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Abstract

A quantised spin wave – magnon – in magnetic films can undergo Bose-
Einstein condensation into two energetically degenerate lowest-energy quan-
tum states with non-zero wave vectors ±k

BEC

. This corresponds to two in-
terfering condensates forming spontaneously in momentum space. Brillouin
Light Scattering studies for a microwave-pumped film with sub-micrometer
spatial resolution experimentally confirm the existence of the two wave-
functions and show that their interference results in a non-uniform ground
state of the condensate with the density oscillating in space. Moreover, fork
dislocations in the density fringes provide direct experimental evidence for
the formation of pinned half quantum vortices in the magnon condensate.
The measured amplitude of the density oscillation implies the formation of
a non-symmetric state that corresponds to non equal occupation of two en-
ergy minima. We discuss the experimental findings and consider the theory
of magnon condensates which includes, to leading order, the contribution
from the non-condensed magnons. The e↵ect of the non-condensed magnon
cloud is to increase the contrast of the asymmetric state and to bring about
the experimental measurements.

Magnons are quasiparticles corresponding to quantized spin waves that
describe the collective motion of spins [1]. In recent years, it has become
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possible to realize a BEC of magnons in two remarkably di↵erent systems:
in superfluid phases of an isotope of helium – Helium-3 at ultra-low tem-
peratures [3, 4] and in ferrimagnetic insulators [5, 6, 7, 8]. In the normal,
noncondensed state, these magnetic materials exhibit a magnetically ordered
state with a gas of magnons whose phases are not correlated. However, once
condensation occurs, spins develop phase coherence resulting in a common
global frequency and phase of precession. At room temperature, ferrimag-
netic insulators, such as yttrium-iron garnet (YIG) films, together with a
combination of an in-plane magnetic field and microwave radiation are re-
quired for the magnon condensation [5, 6, 7, 8]. Therefore, in analogy with
exciton-polariton condensates, this provides yet another example of a BEC
of quasiparticle excitations in a solid state system.
A room-temperature Bose-Einstein condensate of magnons was created

in an epitaxial YIG-film using an experimental setup shown in Fig. 1.1a,
which, in general, is similar to that used in our previous studies [5, 6]. Given
that magnons are quasiparticle excitations, their number is not conserved
and, therefore, the chemical potential is zero. To reach the critical value of
the chemical potential, necessary for BEC formation, we inject additional
magnons using microwave parametric pumping. After thermalisation, the in-
jected magnons gather in two energetically degenerate minima of the energy
spectrum located at ±k

BEC

= ±Q = (0,±Q). In fact, the energy spec-
trum is anisotropic and arises from the combined e↵ects of the long-range
magnetic dipole interactions that break the isotropy of the spectrum and
the short range exchange interactions. The additional e↵ects of pumping
together with dissipation, caused by the spin–lattice interactions, results in
a system that is driven out of equilibrium. However, for magnons, a quasi-
equilibrium state with a non-zero chemical potential can be realised because
the magnon lifetimes, set by the spin–lattice relaxation times (⇠ 1 ms), are
long compared to the magnon–magnon thermalisation time ( ⇠ 100 ns).
Therefore, in contrast to BECs of other quasiparticle excitations such as
exciton-polariton condensates, a magnon BEC can be considered to be in
quasi-equilibrium. This situation implies that an equilibrium statistical me-
chanical approach is expected to provide a reasonably accurate description
of this system.
Condensation into two nonzero values of the wave vector ±k

BEC

leads to
an anisotropy of the condensate ground state and coexistence of two spa-
tially overlapping condensates with the order parameters  ±Q

. In [9], Bril-
loun Light Scattering (BLS) was used to measure the total magnon density
| |2 where  =  

Q

exp[iQz] +  �Q

exp[�iQz], and we have assumed that
the in-plane magnetic field is along the z-direction. Therefore, by scanning



Bose-Einstein Condensation of Magnons 3

the probing laser spot in the two lateral directions and recording the BLS
intensity, spatial distribution of the condensate density can be visualised.
Figure 1.1c shows the results of a two-dimensional mapping of the conden-
sate density across an 8⇥5µm2 area of the YIG film adjacent to the pumping
resonator, within which the field created by the resonator can be considered
as being approximately uniform. The mapping was performed by repeti-
tive scanning of the spatial area followed by the averaging of the recorded
data to improve the signal-to-noise ratio. The map clearly demonstrates a
periodic pattern along the direction of the static magnetic field created be-
cause of interference of the two components of the magnon condensate. The
spatial period of the pattern 0.9 ± 0.1µm obtained from a two-dimensional
Fourier transform of the recorded map (Fig. 1.1d), agrees well with the pe-
riod 0.92µm calculated based on the known value k

