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Abstract 

The human gastrointestinal (GI) tract is host to a dynamic community of 1013-1014 bacteria, 

which mainly reside in the colonic lumen and outer mucus layer covering the GI tract. Mucins 

are decorated in a diverse array of O-glycans, providing nutrients and attachment sites for 

microbes. Dysbiosis of the microbiota, and alterations in mucin glycosylation have been 

associated with Inflammatory Bowel Disease (IBD). However, the causal relationship 

between these two factors remains unclear. Here, we employed a multidisciplinary approach 

to address this relationship, and the molecular mechanisms mediating these changes. 

Mucosal lavages and biopsies obtained from the sigmoid and ascending colon of patients 

were used to assess alterations in the mucosal microbiota and the glycosylation of associated 

mucus in ulcerative colitis (UC) patients. Secondly, in vitro growth assays and gnotobiotic 

mouse experiments were performed to investigate the reciprocal role of mucin-degrading 

bacteria in the modulation of mucin O-glycosylation.  

These analyses highlighted inter-patient variability, but a similar microbial composition 

between colonic sites. In contrast, mucin glycosylation and the expression of 

glycosyltransferases was regio-specific. In UC, changes in the abundances of bacterial groups, 

including a decrease in the A. muciniphila to R. gnavus ratio were apparent. UC mucins 

displayed a decrease in fucosylation, increase in sialylation, and a decrease in many complex 

glycan structures found in abundance in controls. In vitro growth assays suggested that UC-

like mucin glycosylation impaired A. muciniphila growth, whilst R. gnavus remained 

unaffected, potentially explaining changes in these species in UC. Furthermore, gnotobiotic 

mouse experiments showed that A. muciniphila and R. gnavus were able to remodel mucin 

glycosylation.   

Our findings suggest a multifactorial dysregulation at the epithelial interface in IBD, where 

mucus-associated microbiota and mucin glycosylation are interdependent. It is likely that an 

initial disruption in either of these components drives alterations in other mucosal 

constituents, propagating disease and exacerbating inflammation.  
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 Introduction 

 Overview of the human gastrointestinal tract 

 General structure and function 

The gastrointestinal (GI) tract comprises a system of organs facilitating a number of crucial 

human functions, including the digestion of food and extraction of energy, absorption of 

nutrients, water and electrolyte balance, hormone production and excretion of remaining 

waste (Sansonetti, 2004). The GI tract is divided into two anatomically distinct parts; the 

upper tract (mouth, pharynx, oesophagus, stomach and duodenum) and the lower tract 

(small intestine, SI; large intestine or colon and anus) (Fig. 1). The morphology of each organ 

is highly specialised to carry out a unique function. For example, the stomach is important 

for its role in the chemical breakdown of the food bolus, whereas the SI is responsible for 

nutrient absorption, and the colon for absorption of salts and water from undigested food 

(Adibi, 1976; Sandle, 1998). 

 

  

b) Lower GI Tract 

Small intestine 

Colon 

Anus 

a) Upper GI Tract 

Mouth 

Oesophagus 

Pharynx 

Duodenum 
Stomach 

Figure 1| Anatomy of the human GI tract 

Schematic representation of the upper (a) and lower (b) GI tract with its constituents 
 
(Servier Medical Art, 2016)  
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The many segments of the GI tract form a surface area of between 250 and 400 m2, 

representing one of the primary and largest interfaces between the host, environmental 

factors and antigens in the human body. Approximately 60 tonnes of food are expected to 

be ingested and pass through the GI tract in a life time, bringing with it a wealth of 

microorganisms from the environment which impose a huge threat on gut integrity 

(Bengmark, 1998). To protect from insult and preserve homeostasis, the GI tract limits 

exposure of the host immune system to luminal contents through the employment of a 

multifactorial and dynamic intestinal barrier (Fig. 2). This barrier is comprised of several 

integrated and interactive components that are physical (the epithelium and mucus), 

biochemical (enzymes, anti-microbial proteins), immunological (IgA and epithelia-associated 

immune cells), and microbial (commensal microbes; i.e. microbiota) in nature (Fig. 2b-c) 

(Hooper and Macpherson, 2010), as further described below. 

Mucosa 
Submucosa 

Muscularis 

Serosa 
Lumen 

a) Gut wall 

Commensal 
bacteria 

Antimicrobial 
peptides 

Villus 

Mucus 
layer 

Goblet 
cells 

Paneth cells 

Crypt 

Epithelial cells 

b) Small Intestine 

Stem cells 

Colonic Crypt 

c) Colon 

Epithelial 
cells 

Goblet 
cells 

Inner Mucus layer 

Outer Mucus layer 

Commensal 
bacteria 

Figure 2| Structure of the intestinal wall 

(a) Section of the GI tract with layers indicated. From the luminal compartment outwards: 
mucosa, submucosa, muscle layer, and serosa. Schematic diagrams of (b) Small intestinal, 
and (c) colonic cell walls showing elements of the intestinal barrier. 
 

(Servier Medical Art, 2016) 
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 The intestinal epithelium 

A critical contributor to the physical barrier in the gut is the intestinal epithelium, which 

forms part of a layer, known as the mucosa, in the gut wall (Fig. 2a). At the innermost surface, 

the mucosa is a dynamic and rapidly self-renewed layer composed of the epithelium, lamina 

propria (LP) (connective tissue that is rich in capillaries and containing a central lymph vessel) 

and muscularis mucosae (smooth muscle that maintains gentle agitation of gut contents 

through the GI tract). The epithelium is comprised of a variety of cell types with different 

functional properties, which are sealed by tight junctions to form a relatively impenetrable 

shield to microbes (Fig. 2b-c) (Marchiando et al., 2011). The distribution and organisation of 

these cells helps to maintain a specific barrier function within each organ.  

In the SI, the surface area is vastly increased by the formation of finger-like projections called 

villi and invaginations, known as the Crypts of Lieberkuhn (Fig. 2b). Proliferation and 

differentiation of multipotent stem cells that are concentrated near the base of the crypts 

provide a rapid and continual epithelial cell turnover in these structures.  (Barker et al., 2008; 

Garrett et al., 2010; Marshman et al., 2002; Sancho et al., 2003). The process is similar in the 

mucosa of the colon, except for the absence of villi, which results in terminally differentiated 

cells being shed from the surfaces around the mouths of crypts (Crosnier et al., 2006). 

Migrating cells are destined to become one of three main cell types: absorptive enterocytes, 

mucus secreting goblet cells and hormone secreting enteroendocrine cells (Crosnier et al., 

2006). The villi of the SI are mainly populated by absorptive enterocytes which facilitate the 

absorption of nutrients through the epithelium by virtue of their highly folded brush border 

and release of a cocktail of hydrolytic enzymes (Barker et al., 2008). In contrast, the colonic 

epithelium is populated by a high proportion of goblet cells (Barker et al., 2008). The process 

of migration upwards replaces terminally differentiated cells that are shed from the villus 

tips into the lumen. Hence cells are disseminated along the length of the crypt-villus axes, 

and consequently, the position along the length of the axes is an indication of cell age 

(Marshman et al., 2002). Exceptionally, a fourth cell type, Paneth cells, produced only in the 

SI, migrate downwards and reside at the base of the crypts, for 3-6 weeks (Barker et al., 2008; 

Sancho et al., 2003). The Paneth cells are responsible for the secretion of anti-microbial 

agents such as cryptdins and defensins, and are therefore important in shaping the microbial 

community and maintaining homeostasis (Crosnier et al., 2006; Sancho et al., 2003). 

In contrast to Paneth cells, intestinal epithelial cells, having undergone up to six rounds of 

division while migrating up the villus, are replaced by cell shedding every 5-7 days in mice 
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(Marshman et al., 2002). Specifically in the SI, it is estimated that approximately 1400 

epithelial cells are shed from a single villus tip every 24 hours (h) (Potten, 1990; Williams et 

al., 2015). In humans, is estimated that 1011 cells are lost from the SI per day (Williams et al., 

2015). This rapid shedding and renewal of the epithelium leaves gaps where junctional 

integrity and paracellular permeability may be compromised, presenting a challenge for the 

maintenance of barrier function. Loss of barrier function has been associated with conditions 

such as inflammatory bowel disease (IBD), due to augmented epithelial permeability (Garrett 

et al., 2010; Schulzke et al., 2009; Watson et al., 2009). A delicate balance between cell 

shedding and cell proliferation is therefore vital to prevent disease. 

 

 The GI mucus layer 

 Structure and organisation of GI mucus 

Mucus is produced as a lining in all bodily tissues that are exposed to the external 

environment, including the eyes, respiratory system and reproductive organs (Bansil and 

Turner, 2006). Throughout the GI tract, a mucus layer is secreted by epithelial goblet cells. 

The mucus is a water-insoluble, biochemically complex gel made up of large molecular 

weight proteins known as mucins, many of which are known to have been conserved from 

early metazoan species (Lang et al., 2007).  In addition to mucins, the intestinal mucus layer 

comprises lipids, electrolytes, hydrolases, antimicrobial peptides, immunoglobulins and 

many other noxious agents (See section 1.2.3) (Antoni et al., 2013; Atuma et al., 2001; Juge, 

2012). 

Studies of mucus properties are hampered by its biological complexity and high water 

content (~98%). The mucus is easily lost during tissue sampling and handling, and the use of 

fixatives to perform histological techniques can cause dehydration resulting in the collapse 

of the mucus layer (Cohen et al., 2012; Hansson, 2012). However, in a pioneering study in 

2001, Atuma and collaborators (coll.) founded an in vivo method allowing the thickness of 

rat intestinal mucus to be measured. This showed that the thickness of mucus is variable 

between regions of the GI tract. Of six regions studied, the measurements ranged from ≈830 

µm in the colon, where it was at its thickest, to ≈123 µm in the jejunum, at its thinnest (Atuma 

et al., 2001). Similar variability has since been shown ex vivo in the mouse intestine (Ermund 

et al., 2013; Gustafsson et al., 2012b). In humans, the colonic mucus thickness is estimated 

to be 450 µm ± 70 µm (Gustafsson et al., 2012b). 
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In addition to regional variations in thickness, the organisation of GI mucus is also variable 

throughout the GI tract. In the SI there is a single, unattached and loose layer (Ermund et al., 

2013). In contrast, in the colon, mucus is divided into two distinct layers, an inner, densely 

packed and impermeable layer and a loose outer coating (Atuma et al., 2001; Ermund et al., 

2013). Various studies with different animal models and systems of measuring mucus have 

shown that the outer layer in the colon can be easily aspirated leaving just the inner mucus 

layer intact. Following removal, the outer layer was replenished over 60-90 minutes (min) 

(Atuma et al., 2001; Gustafsson et al., 2012b; Johansson et al., 2008). In contrast, the small 

intestinal mucus was patchier and in some places could be removed almost completely. The 

replenishment of this layer was slower or did not occur at all (Atuma et al., 2001; Gustafsson 

et al., 2012b; Johansson et al., 2008). Using tissue explants of mouse intestine, it was shown 

that whilst the mucus of the SI was fully penetrable by bacteria-sized beads, the inner layer 

of mucus in the colon was either completely or partially impenetrable (Ermund et al., 2013). 

This arrangement of mucus supports the individual functions of these GI regions, in the SI 

providing a permeable lining which permits the absorption of food derived nutrients and 

development of the immune system, and in the colon maintaining a physical separation of 

the epithelium from luminal threats such as microorganisms (Ermund et al., 2013; Johansson 

et al., 2013a). Another degree of variation is due to the composition of mucus along the GI 

tract (See below). 

 Mucus composition 

 Mucin proteins 

The mucin family includes up to 20 known high molecular weight and heterogeneous 

glycoproteins which are comprised of around 70% carbohydrate (Corfield, 2015; Linden et 

al., 2008). Each mucin has a tissue or cell specific pattern and can be classified into one of 

two groups, secreted (gel-forming), or adherent to (transmembrane) the epithelium 

(Johansson et al., 2013b). Gel forming mucins in the GI tract include MUC2, MUC5AC, MUC5B 

and MUC6 which are encoded by the chromosome locus 11p15.5 (Table 1) (Derrien et al., 

2010). They are secreted onto the mucosal surface where they form homo-oligomeric 

networks which are viscoelastic in nature and comprise the largest glycoproteins in the body. 

MUC2 is the predominant secreted mucin in the SI and colon and the main component of 

the inner and outer mucus layers (Corfield, 2015; Johansson et al., 2011b; Kesimer et al., 

2010). The secreted mucins play an important role of mediating the host relationship with 

the gut microbiota (See sections 1.2.2.3 and 1.2.5.2). In contrast, transmembrane mucins are 
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typically monomeric proteins firmly tethered to the epithelial surface. These mucins are a 

major contributor to a layer known as the glycocalyx, a dense impermeable barrier residing 

below the two intestinal mucus layers (Johansson et al., 2011b; Sheng et al., 2012). The 

transmembrane mucins have a dual function, involved in cell recognition and adhesion as 

well as signal transduction to the underlying epithelia. Mucins belonging to this group in the 

GI tract include MUC1, MUC3A, MUC3B, MUC4, MUC12, MUC13, MUC15 and MUC17 

(Table 1) (Derrien et al., 2010; Juge, 2012).  

 

Type MUC Gene Tissue localization  

Membrane MUC1 Stomach, duodenum, colon 

  MUC3A/B Goblet and absorptive cells; Jejunum, ileum and colon; small 
intestinal columnar cells and surface colonic epithelium 

  MUC4 Stomach and colon 

  MUC12 Stomach, small intestine and colon 

  MUC13 Small intestine and colon 

  MUC15 Small intestine and colon 

  MUC17 Stomach, small intestine (highest expression in duodenum) 
and colon (transverse) 

  MUC20 Colon  

  MUC21 Colon 

Secreted MUC2 Small intestine (jejunum and ileum) and colon; Goblet cells of 
small intestine and colon 

  

MUC5AC Stomach 

  

MUC5B Colon (weakly expressed) 

  

MUC6 Stomach (glands), duodenum (Brunner glands) 

Table 1| Human membrane-bound and secreted mucins in the GI tract 

Table adapted from Tailford et al., 2015 
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 Biosynthesis and molecular properties of mucins 

- Transmembrane mucins 

There are 11 known genes encoding the transmembrane mucins that are present on the 

surface of epithelial cells in a wide variety of mucosal sites (Corfield, 2015). The most 

ubiquitously expressed transmembrane mucin, MUC1, has been extensively studied, and its 

structure well characterised (Fig. 3). At the N-terminus is an extracellular subunit containing 

a signal peptide and a variable number tandem repeat (VNTR) domain, which contains 

varying numbers of a 20-amino acid motif. This repeat sequence is dominated by proline, 

threonine and serine (PTS) residues which are heavily O-glycosylated. Sometimes likened to 

the bristles on a bottle brush, the O-glycan side chains confer a rigid and extended structure 

upon the mucin molecule in two ways: i) by spatially blocking movement around the peptide 

bonds on the protein backbone and ii) by repulsion between the negative charges on the 

O-glycans themselves. As a result, the extracellular domain is expected to be around 

200-500 nm in length, and towers above the cell surface. This extended structure also 

endows the mucin molecules with a high water holding capacity generating a large volume 

that acts as a barrier to luminal contents (Gendler et al., 1990; Perez-Vilar and Hill, 1999; 

Shirazi et al., 2000). 

At the C terminal end of the extracellular domain close to the cell membrane is a sea-urchin-

sperm protein-enterokinase-agrin (SEA) domain, which is shared by all transmembrane 

mucins, except for MUC4. The SEA domain contains a serine (Ser) residue which is auto-

catalytically cleaved during synthesis to form a non-covalent association between the 

extracellular and transmembrane domain (Fig. 3). More importantly, the extracellular 

domain can be shed from the surface, a process which is proposed to occur either via a 

second distinct cleavage at this site or by shear forces physically separating the two domains  

(Linden et al., 2008; Macao et al., 2006; Palmai-Pallag et al., 2005). This shedding may allow 

the mucin proteins to act as detachable decoy ligands for bacterial adhesins, particularly as 

mucins are decorated with many of the same oligosaccharides that can be found on the 

epithelial surface. An example of this has been shown in the case of Helicobacter pylori 

infection, where interactions between MUC1 and blood group Ag-binding adhesin (BabA) or 

sialic acid-binding adhesin (SabA) are suggested to prevent attachment of the pathogen to 

the epithelial surface (Linden et al., 2009). In further support of this, the expression of cell-

surface mucins is most diverse in regions of the body where the risk of infection is highest, 

including the eyes, respiratory tract and GI tract, providing an advantage in the protection 

against a range of potential pathogens (Linden et al., 2008). Following the SEA domain is a 
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membrane-spanning region that anchors the mucin to the cell and a cytoplasmic tail, which 

is rich in Ser and threonine (Thr) residues. These residues are implicated in signal 

transduction, acting as docking sites which can sense the environment through association 

with signalling factors, such as P53 tumour suppressor protein and β-catenin, a protein 

involved in the Wnt signalling pathway. A series of post-translational modifications 

(e.g. phosphorylation) then transmit these signals into the cell (Johansson et al., 2011b; Juge, 

2012; Lillehoj et al., 2004; Singh and Hollingsworth, 2006).  

- Gel-forming mucins 

Studies of the biosynthesis of full length mucins are limited by the difficulty in generating full 

length recombinant mucin proteins. Alternative approaches have therefore concentrated on 

developing shorter domain constructs, leading to increased knowledge about the functional 

roles of the mucin domains (Backstrom et al., 2013). Studies of gel-forming mucin structure 

have primarily focussed on MUC2. Unlike cell-surface mucins, MUC2, as well as other 

secretory mucins such as MUC5AC and MUC6 do not contain SEA or transmembrane 

domains (Dekker et al., 2002). These mucins contain a number of cysteine rich regions 

dispersed throughout the protein, which are not found in MUC1 (Fig. 3). The remaining 

features of gel-forming mucins are remarkably similar to MUC1. For example, MUC2 contains 

a large protein backbone of ~200-500 kilo daltons (kDa), at the centre of which are two VNTR 

domains divided by a cysteine rich region. The sequence, number and length of the smaller 

VNTR domain appears to be less conserved than the larger domain, which contains a 

repeated 23-amino acid motif.  Alike the cell-surface mucins more than 60% of the VNTR 

sequence is comprised of proline, Thr and Ser residues. The PTS domains are decorated in 

O-glycans, and the addition of sialic acid and sulphate residues to these glycans results in a 

highly negative surface charge generating a stiff ‘bottle brush’ conformation (Fig. 3) (Asker 

et al., 1995; Bansil and Turner, 2006; Perez-Vilar and Hill, 1999; Shirazi et al., 2000). At the 

N- and C-terminals of the backbone, and occasionally interspersed between the PTS repeats 

are the cysteine rich (>10%), sparsely glycosylated regions which possess sequence similarity 

to domains such as C-terminal cysteine knot domains, von Willebrand factor (vWF) C and D 

domains and CysD domains. The terminal cysteine regions are involved in the polymerisation 

of mucin via the formation of disulphide bonds, resulting in dimerisation and trimerisation 

of mucin monomers (Asker et al., 1995; Godl et al., 2002). This process has been confirmed 

by visualisation using transmission electron microscopy (TEM) and atomic force microscopy 

(AFM), showing that the mucins form long fibres of varying lengths (ocular mucins: 

200-600 nm, sometimes reaching 1500 nm, bronchial mucins: 300-2500 nm) (Mikkelsen et 
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al., 1985; Round et al., 2002). Further confirmation of these bonds was obtained by the 

addition of a reducing agent resulting in chemical cleavage accompanied by a reduction in 

the molecular weight (Bansil and Turner, 2006; Perez-Vilar and Hill, 1999).  On the other 

hand, the CysD domains, located amongst the PTS repeats, have been proposed to form 

additional non-covalent cross-links within the mucin gel thereby establishing the pore size of 

the mucus. These bonds are not affected by the addition of reducing agent (Ambort et al., 

2011).  

 

The process for MUC2 secretion is well characterized (Fig. 4). Alike the other gel-forming 

mucins, MUC2 is produced and stored in goblet cells (Cornick et al., 2015). After translation, 

MUC2 peptide chains are translocated to the lumen of the endoplasmic reticulum (ER) where 

they fold and are dimerized at the C-terminus via the cysteine knot domains (Asker et al., 

1995; Lidell et al., 2003). The mucin dimers are then heavily O-glycosylated in the Golgi and 

packaged into secretory vesicles ready for polymerization at the N-terminus D3 domain to 

form disulphide bonded trimers (Asker et al., 1998; Godl et al., 2002). Further cross-linkage 

of MUC2 polymers via both covalent and non-covalent mechanisms aids the formation of 

the well stratified polymeric network upon which both outer and inner mucus layers are 

organised. These cross-linkages include non-covalent bonds between the CysD domains, as 

Figure 3| Monomeric structures of MUC1 (transmembrane) and MUC2 (gel-forming) 

mucins. 

The PTS domains belonging to MUC1 and MUC2 are indicated in light and dark blue 
respectively. MUC1 contains a SEA-domain, shown in black, which can be cleaved by 
autoproteolysis. In contrast, MUC2 contains C- and N-terminal and interspersed cysteine rich 
regions shown in green, yellow and orange respectively (Dekker et al., 2002; Linden et al., 
2008).  
 

Figure adapted from Dekker et al., 2002. 
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mentioned above, as well as covalent cross-linking between cleaved vWF D domains and a 

protein present in mucus known as immunoglobulin G Fc-gamma binding protein (Fcgbp) 

(Ambort et al., 2011; Johansson et al., 2009). Whilst fully glycosylated monomeric MUC2 is 

estimated to be approximately 2.5 mega daltons (MDa) in size, polymerized mucin may reach 

sizes in excess of 100 MDa (Johansson et al., 2011a). 

Packaging of mucins occurs in the secretory vesicles at a pH of 6.2 and in the presence of 

calcium (Gustafsson et al., 2012a). Packaged MUC2 is formed of concatenated rings 

comprised of five or six repeating units. These rings are maintained in a condensed structure 

by noncovalent interactions between trimers at the N-terminal region (Ambort et al., 2012b). 

Each ring contains three C-terminal disulphide linked dimers, and a single N-terminal 

disulphide linked trimer (Fig. 4). Electron microscopy and 3D maps of the N-terminal D3 

domains revealed cage-like structures with 2- and 3-fold symmetries, confirming that the 

MUC2 mucin forms branched net-like structures (Nilsson et al., 2014). Furthermore, MUC2 

appears to be packaged as two N-terminal concatenated ring platforms which are turned by 

180° against each other, suggesting that every other MUC2 in unfolded mature mucus is 

turned upside down (Nilsson et al., 2014).  The structures are unfolded and flattened upon 

an increase in pH and removal of calcium ions generating a 1000-fold rapid expansion and a 

net-like structure (Fig. 4) (Ambort et al., 2012a; Ambort et al., 2012b). Appropriate unfolding 

of mucin is dependent on functional bicarbonate and chloride channels, the lack of which 

appears to link cystic fibrosis with its mucus phenotype (Gustafsson et al., 2012a). 

Furthermore, detachment of small intestinal mucus from the cell surface is dependent on 

cleavage at the N-terminal region of MUC2 by a host-encoded metalloprotease, meprin-β 

(Schutte et al., 2014). This process is dependent not only on exposure of the N-terminus via 

bicarbonate-mediated mucin unfolding, but also on microbial-induced cleavage of meprin-β 

from the cell membrane, as demonstrated by the lack of mucin detachment in germ-free 

mice (Schutte et al., 2014). 

Similarly, in the colon, conversion of the inner mucus layer, to the outer loose layer is likely 

to be mediated by commensal bacterial proteases. It is proposed that this conversion occurs 

through continual proteolytic cleavage events within the MUC2 polymers (Johansson et al., 

2008). Whilst these events are expected to have a large impact on the structure and 

properties of mucus, they do not necessarily disrupt the polymeric network (Ambort et al., 

2012a). The cleavage events are responsible for a fourfold expansion in volume that converts 

the mucus from the dense, and insoluble inner layer (Fig. 4) (e.g. in vitro in chaotrophic salts, 
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such as guanidium chloride, GuCl) to the outer loose layer that is readily solubilized. This 

expansion also allows infiltration of the outer mucus layer by bacteria, whilst the inner layer 

remains impenetrable. This arrangement into two layers allows a physical separation of 

microbes from the underlying epithelia, which is critical to maintaining homeostasis in the 

gut (Ambort et al., 2012b; Johansson et al., 2011a; Johansson et al., 2011b).  

 

  

Figure 4| Biosynthesis and secretion of polymeric MUC2 

Figure adapted from Johansson et al., 2011a. 
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 Mucin glycosylation 

Mucins are decorated by a rich and diverse repertoire of O-glycans that are concentrated in 

the PTS regions. The glycans protect the mucin backbone from degradation by proteases and 

facilitate the gel-like structure of mucus by providing a high water holding capacity (Larsson 

et al., 2013). Aside from these physical functions, it is proposed that mucin O-glycosylation 

plays an essential biological role in the gut by providing a habitat for commensal organisms. 

Variation in mucin O-glycosylation occurs both between different species and along the GI 

tract (See below) (Mastrodonato et al., 2012; Robbe et al., 2004). It is believed that many 

bacteria can adapt to the host mucosal environment by expressing cell-surface adhesins, 

such as lectins which they use to anchor themselves to the mucus (Erdem et al., 2007; Etzold 

et al., 2014; Juge, 2012; Roos and Jonsson, 2002; Tasteyre et al., 2001). In addition, mucin 

glycans can provide nutrients to bacteria which have adapted to the mucosal environment 

(Tailford et al., 2015b).  

Initiation of mucin O-glycosylation occurs through the addition of an N-acetylgalactosamine 

(GalNAc) residue to the hydroxyl group of Ser or Thr residues within the PTS domains, 

forming the Tn antigen (GalNAc-O-Ser/Thr) (Fig. 5). In humans, this reaction can be carried 

out by one of 20 different peptidyl-GalNAc-transferases, each of which has a unique acceptor 

peptide substrate specificity (Bennett et al., 2012; Johansson et al., 2011b). The Tn antigen 

acts as a substrate for downstream glycosylation events which are also catalysed by the 

sequential action of further glycosyltransferases. Firstly, the addition of a number of other 

residues occurs to form one of several core structures (Bergstrom and Xia, 2013). To date, a 

total of 8 core structures have been identified, with cores 1 to 4 being the most abundant in 

the human gut (Fig. 5). The core structure generated is directly influential in the downstream 

glycosylation pathway, and therefore the biological function of mucins in different tissues is 

reliant on the glycosyltransferases expressed (Bennett et al., 2012; Brockhausen, 1999).  

