is
partitioned as

I ¼ Iθθ Iθη

Iηθ Iηη

 !
;

where I11 ¼ �E ∂2
∂θ2 l θ; ηð Þ� �

, I22 ¼ �E ∂2
∂η2 l θ; ηð Þ

� �
and I12 ¼ It21 ¼ �E ∂2

∂θ∂η l θ; ηð Þ
� �

.
Replacing the nuisance parameter η with its restricted maximum likelihood estimate bηk , the conditional

efficient score vector Vk is given by

Vk θ0;bηkð Þ ¼ ∑
k

i¼1

∂
∂θ

ln f θ0bη Xið Þ: (12)

This vector is also sometimes termed effective score vector, and its variance Γ k θ0; ηð Þ ¼ I11 � I12I
�1
22 I21 is called

effective information, Bera and Bilias (2001). Note that for independent and identically distributed r.v.’s, this
variance increases linearly with the number of observations: Γk(θ0, η) = kΓ1(θ0, η). Under some standard regularity
conditions given in Gombay and Serban (2005), guaranteeing the existence and consistence of a sequence of
maximum likelihood estimators, and additionally conditions required by the Law of Iterated Logarithm, Gombay
and Serban (2005) showed that under H0, as k→∞, the effective score vector can be written as

Vk θ0;bηkð Þ ¼ ∑k
i¼1 Zi þ O ln lnðkÞð Þ; (13)

where Zi are independent identically distributed random variables with expected value E[Zi] = 0 and the
covariance matrix cov(Zi) = k� 1Γ k(θ0, η). It follows that the scaled statistic

Tk ¼
ffiffiffi
k

p
Γ k θ0; ηð Þ�1=2 ∑

k

i¼1

∂
∂θ

ln f θ0 ;bηk ; (14)

which is essentially the cumulative sum of deviations from H0, is asymptotically (k→∞) the cumulative sum of
independent identically distributed random variables with mean 0 and variance 1, and thus, a sequence of
statistics {Tk} can be approximated by a standard Wiener process. In order to use the statistic Tk in practice, the
covariance Γ k(θ0, η) is replaced with its estimate Γ k θ0;bηkð Þ . Gombay (2003) and Gombay and Serban (2005)
introduced a sequential change detection test for Δ> 0 based on the maximum of K-1 cumulative statistics Tk
given by Equation (14) for k=2,…, K (or their absolute values, for two-sided alternatives) as follows. For k= 2, 3,
…, K, where K is a truncation point, reject H0 in favour of a positive change Δ> 0 at time k if

Tk≥
ffiffiffi
K

p
C αð Þ; (15)

and if no such k ≤ K, exists, do not reject H0.
Therefore, the Gombay test is a multiple comparisons procedure, comparing up to K-1 sequential values of the

statistics Tk to the same critical value
ffiffiffi
K

p
C αð Þ. The critical values C(α) of this one-sided test are calculated as the

critical values from the standard normal distribution at 1� α/2 level, z1� α/2, so that, for instance, C(0.05) = 1.96.
The two-sided test is based on |Tk|, and its asymptotic (K→∞) critical values C*(α) are provided in Gombay
(2003); Gombay and Serban (2005). In particular, C*(0.10) = 1.96, C*(0.05) = 2.24, C*(0.025) = 2.50 and C*(0.01)
= 2.80. Gombay (2003) also proposed a similar test based on the maximum (over all k ≤ K) of k� 1/2Tk.

3.2. Application of the Gombay test to random effects model

To apply the Gombay test in random effects model of meta-analysis, consider a sequence of independent
studies conducted over time. Each study estimates a treatment effect, yi for i=1, 2, … with variance σ2i . Under
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the null hypothesis, H0, each effect estimate is normally distributed with the same mean θ but different

variances: yi∼N θ; w�
i

� ��1� �
, where w�

i ¼ τ2 þ σ2i
� ��1

is the weight in random effects model. In the following

derivation, the variances σ2i are assumed to be known and the only nuisance parameter is τ2. The location
parameter, θ, is the population treatment effect, and it is estimated as weighted mean of the individual effect

