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Introduction

Perceptual constancies are an integral aspect of our visual 

experience and critical to our successful interactions with 

the physical and social world. This is because they ena-

ble us to see objects as having the same physical proper-

ties despite changes in viewing conditions. If one were to 

view the world only by the image on the retina, it would 

appear distorted and unstable. For example, as we watch a 

car drive away from us, the size of its image on the retina 

would shrink as it speeds away. Although the car is shrink-

ing on the retina, we perceive it exactly the same size, but 

just moving further away from us. This perceptual ability is 

known as size constancy. Size constancy is a scaling mech-

anism that allows us to make accurate judgments about an 

object’s size regardless of variations in the retinal image 

size arising from changes in viewing distance (Sperandio 

and Chouinard 2015).

Recently, Hellendoorn et al. (2015) proposed that prob-

lems from early infancy in size and other forms of percep-

tual constancy contribute to the development of autism. 

Speciically, the authors argued that infants who lack these 

skills see the physical world as less stable, which in turn 

creates greater levels of anxiety, exacerbating delays in 

understanding social and communication cues, and rein-

forces repetitive comfort-seeking behaviours towards famil-

iar stimuli and tasks—all of which are features of autism. 

In line with this theory, Ropar and Mitchell (2002) dem-

onstrated that shape constancy is afected in autism. Shape 

constancy is a perceptual mechanism that enables us to 

see 3D shapes as having the same geometry across difer-

ent viewing conditions. Shape constancy is thought, much 

like size constancy, to rely on both bottom-up and top-

down processes (for review, see Sperandio and Chouinard 

2015), which are thought to be afected in autism according 
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to the Enhanced Perceptual Functioning (EPF) (Mottron 

and Burack 2001; Mottron et  al. 2006) and Weak Central 

Coherence (WCC) (Frith and Happé 1994; Happé and Frith 

2006) theories.

We examined size constancy by measuring changes 

in perceived size of afterimages viewed at diferent dis-

tances (Emmert 1881; Sperandio et  al. 2012; Sperandio 

and Chouinard 2015). An afterimage is an image attached 

to the retina that is experienced after a period of adaptation 

to a source of light. An afterimage appears like a shadow 

on a viewing surface; its perceived size increases propor-

tionally as a function of the distance between the eyes and 

the viewing surface. This simple demonstration is formally 

known as Emmert’s law (Emmert 1881). It typically shows 

near-perfect size-scaling efects with changes in distance, 

such that when the distance between the eyes and the pro-

jected surface doubles the perceived size of the afterimage 

will double as well. Although it has been shown that size 

constancy with real objects and afterimages share similar 

neural underpinnings (Sperandio et al. 2012), working with 

afterimages ofers the advantage to appreciate how pro-

cesses taking place well beyond the retina afect size per-

ception under conditions where there is absolutely no doubt 

that the retinal image remains constant.

In addition, the investigation of Emmert’s law gives 

us the opportunity to measure a number of other per-

ceptual variables, such as duration and vividness of the 

afterimages. These experiences could be used to examine 

sensory abnormalities, such as hypersensitivity to light, 

which are now included in the more recent diagnostic 

criteria for autism [Diagnostic and Statistical Manual of 

Mental Disorders (DSM-5); American Psychiatric Asso-

ciation (APA) 2013]. It has been demonstrated that the 

duration of an afterimage generated by a light increases 

as a function of the amount of energy, intensity, and 

adaptation time of the light, corresponding presumably 

to the amount of bleaching in retinal pigment (Granit 

et  al. 1930; Feinbloom 1938; Nagamata 1951; Alpen 

and Barr 1962). If the perceived duration of an afterim-

age is inluenced by the intensity of the stimulus then one 

might expect those individuals with a higher sensitivity 

to light to experience prolonged afterimages. Hypersen-

sitivity occurs when an individual’s perceived intensity to 

a stimulus is higher than it should be because of lower 

sensory thresholds. For example, a gentle touch can feel 

painful, noises may seem exceptionally loud, and lights 

may appear as unbearably bright in hypersensitive indi-

viduals (Dunn 1997). Hypersensitivity to light has been 

widely reported in autism (O’Leary et al. 1978; Attwood 

1993; Schulman 1994; Williams 1994; Jones et al. 2003; 

Benezech and Chapenoire 2005; Bluestone and Brenner 

2007; Coulter 2009; Simmons et al. 2009). In addition, a 

recent study has shown a strong relationship between the 

level of autistic traits and the frequency of atypical sen-

sory behaviours in a typically developing population with 

60% of the variance in sensory abnormalities explained 

by the variance in subclinical autistic traits (Robertson 

and Simmons 2013).

To our knowledge, no study has investigated the percep-

tion of afterimages induced by a bright source of light in 

autism before. The reasons for this gap in knowledge may 

relate to the risk of inducing discomfort in this population. 

Indeed, the presentation of a bright lash of light is reported 

to distress individuals with autism (e.g. Wing 1996). There 

is certainly anecdotal evidence from the autism community 

of persistent afterimages, among other visual disturbances 

(e.g. visual snow), following an exposure to bright sources 

of light. These visual disturbances in some cases can last 

for hours and be debilitating enough to interfere with daily 

activities, such as driving or walking outside on a sunny 

day (e.g. Jones et al. 2003).

Therefore, we opted to examine how abilities in size 

constancy and afterimage perception change as a function 

of autistic traits in a typically developing population. Lev-

els of autistic traits were measured using three question-

naires: the Autism Spectrum Quotient (AQ, Baron-Cohen 

et  al. 2001), the Systemizing Quotient (SQ, Baron-Cohen 

et al. 2003), and the Empathy Quotient (EQ, Baron-Cohen 

and Wheelwright 2004). The study of autistic traits within 

the typically developing population represents an alterna-

tive approach to a between-group design comparing indi-

viduals with and without autism.

Behavioural similarities between autism probands and 

unafected family members have long been recognised 

(Kanner 1943) and a surge of more recent and genetic 

studies have documented the presence of autistic traits in 

relatives of individuals with autism (Bailey et  al. 1995; 

Happe et  al. 2001; Piven 2001; Sucksmith et  al. 2011). 

These observations have lead to the development of a 

number of scales, including the three measures used in the 

present investigation, to quantify the degree to which any 

individual from the general population has autistic traits 

(for review, see Landry and Chouinard 2016). Behavioural 

investigations of unafected family members and samples 

with higher scores on these scales often show similar pat-

terns in perceptual and cognitive abilities as those seen in 

autism (e.g. Chouinard et al. 2013, 2016; Baron-Cohen and 

Hammer 1997; Bayliss and Tipper 2005; Bölte and Poustka 

2006; Ruser et  al. 2007; Whitehouse et  al. 2007; Hudson 

et  al. 2012; Palermo et  al. 2006). Thus, relating autistic 

traits to performance on perceptual and cognitive tasks, not 

only provides insight into individual diferences in the gen-

eral population, but can also allow opportunities to exam-

ine phenomena that otherwise would be diicult to investi-

gate properly in the autistic population due to confounding 

factors that are diicult to control for.
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The present investigation had two aims. The irst was to 

determine the integrity of size constancy abilities, by means 

of Emmert’s law, as a function of autistic traits in the typi-

cally developing population. The second was to determine 

if relationships exist between the strength of afterimages, 

as measured by their intensity and duration, and the degree 

of autistic traits in the typically developing population. We 

had two hypotheses—one for each of these aims. The irst, 

on the basis of the model put forth by Hellendoorn et  al. 