Commonly, the Tn antigen is extended to form the core 3 structure (GlcNAcβ1→3GalNAcα-

O-Ser/Thr) by the addition of a N-acetylglucosamine (GlcNAc) residue, catalysed by the 

enzyme core 3 β1,3 N-acetylglucosaminyltransferase (C3GnT) (Fig. 5). Core 3 is expressed 

only in specific tissues, including the GI tract and the salivary glands, and is the major core 

structure found in human MUC2 (An et al., 2007; Robbe et al., 2004). Additionally, the Tn 

antigen can be extended by the addition of a Gal via the action of a core 1 

β1,3-galactosyltransferase (C1GalT1) to form the core 1 structure (Galβ1 → 3GalNAcα-

O-Ser/Thr) (Fig. 5) (Fu et al., 2011). The action of C1GalT1 is dependent on the function of a 
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chaperone known as Cosmc (Ju and Cummings, 2002), which helps to promote C1GalT1 

stability and is essential for correct glycosylation of mucins, demonstrated by the lethality of 

its deletion in mice (Wang et al., 2010). A lack of C1GalT1 or of functional Cosmc can lead to 

the increased expression of Tn antigen or of its sialylated version, Sialyl-Tn (STn), which is 

generated by the α2-6 linkage of sialic acid to Tn via the action of a sialyltransferase known 

as ST6GalNAc-I (Fig. 5) (Marcos et al., 2004). An over-expression of ST6GalNAc-I is associated 

with observed increases in STn expression in breast tumours (Sewell et al., 2006). 

Furthermore, ST6GalNAc-I is overexpressed in intestinal metaplasia and associated with STn 

(Marcos et al., 2011). It is suggested that the overexpression of ST6GalNAc-I facilitates the 

increased abundance of STn by outcompeting other glycosyltransferases (Julien et al., 2012). 

After the formation of the core structure, the glycan chains are further elongated through 

addition of repeating units of type 1 or type 2 N-acetyllactosamine (LacNAc) to variable 

lengths, forming a backbone region. Most commonly, type 2 repeated poly-N-

acetyllactosamine chains are formed through the action of 

β1,3-acetylglucosaminyltransferases and β1,4-galactosyltransferases (Fig. 5) (Brockhausen, 

1999). 

Finally, the backbone is terminated by a variety of units, including D-galactose (Gal), sialic 

acid and L-fucose (Fuc) (Juge, 2012). These terminal epitopes show substantial variation and 

provide a large source of glycan diversity (Tailford et al., 2015a). The expression of terminal 

ABO histo-blood group antigens in mucin glycans is determined by the secretor status 

(expression of an α1,2-fucosyltransferase (FUT2) gene) of the host, and provides one source 

of variation between individuals (Rausch et al., 2011; Tailford et al., 2015b). Further factors 

adding to this diversity includes the ability of glycans to be added in a linear or branched 

manner, and in a structure from 1 up to 20 residues long. MUC2 of the human sigmoid colon 

presents over 100 different complex oligosaccharides including mono-, di- and tri-sialylated, 

accounting for 80% of total mucin mass (Larsson et al., 2009). This large repertoire of O-

glycan diversity is thought to be critical in maintaining a high bacterial binding capacity (Arike 

and Hansson, 2016). 
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Mucin glycosylation is highly heterogeneous, with a regio-specific pattern at different 

mucosal surfaces throughout the body (Corfield, 2015; Linden et al., 2008). This 

phenomenon is also known to occur within different regions of the GI tract. In blood group 

matched individuals, it has been observed that there is a decreasing gradient of Fuc and an 

increasing acidic gradient in human intestinal mucins from ileum to rectum. The gradient of 

sialic acid was found to be accompanied by varying degrees of O-acetylation, with the level 

being especially high in the rectum (Robbe et al., 2003). The decreasing gradient of Fuc 

reflects the increased abundance of ABO histo-blood group antigens in the proximal intestine 

(Larsson et al., 2013). In addition, it was shown that the abundance of core structures was 

variable between different regions of the GI tract. For example, in the human SI, glycans were 

abundant in Fuc and these were predominantly formed from core 4 structures, whereas core 

2 carrying sulpho-Lewisx were mainly found in the distal colon (Robbe et al., 2004). 

Figure 5| Glycan core structures and glycosyltransferases involved in GI mucin 

glycosylation 
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Interestingly, in mice, the opposing gradients can be observed, with sialylation being 

dominant in ileum, jejunum and duodenum, but fucosylation being greater in the colon 

(Larsson et al., 2013). These species specific patterns in glycosylation may play an important 

role in selecting for the most functionally beneficial microbiota within specific regions of the 

GI tract (Larsson et al., 2013). Glycosylation gradients are not present in the foetus, 

suggesting they are acquired after birth due to alterations in the expression of 

glycosyltransferases (Robbe-Masselot et al., 2009). These changes in glycosylation patterns 

are accompanied by alterations in the abundance of gut microbes, suggesting that the 

glycans contribute to the selection of the GI mucus-associated microbiota (Rokhsefat et al., 

2016). 

Whilst data suggest heterogeneity between tissues, it appears that O-glycosylation patterns 

in the colon are relatively conserved between individuals. Using a sensitive nano-liquid 

chromatography/mass spectrometry (LC/MS) approach, it was shown that the structure and 

abundance of O-glycans from mucins purified from sigmoid colonic biopsies were relatively 

similar between 25 patients. This conserved pattern was characterised by predominantly 

sialylated and/or sulfated core 3 glycans (Larsson et al., 2009). In the gastric mucosa, 

however, it has been observed that mucin glycans always carry antigens relating to the blood 

group of the individual (Rossez et al., 2012). It is proposed that the homogeneity seen 

between colonic mucin glycans from different individuals allows for the selection of a ‘core’ 

microbiota. Organ to organ, and species to species variation in mucin glycosylation is 

suggested to provide a selective landscape that supports the most mutually beneficial 

relationship between host and bacteria (Johansson et al., 2011a). The type of mucin O-

glycosylation is dependent on the glycosyltransferases expressed and where in the golgi 

apparatus they are located (Arike and Hansson, 2016). The contribution of host genetics to 

the selection of the gut microbiota is supported by the fact that, following transplantation 

with microbiota from a zebrafish, germ-free mice select for and adjust their colon microbiota 

to that more typical of wild type mice (Fig. 6) (Rawls et al., 2006).  
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However, it is important to note that this is a bi-directional phenomenon as gut commensal 

bacteria have the ability to remodel the mucin glycan epitopes to their advantage. For 

example, Ruminococcus gnavus E1 was shown to be able to significantly induce the 

expression of glycosyltransferases and mucins in the mucosa of mono-associated mice. 

Specifically, R. gnavus colonisation led to a significant increase in the expression of ST6Gal-I, 

C1GalT1, Muc1 and Muc2 (Graziani et al., 2016). In the SI of germ-free mice, Bacteroides 

thetaiotaomicron, an abundant member of the commensal flora, is capable of increasing the 

expression of Fuc, and specifically Fucα1,2Gal- containing glycans (Hooper et al., 1999). 

Furthermore, a soluble factor secreted by B. thetaiotaomicron is able to increase the 

galactosylation of the mucus-producing intestinal cell line HT29-methotrexate (HT29-MTX) 

(Freitas et al., 2001). Varyukhina and coll. observed decreases in cell-surface sialic acid and 

α-linked mannose/Fuc upon incubation of HT29-MTX cells with B. thetaiotaomicron spent 

culture media, as well as increased expression of galactosyltransferases. It was therefore 

suggested that the decrease in sialic acid, mannose and Fuc was due to masking of these 

residues by the increased expression of Gal (Varyukhina et al., 2012). The spent media of a 

specific strain of Lactobacillus casei DN-114 001 is also capable of increasing cell surface 

galactosylation as well as sialic acid, whilst decreasing GalNAc expression (Freitas et al., 

2003). In addition, cultures of HT29-MTX cells which had been incubated with spent media 

with B. thetaiotaomicron and L. casei were resistant to infection by rotavirus (Varyukhina et 

Figure 6| Diagram depicting transplantation of microbiota between conventionally and 

germ-free raised mice and zebrafish 

Figure adapted from McFall-Ngai, 2006.  
(Servier Medical Art, 2016)  
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al., 2012). It is proposed that alterations to mucin glycosylation, such as those described 

above affect the ability of other commensals or pathogens to colonise, potentially giving 

some commensal species a competitive advantage in the gut (Freitas et al., 2001). 

 Other mucus components 

Mucus is also an important reservoir of other non-mucin proteins in the GI tract. Studies of 

GI mucus from mice revealed a proteome consisting of ~1,300 proteins, which whilst similar 

in repertoire throughout the GI tract, displays significant quantitative variation between 

intestinal sites (Rodriguez-Pineiro et al., 2013). Amongst the proteins associated with the GI 

mucus are antimicrobials, including angiogenin 4, α-defensins, cathelicidins, collectins, 

histatins, lipopolysaccharide (LPS)-binding protein, lysozymes, secretory phospholipase A2, 

and lectins such as REGIIIα/γ, which are produced primarily by Paneth cells (McGuckin et al., 

2011). The importance of antimicrobials such as these has been shown patients with ileal 

Crohn’s disease (CD), who exhibit reduced mucosal α-defensin expression (Wehkamp et al., 

2004; Wehkamp et al., 2005). Antimicrobial proteins appear to be localised to the mucus 

layer, and are virtually absent from the lumen, probably either due to poor diffusion through 

the mucus layer or luminal degradation (Hooper and Macpherson, 2010; Meyer-Hoffert et 

al., 2008). Retention of antimicrobials can be mediated through direct interactions with the 

mucin proteins. For example, in the saliva both MUC5B and MUC7 form complexes with 

histatins and statherins (Bruno et al., 2005; Iontcheva et al., 1997). Many of the antimicrobial 

proteins secreted into mucus kill bacteria through direct interaction with, and disruption of 

the bacterial cell wall or inner membrane via enzymatic attack  (Hooper and Macpherson, 

2010).  

Another component of the intestinal mucus is the secretory antibody, SIgA (McGuckin et al., 

2011). SIgA has been shown to co-localise with gut bacteria in the outer mucus layer (Rogier 

et al., 2014). Whilst SIgA assists in limiting the exposure of the epithelial cell surface to 

bacteria, Rogier and coll. showed that it was not essential for excluding bacteria from the 

inner mucus layer, whilst Muc2 was (Rogier et al., 2014). Rather, SIgA may be important in 

shaping the composition of the gut microbiome (Rogier et al., 2014). In particular, in the 

outer mucus layer SIgA is proposed to mediate bacterial biofilm formation via binding to SIgA 

receptors on bacteria (Bollinger et al., 2003). In IgA-deficient individuals the expression of 

these receptors by bacteria is lower (Friman et al., 1996). Dysbiosis of the microbiota, in 

particular an overrepresentation of segmented filamentous bacteria (SFB) occurs in mice 

deficient in IgA, an effect that may be particularly damaging to the host due to the ability of 



36 

SFB to strongly adhere to the epithelium and activate the immune system (Suzuki et al., 

2004). 

 Mechanisms of mucus regulation 

Mucins are constitutively expressed in order to renew the mucus layer, which is subject to 

constant degradation by luminal bacteria (McGuckin et al., 2011). However, a range of host, 

bacterial and environmental derived stimuli are capable of regulating the synthesis and 

release of mucin, generating a dynamic mucosal barrier (McGuckin et al., 2011).  

At the host level, infection at the mucosal surface can stimulate the rapid exocytosis of 

mucins stored in granules to enhance the mucus barrier. The NOD-like receptor family pyrin 

domain containing 6 (NLRP6) inflammasome is essential in orchestrating this process, and 

deficiency in the NLRP6 protein results in an impaired mucin secretion, mucus layer 

formation, increased bacterial-epithelial contact and increased susceptibility to infection 

(Wlodarska et al., 2014). Furthermore, a large number of host cells, including immune and 

epithelial cells secrete bioactive molecules known as cytokines, upon stimulation by 

pathogen associated molecular patterns (PAMPs). T helper type 1 (Th1) cytokines, generally 

involved in immunity at the cellular level, and type 2 (Th2), which participate in humoral 

immune responses, have been implicated in the modulation of mucin production 

(Andrianifahanana et al., 2006; Smirnova et al., 2001). Amongst the Th1 cytokines, tumour 

necrosis factor (TNF)-α has been the main cytokine shown to regulate mucin production in 

intestinal models (induction of MUC5AC and MUC5B secretion). The main Th2 cytokines 

which regulate mucin production include interleukins IL-4 and IL-13 (upregulation of MUC2 

and MUC5AC gene expression), IL-6 (upregulation of MUC2, MUC5B and MUC6 gene 

expression) and IL-22 (upregulation of MUC1, MUC3, MUC10 and MUC13 gene expression) 

(Enss et al., 2000; Iwashita et al., 2003; Sugimoto et al., 2008). IL-10, a further Th2 cytokine, 

is involved in the modulation and maintenance of the mucus layer. Knockdown of IL-10 

results in ER stress, misfolding of Muc2 and spontaneous intestinal inflammation, 

characteristic features of IBD (Hasnain et al., 2012). Generally, the modulation of mucin 

expression by cytokines occurs via the janus kinase/signal transducers and activators of 

transcription (JAK/STAT) pathway through the dimerisation and translocation of STAT to the 

nucleus where it regulates transcription (Theodoropoulos and Carraway, 2007). 

In addition to shaping mucin glycosylation (See section 1.2.2.3), commensal bacteria can 

regulate the expression of mucins. For example, the commensal species Akkermansia 

muciniphila stimulates mucin synthesis, facilitating turnover of mucins and enhancing barrier 
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function (Derrien et al., 2016). In contrast, pathogenic bacteria and their products can alter 

mucin expression in order to facilitate invasion of host tissue. The gastric ulcer-causing 

bacterium, H. pylori is capable of modulating not only mucin expression but also mucin 

properties to provide itself with an advantage in the gastric environment. In the colonic 

goblet cell line HT29-CL.16E, H. pylori resulted in significant inhibition of mucus exocytosis 

from granules (Micots et al., 1993). In addition, the bacterium can alter the pH and 

viscoelastic properties of the mucus layer allowing improved mobility through the mucus 

layer (Celli et al., 2009). Furthermore, purified bacterial products such as LPS and flagellin 

have been shown to regulate mucins by inducing expression through the Ras pathway, 

leading to enhanced mucin transcription (McNamara and Basbaum, 2001; Smirnova et al., 

2003; Theodoropoulos and Carraway, 2007). The ability of bacteria to modulate mucus 

thickness has been demonstrated in germ-free mice, where the inner adherent mucus layer, 

which is usually thin in comparison to conventionalized mice can be restored upon 

stimulation by bacterial products such as LPS or peptidoglycan (Petersson et al., 2011). In 

addition, short chain fatty acids (SCFAs) produced by bacterial fermentation in the colon are 

proposed to influence mucin expression. In a number of different colonic cell lines, it has 

been demonstrated that the SCFA, butyrate, is capable of modifying the production of 

several different mucins including MUC2, MUC3, MUC5AC and MUC5B (Burger-van Paassen 

et al., 2009; Gaudier et al., 2004; Hatayama et al., 2007). 

 Functional role of mucus in the GI tract 

 Mucus as a physical barrier 

Mucus has traditionally been recognised for its physical function to act as a lubricant 

facilitating, for example, the low-friction passage of solids in the intestine. This property is 

primarily mediated by hydrophobic interactions between phospholipids at the mucus 

surface, and the luminal contents (Gibson and Muir, 2005).  

Another important function for mucus is its role as a protective barrier. In the stomach and 

duodenum, the mucus layer is responsible for protecting the epithelium from damage 

through contact with the harsh and acidic luminal environment. This is proposed to occur 

through the secretion and trapping of bicarbonate by the stable, inner mucus layer at the 

cell surface (Allen and Flemstrom, 2005). This results in the generation of a neutral pH at the 

epithelium, and multiple lines of evidence support the presence of a pH gradient across the 

mucus layer (Flemstrom and Kivilaakso, 1983; Kivilaakso and Flemstrom, 1984; Quigley and 

Turnberg, 1987; Williams and Turnberg, 1981). In the SI and colon, mucus aids in the physical 
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separation of luminal contents from the epithelium, acting as a critical contributor to the 

innate immune system. The mucus in these regions acts as a reservoir for antimicrobial 

proteins, such as defensins, cathelicidins and lysozyme (See section 1.2.3) (Antoni et al., 

2013). RegIIIγ, a C-type lectin that is produced by Paneth cells in the SI specifically targets 

gram-positive bacteria and is essential in maintaining a ~50 µm zone separating gut 

microbiota from the SI surface epithelium (Vaishnava et al., 2011). In the colon, the 

protective role of mucus is demonstrated by the impenetrability of the inner layer to beads 

the size of bacteria. In mice, fluorescently labelled beads were maintained at a distance of 

~200 µm from the epithelium by this inner layer (Ermund et al., 2013). This stratification of 

the mucus was also observed in humans, where the fluorescent beads were maintained at a 

distance of ~400 µm from the epithelium in colonic biopsies (Johansson et al., 2013a). Mice 

deficient in Muc2 were observed to develop signs of colitis at 5 weeks of age (Van der Sluis 

et al., 2006). This suggests that Muc2 deficiency results in a breach in the gut barrier, 

exposing the epithelium to contact with bacteria (Van der Sluis et al., 2006).  A similar pattern 

has been observed in ulcerative colitis (UC) patients, where the inner mucus layer is 

penetrable to beads the size of bacteria (Johansson et al., 2013a). Furthermore, in patients 

with inflamed mucosa, mucus thickness has been shown to be depleted, accompanied by 

bacterial-epithelial adherence and an increase in leucocytes (Swidsinski et al., 2007). 

However, it is becoming increasingly evident that mucus also plays a critical biological role 

(in addition to the physical properties) in shaping the gut environment. 

 Mucus as a biological habitat 

Mucus is vital in mediating a relationship with gut commensal bacteria, allowing the 

beneficial properties of the microbiota, such as protection against pathogens, to be 

harvested, and helping to maintain gut homeostasis. This biological role is less well 

understood and has only become a focus of research in the last ten years. As discussed 

previously (See sections 1.2.1 and 1.2.2.3), the colonic mucus is divided into two layers and 

the outer layer with its expanded volume allows bacteria to penetrate. The glycan rich mucus 

provides an energy source and preferential binding sites for the commensals (Johansson et 

al., 2011a; Juge, 2012; Tailford et al., 2015a). The presence of bacteria in the outer mucus 

layer was first supported in mice using FISH staining (Johansson et al., 2008). A recent study 

using 16S sequencing showed that the outer mucus layer harboured a unique niche in which 

bacterial species display different patterns of proliferation and utilisation of resources 

compared to their counterparts in the lumen (Li et al., 2015). This study highlighted the role 

of the mucus layer for providing binding sites for commensal bacteria. The composition of 
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the mucus is likely to be key in mediating this special relationship as it allows for the selection 

of the most optimal microbial species to mediate functions such as the competitive exclusion 

of pathogens and modulation of the immune system (See section 1.2.2.3) (Arpaia et al., 2013; 

Furusawa et al., 2013; Zarepour et al., 2013). It is believed that mucin-degrading bacteria are 

keystone species of this habitat (See section 1.4.2.2) (Tailford et al., 2015a). 

 Mucus as an immune mediator 

As well as the role of mucus in hosting immune components, there is evidence to suggest 

that mucus secreting goblet cells and mucins can also shape the immune system. Recently, 

goblet cell-associated antigen passages (GAPs) were identified as a novel mechanism by 

which small soluble luminal antigens (< 70 kDa) could be delivered to CD103+ LP dendritic 

cells (DCs) (McDole et al., 2012; Miller et al., 2014). In the SI, GAP formation is regulated by 

level of production of acetylcholine (Knoop et al., 2015). On the other hand, in the colon, 

GAP formation is regulated by responsiveness of goblet cells to acetylcholine, mediated 

through myeloid differentiation primary response gene 88 (Myd88)-dependent microbial 

sensing (Knoop et al., 2015). GAP formation also appears to be associated with the type of 

goblet cell mucus secretion. For example, GAP formation does not occur during cholera 

toxin-induced secretion, where goblet cells secrete via primary exocytosis (Knoop et al., 

2015). This indicates that antigen delivery to the immune system may be prevented in 

unfavourable conditions, whilst still maintaining the mucus barrier (Knoop et al., 2015). In 

terms of mucin proteins themselves, in the SI, it has been demonstrated that MUC2 can 

deliver immunomodulatory signals to DCs and intestinal epithelial cells, conditioning their 

responses towards gut microbiota, and inducing tolerance (Shan et al., 2013). Furthermore, 

in Muc2 -/- mice, gavage of MUC2 enhanced tolerance to dextran sulfate sodium (DSS) 

administration (Shan et al., 2013). Mucus and epithelial cell interaction with the immune 

system was recently reviewed by Pelaseyed and coll. (Pelaseyed et al., 2014). However, our 

understanding of the role of mucus in shaping the immune system is still in its infancy and is 

currently under further investigation. 
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 The GI microbiota 

Humans are colonised by a dynamic community of microorganisms, covering all three 

domains of life: bacteria, archaea and eukarya. This collection of organisms is termed the 

‘microbiota’ and is present in many bodily sites, including the oral and nasal cavities, vagina, 

skin and GI tract (Backhed et al., 2005; Hattori and Taylor, 2009; McFall-Ngai, 2006). Whilst 

in some regions of the body, such as the brain endothelium (van Sorge and Doran, 2012), 

contact with prokaryotes would seriously compromise host health, in these locations host-

microbial contact has coevolved over thousands of years to form a complex relationship 

(Neish, 2009). The number of organisms living in the gut alone is in excess of 1014, which 

encompasses ~10 times more bacterial cells than the number of human cells and over 100 

times the amount genomic content (microbiome) as the human genome (Backhed et al., 

2005; Gill et al., 2006). However, a recently revised estimate has suggested that the ratio of 

human : bacterial cells is closer to 1:1 (Sender et al., 2016). As a result of the vast number of 

bacterial cells in the body, the host and the microorganisms inhabiting it are often referred 

to as a ‘superorganism’ (Gill et al., 2006; Luckey, 1972). 

 Development and composition of the human GI microbiota 

 Development of the GI microbiota from childhood 

In general, it is accepted that the development of the microbiota begins from birth, although 

there is some debate over whether microbiota colonisation begins in the uterus, since a 

limited number of studies have detected microbes in womb tissues, such as the placenta 

(Aagaard et al., 2014), as recently reviewed (Rodriguez et al., 2015). 

Following birth, the GI tract is rapidly colonised, with seemingly chaotic shifts in the 

composition which can be attributed to life events such as illness, antibiotic treatment, mode 

of delivery and changes in diet (Fig. 7) (Koenig et al., 2011; Rodriguez et al., 2015). In vaginally 

delivered infants, during the first few days, the microbiota is colonised by a high abundance 

of lactobacilli, reflecting the high load of lactobacilli in the vaginal flora (Aagaard et al., 2012; 

Avershina et al., 2014). In infants delivered by C-section, the microbiota is depleted in, and 

delayed in the colonisation of the Bacteroides genus, and is colonized by facultative 

anaerobes such as Clostridium species (Jakobsson et al., 2014; Salminen et al., 2004). Whilst 

72% of the early microbiota of vaginally delivered infants resemble that of their mothers 

faecal microbiota, this percentage is reduced to only 41% in babies delivered by C-section 

(Backhed et al., 2015). 

file:///C:/Users/Lizzie/Documents/IFR%20docs/The%20GI%20tract%20NEWEST.docx%23_Toc259120945


41 

During early stages in development, the microbiota is relatively low in diversity and 

dominated by two main phyla, Actinobacteria and Proteobacteria (Fig. 7) (Backhed, 2011; 

Rodriguez et al., 2015). Over the first year of life the microbial community converges towards 

a distinct adult-like profile. This transition is marked by an increased in microbial diversity 

and temporal patterns that are unique to each infant (Palmer et al., 2007). At around 2.5 

years of age, the composition and diversity of the infant microbiota resembles that of an 

adult gut microbiota, with many of the same functional capabilities (Koenig et al., 2011; 

Rodriguez et al., 2015). In adulthood, although the gut microbiota composition is relatively 

stable, it is still subject to perturbation by life events (Dethlefsen and Relman, 2011). In the 

ageing population, there are apparent shifts in the microbial community, marked by an 

increased abundance of bacteria belonging to the phyla Bacteroidetes, and a significant 

relationship between microbial diversity and living arrangements, such as community 

dwelling or long term residential care (Claesson et al., 2011; Claesson et al., 2012). In 

contrast, a separate study observed few differences between in the elderly population (70 

years), and a young cohort (Biagi et al., 2010). However, in centenarians, not only was the 

species diversity reduced, but the abundance of facultative anaerobes such as Escherichia 

coli, Klebsiella pneumoniae and Pseudomonas was increased (Biagi et al., 2010). It has also 

been shown that the capacity of the microbiota to carry out amylolysis and produce SCFAs is 

reduced in the elderly, whilst proteolytic activity is increased (Woodmansey et al., 2004).  
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 Composition and variability of the human GI microbiota 

Around a decade ago, most of our knowledge about the adult human gut microbiota 

stemmed from labour intensive culture based methods (Moore and Holdeman, 1974). More 

recently, the advent of culture-independent approaches such as high-throughput and low 

cost sequencing methods has greatly improved our ability to survey the breadth of the gut 

microbiota. A common approach involves specific targeting of the bacterial 16S ribosomal 

RNA (rRNA) gene (Poretsky et al., 2014). This gene is a landmark present in all bacteria and 

archaea, and can be used to distinguish between species due to its nine hypervariable 

regions (V1-V9), which demonstrate considerable diversity. Earlier studies utilising this 

technique focussed on sequencing the entire 16S rRNA gene. Using this method, Suau and 

coll. highlighted the extreme insensitivity and bias of culturing methods, observing that 76% 

of the rRNA sequences obtained from an adult male faecal sample belonged to novel and 

uncharacterised species. The output of this study gave a gut microbiota consisting of 82 

distinct species (Suau et al., 1999). During further more comprehensive investigations, this 

number has gradually increased. In 2005, a study by Eckburg and coll., which examined 

mucosal and faecal samples from six major colonic subdivisions of three healthy adult 

subjects, identified 395 bacterial phylotypes and a single archaeal phylotype (≤99% sequence 

Figure 7| Phylum level composition of the gut microbiota throughout life 

(Ottman et al., 2012) 
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identity threshold) from an analysis of 13,335 16S sequences (Eckburg et al., 2005). Recently, 

the sequencing of 16S rRNA has shifted to focus on analysing shorter sub-regions of the gene 

at greater depth (Mizrahi-Man et al., 2013), however the utilisation of this method, which 

generates shorter read lengths can introduce errors (Poretsky et al., 2014). Whole genome 

shotgun (WGS) metagenomics approaches may provide more robust estimates of microbiota 

composition and diversity due to higher resolution and sensitivity (Poretsky et al., 2014). 

Recently data generated using culture based experiments from the Human Microbiome 

Project (HMP) and metagenomics data from MetaHit have provided the most comprehensive 

view of the entire repertoire of microbes associated with humans (Hugon et al., 2015; Li et 

al., 2014). Compilations of data from literature and culture databases identified 2172 species 

that have been isolated from human beings, classified in to 12 different phyla. Of these, 

93.5% species belonged to Proteobacteria, Firmicutes, Actinobacteria and Bacteroidetes, 

and three of the 12 identified phyla contained only one species isolated from humans. This 

included A. muciniphila, a species isolated from the gut, as the only known representative of 

the Verrucomicrobia phyla. Of the identified species, 386 are strictly anaerobic and hence 

will only usually be found in sites such as the skin, and mucosal regions such as the oral cavity 

and GI tract (Hugon et al., 2015). 