BEC

= 3.4⇥ 104cm�1. It
is important to recognise that in the absence of the phase-locking between
the two condensates, the evolution of the phase di↵erence between the two
condensate order parameters would lead to changes in the spatial positions
of the maxima and minima and would not show in the time averaged results.
The observed spatial modulation in the BLS intensity is therefore clear ev-
idence of the locking of the coherent phases between the two components
that must be explained by any successful theory of magnon condensation.

The interference experiments not only provide direct evidence of the spa-
tial coherence of the magnon condensate in YIG films, but also indicate that
a strong asymmetry exists in the number density of the two condensates. To
see this, we recall that the average BLS intensity is proportional to the total
density of the condensate. It grows with pumping power, increasing from the
BEC-transition threshold of 6 mW to 100 mW and then saturates due to the
reduction of the parametric pumping e�ciency as shown in Fig. 1.2. At the
same time, the modulation depth increases quickly above the threshold and
then stays nearly constant. As shown in the figure, the measured contrast
defined as

� =
| |2

max

� | |2
min

| |2
max

+ | |2
min

(1.1)

is seen to be equal to � = 0.035. However, by accounting for the spatial
resolution of the measuring probe, we estimate the actual contrast in the
experiment to be � = 0.12� 0.15.

The above observations provide direct evidence for the coexistence of
a two component BEC of magnons which are interlocked through their
phase coherence. The production of interference fringes associated with the
densities of the two components also allows us to identify vortices in our
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Figure 1.1 Schematic of the experiment and results of two-dimensional
imaging of the condensate density. (a) Experimental setup. Magnons are
injected into the YIG film using a microwave resonator. After thermalisa-
tion they create a Bose-Einstein condensate, which is imaged by scanning
the probing laser light in two lateral directions. (b) Qualitative picture
of the magnon spectrum in a ferromagnetic film. Injected magnons ther-
malise and create two Bose-Einstein condensates at two degenerate spectral
minima with non-zero wave vectors ±kBEC. (c) Measured two-dimensional
spatial map of the BLS intensity proportional to the condensate density,
obtained at the maximum used pumping power. Dashed circles show the
positions of topological defects in the standing-wave pattern correspond-
ing to a non-uniform ground state of the condensate. (d) Two-dimensional
Fourier transform of the measured spatial map. Dashed line marks the value
of the wave vector equal to 2kBEC. The spread of the spectral peak and
its slight displacement with respect to ky = 0 are caused by the presence
of topological defects resulting in a non-zero slope of the real-space stripe
structure, as well as by slight misalignment between the static magnetic
field and the scanning axis. Reprinted with permission from [9].

magnon condensate. A clear signature of the formation of vortices is the
appearance of a fork-like dislocation in the interference pattern as seen in
Fig. 1.1c. These quantised vortices, which spontaneously appear during the
condensation process [10], are pinned by the crystalline defects present in
the sample. The number of prongs present in the interference fringes leads
us to conclude that the vortices we observe are analogous to half quan-
tum vortices (fractional vortices) which have also been observed in exciton-
polariton condensates [18]. To illustrate this, we present in Fig. 1.3 three
density fields produced by assuming a condensate wavefunction of the form
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Figure 1.2 E↵ect of the pumping power on the condensate density and
on the amplitude of the standing wave. Filled symbols show the average
BLS intensity proportional to the total density of the condensate. Open
symbols show the relative depth of the spatial modulation of the BLS
intensity, which characterizes the strength of the phase locking between
the condensate components. The data were obtained from one-dimensional
scans parallel to the direction of the static field. Reprinted with permission
from [9].