(2015), we predicted that the size of afterimages would 

deviate from Emmert’s law (Emmert 1881) in individuals 

with more autistic traits. Speciically, we predicted that the 

slope characterising the relationship between apparent size 

and viewing distance would deviate from a value of 1 as 

a function of autistic traits. The second, on the basis that 

many individuals with autism are hypersensitive to sensory 

stimulation, we predicted that vividness and duration of the 

afterimages would both increase as a function of autistic 

traits.

Methods

Participants

One hundred and six volunteers (65 males) ranging in age 

from 18 to 37 years of age (M = 21.27, SD = 3.68) took part 

in the experiment. All participants reported to have nor-

mal or corrected-to-normal visual acuity, and to have never 

been diagnosed with an autism spectrum disorder or any 

other neurological or psychiatric condition. Participants 

received either 4 study credits or £7 for their time. Written 

consent was obtained prior to testing. All procedures were 

approved by the local Institutional Review Board.

Trait Questionnaires

To measure autistic traits, participants were asked to 

complete three questionnaires: the Autism Spectrum 

Quotient (AQ; Baron-Cohen et al. 2001), the Systemising 

Quotient (SQ; Baron-Cohen et al. 2003), and the Empa-

thy Quotient (EQ; Baron-Cohen and Wheelwright 2004). 

The AQ is a self-report measure of autistic traits and is 

widely used in research (for a meta-analysis, see Ruz-

ich et  al. 2015). Its items can be grouped into ive sub-

scales: attention to detail, attention switching, imagina-

tion, communication, and social skill. Higher scores on 

the AQ indicate higher levels of autistic traits. The SQ 

and EQ are also self-report questionnaires (Baron-Cohen 

et al. 2003; Baron-Cohen and Wheelwright 2004). Higher 

scores on the SQ indicate more autistic traits whereas 

lower scores on the EQ indicate more autistic traits. All 

participants completed the AQ while 94 participants (53 

males) completed the EQ and 94 (55 males) participants 

completed the SQ.

Apparatus

The experiment was programmed in E-Prime 2.0 Profes-

sional software (Psychology Software Tools, Pittsburgh, 

PA) on an Acer Travel Mate 240 laptop running Win-

dows XP. Negative afterimages were induced by means 

of a ring of white light emitting diodes (LEDs) with 

a luminance of 2686  cd/m2 as described in Sperandio 

et  al. (2013). The inducing stimulus light was centrally 

mounted into a collapsible wooden panel painted with 

black matte paint. The light was positioned 69.8 cm away 

from the participant’s eyes and subtended 4.1° of visual 

angle. An apparatus similar to Sperandio, Chouinard and 

Goodale (2012) was used to manipulate viewing distance. 

The apparatus consisted of a front board that had a set of 

LEDs mounted to it and a white back board that could 

be slid to diferent viewing distances using a wooden 

dowel. Five viewing distances were tested: 107.2, 139.7, 

172.1, 204.6, and 237  cm. To obtain judgments of per-

ceived size, a Dell TFT 23 inch UltraSharp computer 

monitor (1920 × 1080 pixels) positioned at a viewing dis-

tance of 57 cm was used to display 38 reference circles. 

Participants matched the size of the afterimage they saw 

at a speciic viewing distance with one of these circles. 

The circles’ diameter ranged from 5.2 cm (5.2° of visual 

angle) to 19.4 cm (19.4° of visual angle) in increments of 

0.4 cm (0.4° of visual angle) (Fig. 1). The circles’ diam-

eter was selected to exceed the range of theoretical sizes 

of afterimages as speciied by Emmert’s law (Sperandio 

et al. 2013).

Fig. 1  The experimental set up. A The collapsible front board with 

the LEDs. B The movable back board. C The keyboard used to record 

the participant’s response. D The reference circles for the size-match-

ing task
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Procedure

The procedures for inducing and measuring afterimages 

are almost identical to those used previously by Sperandio 

et al. (2012, 2013). The participant sat in front of a table in 

a dimly lit room with their chin on a chin-rest. The height 

of the chin-rest was adjusted to align their line of sight with 

the centre of the LEDs. The experiment included 25 tri-

als (5 trials × 5 viewing distances). The order of trials was 

randomly generated by E-Prime. At the beginning of each 

trial, the experimenter placed the front board housing the 

inducing light in the upright position and the participant 

looked directly at the light with a steady gaze. Meanwhile, 

the experimenter received instructions via headphones 

regarding one of the ive possible viewing distances and 

placed the back board at the cued position. The light was 

then turned on for 200  ms to induce an afterimage. As 

soon as the light was turned of, an acoustic warning (i.e. 

a ‘beep’) was delivered to the experimenter through head-

phones to promptly fold the front board lat and reveal the 

back board. This allowed the participant to ‘project’ their 

afterimage onto the back board. Once the afterimage dis-

appeared completely, the participant pressed the space bar 

on the keyboard. Next, they performed the size-matching 

task, by choosing one of the reference circles presented on 

a monitor (Fig. 1D) that corresponded to the remembered 

size of the afterimage seen at a particular viewing dis-

tance. Finally, the participant judged the vividness of their 

afterimage on a scale from zero to nine with zero mean-

ing “no afterimage whatsoever” and nine meaning “a very 

vivid and clear afterimage, like a real stimulus”. Judgments 

of vividness were based on the remembered clarity of the 

afterimage seen at a speciic viewing distance. To enable 

the participant to familiarise themselves with the proce-

dures, a minimum of three practice trials were provided 

before testing began.

Data Analysis

We carried out all statistical analyses using SPSS (IBM 

Corporation; Armonk, New York, USA). Unless speciied 

otherwise, all reported p values were based on two-tailed 

criteria and corrected for multiple comparisons using the 

Bonferroni method (i.e. pcorr = puncorr × total number of 

comparisons; Dunn 1961). To examine the integrity of size 

constancy mechanisms, a measurement of theoretical size 

according to Emmert’s law was irst calculated using the 

following equation:

whereby the theoretical size (s) of the perceived afterim-

age was equal to the distance (d) the afterimage was viewed 

multiplied by the visual angle (tan, θ) subtended by the 

s = d × tan(�)

afterimage. After this was performed, a correlation between 

subjective ratings of perceived and theoretical size was car-

ried out and a linear regression analysis was performed to 

compute the slope.