Although evidently comprised of a large number of different species, the gut microbiota is 

not as diverse as some other bodily microbial communities, such as the skin on the forearm, 

palm and back of the knee, suggesting specific selection of a population which provides the 

most beneficial range of functions to the host (Costello et al., 2009; Schluter and Foster, 

2012). The functional capacity of the human gut microbiome was recently extensively 

catalogued by the MetaHit study, resulting in the identification of 9,879,896 genes, 

established through a combination of 249 newly sequenced and 1018 published samples (Li 

et al., 2014). The study identified the presence of country specific microbial signatures, 

suggesting that gut microbiota composition is shaped by environmental factors, such as diet, 

and possibly also by host genetics (Li et al., 2014). This information is crucial for developing 

therapeutic strategies to modify and shape the microbial community in disease. 

Microbiota composition in the GI tract is reflective of the physiological properties in a given 

region. The density of bacteria is affected by chemical, nutritional, and immunological 

gradients along the gut. In the SI, bacterial colonisation is limited by higher levels of acids, 

oxygen and antimicrobials, in contrast to the colon, where there is a greater bacterial load 

(Donaldson et al., 2016). The composition between different colonic mucosal sites of the 
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same individual demonstrates spatial conservation in terms of composition and diversity, a 

property which is maintained despite regional inflammation in colitis (Eckburg et al., 2005; 

Lavelle et al., 2015).  

In contrast, the faecal/luminal and mucosal compositions are significantly different (Eckburg 

et al., 2005; Lavelle et al., 2015). For example, the abundance of Bacteroidetes appears to be 

higher in faecal/luminal samples than in the mucosa (Eckburg et al., 2005). In contrast, 

Firmicutes, specifically Clostridium cluster XIVa are enriched in the mucus layer compared to 

the lumen (Van den Abbeele et al., 2013). Similar findings have also been made in mice (Nava 

et al., 2011; Swidsinski et al., 2005). These observations highlight the need for careful 

consideration in choosing a sampling method when studying and reporting the microbiota. 

Differences in the species and subspecies arrangement of the microbiota from one non-

related host to the next are proposed to outweigh differences in the community 

arrangement within an individual. In the study by Eckburg and coll., the greatest amount of 

variability between mucosal and faecal samples of three healthy subjects was explained by 

inter-subject difference, a finding which has been replicated by several other studies 

(Eckburg et al., 2005; Jakobsson et al., 2010; Turnbaugh et al., 2009). Previously, suggestions 

have been made of the presence of a ‘core microbiota’, proposed to be a set of the same 

abundant organisms present in all individuals. Turnbaugh and coll. found that this core 

structure is better defined at a functional level, since they showed that there was a higher 

degree of similarity at the gene rather than organismal level (Turnbaugh et al., 2009).  

Furthermore, although the specific taxonomic arrangement of the microbiota differs 

between individuals and bodily sites, it appears that these arrangements can be classified in 

to ‘community types’ that can be predictive of each other and are associated with 

background (Ding and Schloss, 2014). Specifically, multidimensional analysis of 33 samples 

from different nationalities revealed the presence of 3 enterotypes identifiable by variations 

in the level of one of three genera: Bacteroides (enterotype 1), Prevotella (enterotype 2) and 

Ruminococcus (enterotype 3) (Arumugam et al., 2011). However, evidence surrounding what 

may drive the formation of these enterotypes is controversial and there is even controversy 

over the existence of the enterotypes themselves, as thoroughly reviewed (Jeffery et al., 

2012). 

 Factors shaping the GI microbiota 

The microbiota is subject to shaping by host selective pressures. Host fitness depends upon 

the range of essential functions provided by the microbial community, and hence an 
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individual microbes longevity is determined by whether it is contributing to these functions. 

‘Cheater’ organisms who do not assist in providing beneficial functions are proposed to be 

controlled by, and may occasionally be purged during, for example, transferral of the 

microbiota to a new host (Ley et al., 2006a; Travisano and Velicer, 2004). In addition, the 

microbiota could be directly shaped by the host immune system. However, due to a high 

amount of functional redundancy in the microbiota, it is unlikely that the immune system is 

capable of driving the microbial community at the species level, and there is little evidence 

to support this (Ley et al., 2006a). 

Gut microbes must be adapted to a certain type of lifestyle due to the relatively fewer 

number of biochemical niches available in the gut, compared with other microbially rich 

environments. In the gut, energy can generally be derived through processes such as 

fermentation and sulfate reduction of dietary and host carbohydrates, such as the mucin 

O-glycans. The organisms that can survive in the gut are therefore limited by their phenotypic 

traits (Ley et al., 2006a). This is evident from a study by Seedorf and coll., reporting that the 

success of colonization of the germ-free mouse gut by microbiota from diverse habitats is 

determined by their ability to metabolize dietary and host carbohydrates and bile acids 

(Seedorf et al., 2014). 

Current research suggests that the greatest impact on microbiota composition is exerted by 

the diet (Donaldson et al., 2016). In early infancy, the abundance of some bacterial groups in 

the gut microbiota are affected by the feeding method. Bifidobacterium longum and several 

species of Bacteroides are capable of utilizing fucosylated oligosaccharides present in human 

milk, allowing them to outcompete other bacteria such as Escherichia coli and Clostridium 

perfringens (Marcobal et al., 2011; Yu et al., 2013). The abundance of Bifidobacteria spp. in 

breast fed infant microbiota is typically high (Yu et al., 2013). In formula fed infants, the 

microbiota appears to be more diverse, and contains fewer Bifidobacterium (Bezirtzoglou et 

al., 2011). Furthermore there are altered levels of other bacterial groups such as E. coli, 

Clostridium difficile, Bacteroides fragilis and lactobacilli (Bezirtzoglou et al., 2011; Favier et 

al., 2002; Penders et al., 2006). Undernourished children harbour immature and dysbiotic 

microbial communities containing an increased number of enteropathogens, including an 

enrichment of Enterobacteriaceae (Kau et al., 2015). Transmission of faecal microbiota from 

monozygotic Malawian twin pairs with severe undernutrition to germ-free mice resulted in 

significant weight loss and increased gut barrier permeability (Kau et al., 2015). In contrast, 

germ-free mice colonised with the microbiota of a healthy donor gain significantly more 
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weight than mice colonised with an undernourished microbiota (Blanton et al., 2016). The 

administration of certain bacterial species can either ameliorate or augment these effects. 

Mice receiving doses of Clostridium scindens and A. muciniphila prior to gavage with an 

undernourished microbiota exhibited significantly less mortality than those with no 

intervention (Kau et al., 2015). Furthermore, administration of two invasive species, 

R. gnavus and Clostridium symbiosum to the microbiota of undernourished donors restored 

abnormalities in growth and metabolic function in animals receiving undernourished 

microbiota transplants (Blanton et al., 2016). 

Shaping of the gut microbiota is subject to the availability of microbiota accessible 

carbohydrates (MACs) which are found in dietary fibre. In infants from rural Africa, with a 

diet dominated by starch, fibre and plant polysaccharides, the microbiota is abundant in 

microorganisms belonging to the Actinobacteria (10.1%) and Bacteroidetes (57.7%) phyla 

(De Filippo et al., 2010). In European children, whose diet is rich in sugar, starch and animal 

protein, these figures are just 6.7% and 22.4% (De Filippo et al., 2010). Some SCFA-producing 

bacteria, such as Prevotella were found exclusively in the African children, possibly 

contributing to protection against invasion by pathogenic microbes and inflammation, and 

allowing maximal energy extraction from the ingested plant polysaccharides (De Filippo et 

al., 2010). This trend was also reflected in individuals consuming high amounts of 

carbohydrates and simple sugars (Wu et al., 2011). The abundance of MACs are substantially 

reduced in the Western diet. A loss of microbial diversity is observed in mice fed a low MAC 

diet, when compared to a control group. It was recently shown that as new generations of 

low MAC diet mice were bred, there was increasing divergence from the microbiota of 

controls and a decreasing glycoside hydrolase capacity. Restoration of diversity required 

administration of MACs in combination with the bacterial taxa that were missing 

(Sonnenburg et al., 2016).  

The ability of microbes to cooperate and share host resources allows colonisation by a more 

diverse set of organisms. Multiple studies suggest that gut microbes cooperate via cross-

feeding mechanisms, as the metabolic products of some organisms provide substrate to 

support the growth of others. For example, lactate, a major product produced by lactic acid 

bacteria including lactobacilli and bifidobacteria, can be utilised and converted to butyrate 

by other microbiota members such as Eubacterium hallii and Anaerostipes caccae (Duncan 

et al., 2004b; Louis et al., 2007). Modification of an individual organisms genome can occur 

through, for example, mutation or lateral gene transfer, allowing expansion and 

diversification of the population and the exploitation of new niches (Bjedov et al., 2003; Xu 
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et al., 2007). In turn, diversification introduces new bacterial functions and promotes further 

niche variation, creating a positive feedback loop in which more diversification can occur 

(Emerson and Kolm, 2005; Svanback and Bolnick, 2007).  

A further environmental factor which plays a key role in shaping the gut microbiota is the 

presence of antimicrobials. Treatment with antibiotics dramatically disrupts the microbial 

balance both short and long-term, including decreases in the richness and diversity of the 

community. Examples of antibiotic treatments which have been demonstrated to affect the 

community structure include clindamycin (long term impacts of up to two years) (Jernberg 

et al., 2007), clarithromycin and metronidazole (long term perturbations for up to four years) 

(Jakobsson et al., 2010), and ciproflaxin (effects still apparent after one week) (Dethlefsen 

and Relman, 2011). The exact effects and the length of time for recovery of the microbiota 

following administration of antibiotics appears to be individual dependent, a likely effect of 

the inter-individual variation in the microbiota prior to treatment (Dethlefsen and Relman, 

2011; Jakobsson et al., 2010; Jernberg et al., 2007). Antimicrobials localised to the mucus 

layer, such as host derived α-defensins and SIgA are also able to shape the microbiota (See 

section 1.2.3). 

Several other environmental factors have also been found to be associated with microbiota 

composition including, but not limited to, geographical location, surgery, smoking, 

depression and living arrangements (urban or rural) (Biedermann et al., 2013; Jiang et al., 

2015; Rodriguez et al., 2015; Tyakht et al., 2013). 

 Role of the gut microbiota in health 

 Beneficial role of microbes 

Along with its large amount of genomic content, the gut microbiota confers a range of 

beneficial properties to the host. These include extended metabolic and digestive abilities, 

such as digestion of complex plant polysaccharides, and production of SCFAs.  

Three SCFAs dominate in the human GI tract, propionate, butyrate and acetate. The ratio in 

which these SCFAs are found in the GI tract is determined by the composition of the 

microbiota (Burger-van Paassen et al., 2009), however they are typically found in a ratio of 

1:1:3 (propionate:butyrate:acetate) (Louis et al., 2014). All three metabolites are rapidly 

absorbed by epithelial cells in the GI tract where they are involved in the modulation of 

cellular processes such as gene expression, chemotaxis, differentiation, proliferation and 
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apoptosis (Correa-Oliveira et al., 2016). Butyrate appears to be a particularly important 

source of energy for colonocytes (Correa-Oliveira et al., 2016). It is proposed that butyrate 

mediates intestinal epithelial turnover and homeostasis due to its decreasing gradient of 

concentration from lumen-to-crypt, which promotes colonocyte proliferation at the bottom 

of crypts, whilst increasing apoptosis and exfoliation of cells closer to the lumen (Donohoe 

et al., 2012). Furthermore, SCFAs are known to modify the production of cytokines, including 

increases in IL-18, which is involved in maintaining and repairing epithelial integrity (Correa-

Oliveira et al., 2016).  

The GI microbiota is also crucial to the synthesis of essential vitamins such as vitamin B12 

and folate (Albert et al., 1980; Hill, 1997; Hooper et al., 2002; Kripke et al., 1989; Whitehead 

et al., 1986). This enhanced metabolism has been demonstrated in mice raised with and 

without microbes, the latter having 40% less body fat despite an increased appetite (Backhed 

et al., 2004). In addition, the microbiota plays a crucial role in maintaining epithelial 

homeostasis through mechanisms such as pathogen exclusion, toll-like receptor (TLR) 

signalling, and in shaping and regulating the immune system via, for example, cytokine 

induction (Christensen et al., 2002; Rakoff-Nahoum et al., 2004; von der Weid et al., 2001). 

The relationship of the microbiota with the host is termed ‘mutualistic’, as in return the host 

provides the microbial community with an immediate stable environment and plentiful 

supply of nutrients (Neish, 2009). Much like the microbiota shapes the host immune system, 

the immune system controls and shapes the microbiota through, for example, stratification 

and compartmentalization to the lumen. This is vital in order to avoid opportunistic invasion 

of host tissue resulting in disruption of intestinal homeostasis (Cash et al., 2006; Hooper et 

al., 2012; Macpherson et al., 2000; Macpherson and Uhr, 2004).  

 Dysbiosis and disease 

When studying the microbiota, a deviation away from normal intestinal homeostasis is 

generally referred to as ‘dysbiosis’. The microbiota has been studied in a number of disease 

states where a divergence from the normal composition has been found. In obesity, for 

example, several studies involving obese Americans and ob/ob genotype mice have found 

that the microbiota contains a higher ratio of Firmicutes to Bacteroidetes phyla compared to 

lean individuals (Ley et al., 2005; Ley et al., 2006b; Turnbaugh et al., 2009; Turnbaugh et al., 

2006). This ratio was shown to be diminished following diet and bariatric surgery induced 

weight loss (Furet et al., 2010; Ley et al., 2006b). Obesity-associated metabolic phenotypes 

were transmissible to germ-free mice from the faecal communities of twin pairs discordant 
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for obesity. However cohousing recipient mice with microbiota from lean and obese donors 

prevented the obesity phenotype, which was associated with an increase in Bacteroidetes 

phyla transmitted from the lean to the obese mice (Ridaura et al., 2013). These studies point 

toward a depletion of Bacteroidetes phylum in obesity, however, this association has not 

been shown in all studies of obese individuals (Duncan et al., 2008; Jumpertz et al., 2011; 

Schwiertz et al., 2010). Recently it was shown that in individuals with low bacterial richness, 

groups such as Bacteroides and members of the Lachnospiraceae family such as R. gnavus 

and Ruminococcus torques were more dominant. Low bacterial richness is generally 

associated with increased adiposity, insulin resistance and dyslipidaemia (Le Chatelier et al., 

2013). In contrast, in those with high bacterial richness, Faecalibacterium, Bifidobacterium, 

Lactobacillus and Akkermansia were some of the genera that were more dominant (Le 

Chatelier et al., 2013). Despite ob/ob mice having a microbiome with an increased functional 

capacity to harvest energy from the diet, the abundance of Firmicutes and Bacteroidetes 

does not appear to be correlated long-term with calorie intake, as determined by measuring 

the energy and SCFA content in faecal samples (Turnbaugh et al., 2008; Turnbaugh et al., 

2006). In mice fed with a high fat diet, the energy intake was not significantly different from 

mice fed a normal diet, despite observing a shift in abundance of Firmicutes and 

Bacteroidetes (Murphy et al., 2010).  

In contrast to obesity, the abundance of the Firmicutes phyla appears to be decreased in 

type 2 diabetes when compared with non-diabetics, whilst the abundance of Bacteroidetes 

and Proteobacteria is increased (Larsen et al., 2010). Moreover, the ratio of Bacteroidetes to 

Firmicutes was found to be significantly correlated with a lack of tolerance to glucose (Larsen 

et al., 2010). However, once again there is contradictory evidence surrounding these trends. 

In a study of three groups of individuals classified based on tolerance of glucose it was shown 

that intolerance is associated with the abundance of several taxonomic groups, including a 

depletion in the abundance of Bacteroides in individuals with type 2 diabetes (Zhang et al., 

2013). Furthermore, in individuals classified as ‘pre-diabetic’ based on their glucose 

intolerance status, a lower abundance of butyrate producing species, including 

Faecalibacterium prausnitzii could be observed when compared to a group of patients with 

normal glucose tolerance (Zhang et al., 2013). Together, these findings cast doubt on the 

validity of using the Firmicutes and Bacteroidetes ratio as a predictor of energy intake and 

obesity. 



50 

The microbiota also appears to be distorted in irritable bowel syndrome (IBS), however these 

findings are complicated by the multiple subtypes of disease (diarrhoea predominant, IBS-D, 

constipation predominant, IBS-C, or mixed bowel habit, IBS-M) (Kassinen et al., 2007). An 

initial investigation of IBS performed in 2005 found alterations in the abundance of 

Clostridium coccoides and Bifidobacterium catenulatum, and also a significantly lower 

amount of Lactobacillus spp. in IBS-D compared to IBS-C (Malinen et al., 2005). Furthermore 

a decrease of Bacteroides and Actinobacteria and increase in Firmicutes has also been 

observed in IBS (Krogius-Kurikka et al., 2009; Noor et al., 2010). However, as with the other 

disorders discussed here, the results are not always consistent in other studies (Carroll et al., 

2010).  

An altered microbiota has also been implicated in a plethora of other diseases, including 

vaginosis, circulatory disease, allergy, asthma, cardiovascular disease and autism (Carding et 

al., 2015; Kinross et al., 2011; Kuczynski et al., 2012). Dysbiosis of the microbiota in IBD has 

been well studied and documented, using a range of techniques and sampling methods, as 

detailed in section 1.4.2.2. Therefore, although the exact changes in microbiota composition 

in health and disease remain unclear, it is obviously an important factor that must be taken 

into consideration. 

Our understanding of what constitutes a balanced or imbalanced microbiota is limited by the 

complexity of the community and the variation in the species arrangement from one 

individual to the next. A microbiota in dysbiosis may be better described on a person by 

person (profiled over periods of health and disease) or functional (microbiome) basis. At a 

functional level, a potential way to describe a ‘dysbiotic’ microbiota might be one which fails 

to provide the host with the full complement of beneficial properties it requires (Willing et 

al., 2010b). In addition we have little understanding of whether changes in the community 

structure of the microbiota are a causal or consequential factor in disease, and so emphasis 

must be made on studying the underlying molecular mechanisms driving these changes. 
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 Inflammatory Bowel Disease (IBD) 

 Definition and epidemiology of IBD 

IBD defines a complex range of disorders that broadly incorporates ulcerative colitis (UC) and 

Crohn’s disease (CD). Symptoms include severe and repetitive inflammation of the GI tract 

and is associated with an alteration of the normal gut flora and activation of the immune 

system (Thompson-Chagoyán et al., 2005). Whilst UC is characterized by a continuously 

inflamed and non-granulomatous mucosa generally restricted to the colon, CD can affect the 

entire GI tract, and is clinically recognised by segmented and granulomatous transmural 

inflammation (Nell et al., 2010). If uncontrolled, IBD can result in a significantly increased risk 

of developing colorectal cancers (Sheng et al., 2012). 

Growing rates of IBD occurrence are placing increasingly large burdens on healthcare 

systems. In 2013, it was estimated that 0.3% of the European population was affected by 

IBD, equating to around 2.5-3 million people (Burisch et al., 2013). Although currently, 

incidence and prevalence of IBD is highest in developed countries (in Europe, the United 

Kingdom and Scandinavia), the occurrence of these diseases is increasing all over the world 

(Burisch et al., 2013). The costs of providing healthcare to IBD patients is calculated at 4.6-5.6 

billion euros per year (Burisch et al., 2013). These costs are exacerbated by extra-intestinal 

manifestations affecting the eye, joints and skin that relatively frequently accompany the 

disease. In 2003, in a cohort of over 800 patients, 21.3% of IBD sufferers reported incidences 

of extra-intestinal manifestations, including ocular, cutaneous, hepatobiliary and joint 

problems (Lakatos et al., 2003). 

 Aetiology of IBD 

The exact factors leading to IBD remain elusive. Recent descriptions suggest that IBD is a 

result of dysregulation of the gut mucosal immune system to commensal bacteria in 

genetically predisposed hosts (Xu et al., 2014). Evidence for a genetic basis is provided 

through the observation of the familial nature of the disease- for some time the increased 

risk of developing IBD has been recognised in first degree relatives (Orholm et al., 1991). 

Several genetic risk loci have been identified in IBD by genome-wide association studies 

(GWAs) (See section 1.4.2.1). Due to the pattern of incidence (most significant number of 

cases affecting higher socioeconomic classes), it has also been suggested that environmental 

factors such as hygiene and diet also contribute to the development of IBD, resulting in an 
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imbalance of the microbiota. The hygiene hypothesis proposes that excessive cleanliness 

results in decreased exposure to immune stimulating antigens in childhood, hence 

predisposing the child to inflammatory conditions such as IBD (Colombel et al., 2008). The 

role of environmental factors is supported by the fact that in genetically identical twins the 

concordance rates of IBD are relatively low (~50% for CD and 10% for UC) (Halfvarson et al., 

2003). Moreover, the lower concordance rate for UC in these studies suggests a greater 

involvement of environment in the development of this disease than in CD. 

 Role of genetics in IBD susceptibility 

Several years ago, the majority of our knowledge about the involvement of genetics in IBD 

stemmed from studies using single nucleotide polymorphism and transgenic/deletion 

techniques in mice. Caspase recruitment domain (CARD) family member 15, also known as 

nucleotide-binding oligomerization domain-containing protein 2 (NOD2), was the first gene 

to be associated with IBD (Hugot et al., 2001; Ogura et al., 2001a). CARD15 comprises a 

protein containing two N- terminal CARDs, a nucleotide-binding domain, and 10 C-terminal 

leucine-rich repeats (LRRs), which is mainly expressed in monocytes (Ogura et al., 2001b). In 

wild-type NOD2, whilst both CARD regions act in concert to induce signalling via the nuclear 

factor NF-ĸB, the LRR region acts as an intracellular receptor for bacterial LPS and regulates 

the activation of NF-ĸB (Hugot et al., 2001; Ogura et al., 2001a; Ogura et al., 2001b). In CD, 

mutations in the CARD15 gene have been observed, with a particularly high frequency (93%) 

in the distal third of the gene, containing the LRR region. It is therefore proposed that 

mutations in the LRR region lead to a disruption in LPS recognition, and NF-ĸB signalling, 

although the exact mechanisms are unclear (Lesage et al., 2002). Mutant CARD15 with 

truncated LRRs is inefficient at preventing invasion of epithelial cells by Salmonella 

Typhimurium (Hisamatsu et al., 2003). Furthermore, in Nod2-/- mice given an intragastric 

dose of Listeria monocytogenes, a higher number of viable bacteria were recovered from the 

liver and spleen than in wild type mice, suggesting a role of Nod2 in protecting against 

infection (Kobayashi et al., 2005). 

Advances in the techniques used to study genetics have provided a much broader view of 

the genetic risk loci involved in the aetiology of IBD. GWAs are increasingly used to profile 

the genomes of many individuals and identify genetic variations associated with disease. In 

2010 and 2011, two large GWA studies increased the total number of loci found to be 

implicated in IBD onset to 99, including 28 shared between UC and CD (Anderson et al., 2011; 

Franke et al., 2010; Lees et al., 2011). In a further large study of individuals with European 
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ancestry this number was dramatically increased to 163 loci (Jostins et al., 2012). Recently, 

the addition of an extra cohort of non-European individuals increased the number of loci by 

a further 38. Some of these loci were heterogeneous when compared to their European 

counterparts, indicating the importance of studying individuals with diverse ancestry (Liu et 

al., 2015).   

A gene commonly associated with CD through GWAs is ATG16L1, a risk gene involved in the 

process of autophagy, the self-directed lysosomal degradation of damaged cellular 

components of intracellular bacteria, such as S. Typhimurium (Rioux et al., 2007). As well as 

removing damaged cell components, autophagy is an important process in providing cells 

with nutrients and energy and is upregulated during periods of, for example, starvation and 

high energy demands (Levine and Kroemer, 2008). The importance of ATG16L1 in mediating 

homeostasis with gut bacteria has been shown in knockdown models. Clearance of 

S. Typhimurium is impaired in a knockdown HeLa cell model of ATG16L1 (Rioux et al., 2007). 

Additionally in ATG16L1 deficient mice, there are disruptions in the Paneth cell granule 

exocytosis pathway, resulting in the abnormal release of antimicrobial peptides and 

lysozyme into the mucus layer (Cadwell et al., 2008). Therefore, it is apparent that functional 

ATG16L1 is important for effective bacterial clearance in the gut. 

Further loci implicated in IBD include IL-23R, immunity-related GTPase family M protein 

(IRGM), organic cation transporter genes 1 and 2 (OCTN1/OCTN2), and multiple drug 

resistance gene 1 (MDR1) (Liu et al., 2015; Noble et al., 2005; Panwala et al., 1998; Rioux et 

al., 2007). However, together the identified loci only account for 13.1% and 8.2% of the 

variance in susceptibility for CD and UC, respectively, highlighting the need for further work 

to account for the remaining IBD risk (Liu et al., 2015). 

GWAs have also implicated some mucin genes, as well as genes involved in mucin 

glycosylation in IBD. For example, associations between rare alleles of the MUC3 gene and 

UC have been indicated (Kyo et al., 1999). Null variants of the fucosyltransferase, Fut2, have 

also been linked to IBD (McGovern et al., 2010). This, as well as alterations in expression, 

secretion, maturation, and glycosylation of mucins in IBD will be discussed further in section 

1.4.3.  

  

http://liweilab.genetics.ac.cn/tm/gene.php?st=gn&gn=organic%20cation%20transporter%20(%20OCTN%20)%20genes&gi=57835&ti=9606
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 Role of the GI microbiota in IBD 

During the past decade there has been increasing focus on gut microbiota as an influential 

factor in IBD development in humans.  

IBD is characterised by a reduction in the mucosal microbiota diversity when compared with 

healthy controls (Ott et al., 2004). In a subset of UC and CD patients, the mucosal microbial 

composition is abnormal, characterized by a depletion in Firmicutes and Bacteroidetes phyla 

(Frank et al., 2007). Similarly, multiple other studies reported a decrease in the microbial 

diversity in both mucosal and faecal samples from UC and CD patients in relapse/remission 

(Dicksved et al., 2008; Kang et al., 2010; Lepage et al., 2011; Manichanh et al., 2006; Scanlan 

et al., 2006). Despite this decrease in diversity, in patients with both UC and CD, the number 

of total mucosal associated bacteria increases with increasing levels of inflammation 

(Swidsinski et al., 2002). In addition to these changes, the microbiota has also been shown 

to be subject to temporal instability during periods of intestinal inflammation. In a study by 

Martinez and coll., healthy controls had a relatively stable microbiota composition over a 

period of 24 months, whereas patients with UC in remission demonstrated considerable 

variability in their faecal microbiota (Martinez et al., 2008). Likewise, the temporal stability 

of the microbiota in CD has also been observed to be decreased compared to controls 

(Scanlan et al., 2006). A longitudinal study of DSS administered mice showed that alterations 

in the microbiota occurred concurrently with markers of inflammation (Schwab et al., 2014). 

