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The effect of extrinsic mortality on genome size
evolution in prokaryotes
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Mortality has a significant role in prokaryotic ecology and evolution, yet the impact of variations in
extrinsic mortality on prokaryotic genome evolution has received little attention. We used both
mathematical and agent-based models to reveal how variations in extrinsic mortality affect
prokaryotic genome evolution. Our results suggest that the genome size of bacteria increases with
increased mortality. A high extrinsic mortality increases the pool of free resources and shortens life
expectancy, which selects for faster reproduction, a phenotype we called ‘scramblers’. This
phenotype is realised by the expansion of gene families involved in nutrient acquisition and
metabolism. In contrast, a low mortality rate increases an individual’s life expectancy, which results in
natural selection favouring tolerance to starvation when conditions are unfavourable. This leads to
the evolution of small, streamlined genomes (‘stayers’). Our models predict that large genomes, gene
family expansion and horizontal gene transfer should be observed in prokaryotes occupying
ecosystems exposed to high abiotic stress, as well as those under strong predator- and/or pathogen-
mediated selection. A comparison of genome size of cyanobacteria in relatively stable marine versus
more turbulent freshwater environments corroborates our predictions, although other factors
between these environments could also be responsible.
The ISME Journal advance online publication, 6 December 2016; doi:10.1038/ismej.2016.165

Introduction

The genome size varies widely across species (Koonin
and Wolf, 2008; Elliott and Gregory, 2015) and does not
strongly correlate with the complexity of the organisms,
that is, the ‘C-value paradox’ (Gregory, 2001; Elliott and
Gregory, 2015). Both selective and neutral processes are
thought to govern this variation, and a considerable
proportion of it is explained by differences in the
number of repetitive elements, such as transposons
(Lynch, 2007). There is also variation in the size of
multigene families, and closely related species occupy-
ing similar environments can vary significantly in their
copy number variation (CNV), which suggests that
contrasting selective processes may be operating driv-
ing the contraction or expansion of gene families
(Greenblum et al., 2015). Previously, we have shown
that a greater variability of one environmental selection

pressure results in genomes with a larger number of
genes, and those environmental perturbations are more
effectively buffered by populations with relatively large
genomes (Bentkowski et al., 2015).

However, in the process of biological evolution,
organisms are forced to compromise between chal-
lenges posed by several different selection pressures.
Virus resistance in bacteria is a well-described trade-
off involving the assessment of fitness costs. For
instance, phage-resistant clones of the soil bacterium
Pseudomonas fluorescens had ~36% lower relative
fitness versus sensitive clones when the phage was
absent (Gómez and Buckling, 2011). In the marine
cyanobacterium Synechococcus, the cost of resis-
tance, if measurable, resulted in approximately 20%
reduction of fitness (Lennon et al., 2007). Cost of
resistance helps to shape microbial communities
especially in aquatic environments (Suttle, 2007;
Parsons et al., 2012; Sime-Ngando, 2014) by selec-
tively increasing mortality of bacteria that are more
susceptible (or less tolerant) to viruses but only when
pathogens are present. Without pathogens, cost of
resistance is a burden and selection would favour
individuals with less resistance but with more
resources for coping with other environmental
challenges. A similar conflict in selection pressures
has been proposed to explain the CNV in vertebrate
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immune genes and is known as the accordion model
of multigene evolution (Klein et al., 1993). The
accordion model poses that immune gene families
expand in parasite-rich environments and, conver-
sely, that they contract when parasite selection
pressures are modest. Other important factors impos-
ing different levels of stress and mortality on
bacterial communities include negative allelopathy
(that is, detrimental interspecific biochemical inter-
actions), predation, harmful radiation and toxins
(Omelchenko et al., 2005; Weinbauer et al., 2007;
Hibbing et al., 2010).

Bacteria have limited amounts of nutrients and
energy to survive these challenges and to reproduce.
The strength of the various selection pressures on
nutrient acquisition and allocation fluctuate depend-
ing on biotic and abiotic environmental conditions.
Here we apply two theoretical frameworks: a
mathematical model and an agent-based model
(ABM; Bentkowski et al., 2015) to untangle the effect
of extrinsic mortality caused by various stresses on
the evolution of genome size in prokaryotic micro-
bial populations. We compare our theoretical pre-
dictions on genome size evolution with differences
in genome sizes of 63 species of cyanobacteria: 30
marine and 33 freshwater species.