Mean duration and mean vividness of the afterimages 

were also calculated. Pearson’s correlation coeicients (r) 

were calculated between each measure of the afterimage 

(i.e. size slope, duration, and vividness) and each of the 

quotient scores (i.e. AQ, EQ, and SQ), as well as between 

each of the AQ subscales. Finally, a median-split approach 

was used to compare each perceptual report of the afterim-

age (i.e. size slope, duration and vividness) between par-

ticipants with low versus high scores on the AQ, EQ, and 

SQ questionnaires. Results from this additional analysis are 

reported in Supplementary Materials.

Results

The distributions for AQ, EQ, and SQ are reported in 

Fig.  2. The AQ scores were distributed with a mean of 

19.85, a standard deviation of 8.02, and a range of 4–43. 

Such a distribution is typical for a non-clinical population 

(e.g. Ruzich et  al. 2015). The SQ scores were distributed 

with a mean of 38.45, a standard deviation of 14.12, and 

a range of 5–74. The EQ scores were distributed with a 

mean of 38.85, a standard deviation of 15.43, and a range 

of 5–73. Such distributions for both SQ and EQ are also 

typical for a non-clinical population (e.g. Groen et  al. 

2015). Pearson’s correlation revealed signiicant relation-

ships between each pair of questionnaires (all p < .001) in 

the expected direction: a positive correlation between AQ 

and SQ (r(92) = .55) and negative correlations between AQ 

and EQ (r(92) = −.64) as well as SQ and EQ (r(92) = −.39).

Relationship Between Autistic Traits and Size 

Constancy

To evaluate the extent to which the changes in afterimage 

size followed Emmert’s law (Emmert 1881), we irst cor-

related the subjective ratings of the size of the afterim-

ages with their predicted size for each viewing distance. 

Overall, participants’ estimates of perceived size closely 

followed Emmert’s law (M = 0.96, SD = 0.07). Only 5 

participants out of 106 (4.7%) did not show a signiicant 

relationship with Emmert’s law (see Figure S1 in Supple-

mentary Materials for examples of individual data). Then, 

we calculated the slope of the regression line. A slope of 

1 would indicate perfect size-distance scaling whereas a 

shallower or steeper slope would indicate less adherence to 

Emmert’s law. The slope values (M = 0.58, SD = 0.25) were 

then correlated with quotient scores (see Figure S2 in Sup-

plementary Materials). The correlation revealed that there 
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was no signiicant relationship between slope size and AQ 

(r(104) = −.001, puncorr = .99), SQ (r(92) = −.02, puncorr = .81), 

or EQ (r(92) = .14, puncorr = .17). In addition, the amount 

of deviation of the slope from perfect size constancy 

was computed for each participant as an absolute difer-

ence between the slope value and 1. The deviation values 

(M = 0.42, SD = 0.24) were then correlated with quotient 

scores. Once again, the correlation revealed that there 

was no signiicant relationship between slope size and AQ 

(r(104) = −.01, puncorr = .94), SQ (r(92) = .01, puncorr = .89), or 

EQ (r(92) = −.17, puncorr = .11). Therefore, the results show 

that size constancy is unafected by autistic traits (Fig. 3).

Relationship Between Autistic Traits and Afterimage 

Duration

The mean duration of the afterimage was correlated with 

AQ, SQ and EQ scores. Namely, the perceived duration of 

the afterimage correlated positively with AQ (r(104) = .25, 

puncorr = .01) and SQ (r(92) = .31, puncorr = .003) scores, and 

negatively with EQ (r(92) = −.38, puncorr < .001) scores. 

That is, the higher the degree of autistic traits, the longer 

the duration of the afterimage (Fig. 4).

To further investigate the relationship between after-

image duration and autistic traits, the perceived afterim-

age duration was correlated with scores from the diferent 

subcategories of the AQ. One-tailed criteria were applied 

given we had already demonstrated a positive correla-

tion with total AQ. Attention switching and communica-

tion were positively correlated with perceived afterimage 

duration (r(104) = .26, pcorr = .02; r(104) = .27, pcorr = .01, 

respectively) whereas social skill (r(104) = .16, pcorr = .3), 

attention to detail (r(104) = .13, pcorr = .46), and imagi-

nation (r(104) = .1, pcorr = .76) were not correlated with 

perceived afterimage duration. These indings indicate 

that those participants with higher autistic traits related 

to attention switching and communication experienced 

longer afterimages.

Fig. 2  Distributions for AQ (a), SQ (b), and EQ (c) scores. The x-axis corresponds to the scores while the y-axis corresponds to number of par-

ticipants. The solid lines denote Gaussian functions that best it each distribution
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Relationship Between Autistic Traits and Afterimage 

Vividness

All participants reported an afterimage on every trial. On 

average, afterimages were reliably perceived by the par-

ticipants (M = 5.43, SD = 2.77). Vividness did not corre-

late with AQ (r(104) = −.08, puncorr = .42), SQ (r(92) = .05, 

puncorr = .59), or EQ (r(92) = .03, puncorr = .79) score, sug-

gesting that the level of autistic traits did not afect the 

visibility of the afterimage (Fig. 5).

Relationship Between Afterimage Duration 

and Vividness

To verify if afterimage visibility afected perceived dura-

tion, vividness scores were correlated with duration. 

As it turned out, vividness did not correlate with dura-

tion (r(104) = .11, p = .25). We argue that the lack of rela-

tionship between these two perceptual attributes of the 

afterimage may be due to a reduced sensitivity in meas-

uring vividness. In fact, vividness ratings were exclu-

sively based on memory processes. This was not the 

case for afterimage duration. As a consequence, ratings 

Fig. 3  Correlations between deviation values and the AQ (a), 

SQ (b), and EQ (c) scores. The lack of association between devia-

tions and questionnaires’ scores indicate that size constancy mecha-

nisms are unafected by autistic traits. The x-axis corresponds to the 

scores while the y-axis corresponds to the absolute deviations from 

Emmert’s law. Pearson correlation coeicients (r) and the corre-

sponding p values (uncorrected) are reported in each panel
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of vividness were more subjective than judgments about 

duration.

Discussion

We characterised the efects of autistic traits in the gen-

eral population on size constancy and afterimage strength. 

The investigation of size constancy is timely in light of a 

recent account by Hellendoorn et  al. (2015). This theory 

attempts to explain a variety of autistic behaviours in terms 

of deicits in either the formation or application of invariant 

representations. These representations are critical for per-

ceiving an external world as stable and predictable regard-

less of changes in retinal input and promoting feelings of 

security. Based on the theory, one might expect that size 

constancy mechanisms would also be altered in those with 

higher autistic traits. In the ensuing discussion, we irst 

provide a summary of the present indings on the relation-

ships between autistic traits and size constancy as well as 

between autistic traits and afterimage strength (i.e. duration 

and vividness). Next, we discuss the possible link between 

hypersensitivity and autistic traits in the general population. 

Finally, we consider what factors might afect the perceived 

duration of an afterimage and suggest possible avenues for 

future research.