estimates, bθk ¼ ∑k
i¼1 ŵ

�
i yi=∑

k
i¼1 ŵ

�
i with estimated weights ŵ�

i , k=1, 2,…. Let θ = θ0 be the target value of the
effect parameter. As more studies are conducted and results are continually combined, the goal is to determine

when the combined effect, bθk , changes significantly from the target value, θ0, and stop further studies.
The Gombay test was originally proposed for detection of a sudden shift in the effects as typical in industrial

applications. However, it can be used for detection of any monotonic trend in the effects, as its sequential values
Tk are essentially the accumulated weighted deviations from the target value θ0, as can be seen from the
Equation (17). This is especially useful in the context of meta-analysis. The power of the Gombay test depends
on the timing and the shape of the trend in effects. This will be discussed in more details in the subsequent
sections.

The log-likelihood function of yi required to define the Gombay test statistic is given by

l yi : θ; τ
2

� � ¼ 1

2
In ŵ�

i � ŵ�
i yi � θ0ð Þ2 þ C

n o
; (16)

where C is a constant. The efficient score statistic (12) is Vk θ0;bτ2� � ¼ ∑k
1 ŵ

�
i yi � θ0ð Þ . This familiar statistic is

routinely used in meta-analysis for testing a value of the mean in K studies. Its variance is Γ k ¼ ∑k
1 E ŵ�

i


 �
. In the

sequential setting, the Gombay test statistic is based on the maximum of the standardized and scaled by
ffiffiffi
k

p
score

statistics (14) given by

Tk ¼

ffiffiffi
k

p
∑
k

i¼1
ŵ�

i yi � θ0ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
k

i¼1
E ŵ�

i


 �s ; (17)

see Web Appendix for derivation. Assuming that the expected value E bτ2i
 � ¼ τ2 for i = 1, 2, …, K, the expected
value of the estimated weights in Equation (17) can be approximated by the first term in their Taylor series
expansion, E ŵ�

i


 � ¼ w�
i τ2ð Þ . The between-study variance component τ2 is estimated using the full information

available from k studies, bτ k , or from all K studies, bτ2K .
The sequential test using the weights w�

i ¼ wi bτ2k� �
and E ŵ�

i


 � ¼ w�
i bτ2k� �

in (17) and based on the maximum
(over all k ≤ K) of statistics Tk was proposed by Dogo et al. (2015). The τ2 was estimated by one of the methods
by DerSimonian and Laird (1986); Higgins et al. (2011); Mandel and Paule (1970) and the REML. In what follows,
the Gombay test statistics based on the four above estimators are denoted by GDL, GH, GMP and GREML,
respectively.

However, there is an important limitation in respect to the use of the Gombay test in REM. One of the main
assumptions of the Gombay derivation is the identical distribution of the observations yi. This is not satisfied in
REM, where the variances of estimated effects differ and the sequence {Tk} can be approximated by Wiener
process only for very large (in comparison to squared truncation point K2) within-studies sample sizes that make
within-study variances σ2i negligible, see Web Appendix A.2 for derivation. Not surprisingly, our simulation work in
Dogo et al. (2015) showed that the poor approximation of the distribution of the Gombay test statistic by Wiener
process resulted in a sequential test with extremely poor control of Type I error. In the next section, we derive a
bootstrap-based test for use with the Gombay test statistic.

4. Bootstrap-based retrospective CUSUM-type test

The parametric bootstrap is an alternative approach that can be used to obtain an accurate distribution of the test
statistic under the null hypothesis without the need to rely on asymptotic theory. In this section, we derive the

bootstrap critical values for Gombay test (15) based on statistics Tk (17) with the weights w�
i ¼ wi bτ2K� �

and the

substitution of wi bτ2K� �
for E ŵ�

i


 �
. As the knowledge of bτ2K is required at each step k ≤ K, this is not a sequential test.

This is rather a method allowing retrospective analysis of the sequential combined effects in random-effects meta-
analysis.