Materials and methods

The effect of extrinsic mortality on genome size
evolution was estimated through a combination of
mathematical modelling and agent-based simula-
tions. Initially, we used an algebraic model to
generate a qualitative prediction for the impact of
the mortality rate on genome size evolution. Results
from this model were verified and extended by
agent-based simulations, enabling us to explore
genome size evolution under very general conditions
as well as more realistic ecological scenarios. The
algebraic model is based on the following set of
ordinary differential Equations:

dxn

dt
¼ r nð Þxn 1�

P
jxj

K

� �
� d0 þ dð Þxn � C nð Þxn ð1Þ

where xn is the density of cells with genome size n,
r(n) is the rate at which nutrients are absorbed—cells
with larger genomes are able to uptake nutrients at a
higher rate than cells with smaller genomes (that is,
r(n) is an increasing function of genome size, n)—
leading to asexual reproduction, K is the maximum
density of the population, δ0 is the base mortality rate
(for example, owing to ageing), δ is an extrinsic
mortality rate (for example, owing to environmental
factors) and C(n) is a cost associated with genome
size. Protein synthesis is considered to require most
of the energy and nutrients in cells (Harold, 1986)
and therefore has been considered a significant
fitness cost for increasing the number of genes in
genomes. It also has been shown that, regardless of
their function, large and complex proteins have a

higher fitness cost as they require more energy and
nutrients compared with their smaller, less complex
counterparts (Tomala and Korona, 2013). Thus we
assume there is a metabolic cost associated with
genome size proportional to n+n2, as it has been
demonstrated that an increase in genome size is
directly proportional to the number of metabolic
genes but grows quadratically with the number
of regulatory genes (genome scaling law;
van Nimwegen, 2003; Molina and van Nimwegen,
2008; Koonin 2011). We therefore set C(n) = cn (n+1),
where c scales with the strength of the fitness cost.
We investigate the evolutionary dynamics of the
algebraic model using evolutionary invasion analy-
sis, whereby mutations are rare and have small
effects (weak selection; Geritz et al., 1998). Hence,
new mutants are phenotypically similar to the
resident population (the trait under selection is
continuous) and there is a separation of ecological
and evolutionary timescales. These assumptions are
relaxed in population-level simulations of the alge-
braic model, whereby mutants are introduced before
the system reaches equilibrium and genome size is
limited to integer values. These simulations are used
to expand on the mathematical analysis.

The purpose of the algebraic model is to generate a
simple qualitative prediction for the impact of the
mortality rate on the evolution of genome size.
However, this model cannot fully capture the
complexity of real ecological systems, such as
environmental variation, fluctuating resources, cell
life cycles and specialisation on different resources.
We therefore test the generality of the predictions
derived from the algebraic model in a more realistic
agent-based model (Bentkowski et al., 2015). The
agent-based simulations represent a population that
is composed of approximately 3200 individual
prokaryotic cells, each containing initially between
40 and 60 genes which values were set randomly.
The number and values of genes (maximal uptake
efficiency and position of the maximum on environ-
mental axis) is subject to evolution. The size of the
population was limited by the total amount of
resource available in the environment Renv (equiva-
lent of the environment’s carrying capacity) and the
size can change as the population evolves. Environ-
mental conditions are given in the ABM as one trait
changing in a random bounded walk within the
range x in [− 1, +1]. By regulating the maximal
permitted value of environmental change (called the
turbulence level T in this study) from one model
iteration to the next one, we can regulate environ-
mental variability and hence the span of environ-
mental conditions affecting the individuals
simulating various abiotic stress levels. The impact
of variation in turbulence on genome size evolution
was studied in a previous paper (Bentkowski et al.,
2015), and here we use a set level of turbulence (that
is, high turbulence, T=0.25). High turbulence elim-
inates genome size fluctuations observed at low
levels of turbulence (see Bentkowski et al., 2015) and
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results in large, stable genomes. Hence, this enables
us to investigate the effects of δ, the probability of
random death, without the confounding effects
caused by low turbulence. We thus simulate sources
of mortality other than starvation resulting from
mismatch between genotype and current environ-
mental condition influencing nutrient uptake (for
example, mortality owing to infections, predation,
harmful radiation, chemical damage).

