
Editorial 

Understanding the energy consumption and Greenhouse Gas emissions 

and the implication for achieving climate change mitigation targets 

 

 

Background 

 

Anthropogenic greenhouses gases (GHGs), mainly released during the combustion of fossil fuels (coal, oil 

and natural gas) and industrial production processes, are the major contributors to global climate change and 

considered as one of the most serious challenges facing sustainable development. Despite global efforts on 

curbing human-induced climate change, greenhouse gas emissions (GHGs) have been rapidly increasing 

since the signing of the Kyoto protocol in 1997 [1]. Understanding the dynamics of energy consumption and 

associated greenhouse gas emissions at the global and regional level will be critical for achieving mitigation 

targets and a low carbon economy. 

Facing such challenges, countries are taking actions to curb fossil fuel energy consumption to mitigate GHGs 

and to seek a low-carbon developmental path. Measures include the investment into renewables and emission 

reduction technologies, as well as changes to current wasteful consumption patters, all of which are important 

steps towards a low-carbon economy. However, there are considerable knowledge gaps r to guide this process: 

First, the amount of energy consumption and associated emissions are estimated based on energy statistics 

rather than direct measurements, which contributes to the uncertainty and inconsistency of GHG accounts 

and mitigation targets [2], especially at the sub-national (regions, cities) level. Quantification and accurate 

baselines of GHG emissions are considered a precondition towards mitigation. Moreover, GHGs are related 

with other air-pollutions, which makes emission accounts critical for achieving co-benefits of climate 

mitigation and air pollution control. Second, big emitters such as China show significant heterogeneity among 

regions which introduces challenges for achieving national mitigation targets balancing regional 

development and economic goals. For example, the mitigation targets among Chinese provinces can differ 

by 30% for the period of 2010-2015 (12th Five year plan) [3]. There is an urgent need to develop reliable 

subnational GHG accounts to support national mitigation. Thirdly, international trade and flows of goods and 

services, energy and technology are intensifying the interactions among regions and nations. The dramatic 

increase of national carbon footprint has caused increasing attention from academia, politics and the public 

[4, 5]. Studies show that emissions embodied in traded goods and services globally have increased to 28% of 

global emissions with a growth rate in trade related emissions that is much higher than the growth of total 

carbon emissions and [4]. Thus reliable mitigation targets require a further understanding of the cross-

national/boundary activities and associated GHG emissions. Finally, there are a range of potential measures 

for pursuing GHG mitigation such as economic measures including cap and trade and carbon taxes, which 

can help to incentivize development of renewable energy technologies or discourage use of carbon intensive 

products. 

In order to address some of these knowledge gaps, we co-organized this special issue, to learn from 

experiences of multi-disciplinary analyses across scales, and to discuss best practices of low carbon 

development and GHG mitigation. This special issue also provides a platform for cross-cutting analyses that 

inform global, national and regional GHG mitigation targets and comprehensive attempts of redesigning 

energy systems towards a low-carbon economy.  

There are in total 48 papers accepted in this issue, which can be grouped into 5 topics. 
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 1. Accounting and uncertainty of energy consumption and GHG emissions 

Emission inventories provide the baseline for mitigation research and targets. However, uncertainties are 

within national emission estimation, mainly due to the rapid growth of emissions in emerging economics and 

frequently still underdeveloped statistics [6]. Reducing the uncertainty requires the investigation and analysis 

of energy consumption and GHG emissions in specific regions and sectors.  

In their paper, Shan et al. [7] calculated the provincial emission inventories in China during 2000-2012, 

adopted the measurement based emission factors and new estimated energy consumption with more reliable 

data sources. Their results suggest that China’s total carbon emission are  12.7% smaller than the ones 

calculated by the traditional approach and IPCC default emission factors. Such results will have significant 

impacts on the achievement of China’s 2030 emission peak and associated mitigation policies.  

Ji et al. [8] suggest that the difference of GHG emission factors caused by the cross-boundary electricity 

supply needs to be considered when conducting regional GHG emission inventories.  

Su and Pauleit [9] performed the GHG emission accounting for EU member states from 1991 to 2012, and 

observe the remarkable decrease of total GHG emissions in EU member states.  The decrease of total 

emissions in the EU constitutes a sharp contrast to emerging economics.  

Precise and reliable emission baseline also provide an understanding and guidance for mitigation for regions 

and sectors. In their paper, He et al. [10] find that cities have significant GHG mitigation opportunities: 10.2% 

and 6.8% of CO2 emissions between 2015 and 2030 (from business-as-usual levels) can be reduced from 

megacities like Beijing and Shanghai, respectively, by adopting economically attractive low carbon measures.  