The Integrity of Emmert’s Law did not Vary 

as a Function of Autistic Traits

We assessed size constancy by means of afterimages 

viewed at diferent distances. Under these conditions, 

the perceived size of an afterimage changes linearly with 

Fig. 4  Correlations between the perceived duration of the afterim-

age and the AQ (a), SQ (b), and EQ (c) scores. The positive correla-

tions for AQ and SQ (a, b) and the negative correlation for EQ (c) 

show how individuals with elevated autistic tendencies experienced 

prolonged afterimages. The x-axis corresponds to the scores while the 

y-axis corresponds to the duration of the afterimages in ms. Pearson 

correlation coeicients (r) and the corresponding p values (uncor-

rected) are reported in each panel
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distance, as predicted by Emmert’s law (Emmert 1881). 

Contrary to what one might predict from Hellendoorn 

et al. (2015) theory, we did not observe any relationships 

between AQ, EQ or SQ score and size-distance scaling, 

suggesting that size constancy mechanisms are unafected 

by autistic traits. Therefore, our results demonstrate that 

size constancy, a basic perceptual mechanism that allows 

invariant representations of size, operates normally in 

those with higher degrees of autistic traits. To our knowl-

edge, the presence of this association has never been 

tested before.

Persistence of Afterimages Increased as a Function 

of Autistic Traits

We quantiied afterimage strength in terms of its duration 

and vividness. We predicted that those with higher autis-

tic traits would experience stronger afterimages, based on 

the evidence that many individuals on the autism spec-

trum are hypersensitive to light (O’Leary et  al. 1978; 

Attwood 1993; Schulman 1994; Williams 1994; Jones 

et  al. 2003; Benezech and Chapenoire 2005; Bluestone 

and Brenner 2007; Coulter 2009; Simmons et  al. 2009). 

Our results supported this prediction. The duration of the 

Fig. 5  Correlations between vividness and the AQ (a), SQ (b), and 

EQ (c) scores. The lack of correlations between vividness and ques-

tionnaires’ scores indicate that afterimage visibility is unafected by 

autistic traits. The x-axis corresponds to the scores while the y-axis 

corresponds to the vividness scores (range 0–9). Pearson correla-

tion coeicients (r) and the corresponding p values (uncorrected) are 

reported in each panel
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afterimage correlated positively with AQ and SQ, and 

correlated negatively with EQ. However, the results also 

revealed that autistic traits did not inluence the reported 

vividness of the afterimages. Such a inding is in agree-

ment with a recent study on colour adaptation to photo-

graphs of scenes by Maule et  al. (2016), where no dif-

ference in colour afterimage strength between those with 

autism and typical individuals was reported.

AQ Subscales and Afterimage Duration

The assessment of which speciic subscales within the 

AQ correlate with afterimage duration can provide insight 

into which cognitive aspects associated with autism may 

be directly related to the efects observed with overall 

AQ scores. The Attention Switching and Communication 

subscales of the AQ accounted for the prolonged duration 

of the afterimages.

To account for the former, we postulate that there 

might be a link between prolonged duration afterimages 

and diiculties in attention switching. Higher scores on 

the Attention Switching subscale mean greater perse-

veration, which is frequently reported in autism (Lan-

dry and Al-Taie 2016). As it turns out, the more a per-

son attends to an afterimage after it appears, the faster it 

will disappear (Lou 2001). In the present investigation, 

we instructed participants to irst attend to the inducing 

light and then project their afterimage to a back board. It 

is conceivable that attention would switch from this ixa-

tion light to an afterimage after it appears and that this 

switch in attention would be slower in people with higher 

scores on the Attention Switching subscale, prolonging 

the duration of the afterimages.

Indeed, abilities to shift attention are afected in autism. 

Landry and Parker (2013) systematically examined the lit-

erature on spatial shifts of attention in autism. Combining 

a total of 18 papers, their meta-analysis revealed that indi-

viduals with autism demonstrated a moderate impairment 

in spatial shifts of attention when compared to individuals 

without autism (Cohen’s d = 0.44). It could be the case that 

hypersentivity to sensory stimuli may hinder a person’s 

volition to shift towards these same stimuli. It is also con-

ceivable that this hindrance may have undesirable conse-

quences during development. Spatial shifting of orientation 

emerges in early infancy and is thought to be important for 

the development of communication (Johnson and De Haan 

2015). Delays in shifting attention, such as in autism, could 

therefore lead to delays in understanding language cues, 

exacerbating symptoms and problems in abilities to com-

municate, and contributing to life-long negative outcomes. 

This may explain why the Communication subscale of the 

AQ also correlated with afterimage duration.

Relationship Between Hypersensitivity and Autistic 

Traits in the General Population

Our results reveal how hypersensitivity to light, as indexed 

by the duration of afterimages, increases as a function of 

autistic traits. Sensory sensitivities, such as hypersensitiv-

ity to sensory input, have been found in autistic populations 

(for review see, Baum et  al. 2015) and now form part of 

the diagnostic criteria for autism spectrum disorder (APA 

2013). These sensory sensitivities have also been found in 

a sub-clinical autism population. For instance, Horder et al. 

(2014) have shown that autistic traits (in both a clinical and 

a sub-clinical population, n = 772) correlated positively 

with scores on the Glasgow Sensory Questionnaire (GSQ; 

Robertson and Simmons 2013), which measures abnormal 

sensory symptoms. Robertson and Simmons (2013) also 

found that those with higher autistic traits (as measured by 

the AQ) reported higher levels of sensory hypersensitivity 

(as measured by the GSQ), suggesting that individuals in 

the general population with higher levels of autistic traits 

are characterized by sensory hypersensitivities.

Retinal Explanations for Prolonged Afterimages

The photoreceptor cells in the retina (i.e. the rods and 

cones) require photochemical reactions of rhodopsin to 

properly transduce light energy into a neural signal. These 

photochemical changes occur every time the photoreceptor 

cells capture and convert light into a neural signal. When 

light stimulation reaches a certain point, the rhodopsin 

in the photoreceptor cells gets depleted and photorecep-

tors are no longer responsive to light until the rhodop-

sin has been restored. It is known that this photochemical 

bleaching plays a necessary role in the creation of afterim-

ages (e.g. Feinbloom 1938; Brindley 1962; Williams and 

Macleod 1979). Hence, possible explanations for the pro-

longed afterimages in individuals with higher levels of 

autistic traits could relate to various factors mediating the 

degree to which photoreceptor cells could get bleached 

such as (1) how levels of light entering the pupil is regu-

lated, and (2) how the oculomotor system regulates eye 

movements such that the same parts of the retina do not 

become over-stimulated.