The effect of a single gene is represented as a
Gaussian function over the environmental condition
x, which dictates its uptake efficiency (a fraction of
the maximal permitted value τ a cell can take from
the environment in single iteration). Both the
position of the maximum of the function along the
x axis as well as the height of the function (limited to
unity) are subject to evolve. However, the surface
underneath the Gaussian function is fixed to prevent
the evolution of ‘supergenes’ (that is, single genes
that maximise fitness across a wide environmental
range). A genome is a collection of n metabolic genes
(n is free to evolve) that bring a metabolic cost
proportional to n+n2 as in the mathematical model
above. At each time step, the change of internal
resources depends on: (1) individual cell’s genome
shape (that is, the overall distribution of Gaussian
functions of a cell’s genes that describe its uptake
efficiency, cf. Bentkowski et al., 2015), (2) avail-
ability of resource, (3) cost proportional to the size of
the cell’s genome (~n+n2). If a cell’s internal
resource Ri will drop below survivor threshold rmin,
then the cell will die and its remaining internal
resource pool Ri will be returned to the free
environmental resource pool. In other words, these
simulations model a closed system. In the ABM,
nutrient uptake by cells does not depend directly on
the number of genes as in the mathematical model
(see r(n) in Equation 1), but it depends on possessing
genes that maximise uptake under given environ-
mental conditions.

There are three kinds of mutations affecting
genome evolution in our artificial prokaryotic popu-
lations: deletions, duplications, and modifications of
genes. Each type of mutation is occurring at the same
probability. A deletion results in removal of a gene
from a genome, a duplication results in a genome
having two identical copies of a gene (for example, a
cell will not benefit from this by doubling its intake
in gene’s optimum) and a modification is a change in
height and position of the Gaussian-shaped uptake
efficiency distribution.

The ABM is capable of: (a) reproducing genome
streamlining under pressure of inter-cell competition
in terms of resource uptake efficiency, and (b)
rearrangement of the genome depending on amount
of variability of environmental conditions
(Bentkowski et al., 2015). To estimate population-
wide effects, we calculated the mean number of
genes in a population averaged over all time steps at
equilibrium. More details of the ABM can be found
in Bentkowski et al. (2015) and documentation

accompanying the source code (www.bitbucket.org/
pbentkowski/genomesizeevolution).

To compare the output of our model with
empirical data, we analysed the number of genes
from 63 species of aquatic cyanobacteria with well-
annotated genomes (Prabha et al., 2016) occupying
diverse environments. We compared genome sizes of
freshwater and marine species. The majority of
marine species with small genomes (Prochlorococ-
cus) come from open ocean waters considered stable,
low-nutrient environments (Christaki et al., 1999;
Sun and Blanchard, 2014) with lower concentration
of viruses per millilitre in comparison to freshwater
and costal habitats (Wommack and Colwell, 2000).

Results

Qualitative prediction
We begin by exploring the evolutionary dynamics of
a very simple algebraic model (Equation 1). Assum-
ing the population is initially monomorphic, the
fitness of a rare mutant, x′, with genome size n′ is

s ¼ 1
x0

dx0

dt
¼ r n0ð Þ 1� x�

K

� �
� d0 � d� cn0 n0 þ 1ð Þ ð2Þ

where x* is the non-trivial ecological equilibrium for
the resident population with genome size n:

x� ¼ K 1� d0 þ dþ cn nþ 1ð Þ
r nð Þ

� �
ð3Þ

The population evolves in the direction of the
selection gradient

ds
dn0

����
n0¼n

¼ 1
r nð Þ

dr
dn

d0 þ dþ cn nþ 1ð Þð Þ � c 2nþ 1ð Þ

ð4Þ
until a singular strategy, n*, is reached at ds

dn0 n0¼n ¼ 0j .
The singular strategy occurs when

dr
dn

����
n¼n�

¼ r n�ð Þc 2n� þ 1ð Þ
d0 þ dþ cn� n� þ 1ð Þ ð5Þ

and is evolutionarily stable
�

d2s
dn02 n0¼n� o0

���� provided
we make the reasonable assumption that resource
uptake and hence reproduction rate is a decelerating