In mice administered with successive rounds of DSS, the microbiota became increasingly 

divergent over time, with shifts in community composition, and bacterial biomarkers of 

inflammation could be detected in the stool (Berry et al., 2015).  

Aside from these broad level observations, changes in the abundance of more specific 

bacterial groups have been found in both UC and CD. Increases in the prevalence of 

potentially pathogenic bacteria have been observed including a consistent increase in the 

abundance of Enterobacteriaceae, such as strains of adherent-invasive E. coli in CD 

(Baumgart et al., 2007; Darfeuille-Michaud et al., 2004; Liu et al., 1995; Swidsinski et al., 

2002). The mucosa associated population of E. coli is augmented in the ileum of CD patients, 

and rectum and sigmoid colon of both UC and CD patients (de Souza et al., 2012). There have 

also been several observations of a depletion of F. prausnitzii in IBD patients with active 

disease. This decrease is associated with the rate of recurrence in these patients (Joossens 

et al., 2011; Machiels et al., 2014; Sokol et al., 2008; Sokol et al., 2009). It is proposed that 
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F. prausnitzii contributes towards intestinal homeostasis through the immuno-modulatory 

effects exerted by its production of butyrate (Inan et al., 2000; Segain et al., 2000). 

Controversially, an increase of F. prausnitzii has been observed in 11 de novo paediatric cases 

of CD, confirmed by both quantitative reverse transcription polymerase chain reaction (qRT-

PCR) and pyrosequencing methods, which provides an interesting insight into the treatment 

naïve IBD microbiota (Hansen et al., 2012b). Furthermore, in a separate study, a decrease in 

F. prausnitzii was only reported in ileal CD, whereas an increase in F. prausnitzii was found in 

colonic CD (Willing et al., 2010a). Recently, no differences were observed in the abundance 

of F. prausnitzii in CD patients with different disease activity (Schaffler et al., 2016). In a study 

examining CD, UC, and IBS patients it was shown that mucosa-associated F. prausnitzii and 

E. coli co-abundance can distinguish IBS and IBD phenotypes (Lopez-Siles et al., 2014).  

A 2010 study revealed a link between the abundance of mucolytic bacteria and IBD. This 

study reported a >4-fold increase in R. gnavus and a ~100-fold increase in R. torques (Png et 

al., 2010). An increase in R. torques have also been demonstrated in other diseases such as 

IBS (Malinen et al., 2010). Comparison of ileal mucosa samples from healthy individuals and 

patients suffering from ileal CD revealed an increased abundance of R. gnavus in CD patients 

(Willing et al., 2010a). Similar results were observed using fecal samples from CD patients 

compared to unaffected controls (Joossens et al., 2011; Sokol et al., 2009). An earlier study 

reported an increase in anaerobic bacteria in colonic biopsies of CD patients when compared 

with normal controls; in the SI, whilst R. gnavus was increased in CD patients, there was a 

decrease in the Clostridium leptum and Prevotella nigrescens subgroups (Prindiville et al., 

2004). Conversely, in patients with UC, R. gnavus was found to be depleted in abundance in 

the colonic mucosa of patients with active disease (Nishikawa et al., 2009). Mucin-degrading 

bacteria are capable of removing terminal sugars such as sialic acid and sulphate residues 

from glycans (and in particular, from mucus), making them more vulnerable to further 

degradation (Png et al., 2010). It has been hypothesized that increased mucin-degrading 

bacteria in IBD provide increased substrate to sustain non-mucolytic mucosa-associated 

bacteria, which could explain the increased total mucosa-associated bacteria in IBD. For 

example, the liberation of sialic acid from mucins has been shown to enhance the growth of 

E. coli, potentially driving an exaggerated immune response (Huang et al., 2015). R. gnavus 

strains (ATCC 29149 and 35913) were recently demonstrated to express an intramolecular 

trans-sialidase releasing sialic acid from α2-3 sialylated structures in the form of 2,7-anhydro-

Neu5Ac. It is proposed that this activity provides such bacteria with a competitive nutritional 
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advantage over other species within the gut, specifically in the IBD mucosal environment 

which is rich in short sialylated mucin glycans (See section 1.4.3) (Tailford et al., 2015b). 

However, not all mucin-degraders follow the same pattern. The abundance of A. muciniphila, 

the most prevalent mucolytic bacteria in controls was reduced in both UC and CD (Png et al., 

2010). Whilst in control individuals, A. muciniphila correlated with total mucosal associated 

bacteria and R. gnavus/R. torques did not, the inverse was true for IBD patients (Png et al., 

2010). It is also worth noting that a high proportion of A. muciniphila has been correlated 

with protection against inflammation in other diseases including type 1 diabetes mellitus 

(Hansen et al., 2012a), atopic dermatitis (Candela et al., 2012), autism (Wang et al., 2011), 

type 2 diabetes mellitus (Ellekilde et al., 2014), and obesity (Everard et al., 2013; Le Chatelier 

et al., 2013), suggesting that this strain possesses anti-inflammatory properties. In contrast 

to studies in humans, the abundance of Akkermansia spp. has been demonstrated to 

increase during acute-phase colitis in mice (Berry et al., 2015; Schwab et al., 2014). 

Despite some general trends, there are conflicting results regarding alterations in the gut 

microbiota in IBD, including mucolytic bacteria, as also reported with other intestinal 

diseases. This variability could arise for a number of different reasons, including the choice 

of sample type, such as faecal or mucosal samples, where the microbial communities are 

known to differ. Furthermore, findings may also be impacted by sample handling, choice of 

DNA extraction and analysis method, reflecting the need for standardisation when studying 

the microbiota. A summary of studies examining these differences and changes in the 

mucosal community in IBD is given in table 2. Based on these studies, it is evident that future 

work is required to gain a clearer understanding of the role of mucin-degraders in metabolic 

syndromes such as IBD. 
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Table 2 continued| Studies of mucosal associated microbiota in IBD  
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 Impact of the immune system in IBD 

Gut homeostasis is maintained through tolerogenic innate and adaptive immune responses 

to commensal bacteria (Hooper and Macpherson, 2010). Tolerance is a lack of an antigen-

specific pro-inflammatory response. In IBD, the tolerance to commensal bacteria is disrupted 

(Jump and Levine, 2004). 

As a first line of innate defence, gut intestinal epithelial cells secrete mucins and 

antimicrobials, such as α-defensins, into the gut lumen (Ayabe et al., 2000; Hansson, 2012). 

A variety of cell types contribute towards tolerance by sampling environmental antigens via 

pathogen recognition receptors (PRRs) such as TLRs, and NOD2/CARD15. These receptors 

recognise a range of microbial associated molecular patterns (MAMPs). Information 

obtained via this sampling is processed by the organised gut-associated lymphoid tissue 

(GALT) (Bakhtiar et al., 2013). Numerous mechanisms have been proposed for the 

maintenance of tolerance to the microbiota in the normal human gut. One suggestion is that 

epithelial cells and tissue resident immune cells, such as macrophages maintain tolerance to 

gut commensals through the downregulation of bacterial recognition receptors, such as 

CD14, TLR4 and MD-2, resulting in a lack of stimulation by bacterial LPS. Despite this, 

macrophages retain the ability to phagocytose pathogenic bacteria such as S. typhimurium 

(Abreu et al., 2001; Smythies et al., 2005). Furthermore, non-responsiveness to flagellin 

appears to be maintained by expression of TLR5 only on the basolateral and not the apical 

side of intestinal epithelial cells. As a result, pro-inflammatory responses will only be initiated 

by invasive bacteria (Gewirtz et al., 2001). 

Mechanistic studies have confirmed the role of the innate immune system in maintaining gut 

homeostasis. Knockout of TLRs results in the development of, or increased susceptibility to 

colitis. For example, knockout of TLR5 in mice causes clinical, serologic, and histopathologic 

indicators of colitis in 35-40% of mice (Vijay-Kumar et al., 2007). An increased bacterial load 

was found in the colon of TLR5-/- mice, suggested to cause excessive activation of other 

immune pathways which drive the development of colitis (Vijay-Kumar et al., 2007). This was 

supported by the fact that a double knockout of TLR5 and TLR4 resulted in the protection of 

mice from the development of colitis (Vijay-Kumar et al., 2007). TLR4 and TLR2 knockout 

mice are more susceptible to DSS-induced colitis, resulting in increased bacterial 

translocation and disruption of epithelial tight junctions (Cario et al., 2007; Fukata et al., 

2005). In IBD, polymorphisms in each of these TLRs, and in others such as TLR1, TLR6 and 
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TLR9 have been reported either to influence disease onset, or disease phenotype 

(Franchimont et al., 2004; Gewirtz et al., 2006; Torok et al., 2004). 

A loss of innate immune tolerance in IBD is apparent by aberrant levels of various immune 

components, including cytokines and chemokines. Loss of the anti-inflammatory cytokine, 

IL-10 has been implicated in new-onset infantile IBD (Kotlarz et al., 2012). In contrast, DCs 

from CD patients produced higher levels of the pro-inflammatory IL-12p40 and IL6 cytokines 

(Ng et al., 2011). The differential production of cytokines elicits an abnormal adaptive T cell 

immune response in IBD. CD is dominated by a Th1 type immune response, including 

increases in the cytokines IL-12 and IFN-ɣ (Kosiewicz et al., 2001; Parronchi et al., 1997; 

Sakuraba et al., 2009). Additionally, the Th17 immune response is also thought to play a role 

in the development of CD. IL-17 and IL-23 cytokines, mediators of this response, are both 

increased in CD (Liu et al., 2011; Yen et al., 2006). In contrast, UC is considered to have a Th2 

type cytokine profile (Neurath, 2014). In an experimental oxazalone induced colitis model, it 

was shown that UC is mediated via the secretion of IL-13 by natural killer (NK-T) cells, since 

NK-T deficient mice fail to elicit a colitic response to oxazalone administration (Heller et al., 

2002). However, these findings have not been replicated elsewhere leading to controversy 

about the role of IL-13 in UC (Kadivar et al., 2004). The levels of cytokines correlate with the 

abundance of some bacterial groups. For example, IL-6 negatively correlated with 

F. prausnitzii (Ng et al., 2011). A thorough review of cytokine production in IBD emphasised 

the need for a balance between pro-inflammatory and anti-inflammatory cytokines in 

maintaining homeostasis (Neurath, 2014). 

A further arm of T cell adaptive immune system which is dysregulated in IBD is the action of 

a subpopulation of T cells which are CD4+ CD25+, otherwise known as regulatory T cells (Treg). 

In healthy individuals, upon stimulation with antigen, Treg cells exert a suppressive effect 

upon the immune system, by inhibiting naive T cell proliferation and producing anti-

inflammatory cytokines such as IL-10, avoiding excessive immune responses (Asseman et al., 

1999; Huber et al., 2011; Maloy et al., 2003; Takahashi et al., 1998; Thornton and Shevach, 

1998). A role for Tregs in preventing IBD was also demonstrated many years ago in mice severe 

combined immunodeficient (SCID) mice. Whilst SCID mice reconstituted with a population of 

CD4+ CD45RBhi (naïve) T cells developed spontaneous colitis, this effect was reversed in mice 

co-populated with CD4+ CD45RBhi and CD4+ CD45RBlo T cells. It was later demonstrated that 

this effect was mediated by a subpopulation of CD4+ CD45RBlo cells expressing CD25 (Powrie 

et al., 1993; Read et al., 2000). LP mononuclear cells from patients with IBD appear to be 

resistant to inhibition by Treg cells, suggested to be mediated via upregulation of Smad7, a 
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protein that inhibits Treg signalling (Fantini et al., 2009; Monteleone et al., 2001). In germ-

free mice, administration of SCFAs via drinking water has been shown to increase colonic Treg 

populations. Furthermore, SCFAs protected against experimentally induced colitis (Smith et 

al., 2013).  

 Involvement of environmental factors in IBD 

Environmental factors are also considered to be influential in the development of IBD. 

Associations between environmental factors and IBD have been reported for many years. 

For example, an inverse correlation between UC and cigarette smoking was identified in the 

1980’s and has been replicated on several occasions (Logan et al., 1984). Lower rates of UC 

have been noted amongst smokers, suggesting that smoking confers protection against this 

disease (Logan et al., 1984). Furthermore, smoking appears to modulate the severity of UC, 

with non-smokers requiring more periods of hospitalisation and operations than smokers 

(Boyko et al., 1988; Odes et al., 2001). In contrast, evidence suggests that smoking results in 

an increased risk of developing CD (Franceschi et al., 1987). As with UC, smoking appears to 

be capable of influencing the development of CD. For example, in the most severe smokers 

CD appears to mostly affect the small bowel (Lindberg et al., 1992; Russel et al., 1998). 

Recently, these trends have been confirmed in a prospective study of women (Higuchi et al., 

2012). Despite these correlative observations there is very little understanding about the 

mechanisms causing this relationship. Studies have been performed investigating the role of 

cigarette smoke, and its components such as nicotine and carbon monoxide in IBD 

(Verschuere et al., 2012). Interestingly, the work of one group showed that whilst nicotine 

has negative effects in the small bowel, there are mixed effects in the colon, possibly 

mediated through differential induction of cytokines in these regions (Eliakim and Karmeli, 

2003). However findings such as these must be taken with caution due to the substantial 

differences between this experimental set up and real life IBD cases. 

A further environmental influence proposed to be protective from the onset of UC is 

appendectomy. In an early study, only 0.6% of UC patients but 24.5% of controls had 

undergone surgery to remove the appendix (Rutgeerts et al., 1994). This suggests that 

appendectomy reduces the chances of developing UC and has been demonstrated in several 

other studies, including one large study with a cohort of over 200,000 Swedish individuals 

(Andersson et al., 2001). As with smoking, it has been shown that appendectomy may also 

affect the disease course, with one study finding that previously appendicectomised patients 
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had active disease for only 48% of the time, whilst non-appendicectomised patients had 

active disease for 62% of the time over the course of three years (Cosnes et al., 2002). 

Diet is also proposed to play a role in the aetiology of IBD. A diet high in sugar, animal fat and 

lineoleic acid increases the risk of IBD onset, whilst a diet rich in fibre and citrus fruit is 

considered to be protective (Owczarek et al., 2016). In a Japanese case-controlled study 

evaluating the role of dietary factors in the development of IBD, a positive association was 

noted between the consumption of sweets and onset of UC whilst a negative association was 

found with vitamin C (Sakamoto et al., 2005). Furthermore, a positive association was 

identified between CD and the consumption of sugars, sweeteners, fats (of varying types) 

and oils, fish and shellfish, vitamin E, and implications have been found for the consumption 

of coca cola and chocolate in IBD (Russel et al., 1998; Sakamoto et al., 2005). 

Further environmental factors proposed to play a role in the onset of IBD potentially include 

infections, stress and depression, oral contraceptives and events in early childhood such as 

domestic hygiene or perinatal infections (Ananthakrishnan, 2013; Loftus, 2004). 

 Role of mucus and mucins in IBD 

Since mucus acts as the first point of contact for microbes with the host, it is unsurprising 

that aberrations in mucin expression, secretion or glycosylation have been associated with a 

number of diseases such as colitis, colonic cancer and IBD in humans (Forni et al., 2014; 

Larsson et al., 2011; McGovern et al., 2010; Parmar et al., 2012; Rausch et al., 2011) and 

mouse models (An et al., 2007; Fu et al., 2011; Stone et al., 2009). 

Alterations in the gene expression of mucins have been identified in both the terminal ileum 

and colon of CD and UC patients (Moehle et al., 2006). Moehle and coll. described strong 

downregulation in the mRNA level of MUC1, MUC2, MUC4, MUC5B, MUC12, MUC13, MUC17 

and MUC20 (Moehle et al. 2006). Patients with active UC showed significantly higher 

expression of MUC16, whilst those in remission had significantly increased levels of MUC20 

when compared to active UC and normal controls (Yamamoto-Furusho et al., 2015). In 

inflamed biopsies from the terminal ileum of CD patients, lower mRNA levels of MUC2 were 

observed when compared with healthy controls (Hensel et al., 2014). In contrast, significantly 

higher levels of MUC1 and MUC2 expression was observed in non-inflamed IBD tissue when 

compared with controls (Hensel et al., 2014). In CD, the expression of MUC2 was inversely 

correlated with the expression of the inflammatory marker IL-8, suggesting that MUC2 is a 

biomarker of mucosal healing and regeneration (Hensel et al., 2014). Muc2 deficiency in mice 

leads to the development of spontaneous colitis, associated with increased bacterial contact 
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with the epithelium, increases in the expression of genes involved in immune activation and 

inflammatory responses, and enhanced production of immune cells, such as neutrophils, 

lymphocytes and DCs (Sovran et al., 2016; Wenzel et al., 2014). These changes correlated 

with alterations in gut microbiota diversity and composition (Sovran et al., 2016). These 

studies highlight the protective effect of mucus, which has been confirmed in the impaired 

resistance of Muc2-/- mice to Trichuris murius infection (Hasnain et al., 2010).   

An alteration in mucin glycosylation is also associated with IBD. The protective function of 

mucin glycosylation has also been demonstrated across a number of studies. Knockout of 

core-1, core-2 and core-3 derived O-glycans in mice resulted in increased susceptibility and 

spontaneous development of colitis (Fig. 8), supporting a role of altered mucin glycosylation 

in driving the onset of inflammation, possibly via associated changes in the mucosal 

microbiota composition (An et al., 2007; Fu et al., 2011; Stone et al., 2009). Fu and coll. 

demonstrated that the colonic epithelium expressed Tn antigen in a subset of UC patients 

(Fig. 8) (Fu et al., 2011). In the core-1 and core-3 knockout mice increased bacterial 

translocation to the epithelium was detected (Fig. 8) (An et al., 2007; Fu et al., 2011). 

Furthermore, knockout of C1GalT1 in mice resulted in the spontaneous development of 

colitis by 2 weeks of age, and C3GnT-/- mice were more susceptible to DSS induced colitis 

(An et al., 2007; Fu et al., 2011). Loss of C1GalT1 led to subtle differences in the microbiota, 

including an increase in Bacteroidetes but a decrease in Firmicutes (Sommer et al., 2014). A 

recent study observed that C1GalT1 deficiency primarily resulted in the onset of colitis in the 

distal colon whilst mice lacking both C1GalT1 and C3GnT developed colitis both in the distal 

and proximal regions, suggesting that C3GnT plays a protective role in the proximal colon 

(Bergstrom et al., 2016). The mucins of these double knockout mice were more susceptible 

to proteolysis than those of wild type mice. Furthermore, antibiotic treatment reduced the 

faecal bacterial load, restored the mucus layer and reduced the severity of colitis (Bergstrom 

et al., 2016).  

Alteration in mucin glycosylation have also been observed in IBD patients. A depletion in 

overall carbohydrate content in patients with active UC was first observed over 30 years ago 

(Campbell et al., 1995; Clamp et al., 1981). In 2011, Larsson and coll. reported a decrease in 

complex glycans and an increase in smaller glycans, such as the STn antigen in active UC, 

suggested to be due to increased activity of the ST6GalNAc-I sialyltransferase. These changes 

correlated with the severity of disease (Larsson et al., 2011). Increases in shorter glycans such 

as these may explain why bacteria such as R. gnavus are found in increased abundance in 

IBD. In contrast, A. muciniphila, which can grow on complex mucins with the synergistic 
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action of several enzymes, cannot utilise sialic acid as a sole carbon source, possibly 

explaining its decreased abundance in IBD (Tailford et al., 2015b). An overexpression of 

Thomsen-Friedenreich (TF) antigen has also been demonstrated in UC (Campbell et al., 

1995). In normal histological mucosa, TF antigen is present but concealed by further 

glycosylation such as sialylation and fucosylation, again supporting the finding of a decrease 

in glycan complexity in UC (Campbell et al., 1995). Individuals with null variants of the Fut2 

allele, which determines secretor status i.e. the presence (secretor) or absence (non-

secretor) of H and ABO antigens in GI mucosa, were found to be more susceptible to the 

onset of CD (McGovern et al., 2010). Furthermore in a cohort of healthy and CD patients, a 

number of bacterial groups were associated with the Fut2 genotype (Rausch et al., 2011). 

Despite the apparent link between mucins, mucin glycosylation and IBD, the exact molecular 

mechanisms that define the relationship between microbes and the mucus layer are poorly 

understood. Whilst the above studies in transgenic mice support a causal role for mucin 

glycosylation in IBD, there are other lines of evidence to suggest that aberrant mucin 

glycosylation may occur secondary to inflammation (Arike and Hansson, 2016). For example, 

the O-glycosylation of MUC2 from a UC patient analysed on two separate occasions was only 

altered when the disease was active, whilst in remission, glycosylation had returned to a 

normal pattern (Larsson et al., 2011). This suggests that aberrant glycosylation is associated 

with inflammation and not just with disease. It is evident that the role of mucin glycosylation 

and its interaction with the microbiota is unclear based on current findings. More work is 

therefore necessary to support the causal link between altered O-linked glycosylation and 

inflammation, as recently reviewed (Theodoratou et al., 2014). 
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Figure 8|Schematic diagram illustrating the effect of impaired mucin O-glycosylation in the 

GI tract 

a) Normal O-glycosylation; the mucus layer and intestinal epithelium are intact b) Aberrant 
O-glycosylation e.g. as a result of loss of core 1 or core 3 glycans; intestinal bacteria interact 
abnormally with the epithelium, resulting in inappropriate activation of immune cells. 
 

Figure adapted from Fu et al., 2011 (Servier Medical Art, 2016)  
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 Aim and Objectives  

The intestinal mucus layer forms a protective barrier that provides a nutrient source and 

habitat for commensal organisms, and plays a key role in the maintenance of gut 

homeostasis. Dysbiosis of the microbiota, and alterations in mucin glycosylation have been 

associated with IBD. However further work is required to provide clarification on the causal 

relationship between these two factors. The overall aim of this PhD project is to use a 

multidisciplinary approach to help understand the relationship between the mucus-

associated microbiota and mucin glycosylation, and the underpinning molecular mechanisms 

mediating these changes in IBD.  

The specific objectives of this project are as follows:  

1. To identify changes in mucin glycosylation in IBD patients.  

2. To determine changes in mucosa-associated bacterial composition in IBD patients.  

3. To investigate molecular mechanisms leading to IBD using in vitro growth assays and in 

vivo using mouse models.  

  



67 

 Materials and methods 

 Recruitment of patients and collection of samples 

Patients undergoing colonoscopy or sigmoidoscopy procedures to investigate a suspected 

flare of IBD, for a routine surveillance of IBD or for investigation of another possible bowel 

condition (but found to be macroscopically and microscopically normal) were recruited in 

the Gastroenterology department at the Norfolk and Norwich University Hospital (NNUH). 

Ethical approval was obtained through the Faculty of Medicine and Health Sciences Research 

Ethics Committee at the UEA, and NHS research and development permission was granted 

from the NNUH. On the day of the procedure, patients were fully briefed and asked for 

written informed consent via the Norwich Biorepository information sheet and consent 

form. All patients received a bowel preparation of either sodium picosulfate (Picolax) or 

Macrogol (Kleanprep) for colonoscopy procedures or enema for sigmoidoscopy procedures. 

To collect mucus, lavage samples were collected as previously described, with minor 

amendments (Li et al., 2011). Briefly, 50 ml sterile water was injected onto the surface of the 

colon. Vacuum suction was then used to collect the aspirated mucus into a mucus trap (Bard 

medicals, Crawley, UK). Two lavage samples (one from sigmoid colon and one from 

ascending colon) were collected during colonoscopy procedures, whilst only sigmoidal 

samples were collected during sigmoidoscopy procedures. The mucus trap was sealed and 

kept on ice for lavage processing.  

Biopsies were also collected from a nearby location using 5 mm pinch biopsy forceps, and 

transferred immediately to dry ice.  For colonoscopy procedures, four biopsy samples (two 

from sigmoid colon and two from ascending colon) were collected. As above, only sigmoidal 

samples were collected during sigmoidoscopy procedures.  

Inflammation at each region was categorised as mild/moderate/severe according to 

assessment of separate clinical samples independently graded by a histologist (NNUH). 

Anonymised information about patient sex, age, and medication was recorded (See appendix 

2). 
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 Initial processing and storage of human samples 

Lavage samples were centrifuged at 1000 x g for 10 min to separate bacteria (pellet) and 

mucus (supernatant). Bacterial pellets were re-suspended in 5 ml 1x phosphate buffered 

saline (PBS), and stored at -80°C until further use. The supernatants were then centrifuged 

at 4000 x g for 30 min to remove solid components. The aqueous phase was transferred in 

to a fresh tube and four volumes (vol) of acetone added to precipitate proteins for a 

minimum of 1 night at -80°C. Samples were then thawed and the precipitated protein 

pelleted by centrifugation at 4000 x g for 30 min. The pellet was re-suspended and stored in 

1-2 ml of extraction guanidine hydrochloride (extr-GuHCl) buffer (4 M with 3.3 mM EDTA, 

0.006 M NaH2PO4) at -20ᵒC until mucin extraction. 

Human mucosal biopsies were transferred to -80°C until further use. 

 

 Methods for microbiota analysis from human mucosal lavage samples 

 Extraction of bacterial DNA from lavage 

Bacterial samples prepared in PBS (See section 2.2) were thawed and transferred to a tared 

tube. Following centrifugation at 14,000 revolutions per minute (rpm) for 10 min at 4°C, the 

supernatant was discarded and the mass of the bacterial pellet quantified by weighing the 

tube. Pellets were re-suspended in 1x PBS to a concentration of 0.3125 mg/µl. An aliquot (80 

μl), equating to 25 mg material, was taken for DNA extraction using the QiaAmp DNA mini 

kit (Qiagen, Hilden, Germany) and the remaining suspension frozen at -20°C.  

Aliquots were first homogenised by adding 100 µl ATL buffer (QiaAmp DNA mini kit, Qiagen, 

Hilden, Germany), and bead beating for 2 x 45 seconds (s) at 5.0 M/s in a FastPrep-24 

Instrument (MP Biomedicals, Santa Ana, CA) using autoclaved 0.1 mm silica/zirconium beads 

(B. Braun Melsungen AG, Germany). Bacterial DNA extraction was then completed according 

to the manufacturer’s instructions, following the ‘DNA Purification from Tissues’ protocol 

from step 3 in the QiaAmp DNA mini kit handbook (Qiagen, Hilden, Germany). At the elution 

step, two elutions were performed with 200 µl buffer AE from the QiaAmp DNA mini kit. 