Note that if a change in θ does happen at some point r+ 1 for r ≥ 1, this will increase an estimate bτ2K of the

between-study variance τ2 by approximately Δp(1� p), for p ¼ ∑K
i¼rþ1wi=∑

K
i¼1wi < 1. As an illustration, the bias

of bτ2DL in this case is calculated in Web Appendix A.3. This positive bias in bτ2K does not affect the null distribution
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of the proposed bootstrap test, as the bootstrap samples are generated from the null distribution with the

estimated bybτ2K between-study variance. However, the power of the bootstrap test may suffer in the result of this

variance inflation. This bias inbτ2K reaches the maximum at p= 1/2, that is, when the shift occurs approximately half-
way and is negligible for large enough K>> r, as it is of order 1/K. We provide further discussion of the effects of
this bias on the power of the proposed test in Section 5.1.2.

4.1. Bootstrap procedure

Consider the following one-sided and two-sided retrospective tests for the existence of a shift. The tests are to be
performed after conducting K studies. Because a meta-analysis requires a minimum of two studies to be
conducted, the sequential testing starts with a minimum of two studies and stops as soon as a boundary value
is reached or after the K-th analysis. Define statistics Tk, for k= 2,…, K as

Tk ¼
∑
k

i¼1
wi bτ2K� �

yi � θ0ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
k

i¼1
wi bτ2K� �s : (18)

Test: For k=2, 3, …, K, reject H0 if Tk≥
ffiffiffi
K

p
C αð Þ (one-sided) or Tkj j≥ ffiffiffi

K
p

C� αð Þ (two-sided) and if no such k, k ≤ K,
exists, do not reject H0.

The critical values C(α) and C*(α) are to be calculated by bootstrap. Let

G� ¼ max
2≤k≤K

K�1=2Tk
n o

and G�� ¼ min
2≤k≤K

K�1=2Tk
n o

:

The calculation of the bootstrap critical values is based on the percentiles of the empirical distribution of G*

and G* * calculated from the set of bootstrap samples of the data. The step procedure for the calculation is as
follows.

1 From the observed data, calculate the effect estimates yi, the estimated sample variances S2i , the study sizes,
ni and other sample statistics as required, for i= 1, 2, …, K. Calculate bτ2K using one of the methods in
Section 2.1.

2 Use the values of bτ2K , θ0, the null value of the effect parameter and other sample statistics as required
to generate from appropriate distributions B independent bootstrap samples of the effect estimates
ybi ; i ¼ 1; 2;…; K
� 

and corresponding within-studies variances, S2bi ; i ¼ 1; 2;…; K
n o

for b= 1,…, B. A
standard choice for constructing bootstrap test is to use B ≥ 1000.

3 Use the bootstrap values ybi ; S2bi

� �
; i ¼ 1; 2;…; K

n o
to calculate the estimate of τ2,bτ2b for the bth bootstrap

sample, b=1,…, B, and the corresponding estimated weights in random-effects model w�
bi
¼ bτ2b þ S2bi

� ��1
.

4 For each bootstrap sample b=1,…, B, calculate the sequential statistics

Tbk ¼ ∑
k

i¼1
w�

bi
ybi � θ0
� �

=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
k

i¼1
w�

bi

s
; 2≤k≤K :

5 Find the G�
b and G��

b statistics as follows:

G�
b ¼ max2≤k≤K K�1=2Tbk

n o
; G��

b ¼ min2≤k≤K K�1=2Tbk

n o
: (19)

6 Order the bootstrap replicates G�
b and G��

b , as G�
1ð Þ≤G

�
2ð Þ≤⋯≤G�

Bð Þ and G��
1ð Þ≤G

��
2ð Þ≤⋯≤G��

Bð Þ. For a one-sided test,
the upper critical values are given by the [B× (1� α) + 1]th element in the sequence of {G�

ið Þ}, while the lower
critical values are calculated by the [B× α]th element in the sequence of {G��

ið Þ}. Use α/2 instead of α for the
two-sided test.

There is no reason to rely on the often assumed approximate normality of various meta-analytic effect
measures, or to assume their constant variances, when using a bootstrap-based test. Therefore, step 2 of the given
bootstrap procedure is effect measure specific. In the following discussion, we provide details for three
important examples: sample means, mean differences and log-odds ratios. These and other popular effect
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measures such as standardized mean differences and relative risks are available in our R program provided in
the Web Appendix.

4.1.1. Sample means. When the effect of interest yi is the sample mean of the ni normally distributed
observations and its estimated variance S2i ¼ s2i =ni for the sample variance s2i , the effects are generated as

ybi∼N θ0;bτ2 þ S2i
� �

and the estimates of the within-studies variances as S2bi∼S
2
i χ

2
ni�1ð Þ= ni � 1ð Þ, for i= 1,…, K.