function of genome size
�

d2r
dn02 n0¼n� o0

���� . For example,

if we set r(n) = bn1/2, then the population evolves
towards the evolutionarily stable strategy

n� ¼ �cþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ 12c d0 þ dð Þp

6c
ð6Þ

Thus our simple algebraic model predicts that
optimal genome size increases with the mortality
rate. Population-level simulations of the model
match the analytic prediction (Figure 1). We test
this general prediction in a more realistic ecological
setting through agent-based simulations which relax
many of the simplifying assumptions used in the
above analysis.
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Agent-based simulations
The extinction rate increases with increasing value
of δ, the probability of random death (Supplementary
Figure S1) and δ impacts the genome size indepen-
dently of the turbulence level T (Supplementary
Figure S2). The age structure of the population is
given by the exponential distribution:

f d; tð Þ ¼ d � e�dt ð7Þ

where t is the time and δ is the random death factor
(extrinsic mortality). The expected lifespan of an
individual is equal to 1/δ. Figure 2 shows that the age
structure fits the exponential model very well when
δ is fairly high (δ=0.01, Figure 2c). However, for
δ⩽0.001, the exponential distribution no longer fits
the observed age distribution, and there appears to
be a significant excess of young individuals in the
system (δ=0.0005 and 0.001, Figures 2a and b). This
suggests that, besides random death, there must be
another important source of mortality in these
populations.

Figure 2 Age structure of the population in various random death regimes. Numbers on the left of the panels show the value of the
random death factor δ ((a)—0.0005, (b)—0.001, (c)—0.003, (d)—0.01). Black bars indicate fraction of the population of a particular age,
shaded area indicates the s.d. White dashed line is given by the equation of the exponential distribution: f d; tð Þ ¼ 10 � d � e�dt (Equation 7),
where t is the time and 10 is a normalising term being the width of the histogram bins. All four runs have turbulence level T=0.25.
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Figure 1 The evolution of genome size as a function of the
additional mortality rate, as predicted by the algebraic model (black
curve, Equation 6) and tested through population-level simulations
(grey bars). The population-level simulations relax key assumptions
of the mathematical analysis, namely, limiting genome size to integer
values and removing the separation of ecological and evolutionary
timescales leading to a mutation-selection balance. The shading of the
grey bars corresponds to the average frequency of each genome size
over the final 1000 iterations of each simulation, with δ=0, 0.01, …,
0.1. Other parameters: b=1, c=0.000014, K=106 and δ0=0.005.
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Starvation resilience, competitive advantage and
genome size
As the value of δ decreases, the grand mean number
of genes also decreases. For example, without
random death (δ=0) and high turbulence (T=0.25),
the grand mean number of genes equals 11.4 ± 0.9
(mean± s.d.). For moderate random death (δ=0.003),
the grand mean number of genes is 13.9 ± 1.5
(mean± s.d.), for high value of δ=0.010 it is
18.8 ± 1.9 (Figure 3a).

Interestingly, with an increased rate of random
death, cells gain more resources per unit time;
individuals that evolved in a low random death
environment (δ=0.001) gained on average 2.85
resource units per time step, whereas in high death
rate (δ=0.010) the gain equalled 7.98 resource units
per time step (Figure 3b). This difference in resource
uptake efficiency is explained by differences in
genome size and metabolic rate in the two environ-
ments. Large genomes with higher metabolic rates

evolved in high random death environments
(Figure 3). Given that individuals with larger
genomes require less time to accumulate sufficient
resources to reproduce, the rate of reproduction is
expedited, which offers an important selective
advantage, particularly for individuals in a high
random death environment. Indeed, it takes on
average only 70.6 time steps for an average indivi-
dual to reproduce in the high random death
environment (δ=0.01), compared with 290.0 time
steps in low random death conditions (δ=0.001)
(Figure 4). By increasing genome size, individuals in
the high random death environment not only reduce
the risk of dying before reproduction but they also
increase their competitiveness in resource-uptake
efficiency. The relatively increased CNV enables
these organisms (‘scramblers’) to fully utilise the
bounty of free resources available in the environ-
ment. In contrast, in the low random death environ-
ment, selection favours individuals that are tolerant
to starvation, which is responsible for half of their
mortality (Figure 5). These are the so-called ‘stayers’,
which are characterised by relatively smaller gen-
ome sizes that reduces metabolic maintenance costs
associated with protein synthesis and translation.