Regarding the irst possibility, atypical pupillary light 

relex (PLR) has been observed in children with autism 

(Rubin 1961; Fan et  al. 2009; Daluwatte et  al. 2013) and 

their siblings (Nyström et  al. 2015), which some have 

argued could be used as a biomarker of autism. The PLR 

regulates the light lux that enters the eye to the retina, play-

ing a role similar to the aperture of a camera. When a lash 

of light is detected by the retina, the pupil will undergo 

an initial constriction and then recover once the lash is 

removed. Pupillometry studies in children with autism 
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have revealed slower pupillary constriction (Rubin 1961; 

Fan et al. 2009), longer PLR latency, reduced constriction 

amplitude (Fan et  al. 2009; Daluwatte et  al. 2013), and 

shorter constriction/re-dilation time (Daluwatte et al. 2013) 

in response to light compared to neurotypical controls. 

Abnormal PLR has been reported as a predictor of atypi-

cal sensory behaviours in children with autism (Daluwatte 

et al. 2015). Importantly, the perception of an afterimage is 

accompanied by pupillary activity that is modulated by the 

intensity and duration of the primary stimulus (Newsome 

1971; Alpern and Ohba 1972). Future investigations should 

examine if abnormal PLR can explain the persistent after-

images observed in those with high autistic traits.

Regarding the second possibility, previous research has 

shown that saccadic eye movements reduce retinotopic 

adaptation, generating shorter afterimages (Bachy and 

Zaidi 2014). Based on this assumption, along with the pre-

sent indings, it can be hypothesised that those with higher 

autistic-like traits might ixate better than those with lower 

autistic-like traits during the induction of the afterimage 

and thereby perceive a longer afterimage. Whilst there is 

evidence of elevated saccadic frequency in children with 

autism during and between visual tasks that do not require 

ixation (e.g. Kemner et al. 1998), participants in the pre-

sent study were asked to ixate their gaze at one location 

(i.e. the light). Interestingly, a recent study on ixation sta-

bility in adults with autism has shown diiculty in main-

taining steady gaze especially in the absence of a ixation 

target, providing evidence for abnormalities in ocular ixa-

tion control but only when there was no target (Shirama 

et al. 2016). It is also known that some people with autism 

sometimes stare at objects that interest them, blocking all 

else out of their attention. In the majority of these cases, the 

presence of staring episodes is not indicative of epilepsy or 

other comorbid neurological disorder (Hughes et al. 2015). 

Further investigation, measuring micro-saccades and pupil 

size during conditions of prolonged ixation, would be 

required to determine if an association exists between ixa-

tion stability and autistic traits and how this can afect the 

perceived duration of afterimages.

Post-retinal Explanations for Prolonged Afterimages

Although retinal adaptation is required to induce an after-

image, post-retinal factors also play an important role in 

afterimages. Indeed, it has been reported that afterim-

ages can be afected by higher cognitive operations, such 

as perceptual illing (Shimojo et al. 2001; van Lier et al. 

2009), attention (Suzuki and Grabowecky 2003; van Box-

tel et  al. 2010), awareness (van Boxtel et  al. 2010), and 

contextual integration (Sperandio et  al. 2012)—suggest-

ing cortical contributions to the perceptual phenomenon 

of afterimages. In an fMRI study, Sperandio, Chouinard 

and Goodale (2012) conirmed the importance of corti-

cal processing in the generation of afterimages by dem-

onstrating increases in both the magnitude and duration 

of the BOLD response in the primary visual cortex as a 

function of afterimage duration. This leads us to specu-

late that those with higher autistic traits might exhibit 

cortical hyper-excitability to light stimulation. However, 

further investigation is required.

Post-retinal processing is thought to be critical in 

explaining why afterimages are rarely experienced in eve-

ryday life, despite the fact that we are constantly exposed 

to stimuli that are bright enough to induce adaptation, 

such as staring at a computer screen or being exposed to 

bright lights while driving a car at night. According to 

one account, afterimages are ambiguous signals for the 

brain to process, which could be interpreted as being 

either a real object or a retinal artefact (i.e. an afterimage) 

(Powell et al. 2012). A contextual cue that the brain might 

use to resolve this problem is whether or not the stimulus 

remains ixed on the retina, given that real objects do not 

move with the eyes and if an object remains ixed on the 

retina then it must be an artefact of the eye (Powell et al. 

2015). This account may explain why saccadic eye move-

ments decrease afterimage duration as they may provide 

evidence against the afterimage being a real object (e.g. 

Fiorentini and Mazzantini 1965; Powell et  al. 2015). A 

number of studies demonstrate that typically developing 

individuals tend to show a perceptual style privileging 

local details over global integration as function of autistic 

traits (e.g. Sutherland and Crewther 2010). The present 

investigation shows how individuals with more autistic 

traits also tend to demonstrate persistence in afterim-

ages. It could be the case that afterimages are prolonged 

as a function of autistic traits because of co-varying dif-

ferences in the processing of contextual elements that 

should signal the brain to interpret the retinal noise as an 

afterimage as opposed to a real object.

Over the last few years a Bayesian account of autism 

to explain atypical sensory processing has started to gain 

considerable attention (e.g. Pellicano and Burr 2012; 

Lawson et  al. 2014; Sinha et  al. 2014; Rosenberg et  al. 

2015). Speciically, this theory proposes that what is dis-

rupted in autism is not the sensory processing itself, but 

the interpretation of the sensory input, whereby internal 

priors are under-weighted and less used. Following this 

logic, one could also explain the prolonged afterimages 

in individuals with higher autistic traits, as shown here, 

to occur as a result of weaker priors alerting the brain 

that the afterimage is not a real object and thus should 

be suppressed. Further investigation is necessary to better 

understand the neural mechanisms responsible for after-

image perception and their relationship with hypersensi-

tivity to light.
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Closing Remarks

Perceiving the world in a stable and predictable man-

ner is fundamental to day-to-day interactions with our 

surroundings and other people. Nevertheless, percep-

tual constancies in autism are still a neglected topic in 

the literature. Here, we show for the irst time that size 

constancy mechanisms, as assessed by afterimages, oper-

ate normally in individuals with higher levels of autistic 

traits. Another important conclusion to draw from the 

current study is that afterimage duration increases as a 

function of the continuum of autistic traits in the general 

population. The prolonged afterimages experienced by 

those with high levels of autistic traits might be linked to 

some of the sensory diiculties experienced by those with 

autism, speciically hypersensitivity to light. An impor-

tant limitation of the current investigation is that we did 

not include a measure of sensory sensitivity or abnor-

mal sensory experiences, such as the Sensory Perception 

Quotient (SPQ, Tavassoli et al. 2014), the Adult/Adoles-

cent Sensory Proile (AASP, Brown and Dunn 2002) and 

the Cardif Anomalous Perceptions Scale (CAPS, Bell 

et al. 2006), which would allow a more direct assessment 

of the relationship between afterimage perception and 

sensory hypersensitivity. Another fundamental limitation 

is that we did not test individuals with autism directly. 