 =  
Q

exp[iQz] +  �Q

exp[�iQz]. We prescribe the background values
of | 

Q

|2 = ⇢
+g

and | �Q

|2 = ⇢�g

to reproduce the measured contrast of
15% but in each case we make di↵erent assumptions on what vortices exist
in each component. As can be seen, assuming a single vortex in one com-
ponent produces best agreement with the observed density fringes in the
experiments.
Recently, a description of BEC in microwave-pumped YIG films was pro-

posed [11] that accounted for the 4th order interactions and magnon-non-
conserving terms of the dipolar interactions. The theory was able to explain
the appearance of asymmetric states but the contrast obtained was much
smaller (⇠ 1%) than the actual experimentally observed (⇠ 12 � 15%). In
fact, the value of 3.5% presented in Fig. (1.2) does not account for the spatial
resolution of the probing laser light which is about 0.55µm and therefore of
the same order as the wavelength 0.92µm associated with the interference
pattern created by the two condensates. This results in significant averag-
ing over the oscillation and leads to an underestimation of the contrast. It
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(a) (b) (c)

Figure 1.3 Density field in the presence of vortices: (a) Vortex in first

component  Q =
p
⇢+g(z + iy)/

q
z2 + y2 + ⇢�1

+g and antivortex in com-

ponent two,  �Q =
p
⇢�g(z � iy)/

q
z2 + y2 + ⇢�1

�g; (b) Vortex in compo-

nent one only,  Q =
p
⇢+g(z + iy)/

q
z2 + y2 + ⇢�1

+g,  �Q =
p
⇢�g; (c)

Vortices in components one and two,  Q =
p
⇢+g(z+ iy)/

q
z2 + y2 + ⇢�1

+g,

 �Q =
p
⇢�g(z + iy)/

q
z2 + y2 + ⇢�1

�g. In all cases, ⇢�g = 0.15⇢+g.

can be shown that the experimental measurement needs to be multiplied
by a correction factor of 3.43 producing this relatively higher value of con-
trast. This discrepancy has been remedied in [12] by including the e↵ect
of the non-condensed thermal cloud of magnons on the condensate within a
Hartree-Fock approximation. It turns out that, apart from depleting the con-
densate, the thermally excited non-condensed magnons increase the contrast
of the asymmetric state and bring about the experimental measurements.
To adopt a microscopic description of the problem, we recognise that on

energy scales relevant to the experiments, only the lowest ferromagnetic
magnon band is important. The magnetic properties of YIG can then be
described in terms of a quantum Heisenberg ferromagnet on a cubic lattice
given by the Hamiltonian

Ĥ = �gµ
B

H
0

X

j

Ŝz

j

� J
X

j,�

Ŝ
j

· Ŝ
j+� + U

d

X

i 6=j

Ŝ
i

· Ŝ
j

� 3(Ŝ
i

· n
ij

)(Ŝ
i

· n
ij

)

|r
ij

|3 ,

for the spin operators Ŝ
j

= (Ŝx

j

, Ŝy

j

, Ŝz

j

). The various terms account for
the Zeeman energy, the exchange interactions, and the dipolar interactions,
respectively. Here, µ

B

is the magnetic moment (Bohr magneton), g = 2 is
the Landé factor, H

0

is the externally applied magnetic field, and J and
U
d

are the exchange and dipolar interaction constants, respectively . The
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sums i, j are taken over lattice sites at positions r
i

, � represents a vector to
one of the nearest neighbours of i, r

ij

= (r
i

� r
j

)/a
0

, n
ij

= r
ij

/ |r
ij

|, and
a
0

= 12.376Å is the lattice constant.
Since we are interested in describing spin deviations from the direction of

the in-plane externally applied magnetic field, we will consider the action of
spin operators on spin states

��sz
j

↵
where sz

j

denotes the z-quantum number

on site j. The total spin operator at j then satisfies Ŝ2

j

��sz
j

↵
= (Ŝx

2

j

+ Ŝy

2

j

+

Ŝz

j

2)
��sz

j

↵
= S(S+1)

��sz
j

↵
, where S is the e↵ective spin. This means that we can

e↵ectively describe the action of Ŝz

j

in terms of the other two components
of spin at j. We will therefore recast the Hamiltonian into a form that
directly incorporates this constraint by eliminating the spin operator Ŝz

j

.
The remaining operators are then encoded into spin raising and lowering
operators defined as

Ŝ+

j

= Ŝx

j

+ iŜy

j

, Ŝ+

j

= Ŝx

j

� iŜy

j

. (1.2)

We can now relate these spin operators to creation and annihilation bosonic
operators â†

j

and â
j

that act on the occupation number basis of spin de-
viations at site j. This is given by the Holstein-Primako↵ transformation
[14]