In another case, Wang and co-authors [11] provide detailed GHG estimates from energy consumption, pre-

treatment sector, combustion of condensed black liquor, and methane emitted from incomplete aerobic 

digestion during sewage treatment of the Pulp and Paper Industry (CPPI). Such sectoral inventories based on 

life-cycle analysis show the mitigation potential for sectors. Their approach can be extended to analyze the 

emission status from other sectors and technologies.  

Recently, rapid development of input-output analysis and related data sources provide measures that allow 

researchers to investigate GHG emission baseline not only from production side, but also from the 

consumption side by adopting a supply chain perspective.  

In their study, Fan et al. [12] explore the characteristics of production-based and consumption-based CO2 

emissions for 14 major economies through a multiple dimension comparison to gain insights into emissions 

equity  among major emitters. They found that consumption-based emissions are more highly correlated with 

per capita GDP. 

2. Co-benefits of GHG mitigation with other environmental issues  

The combustion of fossil fuels is not only the main contributor for GHG emissions but also other air pollution 

such as SO2, NOx and particular matters. Mitigation of GHG through the control of fossil fuel combustion 

could achieve co-benefits alleviating other environmental pressures.  

Chen and colleagues [13] suggest that cooking fuel transition from solid fuels to cleaner gas fuels can 

simultaneously reduce emissions of both air pollutants and GHG emissions.  

Wang and colleagues [14] show that efficiency improvements in the coal-fired power sector could contribute 

more than 3% of regional total GHG emission reductions and save million dollars in preventing associated 

health and environmental costs.  



Chen et al. [15] conducted seasonal inventories for global electricity and fuel consumption for the residential 

sector, by using regression models and validated global electricity and fuel consumption in the residential 

sector based on a series of physical and socioeconomic factors. Their results can be used to predict temporal 

variations of residential energy consumption, pollutant emissions, and net effects of climate warming on 

energy consumption and emissions.  

Theoretically, GHG mitigation is a multi-disciplinary challenge and thus requires analysis and measures from 

multiple perspectives. For example, Choi et al. [16] developed a novel generic sequential input-output 

framework to model economy-wide changes in resource consumption and environmental emissions. By 

addressing the case of the US, they emphasize the importance of focusing on a wide range of environmental 

outcomes and unintended side effects when introducing a specific environmental policy.  

Horschig et al. [17] introduced a new approach to estimate the market potential of biomethane by analyzing 

biogas markets and their relative environmental and economic advantages. They find that several 

environmental pollutants are highly co-related with GHG emissions in terms of spatial-temporal distribution.   

Meng et al. [18] provide an analysis of the impacts of domestic and international trade on urban air pollution 

using a three-scales ranging input-output model, they found that trade plays a dominant role in national PM2.5 

air pollution. Gilmore and colleagues [19] evaluate the range of passenger vehicles available in the Indian 

market to identify options that minimize the costs, human health effects and contribution to climate change.  

Uncovering the linkages among GHG emissions and other environmental elements are critical for achieving 

co-benefits. For example, energy intensive manufacturing is not only the main contributor for GHG emissions 

but the associated production processes are also very water intensive. Wang et al. [20] compared the 

electricity intensity and associated carbon emissions of wastewater treatment plants in four countries: the 

USA, Germany, China, and South Africa. They find that 100% energy self-sufficient wastewater treatment 

plants are feasible by a combination of increased energy efficiency and energy harvesting from the 

wastewater.  

Carbon emissions of wastewater treatment plants depend strongly on the electricity fuel mix, wastewater 

treatment technologies, treatment capacity, and influent and effluent water quality. In order to uncover the 

linkage of the air pollutions and GHG emissions, Yang et al. [21] adopted network analysis to investigate the 

emissions of PM2.5 embodied in economic activities.    

Kucukvar and colleagues [22] assess the linkage of energy, climate and manufacturing at the global scale. 

They show that onsite and upstream supply chains are found to be responsible for over 90% of total energy 

use and carbon footprint for all industrial sectors.  

Electricity, Gas and Water Supply is usually found to be as the main contributor to global climate change. 

Chen and Chen [23] propose a system based framework to re-assemble the interwoven connections between 

energy consumption and water use in a city. Such system approach helps researchers to target the co-benefits 

of mitigation opportunities.  

Climate change mitigation requires actions not only at the national scale, but also at fine spatial scales.  