Figure 3 Model’s sensitivity to changes in the values of the
random death factor δ. (a) The mean number of genes at
equilibrium as a function of the random death factor δ with s.d.
(bars), (b) mean resource uptake per one cell in one time step with
s.d. (includes only the cells that gained access to feeding queue:
see Methods section). All runs had turbulence level T=0.25.

Figure 4 Histograms of the number of cells that reproduced after
a given time since their last reproduction with extreme values of
the random death factor: (a) low random death rate δ=0.001,
(b) high death rate δ=0.01; black bars are the mean values per time
step, shaded bars are the s.d. All values are averaged per one time
step. Turbulence level was set to T=0.25.
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Model predictions versus empirical data
We compared our model predictions with gene
numbers from 63 species of aquatic cyanobacteria
that differ in their environmental preferences
(Prabha et al., 2016). Marine species, many of which
occupy low-nutrient zones of the open ocean, tend to
have relatively small genomes in comparison to
freshwater species (Mann–Whitney test; U=354.0;
P= 0.027; Figure 6). It was shown that marine species
have evolved less metabolic genes than cyanobac-
teria from more complex habitats (for example,
freshwater and soil; Prabha et al., 2016).

Discussion

Our simple mathematical model showed that, under
the assumption that cells with larger genomes are
able to uptake nutrients at a higher rate than cells
with smaller genomes (function r(n) in Equation 1),
the genome size will grow in response to increased
extrinsic mortality. The ABM simulations confirmed
these results even when the dependency of nutrient
uptake on genome size is replaced with a more
realistic requirement such as cells with maximum
nutrient uptake under a given environmental condi-
tion. In the mathematical model, higher mortality is
compensated for by evolution of larger genomes with
higher nutrient uptake leading to more cell divisions
per unit time. The positive relationship between
genome size and mortality will collapse by either
having nutrient acquisition not in balance with
genome size expansion or when the cost of genome
maintenance becomes too large for the uptake
mechanism to sustain the supply of nutrients. Under
these unbalanced conditions, the genome size will
reach the ‘van Nimwegen Limit’ (Koonin and Wolf,
2008). However, ABM reveals a time constraint on
the life expectancy as a second factor promoting
increased nutrient uptake and faster reproduction
(compare Figures 3b and 4). The simple mathema-
tical model allows analytic tractability showing that
(under assumptions discussed above) the solution
we found is an evolutionary stable state (Maynard
Smith, 1982). The more complex ABM allows
for more realistic assumptions and the attribu-
tion of selection factors to individuals, which
simulates evolutionary processes more realistically
(Grimm, 1999).

A minimum set of metabolic genes is required for
an individual to acquire sufficient resources to
reproduce within its lifespan (Martínez-Cano et al.,
2015), and this sets the lower limit on genome
streamlining. Although potentially immortal, the
window of opportunity to reproduce is time limited
in most prokaryotes because of a large number of
environmental constraints and stress factors causing
mortality. This time constraint imposes a trade-off on
resource acquisition. Here we show that, in an
environment with high random death rate (that
emulates other sources of mortality than resource
limitation only) and steady supply of nutrients,
natural selection favours prokaryotes with large
genome size and high CNV, which increases meta-
bolic activity and accelerates the potential rate of
reproduction. Importantly, this enables prokaryotes
to rapidly utilise free resources when available and
reduces the risk of dying without producing off-
spring. Furthermore, by increasing genome size and
CNV, these prokaryotes (‘scramblers’) are better able
to utilise the bounty free resources available in the
environment left by deceased conspecifics. On the
other hand, in environments with low random death,
selection favours ‘stayers’, that is, individuals that
are tolerant to starvation. These individuals have

Figure 6 Comparison of genome sizes of aquatic cyanobacteria
occupying two different habitats: marine (circles, 30 genomes),
including: Synechococcus (� black circles), Prochlorococcus (� grey
circles), other marine (○ empty circles); freshwater (. triangles, 33
genomes). The number of predicted protein-coding genes is
significantly larger in the (turbulent) freshwater habitat than in the
(more stable) marine habitat (Mann–Whitney test: U=354.0;
P=0.027). Data are adapted from Prabha et al. (2016).