Ŝ+

j

=
p
2S

 
1� â†

j

â
j

2S

!
1/2

â
j

, Ŝ�
j

=
p
2Sâ†

j

 
1� â†

j

â
j

2S

!
1/2

(1.3)

The bosonic operators can be expressed in terms of normal modes such that,

â
j

=
X

k

âk(xj)e
ik·r, â†

j

=
X

k

â†k(xj)e
ik·r, (1.4)

where r = (y, z) and k = (k
y

, k
z

). Given that the thickness of the film is
much smaller than the lateral dimensions, we have performed only a partial
Fourier summation over the wavenumbers lying within the (y, z) plane of
the film. In contrast, we have retained the spatial dependence on the x-
coordinate that is aligned along the thickness of the film. This is because
the transverse modes along x are expected to be sensitive to the e↵ect of
the boundaries and can not be approximated using plane waves. However,
if we focus on formulating an e↵ective theory for quantities averaged over
the thickness of the film, we can drop the dependence on the x spatial
coordinate. This results in the so-called uniform mode approximation. To
proceed, we now assume that the number of spin deviations in the system
is small and exploit the fact that the e↵ective spin S ' 14.2 is quite large
to perform an expansion in powers of 1/S. Hence, by adopting the uniform
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mode approximation [13] together with a Holstein-Primako↵ transformation
[14], our Hamiltonian can be expanded up to fourth order terms in âk and
â†k which can be written as

Ĥ = Ĥ
0

+ Ĥ
2

+ Ĥ
4

+ · · ·
where the index of the corresponding part of the Hamiltonian corresponds
to the order of the interactions. The quadratic terms given by Ĥ

2

takes the
form

Ĥ
2

= h̄
X

k

✓
Akâ

†
kâk +

1

2
Bkâkâ�k +

1

2
B⇤

kâ
†
kâ

†
�k

◆
, (1.5)

where

Ak = �H
0

+Dk2 + �2⇡M(1� F
k

) sin2 ✓ + �2⇡MF
k

,

Bk = �2⇡M(1� F
k

) sin2 ✓ � �2⇡MF
k

. (1.6)

Here, F
k

=
�
1� exp(�|kd|)�/|kd|, d is the film thickness, k2 = k2

y

+ k2
z

, ✓ is
the angle between the wavevector k and the in-plane applied magnetic field,
M = 0.14kG is the magnetisation, � = 12µeV/kOe is the gyromagnetic
ratio, and D = 0.24eV Å2 is the coe�cient of the exchange interactions
[11]. These quadratic terms can be diagonalized by using the Bogoliubov
transformation

âk = ukĉk + vkĉ
†
�k, â†k = ukĉ

†
k + v⇤kĉ�k,

uk =

✓
Ak + h̄!k

2h̄!k

◆
1/2

, vk = sgn(B
k

)

✓
Ak � h̄!k

2h̄!k

◆
1/2

, (1.7)

where sgn(·) is the sign function, |uk|2 � |vk|2 = 1, and the dispersion
relation is given by !k = (A2

k � |Bk|2)1/2. The quadratic term then reduces

to Ĥ
2

=
P

k h̄!kĉ
†
kĉk. Since a magnon BEC consists of two condensates, we

write the quadratic term for condensed magnons in terms of the annihilation
and creation operators, ĉ±Q and ĉ†±Q for two energetically degenerate lowest
energy quantum states with non-zero wave vectors k

BEC

⌘ ±Q = (0,±Q)
in 2D momentum space. This gives H

2

= h̄!Q
�
ĉ†QĉQ + ĉ†�Qĉ�Q

�
. The next

order terms corresponding to H
4

are given by

Ĥ
4

= A[ĉ†Qĉ†QĉQĉQ + ĉ†�Qĉ†�Qĉ�Qĉ�Q] + 2Bĉ†Qĉ†�Qĉ�QĉQ (1.8)

+ C[ĉ†QĉQĉQĉ�Q + ĉ†�Qĉ�Qĉ�QĉQ + h.c] +D[ĉQĉQĉ�Qĉ�Q + h.c],

where h.c denotes the hermitian conjugate.
The first two terms conserve the number of magnons and give rise to self

and mutual interaction of the condensates and were obtained in [15], the
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third term was introduced in [11] and the fourth term in [12]. The last two
terms do not conserve the number of magnons and lead to two condensates
locking their total phases. The expressions for the coe�cients of Eq. (1.9)
are

A = � h̄!
M

4SN
[(↵

1

� ↵
3

)F
Q

� 2↵
2

(1� F
2Q

)]� DQ2

2SN
(↵

1

� 4↵
2

),

B =
h̄!