Zhao et al. [24] analyzed the environment-economy tradeoff for Beijing-Tianjin-Hebei’s exports. They 

contrasted economic gains (value added) against atmospheric pollutant emissions (sulfur dioxide (SO2), nitric 

oxide (NOx), primary fine particulate matter (PM2.5) and non-methane volatile organic compounds 

(NMVOC)) and the widely concerned CO2 emissions associated with international and interprovincial 

exports from Beijing-Tianjin-Hebei (BTH). The results call for refocusing and restructuring of BTH's 



industry and trade to balance economic gains and environmental losses, so that integrated mitigation 

measures can be achieved.  

For the sector level, Fujii et al. [25] conducted firm level analysis for more than 500 firms and suggest that 

policy makers need to consider industrial and regional characteristics to develop effective policies that 

conserve energy and reduce CO2 emissions.  

Wu et al. [26] for the first time established a complete inventory of energy inputs in the life cycle of domestic 

coal-fired plant. Such analyses also contribute to regional adaption of climate change.  

Liang et al. [27] provide a tool for the management of electricity shortage caused by heat wave shocks, which 

can have policy implications for the climate change mitigation and adaption at the city level.  

3. Technology and renewable energy 

Development of low carbon technology and renewable energy is one of the major approaches for achieving 

national mitigation targets. However, there are various technology options.  

Hao et al. [28] reviewed the literatures on the topic of low-carbon energy technology investment based on 

bibliometric methods and the databases of Science Citation Index Expanded (1981-present) and Social 

Sciences Citation Index (2002-present). The literature review suggests that strength (as indicated by 

bibliometric) of low-carbon technology investment in developed countries is far greater than that in 

developing countries.  

For specific technology options that could contribute to GHG mitigations, Zafirakis and colleagues [29] 

determined the value of arbitrage for energy storage across European markets and analyzed the roles for 

energy storage in GHG mitigating.  

Zhang et al. [30] evaluated the scenario and performance of two wind power technological options, pumped 

hydro storage (PHS) and electric boilers (EBs). The case study shows the potential and implication for 

China’s wind power development.  

More cases can be found from papers such as, Hofmann et al. [31] analyzing the impacts of the gasoline 

vehicle replacement program with EVs at different penetration rates on petroleum and electricity sectors and 

their CO2 emissions; as well as Xie and Shao [32] on enhancing the R&D investment of energy-saving 

technology and the cleaner transition of energy structure, as well as formulating industrial emission-reduction 

policies from a perspective of the whole industrial chain rather than certain single sub-sectors.  

Liu et al. [33] developed a life cycle rebound effect model to evaluate the environmental effects of a new 

Energy Efficiency Standard for room air-conditioners. They show that the rebound effect of Chinese urban 

air-conditioners is around 67%, which shall be taken into account when assessing the potential benefits of 

energy efficiency technologies in the household sector.  

Zeng and colleagues [34] predicted baseline GHG emissions of different motor vehicles of Chinese cities 

from 2013 to 2035, and suggest that GHG emissions from tank to wheel and well to wheel in all cities will 

continuously increase yet at different rates.  

Particular, technology improvement or renewable development in power generation sector can have direct 

mitigation impacts, given that the power sector is the major consumer of fossil fuel energy and producer of 

GHGs. Research interests are increasing in analyzing the performance and GHG mitigation potentials for the 

power sector. For example, Zhang et al. [35] show that technology advances of wind energy would increase 



global energy security and stability through the impact on the whole energy system, such as a decrease by 

30% of gas based electricity in the long term.  

Rauner et al. [36] identified the spatial dissonance between power demand and renewable power supply, they 

developed an approach for mapping the progress towards Smart Renewable Power Provision, and evaluated 

the GHG mitigation effects from smart power provision.  

Li et al. [37] present an improved graphical pinch analysis-based approach that considers carbon-constrained 

regional electricity planning and supply chain synthesis of biomass energy. By using such measures, they 

provide an evaluation of the renewable electricity at the regional level.  

Supply chains, international trade and embodied GHG emissions 

Differences in economic comparative advantage is the main driver of international trade. A side effect is the 

flows of “virtual” emissions embodied in international trade and transferred between countries.  

Arce and colleagues [38] show that through changes in international trade, there is a possibility of reducing 

emissions, which have to be included in international, multilateral and bilateral agreements to mitigate 

climate change. 

Such “embodied emissions” are also remarkable at regional levels. Mi et al. [39] found substantial differences 

between production- and consumption-based accounting in terms of both overall and per capita carbon 

emissions.  

Urban consumption not only leads to carbon emissions within a city's own boundaries but also induces 

emissions in other regions via interregional trade. Chen et al. [40] constructed a multi-scale, global MRIO 

model to describe a transnational city carbon footprint network among the five Chinese megacities and the 

five largest Australian capital cities. The results show how local emission reductions influence other regions 

through carbon networks. Such hierarchy shows that cites should be differentiated in shouldering 

responsibility for climate change mitigation. 