4.1.2. Mean differences. When the effect of interest yi is the difference of the treatment (T) and the control (C)
sample means of normally distributed observations, denote sample variances in the two arms by s2iT and s2iC , with

the sample sizes niT and niC, respectively. The variance of the mean difference is S2i ¼ s2iT=niT þ s2iC=niC. The effects

are generated as ybi∼N θ0;bτ2 þ S2i
� �

and the within-arms sample variances are generated as

s2biT∼s
2
iTχ

2
niT�1ð Þ= niT � 1ð Þ and s2biC∼s

2
iCχ

2
niC�1ð Þ= niC � 1ð Þ , for i= 1,…, K. The within-studies variances are calculated

as S2bi ¼ s2biT=niT þ s2biC=niC .

4.1.3. Log odds ratios. Denote the numbers of events in the control and treatment arms of the studies by XCi and
XTi, respectively. Discard the studies with XCi+ XTi=0 and with XCi+ XTi= nTi+ nCi and adjust the total number of
studies K accordingly. Let a= 0. When XCi= 0 or XCi= nCi, take a=1/2. Estimate probabilities pCi= (XCi+ a)/(nCi
+ 2a). Generate within-study parameters θbi∼N θ0;bτ2� �

, i=1,…, K. Given the values of pCi and θbi , the logits in

the treatment groups are logit pTbi
� � ¼ logit pCið Þ þ θbi . Calculate the probabilities pTbi and simulate the numbers

of the study outcomes XTbi and XCbi from the binomial distributions Binom nTi; pTbi
� �

and Binom(nCi, pCi),
respectively. Following Gart et al. (1985), to obtain unbiased estimators of the log odds ratios and their variances,
calculate the log odds ratios as ybi ¼ log XTbi þ 1=2ð Þ= nTi � XTbi þ 1=2ð Þ½ � � log XCbi þ 1=2ð Þ= nCi � XCbi þ 1=2ð Þ½ �
and their variances as S2bi ¼ XTbi þ 1=2ð Þ�1 þ nTi � XTbi þ 1=2ð Þ�1 þ XCbi þ 1=2ð Þ�1 þ nCbi � XCbi þ 1=2ð Þ�1 for

i= 1,…, K.

5. Simulation study

To evaluate the properties of the bootstrap based test presented in Section 4, a simulation study was
conducted. The observed estimates of the treatment effect were generated using the normal distribution,
yi∼N θ0 þ Δ; σ2i þ τ2

� �
. The studies sizes were generated using the normal distribution, ni∼N n; n4ð Þ rounded to

the nearest integer and truncated on the left at 3; n is the average sample size of the studies. Estimates of

sample variances, bσ2
i , were generated using scaled chi-squared distributions, bσ2

i ∼
σ2i

ni�1ð Þ χ
2
ni�1. This choice ensures

that E bσ2
i


 � ¼ σ2i . Estimated variances of estimated treatment effects yi are S2i ¼ bσ2
i =ni . The data for each

simulated meta-analysis consisted of a total of K estimates of the observed treatment effects, their estimated
variances and corresponding sample sizes yi; S

2
i ; ni

� �
; i ¼ 1;…; K

� 
. For each data set, we calculated four

bootstrap-based tests using different estimators of τ2: DerSimonian and Laird (1986); Higgins et al. (2011);
Paule and Mandel (1982) and REML (GDL, GH, GMP and GREML, respectively), the penalized Z-test by Lan
et al. (2003) with λ= 2 and SMA based on Lan-DeMets alpha-spending function (Lan and DeMets, 1983) and
Pocock’s boundaries as implemented in program ldbands from the R package Hmisc (Harrell, 2015). Following
Wetterslev et al. (2009), the OIS for SMA was inflated by an adjustment factor (1� I2)� 1 for the I2 inconsistency
index I2 = (Q� (K� 1))/Q (this method is referred to as SMA in the rest of the paper). We used one-sided tests,
and the significance level was fixed at α=0.05. The null value of the effect parameter was taken as θ0 = 0, and
the calculation of each bootstrap critical value was based on B= 1000 bootstrap replications. We generated
1000 data sets for each of the 270 combinations of the following variables chosen to represent a realistic
range of the parameters values:

σ2 ¼ 1;

Δ ¼ 0:00; 0:05; 0:10; 0:15; 0:20ð Þ;
n ¼ 20; 50; 100; 1000ð Þ;
K ¼ 20; 50; 100ð Þ and

τ2 ¼ 0:00; 0:01; 0:02; 0:03; 0:04; 0:05ð Þ:

For each scenario, the number of times the test rejects the null hypothesis was recorded.
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5.1. Results

5.1.1. Type I error. Figure 1 compares the overall Type I errors achieved by the bootstrap based tests based on
DerSimonian and Laird (1986); Higgins et al. (2011); Paule and Mandel (1982) and REML estimators of τ2 (GDL, GH,
GMP and GREML, respectively), the penalized Z-test and SMA. The Type I errors in bootstrap-based tests based on
all the four estimators of τ2 are relatively stable and close to the nominal level. When K=20, the values of Type I
errors achieved by GDL and GH are somewhat higher compared with GMP and GREML, but as K increases to 50
and 100, there is very little difference between the four tests, as is clearer from Figure S7 in Web Appendix.
Overall, even though there are no clear-cut winners, it appears that the GMP performs slightly better for smaller
studies and the GREML for large studies. In contrast, the Type I errors for the penalized Z-test and the SMA are
unsatisfactory. They are far from nominal value of 5% and increase with increasing values of K, n and τ2.
Interestingly, the SMA Type I error is mostly below nominal and seems to be stable when n ≤ 100 and K ≥ 50,
but it explodes with increasing τ2 when n=1000.

5.1.2. Statistical power. Figure 2 and Figures S8–10 in the Web Appendix compare the power of the bootstrap
tests based on DerSimonian and Laird (1986); Higgins et al. (2011); Paule and Mandel (1982) and the REML
estimators of τ2 for r= 0, that is, when the shift in the mean occurred at the first observation. As expected,
for all methods, the power increases with increasing number of studies K, average study size n and value of
shift in population treatment effect Δ. However, the power decreases dramatically as τ2 increases. This
decrease (although not its amount) should be expected as increase in variability makes the detection of an

Figure 1. Empirical Type I errors achieved by the bootstrap-based tests at nominal 5 % level based on DerSimonian and Laird (1986); Higgins et al.
(2011); Paule and Mandel (1982) and REML estimators of τ

2
(GDL, GH, GMP and GREML, respectively), the penalized Z-test and SMA. K is the

number of studies; n is the average sample size; Δ is the effect parameter, τ
2
is the between-study variance. The black straight line represents

the nominal level of 5% for the test; the yellow, green, purple, red, pink and dark-grey lines represent GDL, GH, GMP, GREML, penalized Z-test
and SMA, respectively.
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effect more difficult. Comparing power between the four tests in more detail, it is clear that the differences in
power are at most 1% for all values of τ2 when Δ= 0.05 (Figure S9 in Web Appendix) and for all values of Δ
when τ2 = 0.05 (Figure S10 in Web Appendix).

Consider now an alternative scenario of a shift at some point r+ 1 for 0< r< K. This would result in the biased

estimation of bτ2K , as discussed in Section 4. Assume, for simplicity, that the within-study variances are equal. Then

the bias in bτ2K is of order Δp(1� p) for p= (K� r)/K, and it reaches maximum for r= K/2. In this simple case, the

weights in REM are also equal and the expected shift in the weighted mean θ
�
w is pΔ. We can now estimate the

change in power. For instance, for Δ= 0.1 and r= K/2, the equivalent (in respect to power) value of Δ when r= 1
is 0.05 and the equivalent τ2 value is inflated by 0.01/4 = 0.0025. The latter is a small value, and the power is pretty
similar to that given in Figure 2 for Δ=0.05. Figure S8 in the Web Appendix provides a better understanding of
this loss in power, which appears to be almost linear. However, for larger values of Δ, the loss in power will be even
greater, as it will be a juxtaposition of the inflation in τ2 and the decrease in the equivalent value of Δ. For instance,
for Δ=0.2, the τ2 is inflated by 0.01, which has a pronounced effect on power, (cf. Figure 2), whereas the effective
value of Δ is decreased to 0.1. For larger values of p, corresponding to longer time elapsed from the shift, the bias

in bτ2 is reduced and the power should increase almost linearly with p.