Figure 5 Comparison of the real mortality rates between
simulations with different random death probabilities (turbulence
level was T=0.25 for all runs). Dots represent a mean value for
each model run calculated after the system has stabilized, the bars
show the s.d. Dashed line is the equality line where all mortality is
explained by the random death factor δ. Both axes are in the
logarithmic scale. As the probability of random death increases, it
becomes the dominant source of mortality in populations.
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relatively small genome sizes, which reduce meta-
bolic maintenance costs associated with protein
synthesis and translation.

The efficiency and costs of metabolism underpinning
reproduction are under strong selection pressure,
especially in prokaryotes with large effective popula-
tion sizes, which means that their evolution is less
affected by genetic drift. Under these circumstances,
natural selection tends to trim the size of genomes
(Lynch, 2006; Giovannoni et al., 2014). Additional costs
are imposed by investing in defence mechanisms in
hostile environments to enable reproduction before the
end of the maximum expected lifespan. If the environ-
ment is lacking significant stress factors, inter-cell
competition for resources becomes the main selection
pressure, making defensive mechanisms and complex
regulatory mechanisms costly burdens that get dis-
carded in the course of evolution. This in turn results in
genome streamlining and efficient, low-cost genomes.

Direct validation of our models with empirical
data is difficult. Although there are some data on
mortality of microbes, many studies focus on sources
of mortality in isolation such as either predation
(Christaki et al., 1999; Liu et al., 1995) or viral
infections (Sime-Ngando, 2014; Tschitschko et al.,
2015), hence integrative approaches addressing the
interactions between different sources of mortality
are under-represented. Furthermore, growth experi-
ments with microbes usually focus on comparing
physiological abilities of different strains in the
context of nutrient supply and interspecific competi-
tion (Lürling et al., 2013; Bullerjahn and Post, 2015),
but only a few studies include the analysis of
reproductive strategies and mortality. Thus, to
properly validate our models with empirical data,
integrative experiments would need to be conducted,
which include the assessment of reproductive
strategies, mortality and the impact of environmental
conditions on the evolution of microbes. However,
an indirect validation of our models is possible when
considering the relationship between genome sizes
and environmental conditions for prokaryotic popu-
lations. For example, marine cyanobacteria tend to
have smaller genome sizes in comparison with those
residing in more complex habitats (for example,
freshwater and soil; Prabha et al., 2016). Our
comparison of 30 marine and 33 freshwater species
showed significant genome size differences between
marine (mainly Synechococcus and Prochlorococ-
cus) and various freshwater cyanobacteria (Figure 6).
The genus Prochlorococcus, characterised by rela-
tively small genomes, is mostly occurring in low
nutrient and stable open-ocean waters (Christaki
et al., 1999; Sun and Blanchard, 2014). Furthermore,
open-ocean habitats have much less virus-like
particles per millilitre than freshwater habitats
(Wommack and Colwell, 2000), hence contributing
to lower pathogen pressure. Although marine
species with very large genomes do exist, among
them are species with unusual properties such as
Acaryochloris marina MBIC11017, which contains

chlorophyll d and is characterised by special
adaptations (Swingley et al., 2008). Rivularia sp.
PCC 7116 is another example of a marine cyanobac-
terium with a relatively large genome but it is closely
related to freshwater species (Marco et al., 2012).

In summary, how natural selection will shape the
genome size of prokaryotes partly depends on
whether reproduction and survival are constrained
by time (that is, in an environment with high random
mortality) or whether there are constraints in the
amount of available nutrients. Our simulations
showed, when time constrained, natural selection
favours prokaryotes that are ‘scramblers’, that is,
individuals with large genome size and high CNV,
which increases metabolic activity and accelerates
the rate of reproduction under conditions of nutrient
repletion. Such species may evolve different solu-
tions to exploit the abundant resources, resulting in
significant genome diversity. With low random
death, the amount of available nutrients becomes
limiting and intraspecific competition becomes
stronger. Thus selection favours the evolution of
‘stayers’, that is, individuals that are tolerant to
starvation with relatively small genomes and low
metabolic maintenance costs. This simple model can
explain some of the variation in genome size
observed in cyanobacteria that occur in different
environments.
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