Therefore, it is possible that repeating the same proce-

dures on this population might lead to diferent conclu-

sions. However, our approach ofers the clear advantage 

of controlling for confounding variables, including co-

morbid disorders, symptom severity, cognitive ability, 

and variable compliance, which make it diicult to carry 

out well-controlled visual psychophysical experiments in 

samples with autism, while reducing the risk of inducing 

unpleasant experiences from presenting bright lights in a 

population that is known to be hypersensitive to sensory 

stimulation. Finally, one may argue we had poor control 

over how we carried out the procedures for measuring 

afterimage duration in terms of timing. Although there 

is room for improvement (e.g. having everything auto-

mated robotically would ensure millisecond accuracy 

in terms of timing presentation and would conceivably 

reduce signal to noise ratio in the data), we simply did 

not have the resources to do this. Nevertheless, Speran-

dio, Chouinard and Goodale (2012) showed how almost 

identical procedures for measuring afterimage duration 

can explain >80% variability in the fMRI activation in 

the primary visual cortex—demonstrating how the proce-

dures we used here were certainly sensitive and power-

ful enough for detecting an efect should an efect exist. 

Furthermore, the present investigation demonstrated that 

afterimage duration did in fact correlate with AQ, EQ, 

and SQ. We would not have obtained these results had 

our procedures not been sensitive enough.

Acknowledgments The authors wish to thank M. Sperandio and D. 

Vendramini for devising and building the equipment, H. Miller and 

S. Avery for collecting some of the data, S. Unwin for the appara-

tus illustration and G. Powell for providing valuable insights with 

the interpretations of our results. This research was supported by a 

La Trobe University Understanding Diseases Research Focus Areas 

award to P.A.C and I.S. The authors declare no competing inancial 

interests.

Author Contributions All authors contributed to the statistical 

analyses and the preparation of the manuscript. IS and KLU collected 

the data. IS, OL and PAC conceived and designed the experiment. IS 

programmed the experiment.

Funding This study was funded by a La Trobe University Under-

standing Diseases Research Focus Areas award to P.A.C and I.S.

Compliance with Ethical Standards 

Conlict of interest The authors declare that they have no conlict 

of interest.

Ethical Approval All procedures performed in studies involving 

human participants were in accordance with the ethical standards of 

the institutional and/or national research committee and with the 1964 

Helsinki declaration and its later amendments or comparable ethical 

standards.

Informed Consent Informed consent was obtained from all indi-

vidual participants included in the study.

Open Access This article is distributed under the terms of the 

Creative Commons Attribution 4.0 International License (http://

creativecommons.org/licenses/by/4.0/), which permits unrestricted 

use, distribution, and reproduction in any medium, provided you give 

appropriate credit to the original author(s) and the source, provide a 

link to the Creative Commons license, and indicate if changes were 

made.

References

Alpen, M., & Barr, L. (1962). Duration of the after-images of brief 

light lashes and the theory of the Broca and Sulzer phenome-

non. Journal of the Optical Society of America, 52, 219–221.

Alpern, M., & Ohba, N. (1972). The efect of bleaching and back-

grounds on pupil size. Vision Research, 12(5), 943–951.

American Psychiatric Association (2013). Diagnostic and statistical 

manual of mental disorders (5th ed.). Arlington, VA: American 

Psychiatric Publishing.

Attwood, T. (1993). Why does Chris do that? London: The National 

Autistic Society.

Bachy, R., & Zaidi, Q. (2014). Factors governing the speed of color 

adaptation in foveal versus peripheral vision. Journal of the 

Optical Society of America, 31(4), 220–225.

Bailey, A., Le Couteur, A., Gottesman, I., Bolton, P., Simonof, E., 

Yuzda, E., & Rutter, M. (1995). Autism as a strongly genetic dis-

order: Evidence from a British twin study. Psychological Medi-

cine, 25(1), 63–77.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


 J Autism Dev Disord

1 3

Baron-Cohen, S., & Hammer, J. (1997). Parents of children with 

Asperger syndrome: What is the cognitive phenotype? Journal 

of Cognitive Neuroscience, 9(4), 548–554.

Baron-Cohen, S., & Wheelwright, S. (2004). The empathy quo-

tient: An investigation of adults with asperger syndrome of 

high functioning autism and normal sex diferences. Journal of 

Autism and Developmental Disorders, 34(2), 163–175.

Baron-Cohen, S., Richler, J., Bisarya, D., Gurunathan, N., & 

Wheelwright, S. (2003). The systemizing quotient: An inves-

tigation of adults with asperger syndrome or highfunctioning 

autism, and normal sex diferences. Journal of Autism and 

Developmental Disorders, 34(2), 163–175.

Baron-Cohen, S., Wheelwright, S., Skinner, R., Martin, J., & Clu-

bley, E. (2001). The autism spectrum quotient (AQ): Evidence 

from Asperger syndrome/high-functioning Autism, males and 

females, scientists and mathematicians. Journal of Autism and 

Developmental Disorders, 31, 5–17.

Baum, S. H., Stevenson, R. A., & Wallace, M. T. (2015). Behavio-

ral, perceptual, and neural alterations in sensory and multisen-

sory function in autism spectrum disorder. Progress in Neuro-

biology, 134, 140–160.

Bayliss, A., & Tipper, S. P. (2005). Gaze and arrow cueing of atten-

tion reveals individual diferences along the autism spectrum 

as a function of target context. British Journal of Psychology, 

96, 95–114.

Bell, V., Halligan, P. W., & Ellis, H. D. (2006). The Cardif anoma-

lous perceptions scale (CAPS): A new validated measure of 

anomalous perceptual experience. Schizophrenia Bulletin, 

32(2), 366–377.

Benezech, M., & Chapenoire, S. (2005). Lycanthropy: Wolf-men 

and werewolves. Acta Psychiatrica Scandinavica, 111(1), 79.

Bluestone, J., & Brenner, L. (2007). The churkendose anthology. 

Seattle, WA: Sapphire Enterprises.

Bölte, S., & Poustka, F. (2006). The broader cognitive phenotype of 

autism in parents: how speciic is the tendency for local pro-

cessing and executive dysfunction? Journal Child Psychology 

and Psychiatry, 47(6), 639–645.

Brindley, G. S. (1962). Two new properties of foveal after-images 

and a photochemical hypothesis to explain them. Journal of 

Physiology, 164, 168–179.

Brown, C., & Dunn, W. (2002). Adult/adolescent sensory profile: 

User’s manual. San Antonio: Psychological Corporation.

Chouinard, P. A., Noulty, W. A., Sperandio, I., & Landry, O. 

(2013). Global processing during the Muller-Lyer illusion 

is distinctively afected by the degree of autistic traits in the 

typical population. Experimental Brain Research, 230(2), 

219–231.

Chouinard, P. A., Unwin, K., Landry, O., & Sperandio, I. (2016). Sus-

ceptibility to optical illusions varies as a function of the autism-

spectrum quotient but not necessarily in ways predicted by local-

global biases. Journal of Autism and Developmental Disorders, 

46(6), 2224–2239.

Coulter, R. (2009). Understanding the visual symptoms of individu-

als with autism spectrum disorder (ASD). Journal of Optometric 

Vision Development, 40(3), 164–175.