Pellet Paint Co-Precipitant (Merck Millipore, Darmstadt, Germany) was used to precipitate 

and concentrate extracted bacterial DNA. Briefly, a 2 µl aliquot of pellet paint equilibrated 

to room temperature was added to the DNA followed by the addition of a 0.1 vol of 3 M 

sodium acetate and 1 vol of isopropanol. Samples were briefly vortexed and then incubated 
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at room temperature for 2 min to allow the DNA to precipitate. Co-precipitated pellet paint 

and DNA were centrifuged at 14,000-16,000 x g for 5 min. The supernatant was carefully 

removed with a pipette and the pellet washed twice with 1 ml of 70% ethanol, vortexed and 

centrifuged as above. A final wash was carried out with 1 ml of 100% ethanol, centrifugation 

as above, the supernatant removed and the pellet air dried before re-suspending in 20 µl 

buffer AE (QiaAmp DNA mini kit, Qiagen, Hilden, Germany). 

 qPCR assays of bacterial DNA from lavage 

Primers targeting bacterial groups of interest, including mucin-degraders were identified 

from the literature (Table 3). The validity of primers was confirmed by the production of 

standard curves using amplicons from representative organisms of each bacterial group.  

Genomic DNA (gDNA) was first extracted from the strains listed in table 3 using a GeneJET 

Genomic DNA Purification Kit (Thermo Fisher Scientific, Waltham, MA), according to the 

manufacturer’s instructions. Briefly, for gram-negative bacteria, pellets from bacterial 

cultures were re-suspended in 180 µL of digestion solution, 20 µl of proteinase K solution 

and samples incubated at 56°C for 30 min. A 20 µl aliquot of RNase A was added, samples 

mixed and incubated for 10 min at room temperature. Then, 200 µl of lysis solution was 

added and samples were mixed by vortexing for 15 s. For gram-positive bacteria, pellets were 

re-suspended in 180 µl of gram-positive lysis buffer (20 mM Tris-HCl, pH 8.0, 2 mM EDTA, 

1.2% Triton X-100, 20 mg/ml lysozyme), and incubated for 30 min at 37°C. A 200 µl aliquot 

of lysis solution and 20 µl aliquot of proteinase K was added and mixed thoroughly. Samples 

were incubated at 56°C for 30 min, following which a 20 µl aliquot of RNase A solution was 

added.  

To the bacterial lysates, a 400 µl aliquot of 50% ethanol was added, samples mixed by 

vortexing, and the lysates transferred to a GeneJET gDNA purification column. Columns were 

centrifuged 1 min at 6000 ×g, the flow-through discarded, and 500 µl of wash buffer I, 

supplied with the GeneJET kit, added. Columns were then centrifuged for 1 min at 8000 ×g, 

the flow-through discarded, and 500 µl of wash buffer II added. Columns were centrifuged 

for 3 min at maximum speed, the collection tubes containing the flow-through solution 

discarded and the columns placed into a sterile 1.5 ml eppendorf tube. To elute gDNA, two 

successive elutions with 200 µl of elution buffer were performed, which were then pooled.  

The 16S region of purified DNA was then amplified using universal primers 27F (5‟-

AGAGTTTGATCMTGGCTCAG- 3‟) and RP2 (5‟- ACGGCTACCTTGTTACGACTT-3‟) with the 

reaction mixture and amplification conditions as follows: 
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16S PCR reaction mix (per reaction)  Reaction conditions 

Reagent Vol  Temp Duration Cycles 

      

Hotstar 10 x buffer (Qiagen, Hilden, Germany) 5 μl  95°C 15 min  

dNTPs (10 mM) 1 μl  94°C 45 sec 

 x 30 forward primer (27F- 10 μM) 2.5 μl  52°C 45 sec 

reverse primer (RP2- 10 μM) 2.5 μl  72°C 2 min 

Hotstar Taq (Qiagen, Hilden, Germany) 0.3 μl  72°C 10 min  

template DNA (150 ng/μl) 1 μl     

dH2O  to 50 μl     

 

 

Amplicons were purified using a QIAquick PCR purification kit (Qiagen, Hilden, Germany) and 

eluted with sterile dH2O. The PCR products were diluted to 1010 copies/μl (~16.3 ng/μl). A 

template dilution series was used to produce standard curves by qPCR, for validation of 

group specific primers and use in subsequent analysis of human mucosal associated bacteria. 

The qPCR reaction mixture and amplification conditions were as follows:  

 

qPCR reaction mix (per reaction)   Reaction conditions 

Reagent Vol  Temp Duration Cycles 

      

SYBR master mix (Qiagen, Hilden, Germany) 5 μl  95°C 5 min  

Forward primer (10 μM) 0.5 μl  95°C 10 sec 
 x 40 

Reverse primer (10 μM)  0.5 μl  60°C 35 sec 

dH2O 2 μl  95°C 15 sec  

DNA template 2 μl  60°C 1 min  

   95°C 15 sec  

   60°C 15 sec  
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To quantify bacterial groups of interest in samples, the concentration of bacterial DNA 

prepared in section 2.3.1. was measured using a broad range fluorimetric double stranded 

DNA assay on a Qubit® 2.0 fluorometer (Thermo Fisher Scientific, Waltham, MA), according 

to the manufacturer’s instructions. The DNA was diluted to a concentration of 5 ng/μl using 

sterile dH2O, and used in a reaction mixture for relative quantitative analysis by qPCR, as 

described above. Each sample was run in triplicate. Following qPCR, data were analysed by 

measuring the Ct values for individual bacterial groups at a threshold of 0.05 Rn. The relative 

abundance for each targeted group was expressed as a % of total 16S using the following 

calculation:  

 

Relative % of bacterial group of interest = (Eo –Ct (o) / Eu –Ct (u)) x 100 

 

Eo- efficiency of primers for target groups (Table 3) 

Eu- efficiency of universal 16S qPCR primers (Table 3) 
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Table 3| Family, genus and species specific primers used for 16S targeted quantification 

  

R
e

fe
re

n
ce

 

(F
u

lle
r 

et
 a

l.,
 2

0
0

7
) 

(R
am

ir
ez

-F
ar

ia
s 

et
 a

l.,
 2

0
0

9
) 

(R
am

ir
ez

-F
ar

ia
s 

et
 a

l.,
 2

0
0

9
) 

(R
am

ir
ez

-F
ar

ia
s 

et
 a

l.,
 2

0
0

9
) 

(B
el

e
n

gu
er

 e
t 

al
., 

2
0

0
6

) 

(R
in

tt
ila

 e
t 

al
., 

2
0

0
4

) 

(T
o

n
g 

et
 a

l.,
 2

0
1

1
) 

(C
o

lla
d

o
 e

t 
al

.,
 2

0
0

7
) 

Th
is

 s
tu

d
y 

Th
is

 s
tu

d
y 

P
ro

d
u

ct
 le

n
gt

h
 (

b
p

) 

1
4

7
-1

4
8

 

8
1

 

2
4

8
 

1
0

3
 

1
2

8
 

3
4

1
 

1
6

1
 

3
2

7
 

5
7

 

7
6

 

Ta
rg

e
t 

U
n

iv
e

rs
al

 

R
o

se
b

u
ri

a 
sp

p
. g

en
u

s 
&

 

Eu
b

a
ct

er
iu

m
 r

ec
ta

le
 s

p
ec

ie
s 

Fa
ec

al
ib

ac
te

ri
u

m
 s

p
p

. g
en

u
s 

B
ac

te
ro

id
es

 s
p

p
. g

en
u

s 
&

 

P
re

vo
te

lla
 s

p
p

. g
en

u
s 

B
if

id
o

b
ac

te
ri

u
m

 s
p

p
. g

en
u

s 

La
ct

o
b

ac
ill

ac
ea

e 
fa

m
ily

 &
 

W
e

is
se

lla
 s

p
p

. g
en

u
s 

B
a

ct
er

o
id

es
 f

ra
g

ili
s 

sp
ec

ie
s 

A
kk

er
m

a
n

si
a

 m
u

ci
n

ip
h

ila
 

sp
ec

ie
s 

R
u

m
in

o
co

cc
u

s 
g

n
a

vu
s 

sp
ec

ie
s 

La
ch

n
o

sp
ir

ac
ea

e 
fa

m
ily

 

Se
q

u
e

n
ce

 

G
TG

ST
G

C
A

YG
G

YY
G

TC
G

TC
A

 

A
C

G
TC

R
TC

C
M

C
N

C
C

TT
C

C
TC

 

G
C

G
G

TR
C

G
G

C
A

A
G

TC
TG

A
 

C
C

TC
C

G
A

C
A

C
TC

TA
G

TM
C

G
A

C
 

G
G

A
G

G
A

A
G

A
A

G
G

TC
TT

C
G

G
 

A
A

TT
C

C
G

C
C

TA
C

C
TC

TG
C

A
C

T 

G
A

A
G

G
TC

C
C

C
C

A
C

A
TT

G
 

C
G

C
K

A
C

TT
G

G
C

TG
G

TT
C

A
G

 

TC
G

C
G

TC
YG

G
TG

TG
A

A
A

G
 

G
G

TG
TT

C
TT

C
C

C
G

A
TA

TC
TA

C
A

 

A
G

C
A

G
TA

G
G

G
A

A
TC

TT
C

C
A

 

C
A

C
C

G
C

TA
C

A
C

A
TG

G
A

G
 

TC
A

G
G

A
A

G
A

A
A

G
C

TT
G

C
T 

C
A

TC
C

TT
TA

C
C

G
G

A
A

TC
C

T 

C
A

G
C

A
C

G
TG

A
A

G
G

TG
G

G
G

A
C

 

C
C

TT
G

C
G

G
TT

G
G

C
TT

C
A

G
A

T 

TG
G

C
G

G
C

G
TG

C
TT

A
A

C
A

 

TC
C

G
A

A
G

A
A

A
TC

C
G

TC
A

A
G

G
T 

A
G

TA
A

C
G

C
C

C
G

A
A

G
TC

A
G

TG
 

C
G

A
C

TT
C

A
C

C
C

C
A

G
TT

A
TC

G
 

P
ri

m
e

r 
n

am
e

s 

U
n

iF
 

U
n

iR
 

R
re

cF
 

R
re

c6
3

0m
R

 

FP
R

-2
F 

Fp
ra

u
6

4
5R

 

B
ac

30
3

F 

B
fr

-F
m

re
v 

B
if

F 

g-
B

if
id

-R
 

La
c-

1 

La
b

0
67

7
 

1
6

S-
B

F-
F 

1
6

S-
B

F-
R

 

1
6

S-
A

M
-F

 

1
6

S-
A

M
-R

 

1
6

SR
g5

F 

1
6

SR
g5

R
 

La
ch

n
o

F 

La
ch

n
o

R
 



73 

 16S sequencing of bacterial DNA from human mucosal lavage 

 Preparation of 16S DNA libraries 

The concentration of samples prepared in section 2.3.1. was measured using a broad range 

fluorimetric double stranded DNA assay on a Qubit® 2.0 fluorometer (Thermo Fisher 

Scientific, Waltham, MA), according to the manufacturer’s instructions. DNA was diluted to 

a concentration of 5 ng/μl using sterile dH2O and used in the PCR reaction described below. 

For 16S sequencing, the V1-V2 region of 16S DNA was amplified using V1-V2 specific primers. 

Forward primers consisted of a 5’ illumina adaptor sequence, a 10 nucleotide ‘pad’ sequence 

designed to boost the sequencing primer melting temperatures, 2-nucleotide ‘link’ sequence 

that is anti-complementary to the known sequences, and a V1 16S gene specific primer 

sequence (27F). Reverse primers consisted of the same adaptor, pad and link sequences plus 

a V2 16S gene specific primer sequence (338R). Additionally, each forward and reverse 

primer had a unique 8 nucleotide index region, allowing samples to be barcoded (Table 4). 

PCR was carried out using the Q5 high-fidelity polymerase kit (New England Biolabs, Ipswich, 

MA) with the following reaction mixture and conditions: 

16S V1-V2 reaction mix (per reaction)  Reaction Conditions 

Reagent Vol  Temp Duration Cycles 

      

Nuclease free water (Merck Millipore) 14.25 µl  98°C 2 min  

5x Q5 PCR Buffer (New England Biolabs) 5 µl  98°C 30 sec 

 x20 10 mM dNTPs (Thermo Fisher Scientific) 0.5 µl  50°C 30 sec 

Forward primer (10 µM) 1.25 µl  72°C 90 sec 

Reverse primer (10 µM)  1.25 µl  72°C 5 min  

Q5 Taq PCR enzyme (New England Biolabs) 0.25 µl     

DNA template 2.5 µl     

 

PCR was carried out in a 96-well plate, in triplicate per sample. 

The size of each PCR product was estimated by electrophoresis on a 1% agarose gel. Only 

samples yielding the expected V1-V2 product size of approximately 435 bp were selected for 

sequencing. 

Following amplification and electrophoresis, triplicate PCR products were pooled (75 µl total 

volume) into a 96-well PCR plate and purified using Agencourt AMPure XP beads (Beckman 

Coulter, Brea, CA). Briefly, an equal volume of AMPure XP beads was added to each sample 
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(75 µl), gently mixed by pipetting up and down 10 times, and incubated at room temperature 

for 5 min. The PCR plate was placed on a magnetic stand for 2 min until the supernatant had 

cleared. Whilst still on the magnetic plate the supernatant from each well was removed and 

discarded. A 200 µl aliquot of freshly prepared 80% ethanol was then added for 30 s. The 

washing step was repeated before removing the ethanol and allowing the beads to air-dry 

for 15 min. Then, the PCR plate was removed from the magnetic stand and 52.5 μl of 10 mM 

Tris pH 8.5 added to each well, gently mixed by pipetting up and down 10 times, and 

incubated at room temperature for 2 min to elute DNA from the beads. The beads were 

collected by placing the amplicon PCR plate onto the magnetic stand for 2 min, and 50 µl of 

the supernatant transferred into a new 96-well PCR plate. 

Purified samples were quantified using the broad range or high sensitivity fluorimetric 

double stranded DNA assay on a Qubit® 2.0 fluorometer (Thermo Fisher Scientific, Waltham, 

MA), as above. Based on the measured concentrations, a DNA library was constructed using 

an equimolar mix of samples. The library was purified to remove primer dimers and 

contaminants by electrophoresis on a 1% agarose gel. Prior to sequencing, the library DNA 

band was excised and the DNA purified using the Wizard SV gel and PCR clean-up kit 

(Promega, Madison, WI), according to the manufacturer’s instructions. The library DNA was 

sequenced on an Illumina MiSeq platform at the Sanger Institute (Cambridge, UK). 
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Table 4| Primer design and sequences used to amplify the V1-V2 region of bacterial 16S 

DNA for 16S sequencing 
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 Bioinformatics of 16S sequencing data 

Processing of 16S sequencing data was carried out by an in-house bio-informatician. 

Raw sequence reads were processed through quality control using the FASTX-Toolkit 

(http://hannonlab.cshl.edu/fastx_toolkit/), keeping a minimum quality threshold of 33 for at 

least 50% of the bases. Reads that passed the threshold were aligned against the SILVA 

database (version SILVA_119_SSURef_tax_silva, http://www.arb-silva.de/) using BLASTN 

(ncbi-blast-2.2.25+; Max e-value 10-3) (Altschul et al., 1990). After performing BLASTX 

alignment, all output files of paired read sequences were imported and analysed using the 

paired-end protocol of MEGAN (Huson et al., 2011). 

For processing the BLAST files by MEGAN5, parameter settings of “Min Score = 50”, “Top 

Percent = 10” were used. Reads which had no matches to the respective database were 

placed under a “No hit” node, and reads that were originally assigned to a taxon but did not 

meet the selected threshold criterion were pushed back using the lowest common ancestor 

(LCA) algorithm to higher nodes where the threshold was met. After importing datasets in 

MEGAN, MEGAN-own “rma files” were obtained for each data mapped onto NCBI taxonomy 

based on the selected threshold. Furthermore, all the files were compared and analysed 

within MEGAN. 

  

http://hannonlab.cshl.edu/fastx_toolkit/
http://www.arb-silva.de/
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 Methods for mucin glycosylation analysis from human mucosal lavage 

samples and mucosal biopsies 

 Purification of mucins from mucosal lavage samples 

Following initial processing of samples (See section 2.2), a 200 μl aliquot of protein re-

suspended in extr-GuHCl was centrifuged at 13,200 rpm for 30 min, and the GuHCl soluble 

(supernatant) and insoluble (pellet) fractions were separated. The soluble fraction was 

stored at -20°C. To the insoluble fraction, a further vol of extr-GuHCl (100 μl, 6 M with 5 mM 

EDTA, 0.01 M NaH2PO4) was added, and the solution stirred overnight (O/N) at 4°C. The 

sample was then centrifuged as above and the soluble fractions pooled. To the insoluble 

fraction, reduction guanidine hydrochloride (red-GuHCl) was added (120 μl, 6 M with 5 mM 

EDTA, 0.1 M Tris). Dithiotreitol (DTT) was added to both insoluble and soluble fractions to a 

final concentration of 50 mM and the samples stirred for 1.5 h at 37°C. Alkylating agent 4-

vinylpyridine was added to a final concentration of 125 mM and the samples stirred for 1 h 

at room temperature in the dark. The samples were then transferred to 10 kDa molecular 

weight cut-off (MWCO) dialysis cups (Slide-A-Lyzer MINI dialysis cups, Thermo Fisher 

Scientific, Waltham, MA) and dialysed against 4 L water O/N. Dialysed samples were dried in 

a SpeedVac-concentrator (Eppendorf, Hamburg, Germany) and re-suspended in fresh water 

to the desired concentration. 

 Composite AgPAGE of purified mucins 

 Composite AgPAGE gel casting and loading 

All composite agarose- polyacrylamide gel electrophoresis (AgPAGE) gels were cast at 60°C 

in an oven.  

Following the method of Schulz and coll. (Schulz et al., 2002), with minor amendments, an 

agarose (Ag- 0.06 g agarose, 2.4 ml 5x Tris-hydrochloric acid (HCl) pH 8.1, 9.6 ml dH2O) and 

polyacrylamide (PA- 0.12 g agarose, 2.4 ml 5x Tris-HCl pH 8.1, 2.4 ml 50% glycerol and 5.4 ml 

dH2O)  gel solution was prepared. Both solutions were melted in a microwave and placed in 

a water bath at 60°C to equilibrate. At this point 1.8 ml of 40% polyacrylamide was added to 

the PA mixture. A 5 ml aliquot of the Ag solution was then pipetted into the right hand 

chamber of the gradient mixer (Discontinued, MSE, London, UK), and 2 μl 40% ammonium 

persulfate (APS), followed by 2 μl tetramethylethylenediamine (TEMED) added. The same 

volume of PA (5 ml) was then pipetted into the left hand chamber and APS and TEMED added 

as above. The peristaltic pump (GE Healthcare, Little Chalfont, UK) was switched on at a flow 
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rate of 150 ml.h-1 and the valve between the gradient mixer chambers opened. Once cast to 

the top of the mould, a 10-well comb was inserted and the pump flushed with dH2O. The gel 

was allowed to set at room temperature for approximately 1 h, before being transferred to 

a humid environment at 4°C. 

Following concentration using a SpeedVac-concentrator, mucus samples prepared in section 

2.4.1 were re-suspended in a 1:2:1 ratio of dH2O, 2X loading buffer (0.75 M Tris-HCl pH 8.1, 

60% (vol/vol) glycerol, 0.01% (wt/vol) bromophenyl blue, 2% (wt/vol) sodium dodecyl 

sulfate, SDS) and 1 M DTT. The samples were incubated at 37°C for 3 h, and stored at -20°C 

until further use. Before loading, the samples were boiled at 95°C for 5 min. An appropriate 

volume of each sample (15-30 μl) was loaded alongside a high molecular weight protein 

marker (HiMarkTM pre-stained protein standard, Thermo Fisher Scientific, Waltham, MA). 

The gel was run with composite gel running buffer (192 mM boric acid, 1 mM 

ethylenediaminetetraacetic acid (EDTA), 0.1% (wt/vol) SDS, pH 7.6) at 300 V, 12 mA and 50 W 

O/N at 4°C. 

 Composite gel staining 

To identify mucin proteins, the composite gels were washed briefly in dH2O followed by 

staining in GelCode blue stain reagent (Thermo Fisher Scientific, Waltham, MA) for 30 min to 

1 h. The gels were then washed 2 x with dH2O and imaged. 

To stain for mucin glycans, GelCode stained composite gels were first de-stained in 50% 

methanol for 30 min to O/N, rehydrated with 3% acetic acid (2 x 10 min) and then stained 

using the Glycoprotein staining kit (Thermo Fisher Scientific, Waltham, MA) according to the 

manufacturer’s instructions (from step 3). 

 Transfer of mucins to PVDF membrane 

Composite AgPAGE transfer buffer was prepared prior to transfer (250 mM Tris-HCl, 1.92 M 

glycine, 0.4% (wt/vol) SDS, 20% (vol/vol) methanol). Unstained gels were washed thoroughly 

with dH2O before equilibration in transfer buffer for 10 min. Blotting was carried out on 0.45 

μM Hybond-P PVDF membrane (GE Healthcare, Little Chalfont, UK) using an XCell II blot 

module (Thermo Fisher Scientific, Waltham, MA) according to the manufacturer’s 

instructions. Gels were blotted at 4°C for 4 h at 150 V, 300 mA and 40 W. 

 Alcian blue staining of PVDF membranes 

Blots were rinsed with dH2O and transferred into an Alcian Blue solution (25% (vol/vol) 

ethanol, 10% (vol/vol) acetic acid, 0.125% (wt/vol) Alcian Blue 8GX) for 30 min to O/N. The 
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blots were destained with 100% methanol, rinsed with dH2O, air-dried and imaged using a 

FluorChem E system (Protein Simple, San Jose, CA). 

 Dot blot analysis of purified human mucins  

Purified mucins (See section 2.4.1) were normalised to a concentration of 2.5 mg/ml protein, 

as measured using the protein A280 function on a Nanodrop instrument (Thermo Fisher 

Scientific, Waltham, MA). For dot blotting, 1 μl of each soluble and insoluble fraction was 

spotted onto a Hybond-C nitrocellulose membrane (GE Healthcare, Little Chalfont, UK). The 

membranes were dried in air and then incubated in a protein-free blocking buffer (Thermo 

Fisher Scientific, Waltham, MA) for 1 h to O/N.  

Blots were visualised with fluorescein isothiocyanate (FITC)- or biotinylated-lectins (See 

section 2.4.3.1), or with alcian blue staining as above. 

 Lectin probing of dot blots 

Following O/N blocking, blots were rinsed 3 x with PBS and then incubated with lectins for 

probing.  

For FITC labelled lectins (PNA, RCA, UEA, WGA, SNA, Table 5), a 15 μg/ml solution was added 

to the blots, which were then incubated for 1 h at room temperature. The blots were rinsed 

3 x with PBS and imaged using a Pharos FX Plus imager (Bio Rad, Hercules, CA). 

For biotinylated lectins (MALII, Table 5), a 1 μg/ml solution was added to the blots which 

were incubated for 24-48 h at 4°C. Blots were then probed with a 1:4000 dilution of 

extravidin-peroxidase for 1 h at room temperature, and binding visualised with 3,3′,5,5′-

tetramethylbenzidine (TMB) substrate (Sigma-Aldrich, St Louis, MO). Probed blots were 

washed 3 x with PBS and imaged using a GS-800™ Calibrated Densitometer (Bio Rad, 

Hercules, CA). 
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Table 5| Table of lectins and their specificities 
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 AFM for visualisation of mucins  

Purified mucins, re-suspended in H2O were visualised using AFM as described previously 

(Gunning et al., 2013). Briefly, 4 µl of prepared mucins (See section 2.4.1) were deposited 

onto freshly cleaved mica, incubating for 1 min to allow adsorption to take place, and blowing 

the excess liquid off using argon. Imaging was carried out using a MFP-3D BIO atomic force 

microscope (Asylum Research, Goleta, CA) in alternating current (AC) mode in air, at a scan 

rate of 1 Hz. The cantilevers used were Olympus AC160TS (Olympus, Tokyo, Japan). Imaging 

was carried out both before and after treatment of mucins with 1 Kunitz unit of DNase 

enzyme at 37°C O/N. 

 Force spectroscopy 

For force spectroscopy, purified mucins (See section 2.4.1) were first dialysed against sodium 

chloride (NaCl). Briefly, 100 µl of mucin sample at a concentration of 1 mg/ml was prepared 

and dialysed against at least 10x the sample volume of 1 M NaCl solution for 16 h at room 

temperature, using 100 kDa Micro Float-A-Lyzer dialysis devices (VWR International, Radnor, 

Pennsylvania). Force spectroscopy and analysis was performed as previously described 

(Gunning et al., 2013). Briefly, cleaned glass slides were functionalized with prepared mucins 

by silanization with 3-mercaptopropyltrimethoxysilane (MTS, Sigma-Aldrich, St Louis, MO), 

and attachment of a heterobifunctional PEG-3000 linker molecule. To link the mucin chains 

via their N-termini to the derivatized slides, a 100 µl aliquot of the 1 M NaCl dialyzed mucin 

was dispensed onto the slides for 1 h, followed by washing in PBS. To amine-cap any 

unreacted succinimide groups on to the glass, the surfaces were incubated in 10 mg/ml 

glycine, washed in PBS to remove any unbound glycine, and inserted into the liquid cell of 

the AFM. Measurements were carried out with a range of immobilized lectins (Table 5) on 

functionalized silicon nitride AFM tips in direct current (DC) mode under liquid and at a scan 

rate of 1 hertz (Hz). A 3 µm2 area of the mucin coated glass slide was probed for interactions 

with each lectin of interest. The data were captured by ‘force-volume’ (FV) (at a rate of 

2 μm.s-1 in the Z direction and a pixel density of 32 x 32), a combination of imaging and 

carrying out force-distance measurements at each sample point (i.e. pixel). The piezo 

scanner is moved in the Z direction over the selected scan area and records the subsequent 

deflection of the cantilever as it is pushed into (maximum load force 300 pN), then retracted 

away from the sample surface. This produces a matrix of 1024 force-distance curves relating 

to the image coordinates. The spring constant, k, of the cantilevers was determined by fitting 
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the thermal noise spectra (Hutter and Bechhoefer, 1993), yielding typical values in the range 

0.03-0.06 N.m-1. 

 Peak distance analysis 

The separation distances between individual adhesive events in the force spectra were 

determined by a bespoke Excel macro (Gunning et al., 2008; Gunning et al., 2013), by 

quantifying the distances of the turning points in the retraction curves. Discrimination of the 

adhesive events from noise was carried out by setting a negative peak threshold of 6x the 

amplitude of the noise level in the data. 