6. Examples

To demonstrate the application of the retrospective sequential bootstrap based tests, we consider two examples
of medical meta-analyses. We compare the results of our analysis with the results obtained from CMA, CUSUM,

Figure 2. The power of Gombay test for REM with bootstrap critical values based on DerSimonian and Laird (1986); Higgins et al. (2011); Paule and
Mandel (1982) and REML estimators of τ

2
(GDL, GH, GMP and GREML) against θ. K is the number of studies; n is the average sample size; ρ is the

power while Δ is the effect parameter, τ
2
is the between-study variance. The yellow, green, purple and red lines represent GDL, GH, GMP and

GREML, respectively.
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SMA based on Pocock’s boundaries and the penalized Z-test. The data for each meta-analysis were sorted
chronologically according to year of publication, from the earliest to the latest. Where the year of publication of
two or more studies coincide, the order was selected randomly. Cumulative meta-analyses were conducted using
R package metafor (Viechtbauer, 2010). SMA was based on Lan-DeMets alpha-spending function (Lan and DeMets,
1983) and Pocock’s boundaries as implemented in program ldbands from the R package Hmisc (Harrell, 2015).
CUSUM charts were obtained from the R package qcc (Scrucca, 2004).

6.1. Magnesium for myocardial infarction

The first application is based on the systematic review conducted by Li et al. (2007) to examine the effectiveness of
the use of intravenous magnesium for the treatment of acute myocardial infarction. The data consist of 23 trials
published from 1984 to 2004, varying in size from 46 to 34 723 patients. The outcome of interest is mortality from
acute myocardial infarction and the treatment effects are recorded as log odds ratios. A correction factor 0.5 was
added to each entry in the data, and the log odds ratios ϕi and their variances S2i were calculated as described in
Section 4.1. A negative value of ϕi indicates that mortality has been reduced and therefore favours the use of
intravenous magnesium. The data and results of the analysis are presented in Tables S1 and S2 of the Web
Appendix. A standard random effects meta-analysis of the data indicates a significant benefit in the use of

magnesium with log odds ratio of � 0.2644 (p-value 0.0015), bτ2DL ¼ 0:037 and the value of Q-statistic equal to
56.141 with p-value < 0.0001.

Figure 3. Analysis of magnesium for myocardial infarction (Li et al., 2007) data using cumulative and sequential meta-analysis, CUSUM and
penalized Z-test. CMA and SMA are based on REM and bτ 2DL ; the horizontal line on CMA plot is the cumulative log odds ratio of � 0.934 (OR of
0.393) at trial 7. The same value of � 0.934 is used as the target value for SMA. The dashed line on the SMA plot is the upper-boundary value
for the one-sided test, which is first crossed at trial 10. The control limits for CUSUM chart (dashed lines) are defined at ± 5σ. The red dashed line

on the penalized Z-test plot is the one-sided upper boundary values.
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To establish the effectiveness of the new intervention, we first test the null hypothesis of no effect of
magnesium, that is, H0: ϕ =0. When the target value is set at 0, the CMA indicates significant effect with the
log odds ratio value of � 1.01 (p-value of 0.016) at trial 3. However, this result may be spurious because of the
inflated Type I error in CMA. The CUSUM, SMA and the penalized Z-test all indicate a significant effect at trial 7.
When the bootstrap tests are used with same target value of 0, the bootstrap critical values for GDL, GH and
GMP are all � 0.50 and for GREML, the critical value is � 0.44. GDL and GREML tests reject H0 at trial 5 and GH
and GMP at trial 6, see Figure S11 in Web Appendix B. Hence, for this data, the bootstrap-based tests are better
than the CUSUM, SMA and the penalized Z-test in terms of early detection.