Daluwatte, C., Miles, J. H., Christ, S. E., Beversdorf, D. Q., Taka-

hashi, T. N., & Yao, G. (2013). Atypical pupillary light relex 

and heart rate variability in children with autism spectrum dis-

order. Journal of Autism and Developmental Disorders, 43, 

1910–1925.

Daluwatte, C., Miles, J. H., Sun, J., & Yao, G. (2015). Association 

between pupillary light relex and sensory behaviors in children 

with autism spectrum disorders. Research in Developmental Dis-

abilities, 37, 209–215.

Dunn, O. J. (1961). Multiple comparisons among means. Journal of 

the American Statistical Association, 56, 52–64.

Dunn, W. (1997). The impact of sensory processing abilities on the 

daily lives of young children and their families: A conceptual 

model. Infants and Young Children, 9(4), 23–35.

Emmert, E. (1881). Größenverhältnisse der Nachbilder. Klinische 

Monatsblätter für Augenheilkunde und für augenärztliche Fort-

bildung, 19, 443–450.

Fan, X., Miles, J. H., Takahashi, N., & Yao, G. (2009). Abnormal 

transient pupillary light relex in individuals with autism spec-

trum disorders. Journal of Autism and Developmental Disorders, 

39, 1499–1508.

Feinbloom, W. (1938). A quantitative study of the visual afterimage. 

Archives of Scientific Psychology, 33, 233.

Fiorentini, A., & Mazzantini, L. (1965). Inhibition of after-images 

due to voluntary eye movements. Atti della Fondazione Giorgio 

Ronchi, 20(3), 307–320.

Frith, U., & Happé, F. (1994). Autism: Beyond “theory of mind”. 

Cognition, 50(1–3), 115–132.

Granit, R., Hohenthal, T., & Uoti, A. (1930). On the latency of nega-

tive after-images in relation to brightness of stimulus. Acta Oph-

thalmologica, 8, 137–154.

Groen, Y., Fuermaier, A. B., Den Heijer, A. E., Tucha, O., & Althaus, 

M. (2015). The empathy and systemizing quotient: The psycho-

metric properties of the Dutch version and a review of the cross-

cultural stability. Journal of Autism and Developmental Disor-

ders, 45(9), 2848–2864.

Happe, F., Briskman, J., & Frith, U. (2001). Exploring the cognitive 

phenotype of autism: Weak “central coherence” in parents and 

siblings of children with autism: I. Experimental tests. Journal of 

Child Psychology and Psychiatry, 42(3), 299–307.

Happé, F., & Frith, U. (2006). The weak central coherence account: 

Detail-focused cognitive style in autism spectrum disorders. 

Journal of Autism and Developmental Disorders, 36(1), 5–25.

Hellendoorn, A., Wijnroks, L., & Leseman, P. (2015). Unravelling the 

nature of autism: Finding order amid change. Frontiers in Psy-

chology, 6, 1–16.

Horder, J., Wilson, C., Mandez, M., & Murphy, D. (2014). Autistic 

traits and abnormal sensory experiences in adults. Journal of 

Autism and Developmental Disorders, 44(6), 1461–1469.

Hudson, M., Nijboer, T. C., & Jellema, T. (2012). Implicit social 

learning in relation to autistic-like traits. Journal of Autism and 

Developmental Disorders, 42(12), 2534–2545.

Hughes, R., Poon, W. Y., & Harvey, A. S. (2015). Limited role for 

routine EEG in the assessment of staring in children with autism 

spectrum disorder. Archives of Disease in Childhood, 100(1), 

30–33.

Johnson, M., & De Haan, M. (2015). Developmental cognitive neu-

roscience: An introduction (4th  ed.). West Sussex: Wiley 

Blackwell.

Jones, R., Quigney, C., & Huws, J. (2003). First-hand accounts of 

sensory perceptual experiences in autism: A qualitative analy-

sis. Journal of Intellectual and Developmental Disability, 28(2), 

112–121.

Kanner, L. (1943). Autistic disturbance of afective contact. Nervous 

Child, 2, 217–250.

Kemner, C., Verbaten, M. N., Cuperus, J. M., Camferman, G., & 

van Engeland, H. (1998). Abnormal saccadic eye movements in 

autistic children. Journal of Autism and Developmental Disor-

ders, 28, 61–67.

Landry, O., & Al-Taie, S. (2016). A meta-analysis of the Wisconsin 

Card Sort Task in autism. Journal of Autism and Developmental 

Disorders, 46(4), 1220–1235.

Landry, O., & Chouinard, P. A. (2016). Why we should study the 

broader autism phenotype in typically developing populations. 

Journal of Cognition and Development, 17(4), 584–595.

Landry, O., & Parker, A. (2013). A meta-analysis of visual orienting 

in autism. Frontiers in Human Neuroscience, 7, 1–12.



J Autism Dev Disord 

1 3

Lawson, R. P., Rees, G., & Friston, K. J. (2014). An aberrant preci-

sion account of autism. Frontiers in Human Neuroscience, 8, 

1–10.

Lou, L. (2001). Efects of voluntary attention on structured afterim-

ages. Perception, 30, 1439–1448.

Maule, J., Stanworth, K., Pellicano, E., & Franklin, A. (2016). Color 

afterimages in autistic adults. Journal of Autism and Develop-

mental Disorders. doi:10.1007/s10803-016-2786-5.

Mottron, L., & Burack, J. A. (2001). Enhanced perceptual function-

ing in the development of autism. In J. A. Burack, T. Charman, 

N. Yirmiya & P. R. Zelazo (Eds.), The development of autism: 

Perspectives from theory and research (pp. 131–148). Mahwah, 

NJ: Erlbaum.

Mottron, L., Dawson, M., Soulieres, I., Hubert, B., & Burack, J. 

(2006). Enhanced perceptual functioning in autism: An update 

and eight principles of autistic perception. Journal of Autism and 

Developmental Disorders, 36(1), 27–43.

Nagamata, H. (1951). Contribution to the knowledge of after-images. 

Acta Societatis Ophthalmologicae Japonicae, 55, 802–806.

Newsome, D. A. (1971). Afterimage and pupillary activity following 

strong light exposure. Vision Research, 11(3), 275–288.

Nyström, P., Gredebäck, G., Bölte, S., Falck-Ytter, T., & EASE team. 

(2015). Hypersensitive pupillary light relex in infants at risk for 

autism. Molecular Autism, 6(10), 1–6.

O’Leary, K., Rosenbaum, A., & Hughes, P. (1978). Fluorescent light-

ing: A purposed source of hyperactive behaviour. Journal of 

Abnormal Child Psychology, 6, 285–289.

Palermo, M. T., Pasqualetti, P., Barbati, G., Intelligente, F., & Rossini, 

P. M. (2006). Recognition of schematic facial displays of emo-

tion in parents of children with autism. Autism: The Interna-

tional Journal of Research and Practice, 10(4), 353–364.