 HPAEC-PAD for sialic acid quantification  

For quantification of sialic acid on mucins purified from human mucosal lavage or mouse 

mucus scrapings (See sections 2.4.1 and 2.6.1), glycans were first liberated from purified 

mucins by acid hydrolysis following the method of Rohrer and coll. (Rohrer et al., 1998), and 

analysed by high-performance anion-exchange chromatography with pulsed amperometric 

detection (HPAEC-PAD). Briefly, a reaction mixture was prepared containing 0.5 mg of the 

sample of interest, 0.1 M HCl and dH2O to a final volume of 2 ml. The mixture was incubated 

at 80°C for 1 h, then dried using a SpeedVac-concentrator. The dried material was re-

suspended in 225 μl dH2O plus 25 μl of a 1 mg/ml solution of 3-deoxy-d-glycerol-galacto-2-

nonulosonic acid (KDN final concentration 0.01 mg/ml, Sigma-Aldrich, St Louis, MO). A 10 µl 

vol of each sample was injected into an amino trap and CarboPac PA10 carbohydrate column 

installed in a Dionex ICS-5000 chromatography system (Thermo Fisher Scientific, Waltham, 

MA). A standard mixture of 0.1 mg/ml sialic acid (Sigma-Aldrich, St Louis, MO) containing 0.1 

mg/ml KDN, sialic acid at a range of concentrations (from 70 µg/ml to 0.14 µg/ml) and 0.5 

mg fetuin (Sigma-Aldrich, St Louis, MO) were used as a positive controls, and 0.5 mg bovine 

serum albumin (BSA) as a negative control. Eluents were comprised of 100 mM sodium 

hydroxide (NaOH) for eluent A and 100mM NaOH containing 1 M sodium acetate (Thermo 

Fisher Scientific, Waltham, MA) for eluent B. Using a flow rate of 1 ml/min and column 

temperature of 30°C, separation of sialic acid was achieved with the following gradient 

protocol: 
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Time   Eluent Composition   

0 – 10  min  7-30 %  Eluent B   

10 – 11 min  20 %  Eluent B 

11 – 12 min  30-7%  Eluent B  

12 - 28  min  7 %  Eluent B   

 

Samples were monitored by pulsed amperometric detection (PAD) in the carbohydrate 

4-potential waveform. 

As the detection of the sialic acid standard curve was not linear, to quantify the amount of 

sialic acid in samples, the raw sialic acid peak area values (nC*min) were first corrected. 

Briefly, the data were multiplied by a constant obtained by measuring the ratio between the 

nonlinear standard curve and an extrapolation of the linear region. The concentration of 

sialic acid was then determined according to the following calculation, where F is the ratio 

of responses between a known concentration of the internal standard, KDN and the analyte, 

sialic acid: 

 

 
Area internal standard peak 

= F 
Concentration of internal standard 

Area of sialic acid peak Concentration of sialic acid 
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 MALDI-TOF analysis of mucin glycans from mucus samples 

Glycans were first liberated from purified mucins (See sections 2.4.1 and 2.6.1) by alkaline 

borohydride treatment and analysed using matrix-assisted laser desorption/ionization-time 

of flight (MALDI-TOF) mass spectrometry (MS). Briefly, the mucins were submitted to β-

elimination for 20 h at 45°C under reductive conditions (0.1 M NaOH, 1 M NaBH4). The 

reaction was stopped by adding Dowex 50W X8, hydrogen form, strongly acidic 16-50 mesh 

(Sigma-Aldrich, St Louis, MO) and filtered before 3 rounds of co-evaporation with methanol. 

Remaining salts were then removed by Carbograph (Grace, Columbia, MD). 

Released O-glycans were permethylated by solubilisation in 200 μl dimethyl sulfoxide, 

followed by addition of NaOH and 300 μl iodomethane in anhydrous conditions. The mixture 

was vigorously shaked at room temperature for 90 min. The permethylation reaction was 

stopped by addition of 1 ml 5% acetic acid. Purification of permethylated O-glycans was 

carried out using HLB Oasis cartridges. Briefly, cartridges were activated by methanol, 

equilibrated with a 1:19 ratio of methanol to water (vol:vol), and samples were added to the 

cartridges. Cartridges were washed with a 1:19 ratio of methanol to water (vol:vol) and the 

permethylated O-glycans eluted with methanol. 

MALDI-TOF and TOF/TOF-MS data were acquired using the Bruker Autoflex analyser mass 

spectrometer (Applied Biosystems, Foster City, CA) in the positive-ion and reflectron mode 

by using 2,5-dihydroxibenzoic acid (DHB; 10 mg/ml in 7:3 ratio of methanol to water, Sigma-

Aldrich, St Louis, MO) as the matrix. 
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 RNA extraction and cDNA synthesis from human mucosal biopsies 

Biopsies stored at -80°C were removed and placed on dry ice. To the frozen whole biopsies, 

200 µl of RNAlater-ICE solution (Thermo Fisher Scientific, Waltham, MA) was added, and the 

biopsies transferred to -20°C O/N. The following day, biopsies were removed using sterile 

forceps, transferred into a fresh Eppendorf containing 350 µl buffer RLT (RNeasy Mini Kit, 

Qiagen, Hilden, Germany) and 3.5 µl β-mercaptoethanol (Sigma-Aldrich, St Louis, MO), and 

incubated for 5 min at room temperature. Disruption was carried out with a disposable, 

autoclaved pellet pestle (Sigma-Aldrich, St Louis, MO), pipetting and vortexing the sample 

until it was fully lysed. Ribonucleic acid (RNA) extraction was then completed by following 

the RNeasy Mini Kit ‘Purification of Total RNA from Animal Tissues’ protocol from step 5, 

following steps D1-D4 in replacement of step 6, and carrying out two elution steps with 30 µl 

RNase free water. Extracted RNA was stored at -80°C until cDNA synthesis. 

Prior to the reverse transcription (RT) reaction, template RNA was thawed on ice. The quality 

of RNA was assessed by using a 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA), 

according to the manufacturer’s instructions. A measurement by Nanodrop was also taken 

to assess the 260/280 and 260/230 purity ratios, as well as to quantify the RNA. Elimination 

of gDNA (0.5 µg RNA per reaction, scaled up depending on volume of cDNA required) and 

cDNA synthesis was carried out using the Quantitect reverse transcription kit (Qiagen, 

Hilden, Germany), according to the manufacturer’s instructions. 

 qRT-PCR of glycosyltransferase genes 

For qRT-PCR, primers targeting glycosyltransferases were validated against cDNA derived 

from the mucus producing colorectal adenocarcinoma HT29-MTX cell line (Table 6). Briefly, 

RNA was extracted and cDNA synthesised (1 µg RNA per reaction) as above and the resulting 

cDNA used in a two-fold template dilution series to generate standard curves. The RT-PCR 

reaction mixture and amplification conditions for samples and standards were as follows: 
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qPCR reaction mix (per reaction)   Reaction conditions 

Reagent Vol  Temp Duration Cycles 

      

SYBR master mix (Qiagen, Hilden, Germany) 5 μl  95°C 5 min  

Forward primer (10 μM) 0.5 μl  95°C 10 sec 
 x 40 

Reverse primer (10 μM)  0.5 μl  58°C 45 sec 

dH2O 2 μl  95°C 15 sec  

DNA template 2 μl  60°C 1 min  

   95°C 15 sec  

   60°C 15 sec  
 

For quantification of glycosyltransferase gene expression in the samples, qRT-PCR was run in 

triplicate under the same conditions described above, using a four-fold dilution of template 

cDNA. Following qRT-PCR, data were analysed by measuring the cycle threshold (Ct) values 

for individual bacterial groups at a threshold of 0.05 Rn. Data were expressed as –DCt (-(Ct 

18S reference) – (Ct gene of interest)) for downstream statistics and analysis. 
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Table 6| Primers used to quantify the expression of human glycosyltransferases 

  

Primer names Sequence Reference 

C1GalT1-3F GAGGTGGCTTCTTTCAAAATACGACCC 
(Blixt et al., 2011) 

C1GalT1-3R CATCTCCCCAGTGCTAAGTCTTCAATG 

C3GnT-3F CGGCTAGACTATCTCTTCATCCTC 
(Blixt et al., 2011) 

C3GnT-3R CCACTCACTTGTAAACAGTGGAAA 

ST3Gal-I-F TGGTCCTGGAGCTCTCCGAGAA 
(Sakuma et al., 2012) 

ST3Gal-I-R GACTGTCTATCTCAGGCCCATAAGAAGA 

ST3Gal-II-F GATGATGCTGCAGCCCCAGTTC 
(Sakuma et al., 2012) 

ST3Gal-II-R ACATCCTGCTCAAAGCCCACGGTT 

ST3Gal-III-F TGTTCCTGGATGACTCCTTTCGCA 
(Chachadi et al., 2013) 

ST3Gal-III-R CTTGTTGGCAAGAACGCCTCCATT 

ST3Gal-IV-F ATGAGCAGATCACGCTCAAGTCCA 
(Chachadi et al., 2013) 

ST3Gal-IV-R TCCCATCTCCAGCATCCGCTTAAT 

ST3Gal-VI-2F TCTATTGGGTGGCACCTGTGGAAA 
(Chachadi et al., 2013) 

ST3Gal-VI-2R TGATGAAACCTCAGCAGAGAGGCA 

ST6GalNAc-I-F CAGAGGCACAATCATGGAAG 
(Chik et al., 2014) 

ST6GalNAc-I-R GCTGACTTTTGGGAATGAGC 

ST6GalNAc-II-2F AAGCTGCTACATCCGGACTTCA 
(Ding et al., 2009) 

ST6GalNAc-II-2R GGGACAGATCGTGGTTTGCATA 

Fut2-2F CCTTCAGCAGGACCAGGTGAGA 
(Sakuma et al., 2012) 

Fut2-2R GGTCCCAGTGCCTTTGATGTTGAG 

18S-F CACGGGAAACCTCACCCGGC 
This study 

18S-R CGGGTGGCTGAACGCCACTT 
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 Methods for in vitro culture assays of R. gnavus CC55_001C and A. 

muciniphila ATCC BAA 835  

 Routine culture conditions 

The growth of R. gnavus and A. muciniphila followed strict anaerobic conditions. 

Equipment and media were pre-reduced in an anaerobic cabinet (Don Whitley, Shipley, UK) 

for at least 48 h. All cultures were grown at 37°C with a gas mixture of 5% carbon dioxide 

(CO2), 10% hydrogen, 85% nitrogen.  

Starter cultures of A. muciniphila ATCC BAA 835 (ATCC, Manassas, VA) and R. gnavus 

CC55_001C (kindly provided by Emma Allen-Vercoe’s lab, University of Guelph, Ontario, 

Canada) were routinely grown from glycerol stocks in Brain-heart infusion media 

supplemented with 5 g/l of Bacto™ yeast extract (Becton, Dickinson and Company, Franklin 

Lakes, NJ) and 5 mg/l of hemin (Sigma-Aldrich, St Louis, MO) (BHI-YH).  

Depending on the type of growth assay, yeast extract-casein hydrolysate-fatty acid (YCFA) or 

CP media were used to further assess the ability of R. gnavus and A. muciniphila to grow on 

specific carbohydrate sources (See sections 2.5.2 and 2.5.5). 

YCFA medium consisted of (per 1 L): 10 g casitone, 2.5 g yeast extract, 4 g NaHCO3, 1 g L-

cysteine hydrochloride, 450 mg K2HPO4, 450 mg KH2PO4, 900 mg NaCl, 90 mg MgSO4.7H2O, 

90 mg CaCl2, 1 mg resazurine, 10 mg hemin, 10 mg biotin, 10 mg cobalamin, 30 mg p-

aminobenzoic acid, 50 mg folic acid and 150 mg pyridoxamine (Crost et al., 2013). 

CP medium consisted of (per 1 L): 0.4 g KH2PO4, 0.53 g Na2HPO4, 0.3 g NH4Cl, 0.3 g NaCl, 4 g 

NaHCO3 and 0.25 g Na2S.7-9H20, 0.1 g MgCl2.6H2O, 0.11 g CaCl2, 1 ml alkaline trace element 

solution (0.1 mM Na2SeO3, 0.1 mM Na2WO4, 0.1 mM Na2MoO4, 10 mM NaOH), 1 ml acid 

trace element solution (7.5 mM FeCl2, 1 mM, H3B04, 0.5 mM ZnCl2, 0.1 mM CuCl2, 0.5 mM 

MnCl2, 0.5 mM CoCl2, 0.1 mM NiCl2, 50 mM HCl), 0.5 mg resazurine and 3 g cysteine (Derrien 

et al., 2004).   

 Growth assays in carbohydrate supplemented media 

The monosaccharides, D-glucose (Glc), Gal, N-acetylglucosamine (GlcNAc), N-

acetylgalactosamine (GalNAc), Fuc, lactose (Lac), N-acetylneuraminic acid (Neu5Ac), N-

glycolylneuraminic acid (Neu5Gc) and type III pig gastric mucin (PGM) were purchased from 

Sigma-Aldrich (St Louis, MO).  



89 

Oligosaccharides, 2′-fucosyllactose (2′FL), 3-fucosyllactose (3’FL), lacto-N-neo-tetraose 

(LNnT) lacto-N-tetraose (LNT) and 6′-O-sialyllactose (6′SL) were provided by Glycom A/S 

(Lyngby, Denmark). 3′-sialyllactose (3′SL) and LacNAc were purchased from Carbosynth 

Limited (Campton, UK). 

Growth assays were carried out using anaerobic basal YCFA medium supplemented with 27.7 

mM of mono- or oligosaccharides, as previously described (Crost et al., 2013). Growth was 

determined spectrophotometrically by measuring changes in optical density at 48 h, using a 

wavelength of 595 nm and comparing to the same medium without bacterial inoculum. 

 Purification of Sigma type III PGM 

Mucin for in vitro culturing assays was purified from commercially available porcine gastric 

mucin (Sigma-Aldrich, St Louis, MO), following a method previously described (Gunning et 

al., 2013). Briefly, 5 g mucin was dissolved in 200 mL of buffer containing 0.1 M NaCl, 0.02 M 

sodium phosphate pH 7.8 and 3 drops of toluene. The solution was stirred for 1 h at room 

temperature and then 2 M NaOH added to adjust the pH to 7-7.4. The adjusted solution was 

stirred O/N at room temperature. Following stirring, the solution was centrifuged for 1 h at 

10,000 xg and 4°C. To the supernatant, pre-chilled absolute ethanol was added to a 

concentration of 60 %. The solution was stirred for 30 min at 4°C and then centrifuged at 

10,000 xg for 1 h at 4°C. Following centrifugation, the pellet was dissolved in 150 ml 0.1 M 

NaCl and stirred O/N at 4°C. Pre-chilled ethanol was added to the solution as above, stirred 

for 30 min and centrifuged for 30 min at 10,000 xg. The pellet was then allowed to air dry 

before being dissolved in 100 ml H2O with O/N stirring at 4°C. The solution was dialysed O/N 

against H2O using a 100 kDa MWCO membrane before being freeze dried ready for use. 

 Purification of mucin from the LS174T cell line 

Mucin for in vitro culturing assays was purified from the LS174T colon adenocarcinoma cells 

(ATCC® CL-188) (Tom et al., 1976) by isopycnic ultracentrifugation. Briefly, guanidinium 

chloride (GuCl) buffer was prepared (100 ml, containing 6 M GuCl, 6.36 mM EDTA, 9.8 mM 

benzamidine, 5 mM N-ethylmaleimide, 10 mg soy bean trypsin inhibitor, 3 mM sodium azide 

and 1 mM phenylmethanesulfonyl fluoride (PMSF) dissolved in 500 μl isopropanol). 

Mucus was harvested from cell lines by collecting 15 ml of spent medium from cells cultured 

in a 75 cm2 culture flask (Starstedt, Nümbrecht, Germany) every 3-4 days. The medium was 

freeze dried and the dried material re-suspended in GuCl buffer (15-20 ml per 10 tubes of 

spent medium) to a final concentration of 4 M and stirred for 2 h at a minimum of 4°C. The 

http://www.sigmaaldrich.com/catalog/product/sigma/p7626
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mixture was centrifuged at 12, 000 rpm for 30 min at 4°C, and the pellet (containing MUC2) 

and supernatant (containing other mixed mucins) separated.  

The supernatant, containing mixed mucins, was diluted to 4 M with PBS, and DTT added to a 

concentration of 9.33 mM. The density of the solution was adjusted to 1.4 g/ml with caesium 

chloride. The samples were ultracentrifuged at 58,000 rpm for 48-72 h at 20°C. Using a 

syringe, 1 ml fractions were collected from the top of the tubes and weighed. Fractions with 

a density of 1.35 to 1.50 g/ml were stained with Periodic Acid Schiff (PAS) staining to confirm 

the presence of mucins. Briefly, 20 µl of each fraction was slot blotted onto a nitrocellulose 

membrane. Membranes were rinsed with PBS. The membrane was incubated for 30 min in 

a solution containing 1% periodic acid and 3% acetic acid. The membrane was washed with 

PBS and stained with Schiff’s fushcin-sulfite reagent (Sigma-Aldrich, St Louis, MO) for 15 min 

in the dark. Finally, the membrane was washed in 0.1% sodium metabisulfite in 1 mM HCl. 

PAS positive fractions were dialysed against pure water containing 50 mM ammonium 

bicarbonate in 12-14 kDa dialysis tubing (SpectraPor, Spectrum labs, Rancho Dominguez, CA) 

for 2 days, changing the buffer twice daily. Dialysed samples were freeze-dried and stored at 

4°C until further use.  

The pellet, containing MUC2, was re-suspended in 5-10 ml reduction GuCl buffer (6M 

containing 0.6 M Tris pH 8.3 without protease inhibitors). DTT was added to a concentration 

of 10 mM. The mixture was incubated for 4 h at 45°C in a water bath. After cooling, 

iodoacetamide was added to a concentration of 25 mM and incubated O/N at room 

temperature in the dark. Samples were dialysed as above. Samples were freeze-dried and 

stored at 4°C until further use. 

 Growth assays of A. muciniphila and R. gnavus in mucin medium 

CP media containing 0.5% pPGM (Gunning et al., 2013) or 0.5% purified mucin from LS174T 

cells (See sections 2.5.3 and 2.5.4), was prepared.  

Starter BHI-YH cultures (See section 2.5.1) of A. muciniphila ATCC BAA 835 grown to ~48 h 

and R. gnavus CC55_001C grown to ~24 h were subcultured 1/25 into mucin CP medium. To 

monitor bacterial growth, an aliquot of each culture was taken at the desired time point and 

centrifuged at 2,000 xg for 3 min. The supernatant and pellet were separated and individually 

frozen at -20°C until further use. 
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 Monitoring in vitro growth of A. muciniphila and R. gnavus by qPCR  

Bacterial pellets were thawed and the gDNA extracted using the GeneJET Genomic DNA 

purification kit (Thermo Fisher Scientific, Waltham, MA), following the gram negative or gram 

positive protocol, according to the manufacturer’s instructions and as described in section 

2.3.2. The concentration of bacterial gDNA extracted was determined using the high 

sensitivity fluorimetric double stranded DNA assay on a Qubit® 2.0 fluorometer (Thermo 

Fisher Scientific, Waltham, MA), according to the manufacturer’s instructions. 

For quantification of bacterial cells in cultures of A. muciniphila ATCC BAA 835 and R. gnavus 

CC55_001C, standard curves of gDNA were first prepared. The theoretical genome mass of 

A. muciniphila (Genbank CP001071.1) and R. gnavus (Genbank AZJF00000000.1) was 

determined using the following equation: 

Genome mass (kg) = ((Na x MWa) + (Nc x MWc) + (Ng x MWg) + (Nt x MWt) + 157.9) x 

Atomic mass constant (1.66 x 10-27) 

Na= Number of adenine base pairs in double stranded DNA 

Nc= Number of cytosine base pairs in double stranded DNA 

Ng= Number of guanine base pairs in double stranded DNA 

Nt= Number of thymine base pairs in double stranded DNA 

MWa= Molecular weight adenine  

MWc= Molecular weight cytosine  

MWg= Molecular weight guanine  

MWt= Molecular weight thymine  

 

 

The gDNA extracted from A. muciniphila ATCC BAA 835 and R. gnavus CC55_001C grown in 

BHI-YH media was diluted to a concentration equating to 107 cells, based on the calculated 

theoretical genome mass. Serial dilutions ranging from 106 to 101 cells were then generated 

in H2O containing 5 µg/ml salmon testes DNA (Sigma-Aldrich, St Louis, MO). qPCR of 

standards prepared from cells grown in BHI-YH, and samples of bacterial cultures grown in 

mucin media were carried out as in section 2.3.2, using a 2 µl aliquot of each serial dilution 

template or sample template. For samples of bacterial cultures grown in mucin media, the 

reaction mixture was modified by replacing the 2 µl H2O with 2 µl salmon testes DNA at a 

concentration of 5 µg/ml. Quantification of A. muciniphila and R. gnavus was carried out by 

comparison of each reactions Ct value against the prepared gDNA standard curves. 
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 1H NMR metabolite analysis of spent media 

1H NMR was used to identify the presence and concentration of several metabolites 

produced by A. muciniphila ATCC BAA 835 and R. gnavus CC55_001C grown in pPGM and 

LS174T mucin containing medium. 

Sample supernatants collected in section 2.5.5 were thawed at room temperature and 

prepared for 1H NMR spectroscopy by mixing 400 µl of extracts  with 200 µl NMR buffer 

(0.26 g NaH2PO4 and 1.41 g K2HPO4) made up in 100% D2O (100 ml), containing 0.05% NaN3 

(50 mg), and 1 mM sodium 3-(Trimethylsilyl)-propionate-d4, (TSP) (17 mg) as a chemical shift 

reference. The samples were mixed, and 500 µl was transferred into a 5 mm NMR tube for 

spectral acquisition. The 1H NMR spectra were recorded at 600 MHz on a Bruker Avance 

spectrometer (Bruker BioSpin GmbH, Rheinstetten, Germany) running Topspin 2.0 software 

and fitted with a 5 mm TCI cryoprobe. Sample temperature was controlled at 300 K. Each 

spectrum consisted of 64-1032 scans of 65,536 complex data points with a spectral width of 

12.3 ppm (acquisition time 2.66 s). The “noesypr1d” pre-saturation sequence was used to 

suppress the residual water signal with low power selective irradiation at the water 

frequency during the recycle delay (D1 = 3 s) and mixing time (D8 = 0.01 s). Spectra were 

transformed with a 0.3 Hz line broadening, manually phased, baseline corrected, and 

referenced by setting the TSP methyl signal to 0 ppm. The metabolites were quantified using 

the software Chenomx NMR suite 7.6™. Metabolites were identified using information found 

in the literature or on the web (Human Metabolome Database, http://www.hmdb.ca/) and 

by use of the 2D-NMR methods, COSY, HSQC, and HMBC.  
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 Methods for In vivo colonisation assays of germ-free mice with R. gnavus 

CC55_001C and A. muciniphila ATCC BAA 835  

 Gavaging of germ-free mice and collection of samples 

A. muciniphila ATCC BAA 835 and R. gnavus CC55_001C were grown from glycerol stocks in 

BHI-YH media as described above (See section 2.5.1). At 48 h growth for A. muciniphila and 

24 h growth for R. gnavus, a 1 ml aliquot was taken to quantify the number of cells in the 

culture by gDNA extraction and qPCR. Prior to gavaging, the remaining culture was 

concentrated 50x, by centrifugation for 5 mins at 10,000 xg, removal of the supernatant and 

resuspension of the pellet in a 0.02 vol of pre-reduced sterile PBS. Germ-free C57BL/6J mice 

aged between 11 and 14 weeks were each gavaged with 100 µl of bacterial culture. Mice of 

the same age were kept germ-free as controls in a separate isolator. 

Faecal samples were taken from the mice at day 0 (pre-gavaging), and at intermittent time 

points throughout the experiment. At the endpoint of the experiment, the mice were 

euthanized via exposure to carbon dioxide. Colon mucus scrapings were collected by cutting 

longitudinally along the length of the intestines and gently scraping the mucosa with a glass 

slide. Collected mucus was placed into 6 M GuCl buffer (See section 2.5.4) and stored at 4°C 

until further use. In addition, caecal contents were collected and placed immediately on dry 

ice, followed by storage at -80°C until further use. 

 Monitoring colonisation of A. muciniphila and R. gnavus by qPCR  

gDNA was extracted from faecal samples (See section 2.6.1) using the FastDNA™ Spin kit for 

soil (MP Biomedicals, Santa Ana, CA). The extraction was carried out following the 

manufacturer’s instructions, with minor amendments. Briefly, the weight of faecal material 

was measured in tared tubes. To each faecal sample, a 978 µl aliquot of sodium phosphate 

buffer and 122 µl aliquot of MT buffer (provided in the kit) was added and the sample 

incubated at 4°C for 1 h. The sample was added to a lysing matrix E tube, and homogenised 

in a FastPrep-24 instrument (MP Biomedicals, Santa Ana, CA) for 3 x 40 s at speed setting of 

6.0 with 5 min on ice between each beating step. The lysed sample was centrifuged at 

14,000 x g for 10 min to pellet debris, and the supernatant transferred to a clean 2 ml 

microcentrifuge tube. A 250 µl aliquot of protein precipitation solution was added and mixed 

by shaking the tube 10 times by hand. The sample was centrifuged at 14,000 x g for 5 min 

and the supernatant transferred to a clean 15 ml tube, to which 1 ml of binding matrix was 

added. The tube was inverted by hand for 2 min and then placed in a rack for 3 min to allow 
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settling of silica matrix. A 800 µl aliquot of supernatant was carefully removed and discarded, 

and the remainder of the supernatant re-suspended with the binding matrix. A 600 µl aliquot 

of the mixture was transferred into a SPIN filter column and centrifuged for 1 min at 

14,000 x g. The flow through was discarded and the process repeated with the remainder of 

the re-suspended binding matrix. To the column, 500 µl of SEWS-M buffer was added and 

the pellet re-suspended by gentle pipetting. The mixture was centrifuged at 14,000 x g for 

1 min, the flow through discarded and the pellet washed again with SEWS-M. Following 

removal of the flow through, the column was centrifuged again at 14,000 x g for 2 min to 

remove any residual liquid. The column was placed into a fresh catch tube, and the SPIN filter 

air dried for 5 min at room temperature before re-suspending the binding matrix in 100 µl 

DES, and centrifuging at 14,000 x g for 1 min, to elute bound DNA. 

The concentration of extracted gDNA was determined using a broad range fluorimetric 

double stranded DNA assay on a Qubit® 2.0 fluorometer (Thermo Fisher Scientific, Waltham, 

MA). Each sample was diluted to 2.5 ng/µl according to this measurement, and qPCR was 

carried out as in section 2.3.2, using 2 µl of this template. Quantification of A. muciniphila 

and R. gnavus was carried out by comparison of reaction Ct values against gDNA standard 

curves, prepared as in section 2.5.6, but with minor modifications to the reaction mixture to 

include 1 µl of template DNA (rather than 2 µl), 2 µl of H2O and 1 µl of DNA extracted from 

the faecal samples of germ-free mice.  

 Purification of mucins from mouse mucus scrapings and analysis of 

glycosylation  

Mucin purification was carried out from mucus scrapings of the colon (See section 2.6.1) as 

previously described (See section 2.5.4). Samples were freeze-dried and 1 mg used in 

preparation and analysis of mucin glycosylation by MALDI-TOF as described above 

(See section 2.4.7). Further samples were re-suspended to a concentration of 0.5 mg/ml, as 

determined by a Nanodrop measurement, and the relative abundance of sialic acid 

quantified by HPAEC-PAD as previously described (See section 2.4.6). 