M

2SN
[(↵

1

� ↵
2

)(1� F
2Q

)� (↵
1

� ↵
3

)F
Q

] +
DQ2

SN
(↵

1

� 2↵
2

),

C =
h̄!

M

8SN


(3↵

1

+ 3↵
2

� 4↵
3

)F
Q

+
8

3
↵
3

(1� F
2Q

)

�
+

DQ2

SN

↵
3

3
,

D =
h̄!

M

4SN
[(↵

3

� 3↵
2

)F
Q

+ 2↵
2

(1� F
2Q

)] +
DQ2

2SN
↵
2

, (1.9)

where h̄!
M

= 4⇡M�, ↵
1

= u4
Q

+ 4u2
Q

v2
Q

+ v4
Q

, ↵
2

= 2u2
Q

v2
Q

, and ↵
3

=
3u

Q

v
Q

(u2
Q

+v2
Q

). Expressions for A and B were obtained in [15], C (correct-
ing the coe�cients in front of ↵

2

and ↵
3

[12]) was presented in [11] and D
in [12].

We now adopt a classical fields approximation and replace operators with
complex numbers. Furthermore, we use the Madelung transformation for
c±Q =

p
N±Q

exp[i�±], and introduce the total number of condensed magnons
N

c

= N
Q

+ N�Q

, the occupation imbalance given by � = N
Q

� N�Q

, and
the total phase � = �

+

+ �� to obtain

H
4

=
1

2
N2

c

⇥
(A+B)� (B+D cos 2��A)(�/N

c

)2 +2C cos�
p
1� (�/N

c

)2
⇤
.

(1.10)
The total number of condensed magnons N

c

is set by a balance estab-
lished between pumping and relaxation that we will not model explicitly.
We will, therefore, prescribe N

c

based on the experimentally estimated val-
ues reported in [5, 6]. We then proceed to calculate the ground state by
minimising the total energy of the system subject to fixed N

c

. In this case,
the minimum energy is determined by minimising the interaction term given
by Eq. (1.10) with respect to � and �. Di↵erentiating (1.10) with respect to
� and � gives the fixed points (a) � = 0, � = 0, (b) � = ⇡, � = 0, (c) � =
0, (�/N

c

)2 = 1�C2/(B+D�A)2, (d) � = ⇡, (�/N
c

)2 = 1�C2/(B+D�A)2

or (e) � = cos�1(�C/2D), � = 0. We discard (e) in the view of the smallness
of D in comparison with |C|. H

4

is minimised for � = ⇡ if C > 0 and for
� = 0 if C < 0. The minima are determined by the sign of the parameter
� = A�B+ |C|�D. When � > 0, � = 0, which gives rise to the symmetric
case N

Q

= N�Q

. When � < 0, �/N
c

= 1 � C2/(B +D � A)2 corresponds
to an asymmetric case.
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Substituting the parameters into Eqs. (1.9), we find A = �0.1685 mK/N,
B = 8.3395 mk/N, C = �0.0138 mK/N, D = �0.0017 mK/N, so that
� < 0. This gives an asymmetric state with the contrast � = 2

p
N

Q

N�Q

/N
c

of the order of 1%. This is in disagreement with the experiment of [9], where
the contrast is around 12–15% once corrections for the resolution of the
probing laser light are taken into account. This discrepancy can be explained
by accounting for the e↵ect induced by the presence of the thermal cloud
of non-condensed magnons that has been neglected in our discussion thus
far in deriving the Hamiltonian of the system. By including the e↵ect of the
thermal cloud within a Hartree-Fock approximation, we find that the main
e↵ect on the condensate is to renormalise the coe�cient C to C̃ such that

eC = C +
E

N
c

, (1.11)

where E is given by

E =
1

2

(
�

0X

k

(D
k

/2 + f
1,k

)/N
⇥
8(u2

Q

+ v2
Q

)u
k

v
k

⇤

�(D
Q

/2 + f
1,Q

)/N

" 0X

k

16u
Q

v
Q

(u2
k

+ v2
k

) +
0X

k

8(u2
Q

+ v2
Q

)u
k

v
k

#

�
0X

k

(f
2,k

+ 3f
2,Q

)/N
⇥
4(u2

Q

+ v2
Q

)(u2
k

+ v2
k

)
⇤

+
0X

k

(D
k�Q

+ f
3,k�Q

+D
k+Q

+ f
3,k+Q

)/N
⇥
4(u2

Q

+ v2
Q

)u
k

v
k

⇤

+ (D
0

+ f
3,0

)/N
0X

k

⇥
8u

Q

v
Q

(u2
k

+ v2
k

)
⇤
)
⌦
c†
k

c
k

↵
, (1.12)