Pellicano, E., & Burr, D. (2012). When the world becomes ‘too real’: 

A Bayesian explanation of autistic perception. Trends in Cogni-

tive Science, 16, 504–510.

Piven, J. (2001). The broad autism phenotype: A complete commen-

tary strategy for molecular genetic studies of autism. American 

Journal of Medical Genetics, 105, 34–35.

Powell, G., Bompas, A., & Sumner, P. (2012). Making the incredible 

credible: Afterimages are modulated by contextual edges more 

than real stimuli. Journal of Vision, 12(10), 1–13.

Powell, G., Sumner, P., & Bompas, A. (2015). The efect of eye move-

ments and blinks on afterimage appearance and duration. Jour-

nal of Vision, 15(3), 1–15.

Robertson, A. E., & Simmons, D. R. (2013). The relationship between 

sensory sensitivity and autistic traits in the general popula-

tion. Journal of Autism and Developmental Disorders, 43(4), 

775–784.

Ropar, D., & Mitchell, P. (2002). Shape constancy in autism: The role 

of prior knowledge and perspective cues. Journal of Child Psy-

chology and Psychiatry, 43(5), 647–653.

Rosenberg, A., Patterson, J. S., & Angelaki, D. E. (2015). A computa-

tional perspective on autism. Proceedings of the National Acad-

emy of Sciences, 112, 9158–9165.

Rubin, L. S. (1961). Patterns of pupillary dilatation and constriction 

in psychotic adults and autistic children. Journal of Nervous and 

Mental Disease, 133, 130–142.

Ruser, T. F., Arin, D., Dowd, M., Putnam, S., Winklosky, B., Rosen-

Sheidley, B., … Folstein, S. (2007). Communicative competence 

in parents of children with autism and parents of children with 

speciic language impairment. Journal of Autism and Develop-

mental Disorders, 37(7), 1323–1336.

Ruzich, E., Allison, C., Smith, P., Watson, P., Auyeung, B., Ring, H., 

& Baron-Cohen, S. (2015). Measuring autistic traits in the gen-

eral population: A systematic review of the Autism-Spectrum 

Quotient (AQ) in a nonclinical population sample of 6900 typi-

cal adult males and females. Molecular Autism, 6(2), 1–12.

Schulman, R. (1994). Optometry’s role in the treatment of autism. 

Journal of Optometric Vision Development, 25, 259–268.

Shimojo, S., Kamitani, Y., & Nishida, S. (2001). Afterimage of per-

ceptually illed-in surface. Science, 293, 1677–1680.

Shirama, A., Kanai, C., Kato, N., & Kashino, M. (2016). Ocular ixa-

tion abnormality in patients with autism spectrum disorder. Jour-

nal of Autism and Developmental Disorders, 46(5), 1613–1622.

Simmons, D. R., Robertson, A. E., McKay, L. S., Toal, E., McAleer, 

P., & Pollick, F. E. (2009). Vision in autism spectrum disorders. 

Vision Research, 49, 2705–2739.

Sinha, P., Kjelgaard, M., Gandhi, T., Tsourides, K., Cardinaux, A., 

Pantazis, D., … Held, R. (2014). Autism as a disorder of pre-

diction. Proceedings of the National Academy of Sciences, 111, 

15220–15225.

Sperandio, I., & Chouinard, P. (2015). The mechanisms of size con-

stancy. Multisensory Research, 28, 252–283.

Sperandio, I., Chouinard, P. A., & Goodale, M. (2012). Retinotopic 

activity in V1 relects the perceived and not the retinal size of an 

afterimage. Nature Neuroscience, 15(4), 540–542.

Sperandio, I., Kaderali, S., Chouinard, P., Frey, J., & Goodale, M. 

(2013). Perceived size change induced by non-visual signals in 

darkness: The relative contribution of vergence and propriocep-

tion. Journal of Neuroscience, 33(43), 16915–16923.

Sperandio, I., Lak, A., & Goodale, M. A. (2012). Afterimage size is 

modulated by size-contrast illusions. Journal of Vision, 12(2), 

1–10.

Sucksmith, E., Roth, I., & Hoekstra, R. A. (2011). Autistic traits 

below the clinical threshold: Re-examining the broader autism 

phenotype in the 21st century. Neuropsychological Review, 

21(4), 360–389.

Sutherland, A., & Crewther, D. P. (2010). Magnocellular visual 

evoked potential delay with high autism spectrum quotient yields 

a neural mechanism for altered perception. Brain: A Journal of 

Neurology, 133(7), 2089–2097.

Suzuki, S., & Grabowecky, M. (2003). Attention during adaptation 

weakens negative afterimages. Journal of Experimental Psychol-

ogy: Human Perception and Performance, 29, 793–807.

Tavassoli, T., Hoekstra, R., & Baron-Cohen, S. (2014). The sensory 

perception quotient (SPQ): Development and validation of a new 

sensory questionnaire for adults with and without autism. Molec-

ular Autism, 5, 29.

van Boxtel, J. J., Tsuchiya, N., & Koch, C. (2010). Opposing efects 

of attention and consciousness on afterimages. Proceedings of 

the National Academy of Sciences of the United States of Amer-

ica, 107, 8883–8888.

van Lier, R., Vergeer, M., & Anstis, S. (2009). Filling-in afterimage 

colors between the lines. Current Biology, 19, 323–324.

Whitehouse, A. J., Barry, J. G., & Bishop, D. V. (2007). The broader 

language phenotype of autism: A comparison with speciic lan-

guage impairment. Journal of Child Psychology and Psychiatry, 

48(8), 822–830.

Williams, D. (1994). Somebody somewhere: Breaking free from the 

world of autism. New York, NY: Three Rivers Press.

Williams, D. R., & Macleod, D. I. A. (1979). Interchangeable back-

grounds for cone afterimages. Vision Research, 19(8), 867–877.

Wing, L. (1996). The autistic spectrum. London: Constable Press.

http://dx.doi.org/10.1007/s10803-016-2786-5

	Size Constancy is Preserved but Afterimages are Prolonged in Typical Individuals with Higher Degrees of Self-Reported Autistic Traits
	Abstract 
	Introduction
	Methods
	Participants
	Trait Questionnaires
	Apparatus
	Procedure
	Data Analysis

	Results
	Relationship Between Autistic Traits and Size Constancy
	Relationship Between Autistic Traits and Afterimage Duration
	Relationship Between Autistic Traits and Afterimage Vividness
	Relationship Between Afterimage Duration and Vividness

	Discussion
	The Integrity of Emmert’s Law did not Vary as a Function of Autistic Traits
	Persistence of Afterimages Increased as a Function of Autistic Traits
	AQ Subscales and Afterimage Duration
	Relationship Between Hypersensitivity and Autistic Traits in the General Population
	Retinal Explanations for Prolonged Afterimages
	Post-retinal Explanations for Prolonged Afterimages
	Closing Remarks

	Acknowledgments 
	References