 1H NMR metabolite analysis of caecal contents 

1H NMR was used to identify the presence and concentration of metabolites produced in the 

caecal contents of gnotobiotic mice mono- and co-colonised with A. muciniphila ATCC BAA 

835 and R. gnavus CC55_001C. 
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Briefly, 50 mg of caecal contents was transferred to 600 µl of NMR buffer as described in 

section 2.5.7. The mixture was homogenised using a sterile pellet pestle (Sigma-Aldrich, St 

Louis, MO) with a cordless motor device. Following homogenisation, samples were 

centrifuged for 5 min at 15,000 xg at 4°C, and the supernatant transferred into a 5 mm NMR 

tube for spectral acquisition as described in section 2.5.7. 

 

 Statistical analyses 

Data for all experiments carried out in this study were performed using MATLAB, version 

8.5.0.197613 (R2015a) and GraphPad Prism, version 5.04. One-way analysis of variance 

(ANOVA), Pearson correlation, Mann-Whitney test, Wilcoxon matched-pairs signed-rank 

test, and principal component analysis (PCA) were performed in this study. Degrees of 

significance are represented as *p<0.05, **p<0.01, ***p<0.001 and ***p<0.0001. The false 

discovery rate was controlled for at a threshold of q= 0.05. 
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 Characterisation of the colonic mucus-associated 

microbiota 

 Introduction and objectives 

The gut microbiota has been well studied in quiescent and active IBD. Several studies have 

observed quantitative and qualitative alterations in the composition of the gut microbiota in 

UC and CD. Broadly, IBD has been characterized by a depletion in Firmicutes and 

Bacteroidetes, an increase in Proteobacteria and Actinobacteria, and a decrease in microbial 

diversity (Becker et al., 2015). Specific alterations in the abundance of mucin degrading 

species are also evident. The most prevalent mucolytic bacterium, A. muciniphila is depleted 

in both UC and CD, whilst R. gnavus shows a more than fourfold increase in abundance (Png 

et al., 2010). Dysbiosis induced during inflammation, including changes in the prevalence of 

mucolytic bacteria, may impact on mucin glycosylation pattern by acting on the expression 

of glycosyltransferases and/or degrading specific mucin O-glycans. A large majority of studies 

which characterised the microbiota in disease have been carried out on faecal samples and 

biopsies (Joossens et al., 2011; Machiels et al., 2014; Png et al., 2010; Sokol et al., 2008; Sokol 

et al., 2009; Willing et al., 2010a). Faecal samples may not provide the most accurate 

representation of the microbiota composition that would be found in association the 

intestinal mucus. Sampling of the microbiota by luminal brush, whole mucosal biopsy and 

laser captured mucus revealed that the luminal and mucosal compartments do indeed host 

distinct microbiota populations (Lavelle et al., 2015). Mucosal microbiota populations can be 

analysed using biopsies and other sampling techniques, as summarised in table 2. However, 

neither faecal nor biopsy samples provide an easy method of sampling mucus, either due to 

its loss from the tissue or difficulty in its separation from stool (Hansson, 2012; Loktionov et 

al., 2016). As a result, elucidation of the mucin-microbiota relationship is troublesome. 

In order to better understand the interaction between mucin and mucus-associated 

microbiota, it is necessary to obtain samples from the mucosal surface, and allowing both 

the microbiota and the associated mucus to be examined. We therefore utilised mucosal 

lavage, allowing us to assess both of these components from the same sample and from 

different colon sites (Li et al., 2011). 

Two approaches were used to analyse the microbiota composition. Firstly, 16S sequencing, 

allowing us to obtain a broad overview of the mucus-associated microbiota composition, and 
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secondly, quantitative PCR (qPCR), allowing us to determine the abundance of more specific 

bacterial groups of interest including mucin degrading species. 

 

 Overall profiling of the mucus-associated microbiota by 16S sequencing 

Bacterial DNA was extracted from 74 mucosal lavage samples from the sigmoid and 

ascending colon of 41 patients, representing a range of controls, UC and CD patients. Briefly, 

samples were homogenized and DNA extraction carried out according to a DNA mini kit 

protocol. To obtain a broad level of analysis we first performed 16S sequencing targeting the 

V2 region of the 16S gene. Sequencing was carried out on 65 colonic samples from 9 controls, 

18 UC and 8 CD patients (See appendix 2 for patient metadata). Following normalisation, the 

number of reads per sample ranged from a minimum of 42,183 to a maximum of 107,8026. 

Out of a total of 65 samples, 55 samples displayed a normalised read number greater than 

100,000 reads. 

Analysis of the 16S sequencing data at the bacterial family level resulted in the detection of 

65 families across samples analysed. Across individuals, the most common families detected 

in the microbial community were Lachnospiraceae, Ruminococcaceae and Bacteroidaceae 

(Sigmoid; Bacteroidaceae, 22.53%, Lachnospiraceae, 28.26%, Ruminococcaceae, 21.06%, 

Ascending; Bacteroidaceae, 19.62%, Lachnospiraceae, 29.00%, Ruminococcaceae, 22.10%). 

At the genus level, 138 genera were detected across the samples analysed, which mainly 

consisted of the Bacteroides genus and Faecalibacterium genus (Sigmoid; Bacteroides, 

32.65%, Faecalibacterium, 20.02%, Ascending; Bacteroides, 28.83%, Faecalibacterium, 

20.83%) across individuals (Fig. 9). Interestingly, no sequences were detected that classified 

under the genera to which the mucin degraders R. gnavus or A. muciniphila belong (See 

appendix 3). 

 Effect of confounding variables on taxonomic profile 

Based on the overall taxonomic profile established from the processed 16S sequencing data, 

the sigmoid and ascending samples from each individual were plotted on a principal 

coordinate analysis (PCoA) plot. Using this method of analysis, it was apparent that there 

was no specific clustering of the data based on disease state, but a high degree of inter-

individual variation. Furthermore, age and other confounding factors did not contribute 

substantially to this variation. In contrast, many of the paired sigmoid and ascending samples 

from the same patient appeared to be plotted within a similar region on the PCoA plot, 
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suggesting that the microbial composition in both regions was similar (Fig. 9). Spatial 

conservation was further evident by the similarity of pie charts of the microbiota 

composition in the sigmoid and ascending colon, at both the family and genus level (Fig. 10).  

  

Figure 9|PCoA plot of 16S taxonomic profiles of mucus associated microbiota from control, 

UC and CD patients 

Taxonomic profiles of the mucus associated microbiota in control, UC and CD patients were 
determined by sequencing the V2 region of the 16S gene. Samples are plotted following 
decomposition of the variable matrix using the Bray Curtis dissimilarity index. Samples 
positioned closest on the PCoA plot are more similar in taxonomic composition, whilst those 
positioned further apart are more dissimilar. Paired samples from the same patient are 
indicated by connecting lines. Principal component 1 (PC1) summarises the largest amount 
of the total variance in the data (25.7%) whilst principal component 2 (PC2) summarises the 
second largest amount (15.7%). 
 

 

Controls sigmoid colon  UC sigmoid colon   CD sigmoid colon 

Control ascending colon  UC ascending colon   CD ascending colon 

PC2 

PC1 
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Figure 10| Average family and genus level mucosal microbiota compositions of the 

ascending and sigmoid colon 

Taxonomic profiles of the mucus associated microbiota in control, UC and CD patients were 
determined by sequencing the V2 region of the 16S gene. The pie charts represent the 
average family and genus level compositions across all mucosal microbiota samples 
sequenced. Comparison of the sigmoid and ascending regions shows a highly similar 
microbiota composition in these regions. 
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 Diversity, richness and evenness of the microbiota from mucosal lavage 

samples 

Several indices were measured to obtain a view of the diversity, richness and evenness of 

the microbiota within each sample. In order to carry out statistical analyses to assess for 

differences in these indices depending on location and disease state, it was necessary to sort 

the data. To prevent skewing of data, patients with measurements made only in one of the 

two colon locations were removed. This resulted in the selection of samples from 8 control 

patients, 17 UC patients and 5 CD patients with both sigmoidal and ascending colon locations 

measured. We also decided to exclude CD patient data at this stage given the small sample 

number in this group. 

Margalef’s richness scores ranged between 1.7 in the sigmoid colon of a UC patient and 7.8 

in the ascending colon of a control patient. Pielou’s eveness scores ranged between 0.27 in 

the sigmoid colon of a UC patient to 0.79, also in the sigmoid colon of a UC patient. Shannon 

diversity scores, combined measurements of evenness and richness, ranged between 1.3 and 

2.2 apart from one UC sample from the sigmoid colon (14TB0097) which had an exceptionally 

low Shannon score, and therefore a low diversity, of 0.59. A similar observation was made 

for the Simpson index, also a measure of diversity. Simpson scores ranged between 0.6-0.8 

for most samples except for 14TB0097 s, for which the score was exceptionally low at 0.26. 

For statistical analyses of the data, Wilcoxon matched pairs signed rank nonparametric tests 

were first performed to determine if there were any statistically significant differences in 

diversity, richness or evenness between the ascending and sigmoid colon of either controls 

or UC patients. Using this method of analysis, no statistically significant differences could be 

observed in either the control patients or the UC group, with any of the indices measured. 

This observation was not affected by the presence or absence of outliers such as 14TB0097 

S (Fig. 11) (Table 7). 

To assess if there were any differences in richness, diversity and evenness depending on 

disease state, Mann Whitney tests were performed between the sigmoid colon of UC 

patients and controls, and likewise for the ascending colon. No significant differences could 

be observed between the mucus-associated microbiota of controls and UC patients using 

any of the measured indices (Fig. 11) (Table 7).  
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Figure 11| Dot plots of diversity, evenness and richness indices of mucus associated 

microbiota from control and UC patients 

Taxonomic profiles of the mucus associated microbiota in control and UC patients were 
determined by sequencing the V2 region of the 16S gene. Richness (Margalef index), evenness 
(Pielou index) and a combined measure of richness and evenness (Shannon and Simpson 
indices) of the microbiota was measured in each patient sample and plotted in dot plots. The 
mean and standard error of the values in each patient group is shown.  
 

Key; CS, Control Sigmoid, CA, Control Ascending, UCS, UC Sigmoid, UCA, UC Ascending 
 



102 

 Quantitation of bacterial groups of interest by qPCR 

Next, we used quantitative PCR (qPCR) with 16S specific primers to target and quantify 

bacterial groups of interest, including mucin degrading species, such as A. muciniphila and R. 

gnavus. The relative abundance of 9 bacterial groups was measured by qPCR as follows: 

Roseburia genus and Eubacterium rectale species, Faecalibacterium genus, Bacteroides and 

Prevotella genera, Bifidobacterium genus, Lactobacillaceae family and Weissella genus, B. 

fragilis species, A. muciniphila species, R. gnavus species. The latter three are of interest due 

to their mucin degrading properties, with R. gnavus and B. fragilis capable of catabolizing 

terminal sialic acid, and A. muciniphila degrading mucin with the synergistic action of several 

glycoside hydrolases (Tailford et al. 2015). Each qPCR reaction was carried out using bacterial 

DNA derived from human mucosal lavage samples. The Ct value for which the amplification 

signal of each bacterial group crossed a threshold level of 0.05 Rn was then used to quantify 

the group by expressing it as a percentage of total 16S, as measured using universal primers. 

qPCR was successfully performed with 68 of the available colonic samples (See appendix 2 

for patient metadata). 

 Effect of confounding variables on abundance of bacterial groups 

As with the 16S sequencing, a PCA plot of all samples analysed by qPCR revealed a large 

amount of inter-individual variability. There was no specific clustering of samples based on 

disease, age, gender, or treatment. However, as previously observed, the PCA plot revealed 

that the sigmoid and ascending samples taken from the same patient mostly tended to 

cluster together (Fig. 12). 

To further test the effect of continuous and categorical confounding variables, statistical 

analysis was performed separately on the sigmoid and ascending colon. The effect of the 

continuous variable, age, on microbiota composition was tested by Pearson correlation and 

for categorical variables, gender and treatment, by ANOVA. The results confirmed the 

observations of the PCA plot, as none of the significance levels obtained were lower than the 

threshold value after controlling the false discovery rate to q= 0.05, suggesting that there 

were no associations between any of these variables and the abundance of the 9 bacterial 

groups analysed in this region (See appendix 4).  
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Figure 12| PCA plots of samples based on abundance of 9 specific bacterial groups 

quantified by qPCR 

A) PCA plots of all control, UC and CD samples included in qPCR analysis. 
B) PCA following removal of 4 patient outliers; 14TB0055, 14TB0097, 14TB0313, 15TB0310  
 

The abundance of specific bacterial groups was determined by qPCR relative to the universal 
16S gene. Samples are plotted following Eigen-value decomposition of the variable matrix. 
Samples positioned closest on the PCA plot are more similar in terms of bacterial abundance, 
whilst those further apart are more dissimilar. Paired samples from the same patient are 
indicated with connecting lines. The PCA 1st score summarises the largest amount of the total 
variance in the data whilst the PCA 2nd score summarises the second largest amount. In A), 
the PCA 1st and 2nd scores explain 32.3% and 16.1% of the variance respectively, whilst in B), 
they explain 25.2% and 16.2% of the variance, respectively. 

Control ascending colon  UC ascending colon  CD ascending colon 

Control sigmoid colon  UC sigmoid colon  CD sigmoid colon 

A) 

B) 
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 Spatial variation in abundance of bacterial groups  

For statistical analysis, data were sorted as in section 3.2.2; 9 control patients, 17 UC patients 

and 5 CD patients with both sigmoidal and ascending colon locations were selected. As 

previously, CD patients’ data were excluded from the analysis due to the low number of 

samples in this group. The resulting data consisted of 52 samples in total. With the remaining 

control and UC patients, univariate analysis was carried out to determine if any statistically 

significant differences (Table 7) could be observed in the abundance of the nine bacterial 

groups of interest between the sigmoid and ascending colon. Wilcoxon matched pairs signed 

rank nonparametric tests were performed to determine the significance of the differences. 

Using this method of analysis, only one significant P value could be observed, explained by a 

higher amount of Lachnospiraceae in the ascending colon of UC patients when compared 

with sigmoid colon (P= 0.0490). However, this significance level was above that required to 

control the false discovery rate to below q= 0.05. No significant differences were observed 

in any of the other possible comparisons, suggesting that the sigmoid and ascending colon 

are very similar in microbiota composition, consistent with the clustering of sigmoid and 

ascending colon on a PCA plot (Fig. 12). This spatial conservation was further confirmed by 

the remarkable line of unity observed with all bacterial groups analysed when plotting the 

sigmoid versus ascending data on scatter plots, irrespective of disease state (Fig. 13). 

  



105 
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Figure 13| Scatter plots of abundance of each bacterial group in sigmoid versus ascending 

colon 

The abundance of specific bacterial groups in control and UC patient microbiotas was 
determined by qPCR relative to the universal 16S gene. Analysis of each bacterial group was 
performed in triplicate in each patient sample. A log transformed average of the abundance 
of bacterial groups in the sigmoid colon is plotted against the abundance in the corresponding 
ascending colonic sample from the same patient. Spatial conservation in the abundance of 
these bacterial groups is indicated by the positive correlation between the sigmoid and 
ascending colon in all scatter plots. 
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 Effect of disease state on abundance of bacterial groups 

Next, we conducted an analysis to determine if there were any significant differences in 

bacterial abundance between controls and UC patients in each of the colonic regions 

sampled, sigmoid and ascending. A total of 18 comparisons were made between controls 

and UC, using Mann-Whitney nonparametric tests (Table 7). Only two of the returned P 

values were statistically significant. In the ascending colon, there was an apparent increase 

in the abundance of Faecalibacterium in the UC patients when compared controls (P= 

0.0406) (Fig. 14). On the other hand, in the sigmoid colon, the abundance of A. muciniphila 

appeared to be significantly lower in UC versus controls (P= 0.0310) (Fig. 14). However, 

neither of these P values were lower than the threshold required to control the false 

discovery rate to below q = 0.05. The same trends could also be observed in the alternate 

region sampled by plotting the data on a dot plot, although failed to reach statistical 

significance (Faecalibacterium; sigmoid colon, UC>controls, P= 0.1611, A. muciniphila; 

ascending colon, UC<controls, P= 0.1311). Furthermore, dot plots of the remaining data 

revealed apparent trends towards alterations in some of the other bacterial groups tested, 

but these also failed to reach statistical significance. These included a decrease in 

Bacteroides and Lactobacillaceae in UC, and an increase in Roseburia in UC (Fig. 14) (Table 

7).  
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Figure 14| Dot plots showing abundances of bacterial groups measured by qPCR 

The abundance of specific bacterial groups in control and UC patient microbiotas was 
determined by qPCR relative to the universal 16S gene. Analysis of each bacterial group was 
performed in triplicate in each patient sample. A log transformed average of the abundance 
of bacterial groups in each patient sample is plotted. The mean and standard error of the 
values in each patient group is shown. Statistically significant differences between patient 
groups are indicated. None of the calculated P values fell below the false discovery threshold. 
 

Key; CS, Control Sigmoid, CA, Control Ascending, UCS, UC Sigmoid, UCA, UC Ascending 
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Figure 14 continued| Dot plots showing abundances of bacterial groups measured by qPCR 

The abundance of specific bacterial groups in control and UC patient microbiotas was 
determined by qPCR relative to the universal 16S gene. Analysis of each bacterial group was 
performed in triplicate in each patient sample. A log transformed average of the abundance 
of bacterial groups in each patient sample is plotted. The mean and standard error of the 
values in each patient group is shown. Statistically significant differences between patient 
groups are indicated. None of the calculated P values fell below the false discovery threshold. 
 

Key; CS, Control Sigmoid, CA, Control Ascending, UCS, UC Sigmoid, UCA, UC Ascending 
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Table 7| P values for statistical tests carried out with different microbial parameters 

measured 

P values are shown for the comparison of sigmoid vs. ascending and control vs. UC patients. 
Statistical tests were carried out to assess for significant differences in the abundance of 9 
specific bacterial groups quantified in human samples by qPCR and in the diversity indices 
measured by 16S sequencing. P values ≤ 0.05 are considered significant (highlighted in bold). 
 

Key; CS, Control Sigmoid, CA, Control Ascending, UCS, UC Sigmoid, UCA, UC Ascending 
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 Discussion 

16S sequencing provided an insight into the overall composition of the gut microbiota 

associated with mucus in the colon. This identified a family level composition with similarities 

to that identified in previous studies, with the greatest abundance of sequences belonging 

to the Lachnospiraceae family, followed by Ruminococcaceae and Bacteroidaceae (Goodrich 

et al., 2014; Gosalbes et al., 2011). The overarching theme notable within the 16S sequencing 

dataset, which was also observed by qPCR, was the spatial conservation of the microbiota in 

the two GI tract regions analysed, the sigmoid and ascending colon. A conserved spatial 

structure has been demonstrated in a recent study that sampled the luminal and mucosal 

microbiota from caecum, transverse colon, descending colon and rectum (Lavelle et al., 

2015). In agreement with our findings, no evidence could be demonstrated of longitudinal 

variability in the microbiota. Moreover, the conserved spatial structure could still be 

observed in areas of regional inflammation (Lavelle et al. 2015). The regional stability but 

inter-individual variation of the microbiota underscores the importance of studying changes 

in the microbial composition during disease in the context of an individual’s signature 

microbiota. 

There were no differences in the diversity, richness or evenness of the microbiota between 

controls and UC patients. A reduction in diversity of the gut microbiota in IBD was previously 

reported, however the majority of these studies have been carried out using faecal or biopsy 

samples (Nemoto et al., 2012; Nishikawa et al., 2009; Ott et al., 2004). The utilisation of 

endoscopic mucosal lavage to sample the microbiota may result in the acquisition of a 

different microbial subpopulation than that obtained through biopsy/faecal sampling. At the 

mucosal surface, microbes are in closer proximity to the epithelial surface and are likely to 

be more directly affected by host pressures, whilst luminal bacteria are likely to be shaped 

by environmental pressures. An example of this is the differential effects of innate immune 

effectors in the gut. Whilst human α-defensin-5 plays a role in shaping the overall community 

structure, the antibacterial lectin RegIIIγ only controls bacteria at the mucosal surface and 

does not penetrate into the lumen (Salzman et al., 2010; Vaishnava et al., 2011). In the 

luminal compartment of the gut, the nutrient availability may be in constant flux due to 

dietary variability, whilst at the mucosal surface there is a more stable supply of nutrients 

providing preferential niches for mucin-degrading organisms (Donaldson et al., 2016). 

Indeed, using laser capture of the mucus gel, it has recently been shown that the abundance 

of some bacterial families is different between the luminal and mucosal microbiota (Lavelle 

et al., 2015). Since the mucosal microbiota accommodate a separate niche to faecal or biopsy 



111 

communities, it is possible that this different subpopulation of organisms does not undergo 

the same alterations as reported from studies performed on faecal samples.  

However, in a recent study by Tong and coll., endoscopic lavage sampling was used, and 16S 

sequencing revealed decreases in diversity in both UC and CD, although this observation was 

more significant in CD (Tong et al., 2013). A number of variances in study design may explain 

the differences between this study and our own observations. Whilst Tong and coll. analysed 

a similar number of UC patients to us, their cohort included a larger number of control 

patients. Differences in cohort sizes may influence the ability to observe subtle changes in 

microbiota composition and in part may explain the differences with our findings. 

Furthermore, Tong and coll. analysed samples from non-inflamed regions of the colon from 

IBD patients, whilst samples from this study were derived from both non-inflamed and active 

regions. A lack of consensus over alterations in diversity in UC is apparent, since some studies 

have found decreases in gut microbiota diversity in UC during relapse and remission, 

regardless of disease activity (Nemoto et al., 2012), whilst others have observed this 

decrease solely in active disease (Nishikawa et al., 2009; Ott et al., 2004). In line with our 

findings, a more recent study showed no differences in the diversity in the microbiota of de 

novo paediatric UC patients (Hansen et al., 2012b).  

In addition, the approach used for 16S sequencing, including the choice of region to target 

and data processing/bioinformatics differed between our study and Tong and coll. (2013). 

We chose to target the V2 hypervariable region, whilst Tong and coll. used the V4 region. 

The region chosen may result in bias when investigating the diversity of a bacterial 

population (Nguyen et al., 2016). However, there is a lack of agreement over the best 

hypervariable region to target, since alternative methods result in differently favoured 

regions in terms of classification efficiency (Claesson et al., 2010). Furthermore, the 

algorithms used by Tong and coll. for taxonomy assignment differed to our approach. Whilst 

Tong and coll. used Greengenes database for taxonomic assignment, we used the SSU Ref 

release of the SILVA database (SSU Ref version 119), which contains only high quality and 

nearly full length sequences (Pruesse et al., 2007). In addition, whilst Tong and coll. used a 

version of Greengenes from February 2011, the SILVA database used in our study was dated 

July 2014. Therefore as well as performing alignment with high quality sequences, we used 

a more up-to-date database for classification, which may have contributed to the 

discrepancies between the diversity measurements of the two studies. 
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Obtaining reliable taxonomic classification of organisms via high-throughput 16S sequencing, 

which yields shorter reads than traditional sequencing methods which are more time-

consuming and expensive, is challenging (Mizrahi-Man et al., 2013). As a result of this, it is 

inherently difficult to monitor changes in the abundance of bacteria at the species and strain 

level by 16S sequencing, which are likely to be the most relevant groups in terms of mucin 

degradation and therefore, in the context of this study. Indeed, mucin degradation has been 

shown to be strain-dependent with R. gnavus strains ATCC 29149 and 35913 but not R. 

gnavus E1 of capable utilising mucin glycans (Crost et al., 2013; Crost et al., 2016). Using 16S 

sequencing, we were unable to detect sequences corresponding to the genera to which the 

most prevalent mucolytic bacteria, A. muciniphila and mucin degrading strains of R. gnavus 

belong. For this reason, a more targeted approach was used to quantify specific mucin 

degrading species/strains. 

Accordingly, using targeted qPCR we were able to detect differences in the abundance of 

specific mucin degrading groups between controls and UC patients. One notable trend was 

the depletion of A. muciniphila, which was significantly different between the sigmoid colon 

of control and UC patients. Alterations in A. muciniphila have also been documented in a 

previous study investigating these changes in mucosal biopsies (Png et al. 2010). 

Interestingly, in the same study, the abundance of R. gnavus, was observed to be increased 

in IBD (Png et al., 2010). Although we did not detect a significant increase in the abundance 

of R. gnavus, there was no notable decrease. These findings suggest that the mucosal 

environment in IBD patients may be altered, resulting in unfavourable conditions for A. 

muciniphila, whilst R. gnavus remains unaffected.  

In addition, we observed an increase in the abundance of the Faecalibacterium genus in our 

study, which was significantly different between the ascending colon of control and UC 

patients. This finding is particularly interesting as F. prausnitzii, the only cultured 

representative of the Faecalibacterium genus is proposed to have anti-inflammatory 

properties due to its production of butyrate (Morgan et al., 2012; Sokol et al., 2008). Butyrate 

exerts a number of effects, including the stimulation of mucin synthesis, and down regulation 

of pro-inflammatory cytokines (Hatayama et al., 2007; Segain et al., 2000). Indeed, a number 

of studies have observed a depletion of F. prausnitzii belonging to the Faecalibacterium 

genus in IBD (Joossens et al., 2011; Machiels et al., 2014; Sokol et al., 2009; Tong et al., 2013). 

However, there are controversial findings of F. prausnitzii abundance in IBD. In a recent 

study, no differences were observed in the abundance of F. prausnitzii in CD patients with 

different disease activity (Schaffler et al., 2016). Furthermore, in treatment naïve cases of CD 
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and CD involving the colon, like our study, F. prausnitzii has been shown to be over-

represented (Hansen et al., 2012b; Willing et al., 2010a). Growth of F. prausnitzii is proposed 

to be stimulated by acetate (Duncan et al., 2002b). In germ-free rats, F. prausnitzii was 

unable to colonise in the absence of the acetate producer B. thetaiotaomicron (Wrzosek et 

al., 2013). Recently, R. gnavus was also shown to produce acetate in similar quantities to B. 

thetaiotaomicron in the caecal contents of mono-colonised mice (Hoffmann et al., 2016). The 

increase of F. prausnitzii in our study may therefore be explained by increases in R. gnavus 

and/or other acetate producing bacteria in IBD. It is also possible that F. prausnitzii is subject 

to transient changes in abundance in IBD, which could be dependent on changes in disease 

status and/or the host mucosal environment. In our study, the abundance of 

Faecalibacterium appeared to be subject to much more inter-individual variation in UC 

patients than in controls, supporting this idea. Conflicting results may therefore arise due to 

the study design, for example, the point during relapse at which samples are taken from the 

patient. It is evident from discrepancies between studies that the role for F. prausnitzii and 

the Faecalibacterium genus in IBD is more complex than first thought, and that hypotheses 

such as these must be investigated more thoroughly. 