Embodied emissions in trade can be observed within a country. Zhang et al.[41] present a multi-regional 

input-output analysis of embodied energy transfers via China's domestic trade in 2002 and 2007. They show 

that significant growth of net embodied energy transfers can be identified from China’s central and western 

inland regions to eastern coastal regions, and the Central region partly served as a "transmission channel". 

Knowledge for understanding both producers and consumers on the GHG emissions provides benefits for 

policy makers aiming for effective mitigation measures.   

However, precise estimates of embodied emissions remains a challenge, limited by data availability. Liu and 

co-authors [42] found that emissions embodied in Chinese exports might be lower than commonly thought, 

and thus would increase China’s responsibility for carbon emissions even from a consumption based 

approach. They show that ignoring firm heterogeneity causes a 20% overestimation of embodied CO2 

emissions in Chinese exports at the national level with huge differences at the sector level for 2007. This is 

due to the fact that different types of firms who are allocated in the same sector of the conventional Chinese 

input-output table have large variation in terms of market share, production technology and carbon intensity.  

Social and economic factors of GHG emissions 

To achieve national mitigation target in a cost effective way, many nations have implemented a market-based 

emission trading scheme (ETS). For example, China initiated pilot markets in seven regions. Wu et al. [43] 

evaluated the performance and effectiveness of China’s pilot ETS in Shanghai, and suggest that in order to 



implement the national ETS effectively  capacity building efforts and improved legislation are required to 

better deal with new features of the carbon markets such as scientific allowance allocation, monitoring, 

reporting and verification of emissions.  

Another market based solution is the carbon tax. Wang et al. [44] provided a literature review on the 

distributional impacts of carbon taxes and discuss policy implications.  

GHG emissions are highly correlated with economic activities. Jiang and Guan [45] analyzed the driving 

factors of global CO2 emissions growth in 1995-2008, showing that the upgrades in infrastructure and 

changes in electricity demand were the dominant driving forces behind the coal-driven CO2 emissions growth 

in developing countries. By contrast, consumption by the public and social services as well as a few carbon-

intensive goods, such as chemical products, were the dominant driving forces of gas-related CO2 emissions 

growth in developed countries.  

Regional heterogeneity plays important role in the mitigation performance from market measures. Yao et al. 

[46] established a meta-frontier non-radial Malmquist CO2 emission performance index (MNMCPI) to 

measure dynamic changes in CO2 emission performance by combining the non-radial directional distance 

function and the meta-frontier CO2 emission performance index (MCPI).  

Chen et al. [47] investigated the effect of carbon emissions and study the impact of optimizing interregional 

carbon emissions.  

Similar suggestions can be found in Li and Zhang [48] who found a high level and heterogeneity in rebound 

effects in China’s energy consumption and GHG emissions, and suggested that new strategies are necessary 

for energy conservation in China's industrial sectors.  

For impact on energy saving and emission reduction from governance, Lu and Shao [49] suggested that 

government subsidies generally play a crucial role in pricing and the choice of performance levels in Energy 

Performance Contracting (EPC).  

Zhang et al. [50] found that energy activities as the largest contributor hold about half of China’s total CH4 

emissions, mainly from coal mining, and inherent economic driving factors covering consumption, 

investment and international exports played an important role in determining regional CH4 emission 

inventories.  

Du et al. [51] seek to understand changes in energy efficiency in China, and find that R&D Investment when 

energy prices are rising, are a driver of energy efficiency improvements. 

GHG reduction can be achieved by optimizing employment, household consumption, and human behavior. 

Duarte et al. [52] evaluated the adoption of energy efficient appliances, modal shift to public transport, 

healthier diets, and the associated carbon emissions and job effects by using a Computable General 

Equilibrium (CGE) model, and suggested that reductions in carbon dioxide, methane, and sulphur dioxide 

emissions may be compatible with increases in income and reductions in unemployment. Thus household 

consumption and consumer’s individual behavior could be important drivers of GHG emissions.  

Pothitou et al. [53] found that household behavior and habits have significant impacts on energy consumption. 

Residents with positive environmental values and greater environmental knowledge are more likely to 

demonstrate behaviors, attitudes and habits which lead to energy saving activities in households and GHG 

mitigation.  



By adopting an atmosphere-ocean general circulation model (GCM) and constructed the hourly weather years 

from 2015-2100, Huang and Hwang [54] shed light on how a building's energy consumption behavior may 

change in the future and suggested adequate countermeasures to adapt existing buildings to climate change.  

The Guest Editors would like to express their high appreciation to the authors and reviewers for their great 

contributions to this special issue. 
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