Having established that there is a significant effect of magnesium for acute myocardial infarction, it is
important to monitor its effect for any possible trend over time. So we set a new target value of � 0.934
corresponding to the cumulative log odds ratio at trial 7. The CMA plot on Figure 3 exhibits a gradual increase
in effect (corresponding to reduction in survival benefit), and the deviation from the horizontal line at � 0.934
becomes significant at trial 10. The CUSUM chart indicates the significant change at trial 10. We expect the
CMA and CUSUM to be liberal as they are based on fixed effect boundaries. The SMA with the same target value
crosses the upper monitoring boundary at trial 15, while the penalized Z-test (Hu et al., 2007; Lan et al., 2003)
hovers at the boundary for trials 13–15, before a definite jump at trial 16. In Figure 4, GDL and GH methods
indicate a significant change at trial 15, whereas GMP and GREML indicate a significant change much later, at trial
20 for GMP and at trial 22 for GREML. We believe that trial 15 is the more appropriate point to infer significance of
the change. In our data, trials 15 and 16 correspond to two subsets of the large ISIS-4 trial (1995), which
demonstrated lack of effect of magnesium. The performance of the bootstrap based tests is consistent with our
conclusion in the simulation study that GDL and GH are more liberal tests compared with GMP and GREML when
the number of studies in the analysis is not large.

A clinical significance of the changes can be assessed by comparing effect sizes before and after the change. To
this end, we performed standard random-effects meta-analyses (using τ2DL) for the three subsets of studies: studies

Figure 4. Analysis of magnesium for myocardial infarction (Li et al., 2007) data using bootstrap-based method based on DerSimonian and Laird
(1986); Higgins et al. (2011); Paule and Mandel (1982) and the REML estimators of τ

2
(GDL, GH, GMP and GREML). The target value is set at � 0.934.

The red dashed lines are the one-sided upper boundary values.
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1 to 7, studies 1 to 14 and studies 15 to 23. The first seven studies provide the odds ratio of 0.393 (0.225, 0.678);
the first 14 studies result in the OR of 0.582 (0.444, 0.762), which is not significantly different. However, for the last
nine studies, the OR is 0.916 (0.062, 2.968), indicating no effect of magnesium. The overall OR from all 23 studies
is 0.768 (0.652, 0.904), quite a difference from the results in the first seven, or in the first 14 studies.

6.2. Nicotine replacement therapy for smoking cessation

The second example is based on the systematic review by Stead et al. (2008) testing the effectiveness of nicotine
replacement therapy (NRT) for smoking cessation. The data consist of 53 trials published from 1979 to 2005. The
outcome of interest is the effect of nicotine containing chewing gum compared with control in aiding smoking
cessation. The effect measure used is the log relative risk (logRR). The effect ϕi and its variance are estimated by

bϕ i ¼ log
xT þ 1=2ð Þ nC þ 1=2ð Þ
xC þ 1=2ð Þ nT þ 1=2Þð

#
and S2i ¼ nT � xT

xT þ 1=2ð Þ nT þ 1=2ð Þ þ
nC � xC

xC þ 1=2ð Þ nC þ 1=2ð Þ:

"
(20)

A positive value of bϕ i means that NRT is effective for smoking cessation. The data and results of the analysis are
presented in Tables 3–7 of the Web Appendix. Random effects meta-analysis indicates a significant logRR of 0.36

(RR = 1.43), p-value < 0.0001; bτ2DL ¼ 0:017 and Q-statistic is 65.77 with p-value of 0.09. Given a small value of
estimated between-study variance and only marginally significant heterogeneity from Cochran’s Q test, it is

Figure 5. Analysis of Stead et al. (2008) data using cumulative and sequential meta-analysis, CUSUM and penalized Z-test. CMA and SMA are
based on REM and bτ 2DL ; the horizontal line on CMA plot is the cumulative log relative risk of 0.41 (RR of 1.51) at trial 5. The same value of 0.41
is used as the target value for SMA. The control limits for CUSUM chart (dashed lines) are defined at ± 5σ. The red solid lines on the SMA plot