P0 implies that k 6= (0,±Q), and

f
1

=
h̄�2⇡M

S

⇥
(1� F

k

) sin2 ✓ + F
k

⇤
/4

f
2

=
h̄�2⇡M

S

⇥
(1� F

k

) sin2 ✓ � F
k

⇤
/4

f
3

=
h̄�2⇡M

S
(1� F

k

) cos2 ✓

D
k

= �J
X

�

eik·� ⇡ Dk2

2S
� 2J. (1.13)

To evaluate E, we must determine the population of the thermal cloud in
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mode k denoted by N
k

=
⌦
c†
k

c
k

↵
. This must be interpreted as the occupation

averaged over the sample thickness d since we are only considering in-plane
wavenumbers. We can calculate this by summing over all the energy bands
in the sample corresponding to the quantisation of the dispersion relation
in the direction normal to the plane of the sample to obtain

nk(T, µ) =
1

dL
x

L
y

X

n

1

e(h̄✏k,n�µ)/kBTe↵ � 1
. (1.14)

In the above, L
x

and L
z

denote the extent of the sample in the y and z-
coordinate directions respectively and the e↵ective temperature can be taken
to be room temperature given by T

e↵

= 300K. The above expression requires
knowledge of the full energy spectrum in our sample. Here, we have used the
form given by [16]. For the experiment of [9], this yields E/N

c

= �1.3043
mK/N and for n

c

= N
c

/V = 3.5⇥1018 cm�3 gives eC = �1.3181 mK/N. This
sets the contrast to the value � = | eC|/|(B + E � A)| = 15.5% which is in a
much better agreement with experiments. We note that the value of n

c

used
here is in good agreement with experimentally quoted values. Moreover, it
corresponds to a condensate number density to total number density ratio
of 5.7% which is also in reasonable agreement with experiments.
Finally, we comment on the mean field equations for the two component

magnon condensate. Starting with the full Hamiltonian of the system, we can
now write the Gross-Pitaevskii system of equations describing the collective
excitations of the two condensates as

ih̄
@ ±Q

@t
= � @H

@ ⇤
±Q

. (1.15)

In analogy with approximations used in atomic condensates [17], we will
assume a static thermal cloud of magnons. The system of equations is then
given by

ih̄
@ ±Q

@t
= � h̄2

2m
r2 ±Q

+ 2AV | ±Q

|2 ±Q

+ 2BV | ⌥Q

|2 ±Q

+CV
⇥
( ±Q

 ⌥Q

+  ⇤
±Q

 ⇤
⌥Q

) ±Q

+(| ±Q

|2 + | ⌥Q

|2) ⇤
⌥Q

⇤
+ 2DV  ⇤

±Q

 ⇤2
⌥Q

+E ⇤
⌥Q

+ F ±Q

, (1.16)

where F is an interaction coe�cient that, similarly to E, is a function of the
number of non-condensed magnons.
We have shown that condensation of magnons in ferrimagnetic insula-

tors such as yttrium-iron garnet films exhibit a number of unique features.
The condensation can be realized at room temperature and occurs at two
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nonzero momenta corresponding to the lowest energy states. Consequently,
the ground state of the condensate appears as a real-space standing wave of
the total condensate density attenable to the BLS measurements. The occu-
pation of the states is asymmetric as indicated by contrast measurements as-
sociated with the standing wave pattern. Moreover, in analogy with exciton-
polariton condensates [18], a magnon condensate supports the formation of
half-quantized vortices between the two components that are pinned at the
cristallographic defects. By modelling this two-component condensate, in-
cluding the e↵ects of noncondensed thermal cloud of magnons, it is possi-
ble to quantitatively explain the observed asymmetry of the occupation of
the two condensates and predict a phase transition between symmetric and
asymmetric states as the film thickness and the applied magnetic field are
varied. Future directions will require the development of models to study
nonequilibrium phenomena, such as the process of condensate formation of
magnons in YIG films.
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