and the red dashed lines on the penalized Z-test plot are the lower and upper boundary values for two-sided tests.
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interesting to compare the performance of the retrospective bootstrap-based tests in comparison with the
CUSUM, SMA and the penalized Z-test, which are all based on FEM. For a new intervention, the objective is to test
the null hypothesis of no effect of chewing gum H0 : ϕ = 0. When the target value is set at 0, CMA indicates a
significant result (p-value 0.031) at trial 3; SMA indicates significant result (Z-value of 3.23 is greater than the upper
bound of 2.81) at trial 5. The penalized Z-test based on the adjustment factor of λ=2 indicates significant result
(test value of 1.92 is greater than Z1� 0.05 = 1.64) at trial 7, while the CUSUM indicates a significant result at trial
5. The bootstrap-based tests ( GDL, GH, GMP and GREML) all produce a significant result at trial 7, see Figure
S12 in Web Appendix. There is not much difference in cumulative logRR between trials 5 and 7: ϕ =0.41 at trial
5, and ϕ =0.42 at trial 7.

To monitor for any further trend in the effect, we set the target value at 0.41 corresponding to the cumulative
log relative risk at trial 5 and use two-sided procedures. As shown in Figures 5 and 6, only the CUSUM indicates a
significant result at trial 38. However, the Type I error for the CUSUM is inflated in REM. Overall, we cannot detect
any trend in the effects of NRT.

7. Summary and conclusion

Temporal changes in the magnitude of the effect sizes reported in many areas of research can be dramatic and
lead to the loss or gain of the statistical significance of the cumulative treatment effect, (Kulinskaya and Koricheva,
2010). Numerous sequential methods have been proposed for monitoring the trends in meta-analysis ( Lau et al.
(1992); Leimu and Koricheva (2004); Pogue and Yusuf (1997); Wetterslev et al. (2008); Higgins et al. (2011);
Whitehead (1997b); Bollen et al. (2006); Kulinskaya and Koricheva (2010); Lan et al. (2003)). However, all these
methods but Lan et al. (2003) are theoretically sound only when monitoring trends in fixed effect model. In this
paper, we proposed the use of retrospective CUSUM-type test based on sequential procedures by Gombay
(2003); Gombay and Serban (2005) in combination with bootstrap critical values for sequential random-effects
meta-analysis. Our simulation results show that the Type I error rates for the newmethod are closer to the nominal
level in comparison to the existing methods and are not affected by increase in the level of heterogeneity τ2.

In sequential random-effects meta-analysis, the heterogeneity of treatment effect across studies creates
inferential problems because of non-independence of increments. In the proposed method with bootstrap critical

Figure 6. Analysis of Stead et al. (2008) data using bootstrap-based method based on DerSimonian and Laird (1986); Higgins et al. (2011); Paule
and Mandel (1982) and the REML estimators of τ

2
(GDL, GH, GMP and GREML). The target value is set at 0.41. The double red dashed lines are the

lower and upper boundary values for two-sided tests.
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values, the problem does not arise as the estimated between-study variance τ2 is included in the calculation of the
bootstrap critical values.

Calculation of bootstrap critical values can be computationally intensive. However, with contemporary high
performance computers, this should not present much difficulty. Computationally intensive methods involving
bootstrapping and permutation tests are becoming common in meta-analysis (Gumedze and Jackson, 2011).
Our R program for calculating the bootstrap-based CUSUM-type test with DerSimonian and Laird (1986); Higgins
et al. (2011); Paule and Mandel (1982) and REML estimators of τ2 is provided in the Supporting Information in the
online version of this article.

The drawback of using bootstrap-based critical values is that the resulting method is not a true sequential
method and can be used only for retrospective analysis. Even then, it is certainly worthwhile when reviewing
the usefulness of an intervention over time. It can be usefully combined with CMA to envisage the trajectory of
a cumulative meta-analysis. Unfortunately, as numerous simulations by us and by other authors have repeatedly
demonstrated, well-behaved sequential methods for random-effects meta-analysis are not yet in existence. In
contrast, regardless of the method used to estimate τ2, the proposed method controls the Type I error irrespective
of the number of studies, their sizes and the amount of heterogeneity in treatment effects. We do not have a
preferred method of estimating τ2 for the test, but we recommend the use of Paule and Mandel (1982) method
for smaller studies and the use of the REML for larger studies.

Finally, if and when a change in effect is detected by a sequential test, there is a need to ascertain a
practical significance of this change. This can be easily achieved by comparing meta-effect measures in the
original and final meta-analyses, or before and after the change, as we have done in the Magnesium example
in Section 6.1.
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