Further trends towards alterations of specific groups were also apparent, although failed to 

reach significance, probably due to the low number of samples in our study. We observed a 

possible decrease in the abundance of the Bacteroides genus. This is in accordance with 

previous studies showing a 50-fold decrease in the Bacteroidetes phylum in colonic biopsies 

(Frank et al., 2007), as well as the absence of B. vulgatus, B. ovatus, B. uniformis, 

and Parabacteroides sp. in the faecal microbiota of UC patients from healthy controls (Noor 

et al., 2010). Controversially, colonic biopsies from UC patients contained a higher 

abundance of Bacteroidetes phyla when compared with those from non-IBD patients (Lucke 

et al., 2006). Whilst in our study there was a possible decrease in the abundance of the 

Lactobacillaceae family, both reductions and increases in Lactobacillus species have been 

demonstrated in colonic biopsies and faecal samples from UC and CD patients (Bullock et al., 

2004; Ott et al., 2004; Wang et al., 2014). Furthermore, there appeared to be a trend towards 

an increase in the Roseburia genus. Whilst there was no alteration of Roseburia in the faecal 

samples of patients with UC or colonic CD, Roseburia was reduced in those with ileal CD 

(Willing et al., 2010a). Another study found that Roseburia hominis, belonging to the 

Roseburia genus was depleted in faecal samples from UC patients (Machiels et al., 2014). 

Alike F. prausnitzii, R. hominis is a main butyrate producing bacteria from the Firmicutes 

phylum, and therefore is likely to exert similar immuno-modulatory effects in the GI tract 
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(Machiels et al., 2014). The conflicting findings in our study may occur for similar reasons to 

those mentioned above.  

In order to further understand the role of bacterial groups such as F. prausnitzii, Bacteroides 

and Roseburia in IBD, longitudinal studies of individual IBD patients would be required. This 

would allow more robust control of variation caused by inter-individual differences, such as 

diet, antibiotic treatment and medication. However, it is also worth considering that other 

experimental variables could influence the results, such as bowel preparation, sampling 

methods (faecal samples, biopsies or lavage), sample handling and processing (e.g. DNA 

extraction), and analysis method. Introduction of cross-study standardisation would be 

beneficial in order to reduce variation caused by factors such as these.  

Together, these data highlight the lack of consistent information regarding a ‘signature’ 

microbiota of IBD. Most of the changes associated with IBD appear to only occur sporadically 

within individual patients (Tong et al., 2013).  The lack of consistency between studies 

reflects the need for caution over whether we can classify certain bacterial groups as 

‘biomarkers of health’ or ‘biomarkers of disease’. It is likely that the observed changes in the 

microbiota in a particular study is affected by a number of factors, including the patient-

specific disease aetiology, and time during disease progression at which the microbiota is 

sampled. 
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 Characterisation of mucin glycosylation from human 

colonic lavages 

 Introduction and objectives 

Mucins are a crucial part of the intestinal barrier, not only because of their physical function 

but also due to the relationship they mediate between the host and the microbiota. The 

mucin glycan profile is determined by the expression of glycosyltransferases in different 

tissues and can be modulated by the local environment. The glycans act as nutrients and 

attachment sites for commensal organisms and may therefore shape the microbiota 

composition to the advantage of the host. In disease, alterations in the mucin glycan 

landscape could be driven by changes in glycosyltransferase expression and result in the 

dysbiosis of the microbiota. As mentioned previously (See section 3.1) the relationship 

between mucin glycosylation, glycosyltransferase expression and the mucus-associated 

microbiota in IBD is unclear. Recently, it was shown that alterations in core 

glycosyltransferase expression resulted in a compromised mucus layer and subtle alterations 

in the microbiota composition in a murine model (Bergstrom et al., 2016; Sommer et al., 

2014). However, there are very few studies investigating the relationship between these in 

humans.  Using mucosal biopsies, alterations of mucin glycosylation have been 

demonstrated in IBD patients, including decreases in more complex glycans and an increase 

in shorter and sialylated glycans (Larsson et al., 2011). Although it was suggested that this 

could be due to alterations in the activity of the sialyltransferase ST6GalNAc-I, the expression 

of this gene was not analysed. Furthermore the microbiota composition was not investigated 

(Larsson et al., 2011). In a separate study the influence of the Fut2 genotype on the GI 

microbiota was investigated, showing substantial influence on the composition and diversity 

of the microbiota. However in this study the glycosylation profile of GI tract mucins was not 

investigated (Rausch et al., 2011).  

One factor contributing to the lack of information about all three components is the difficulty 

in obtaining mucus, associated microbiota and tissue from the same sample site in humans. 

Furthermore, the mucus from biopsies most likely originates from the inner mucus layer 

which is not in direct contact with the microbiota. Here, we used mucosal lavage allowing us 

to sample both mucus and the associated microbiota, in addition to biopsies to investigate 

the expression of glycosyltransferases in the same patient, and at different colonic sites. 
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 Characterisation of mucus from human mucosal lavage samples 

Mucins were purified from 73 human mucosal lavage samples, corresponding to the sigmoid 

and/or ascending colon of 40 patients. Purification was carried out following an adaptation 

of Larsson and coll. (Larsson et al., 2009). Briefly, soluble and insoluble fractions were 

obtained by extraction in GuHCl. MUC2 of the inner firm mucus layer is densely packed and 

therefore insoluble in GuHCl, whilst the outer loose mucus layer has expanded to 

approximately four times the volume and can be readily solubilized (Johansson et al., 2011a). 

This method therefore enables mucus originating from each layer to be extracted. 

Purification was completed by reduction and alkylation of mucin disulphide bonds, allowing 

resolution of these large molecules. 

In order to verify the quality of the purified mucins, samples were first imaged using AFM. In 

most samples, chains with contour lengths ranging from tens of nanometers to several 

microns could be observed (Fig. 15). The chains were particularly notable in the GuHCl 

soluble fractions. The presence of mucin chains of the expected size and conformation, 

including heights of ~0.5-1.5 nm (Fig. 15) was confirmed following DNase treatment. 
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Figure 15| Example of a mucin chain purified from human mucosal lavage and imaged by 

AFM 

A) Purified mucin sample imaged following overnight DNase treatment 
B) Graph depicting typical mucin height 
 

Images were acquired in alternating current (AC) mode. The height of material detected on 
the AFM slide is depicted using pixelation brightness, according to the scale bar shown. B) 
represents a measurement of mucin height at a cross section of the mucin chain (as shown 
in A)) 

A) 

B) 
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In order to further validate the extraction method and characterise the mucins from lavage, 

we performed electrophoretic separation and western blot of the purified samples. Due to 

the high molecular weight of soluble and insoluble mucins (monomeric GuHCl insoluble 

MUC2 ~2.5 MDa), and the high proportion of carbohydrates (up to 80% of the weight), 

analysis of mucins by electrophoresis requires the use of a specific type of AgPAGE gradient 

gel, or ‘composite’ gel (Fig. 16). This technique allows analytical separation and resolution of 

glycoforms of very high molecular weight that can be monitored by lectin, immunochemical 

or histochemical staining by western blot (Schulz et al., 2002). Mucins separated by AgPAGE 

were first visualised using GelCode blue protein staining followed by a specific glycoprotein 

stain (Fig. 16). Using these two methods, only faint staining could be observed with GelCode 

blue. In contrast, more intense signals could be obtained using the glycoprotein staining kit. 

Furthermore, mucin bands could be visualised upon western blotting and alcian blue staining 

(Fig. 16). 

In both soluble and insoluble fractions, the apparent molecular mass of all bands exceeded 

500 kDa and were of a double to quadruple nature. The GuHCl soluble fractions, 

corresponding to the outer mucus layer often stained most intensely, whereas the insoluble 

fractions, corresponding to the inner mucus layer appeared almost devoid of glycoprotein 

(Larsson et al., 2009).  
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Figure 16| Example of a composite AgPAGE of mucins purified from human mucosal lavage 

A) Gel stained using a colloidal coomassie based dye, GelCode (Thermo Fisher Scientific, 
Waltham, MA); Lane 1, HiMark pre-stained protein ladder (Thermo Fisher Scientific, 
Waltham, MA), Lane 2, Fetuin (2 mg/ml), Lane 3, Soluble mucin fraction from LS174T cell line, 
Lane 4, Soluble mucin fraction from a sigmoid human mucosal lavage sample, Lane 5, 
Insoluble mucin fraction from a sigmoid human mucosal lavage sample. 
  

B) Gel stained using a Periodic acid-schiff based Glycoprotein staining kit (Thermo Fisher 
Scientific, Waltham, MA); Lanes as in A). 
 

C) Western blot stained using Alcian blue; Lane 1, HiMark pre-stained protein ladder, Lane 2, 
Soluble mucin fraction from an ascending human mucosal lavage sample, Lane 3, Soluble 
mucin fraction from an ascending human mucosal lavage sample 

kDa 1 2 3 

A) B) 

1 2 3 4 5 1 2 3 4 5 

460 

268 
238 

460 

268 
238 

C) 

  

 

 

 



120 

 Profiling of glycans from human mucins 

 Lectin probing of mucins by dot blot and force spectroscopy 

Profiling of mucin glycans was first performed by dot blotting purified mucins onto PVDF 

membranes, and probing with a range of different fluorescently labelled and biotinylated 

lectins with specific affinities for glycan structures. The soluble and insoluble fractions of 30 

samples, corresponding to the sigmoid and ascending colon of 15 patients were probed with 

5 different lectins (Table 5), and alcian blue stained. Using this method, it was observed that 

lectin binding to β-gal (FITC-RCA) and GlcNAc (FITC-WGA) residues was fairly consistent 

across patients (Fig. 17B and D), whilst binding to Fuc (FITC-UEA), α2-3 linked sialic acid 

(Biotinylated MALII) and T-antigen (FITC-PNA) was much more heterogeneous between 

individuals (Fig. 17A, C and E). Furthermore, staining of acidic mucin glycans with alcian blue 

was also highly variable between individuals (Fig. 17F). Mucins from the soluble and insoluble 

fractions of the same colonic region in the same patients appeared to show no trend in 

glycosylation. Whilst in some patients, staining of both fractions appeared almost identical 

with the same lectin, in others staining intensity was very different. 

For further characterisation of mucin glycans, analysis was only carried out on the soluble 

fractions, due to the apparent lack of mucin isolated in the GuHCl insoluble fractions. The 

purified GuHCl soluble mucins from a subset of samples were probed using lectin 

functionalised force spectroscopy tips. A total of 14 mucin samples corresponding to the 

sigmoid and ascending colon of 4 UC patients and 3 controls were probed using the lectins, 

RCA, UEA and SNA (specificity for α2-6 linked sialic acid). In total, 1024 unique force spectra 

were obtained for each sample/lectin probing experiment. For each specific binding event 

within a given force spectrum, data were obtained about the force required to break the 

lectin-glycan interaction (adhesion affinity), and when two or more specific binding events 

were observed within one spectrum, about the distance between these glycans along the 

mucin chain (adhesion event separation). These data were collected from all 1024 spectra 

per probing experiment and frequency distribution graphs plotted giving information about 

the properties of glycans within that mucin sample. The distributions for the majority of 

samples in both sigmoid and ascending colon had remarkably similar profiles when probed 

with RCA lectin, in that each profile had a similar modal value and reasonably tight 

distribution. This was the case for both the adhesion event separation (Fig. 18 A and D) and 

adhesion affinity (Fig. 19 A and D). In contrast, the profiles for adhesion affinity (Fig. 19 B, C, 

E and F) and adhesion event separation (Fig. 18 B, C, E and F) were much more variable when 
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probing with SNA and UEA lectins. There were no apparent patterns in adhesion affinity or 

adhesion event separation based on disease state, control or UC. 
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Figure 17| Dot blots of mucins purified from human mucosal lavage samples 

Mucins purified from mucosal lavage were normalised to a concentration of 2.5 mg/ml prior 
to blotting. Blots were stained using a range of FITC- labelled and biotinylated lectins and 
dyes as follows: 
 

A) FITC-PNA, B) FITC-RCA, C) FITC-UEA, D) FITC-WGA, E) Biotinylated MALII, F) Alcian blue 
 

Patient samples as follows; 1, 13TB0634, 2, 13TB0667, 3, 13TB0648, 4, 14TB0005, 5, 
14TB0024, 6, 14TB0060, 7, 14TB0055, 8, 14TB0025, 9, 14TB0047, 10, 14TB0061, 11, 
13TB0617, 12, 13TB0614, 13, 13TB0605, 14, 13TB0583, 15, 13TB0601, 16, LS174T soluble 
fraction, 17, 4 mg/ml Fetuin, 18, H2O 
 

Key; S/S, Sigmoid soluble fractions, S/I, Sigmoid insoluble fractions, A/S, Ascending soluble, 
A/I, Ascending insoluble. Red coverage indicates a saturated signal. 
 



123 

  

0

100

200

300

400

500

600

0 100 200 300 400 500 600 700 800 900 1000

F
re

q
u

e
n

c
y

Adhesion event sepration (nm)

Separation distance RCA_ SS

Control 1
Control 2
Control 3
UC 1
UC 2
UC 3
UC 4

A) 

0

5

10

15

20

25

30

35

40

0 100 200 300 400 500 600 700 800 900 1000

F
re

q
u

e
n

c
y

Adhesion event separation (nm)

Separation distance SNA_SS 

Control 1
Control 2
Control 3
UC 1
UC 2
UC 3

B) 

0

5

10

15

20

25

30

0 100 200 300 400 500 600 700 800 900 1000

F
re

q
u

e
n

c
y

Adhesion event separation (nm)

Separation distance UEA_SS
Control 1
Control 2
Control 3
UC 1
UC 2
UC 3
UC 4
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Figure 18| Graphs showing the distribution of binding event separation distances in 

soluble mucins 

A) Force-volume experiments against sigmoid colonic mucins using RCA lectin 
B) Force-volume experiments against sigmoid colonic mucins using SNA lectin 
C) Force-volume experiments against sigmoid colonic mucins using UEA lectin 
 

Measurements were made of the separation between the adhesion peaks in each force 
spectrum. This was applied to a whole set of curves for a given force-volume experiment 
(n=1024) and the frequency of adhesion event separation distances plotted in distribution 
curves. 
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Figure 18 continued| Graphs showing the distribution of binding event separation 

distances in soluble mucins 

D) Force-volume experiments against ascending colonic mucins using RCA lectin 
E) Force-volume experiments against ascending colonic mucins using SNA lectin 
F) Force-volume experiments against ascending colonic mucins using UEA lectin 
 

Measurements were made of the separation between the adhesion peaks in each force 
spectrum. This was applied to a whole set of curves for a given force-volume experiment 
(n=1024) and the frequency of adhesion event separation distances plotted in distribution 
curves. 
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Figure 19| Graphs showing the distribution of adhesion affinity measurements in soluble 
mucins 

A) Force-volume experiments against sigmoid colonic mucins using RCA lectin 
B) Force-volume experiments against sigmoid colonic mucins using SNA lectin 
C) Force-volume experiments against sigmoid colonic mucins using UEA lectin 
 

For each specific binding event within a given force spectra, measurements of the force 
required to break the lectin-glycan interaction were obtained. This was applied to a whole 
set of curves for a given force-volume experiment (n=1024) and the frequency of adhesion 
affinity measurements plotted in distribution curves 
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Figure 19 continued| Graphs showing the distribution of adhesion affinity measurements 
in soluble mucins 

D) Force-volume experiments against ascending colonic mucins using RCA lectin 
E) Force-volume experiments against ascending colonic mucins using SNA lectin 
F) Force-volume experiments against ascending colonic mucins using UEA lectin 
 

For each specific binding event within a given force spectra, measurements of the force 
required to break the lectin-glycan interaction were obtained. This was applied to a whole 
set of curves for a given force-volume experiment (n=1024) and the frequency of adhesion 
affinity measurements plotted in distribution curves 
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 Quantification of mucin sialylation by HPAEC-PAD 

To analyse the level of sialic acid in mucins from lavage samples, high performance anionic 

exchange chromatography with pulsed amperometric detection (HPAEC-PAD) was 

performed following acid hydrolysis of GuHCl soluble fractions from lavage samples. 

Separation of sialic acid was achieved using a gradient method with 7-30% 1 M sodium 

acetate plus 100 mM NaOH as an eluent. Using this method, sialic acid eluted at around 5.7 

min, whilst the internal standard, KDN eluted at around 6.9 min. An acid hydrolysed sample 

of fetuin, a protein control containing sialylated glycans confirmed the validity of the 

method, with a peak eluting in the expected region on the chromatogram. On the other 

hand, the spectra from the non-sialylated protein, BSA showed no peaks in the expected 

regions of the chromatogram. 

A total of 68 soluble mucin samples were analysed by HPAEC-PAD from 37 patients. Across 

all HPAEC-PAD runs performed on samples, the mean abundance of sialic acid measured in 

the positive control, fetuin, was 3.68%. The abundance of sialic acid in samples ranged from 

3.9% to 0.05% and was detected in all but 5 samples.  

In order to make meaningful comparisons with the microbiota composition of the samples, 

data were selected as in section 3.2.2 (exclusion of patients with only one colonic region 

measured, and of CD patients). The resulting data set consisted of 20 samples from 10 control 

patients and 32 samples from 16 UC patients with both sigmoid and ascending samples 

measured (total of 52 samples). The mean abundances of sialic acid in control ascending, 

control sigmoid, UC ascending and UC sigmoid groups were 0.27%, 0.54%, 0.35% and 0.93% 

respectively. A wilcoxon matched pairs signed rank test identified that in both control and 

UC patients the abundance of sialic acid measured by HPAEC-PAD was significantly higher in 

the sigmoid colon when compared with ascending (controls, P= 0.0273, UC, P=0.0018) (Fig. 

20) (Table 9). Both of these P values were lower than the threshold value set when controlling 

for the false discovery rate below q= 0.05. 

Next, a Mann-Whitney test was performed to determine if there were significant differences 

between the abundance of sialic acid in the sigmoid colon of control patients versus UC as 

well as in the ascending colon. The P values showed that there was no significant difference 

in the sialylation between the two groups (Fig. 20) (Table 9).  
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Figure 20| Abundance of sialic acid liberated from purified mucins, as determined in four 

patient groups by HPAEC-PAD 

Sialic acid was liberated from mucins purified from human mucosal lavage using mild acid 
hydrolysis. HPAEC-PAD analysis of each sample was performed in triplicate. Each data point 
represents a log transformed average of technical replicates per sample. The mean and 
standard error of the values in each patient group is shown. Statistically significant 
differences between patient groups are indicated. Both of the statistically significant P values 
fell below the false discovery threshold. 
 

Key; CS, Control Sigmoid, CA, Control Ascending, UCS, UC Sigmoid, UCA, UC Ascending 
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 Glycomic profiling by mass spectrometry 

To complement the approaches used so far assessing the distribution of terminal sugar 

moieties, a more detailed analysis of the mucin glycan structures was performed by mass 

spectrometry (MS). Glycans were liberated from mucins by β-elimination, purified using HLB 

cartridges and subjected to MALDI-TOF.  

MS analysis was successfully performed on 39 samples from 21 patients; 5 controls, 11 UC 

patients and 4 CD patients. The number of samples which could be analysed was limited by 

the quantity of mucin that could be successfully purified from lavage. The relative abundance 

of each glycan structure identified in the MALDI-TOF spectra was determined by measuring 

the area of the main peak corresponding to the mass of the glycan and comparing it to the 

total area of all peaks in the spectra (Fig. 21). As previously, data were sorted so that only 

patients with both sigmoid and ascending regions sampled were included in the statistical 

analysis (See section 3.2.2). Furthermore, CD patients were excluded from the analysis. This 

resulted in the inclusion of 10 samples from 5 control patients and 22 samples from 11 UC 

patients.  

Overall, 110 unique glycan structures were detected across the different samples analysed 

(See appendix 3). Inter-individual heterogeneity was apparent in the abundance of individual 

glycan structures, with some structures undetected in a number of samples. 

Relative quantification was performed to obtain the total percentage of sialylated, 

fucosylated and sulphated structures within each patient. Whilst a large amount of inter-

individual variability was apparent, trends were notable in the data. The majority of glycan 

structures in all patient groups were fucosylated. The mean abundances of fucosylated 

structures in control ascending, control sigmoid, UC ascending and UC sigmoid groups was 

68.93 %, 41.32 %, 49.99 % and 28.91 % respectively, revealing the presence of a proximal to 

distal decreasing gradient of Fuc in both controls and UC patients. A wilcoxon matched pairs 

signed rank test revealed that the difference in fucosylation was significant between the 

sigmoid and ascending colon of UC patients (P= 0.0029). This gradient was also apparent on 

an individual basis, with 14 of 16 patients displaying a decrease in Fuc from ascending to 

sigmoid colon. The mean abundances of fucosylated structures also indicated an overall 

trend for a reduction of fucosylation in UC when compared to controls (decrease of 

fucosylation by 18.94 % in ascending and 12.41 % in sigmoid colon of UC patients compared 

to controls). However, Mann-Whitney tests calculated that this difference was not significant 

in either the sigmoid (P= 0.5096) or ascending (P= 0.1149) colon. The mean abundances of 
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sialylated structures were 9.01 %, 14.04 %, 14.35 % and 15.13 % in control ascending, control 

sigmoid, UC ascending and UC sigmoid groups respectively. Whilst these means were in 

accordance with the increasing gradient of sialic acid observed by HPAEC-PAD (See section 

4.3.2), this trend was much more subtle and was not determined to be significant in either 

control or UC patients by statistical analysis. On an individual basis, 10 out of the 16 patients 

displayed the increasing proximal to distal gradient of sialic acid. The mean abundances of 

sialylated structures also indicated an overall trend for an increase of sialylation in the 

ascending colon of UC patients compared to controls (increase of 5.34 %). Mann-Whitney 

tests calculated that this difference was not significant (P= 0.0893), however upon removal 

of one UC patient with an exceptionally low level of sialylation in the ascending colon, the 

difference became significant (P= 0.0280). Sulphated structures represented a much smaller 

proportion of the overall structures detected, with mean abundances of 0.39 %, 0.92 %, 1.07 

% and 5.23 % in control ascending, control sigmoid, UC ascending and UC sigmoid groups 

respectively. 

In order to perform statistical analyses, 24 of the most prevalent glycan structures across 

patients were selected. Of these 24 structures, the most common glycan epitopes were 

glycans m/z 534 (TF antigen/Core 1), present in 96.9% (31/32) of samples, m/z 779 (two 

potential isomers, one of which is core 2) and m/z 983, both present in 100% (32/32) of 

samples (Table 8).  

Interestingly in both the sigmoid and ascending colon, the mean abundance of the TF 

antigen, the shortest glycan detected by MS was higher in UC patients than in the sigmoid 

and ascending colon of controls (Control Sigmoid, 8.56 %, UC Sigmoid, 12.03 %, Control 

Ascending, 5.5 %, UC Ascending, 9.99 %) (Fig. 22) (Table 8). This was the case for a number 

of the shorter glycans detected, including glycan m/z 691 (STn) and m/z 779 (core 2 isomer 

when containing a GlcNAc). In contrast, the longest glycan out of the set of 24, glycan m/z 

2025 was more abundant in both the sigmoid and ascending colon of controls when 

compared to UC patients (Control Sigmoid, 1.32 %, UC Sigmoid, 0.51 %, Control Ascending, 

1.95 %, UC Ascending, 1.17 %) (Fig. 22) (Table 8). 
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Figure 21| Example MALDI-TOF spectra of mucin glycans isolated from a human mucosal 

lavage sample from the ascending colon 

A) Example spectra of mucin glycans purified from the sigmoid colon 
B) Example spectra of mucin glycans purified from the ascending colon 
 

Glycans were liberated from purified mucins by reductive β-elimination, and analysed by 
MALDI-TOF using a DHB matrix. The relative abundance of each glycan structure was 
determined by measuring the area of the main peak corresponding to the mass of the glycan 
and comparing it to the total area of all peaks in the spectra. The most abundant glycan 
peaks are annotated with mass to charge (m/z) ratio and structure(s). 
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Figure 22| Glycan structure profiles of sigmoid and ascending colon in control and UC 

patients 

A) Mucin glycosylation profile in sigmoid colon 
B) Mucin glycosylation profile in ascending colon 
 

The relative abundance of glycan structures in each patient sample was determined by 
measuring the area of the main peak corresponding to the mass of the glycan and comparing 
it to the total area of all peaks in the spectra. The 24 most prevalent glycan structures across 
patients are shown in the graph. Each data point represents the mean relative abundance of 
the glycan of interest in the patient group of interest. The standard error of the mean is also 
shown for glycan structures in each patient group. 
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Structure m/z 

% total 
samples 

containing 
structure 

Mean relative abundance 

CS CA UCS  UCA 

1 Gal, GalNAcol  534 96.9 8.56 5.5 12.03 9.99 

1 NeuAc, GalNAcol 691 (S) 71.9 1.11 0.53 1.95 0.99 

1 Gal, 1 Fuc, GalNAcol 708 (F) 84.4 2.86 6.62 3.26 5.04 

1 Gal, 1 HexNAc, GalNAcol 779 100 14.48 6.2 15.67 9.02 

1 Gal, 1 NeuAc, GalNAcol  895 (S) 87.5 3.62 3.08 3.38 4.29 

1 HexNAc, 1 NeuAc, GalNAcol  936 (S) 81.3 3.07 1.02 3.29 2.85 

1 Gal, 1 HexNAc, 1 Fuc, GalNAcol 953 (F) 87.5 5.57 8.29 3.90 6.97 

2 Gal, 1 HexNAc, GalNAcol 983 100 9.66 4.54 10.07 5.57 

1 Gal, 2 HexNAc, GalNAcol 1024 90.6 1.53 1.6 1.55 1.64 

1 Gal, 1 HexNAc, 1 NeuAc, GalNAcol  1140 (S) 71.9 0.98 0.24 1.39 1.55 

2 Gal, 1 HexNAc, 1 Fuc, GalNAcol 1157 (F) 90.6 6.25 9.73 4.93 8.09 

1 Gal, 2 NeuAc, GalNAcol 1256 (S) 43.8 0.74 1.12 0.21 1.34 

1 Gal, 1 HexNAc, 1 Fuc, 1 NeuAc, GalNAcol 1314 (S) 56.3 0.93 0.09 0.85 0.85 

2 Gal, 1 HexNAc, 2 Fuc ,GalNAcol 1331 (F) 81.3 3.81 7.16 2.07 3.86 

2 Gal, 1 HexNAc, 1 NeuAc, GalNAcol 1344 (S) 56.3 0.26 0.27 0.70 0.66 

2 Gal, 2 HexNAc, 1 Fuc, GalNAcol 1402 (F) 81.3 2.66 4.19 1.75 3.00 

3 Gal, 2 HexNAc, GalNAcol 1432 81.3 1.11 0.44 1.68 1.69 

2 Gal, 1 HexNAc, 3 Fuc, GalNAcol 1505 (F) 50.0 1.96 4.82 0.69 1.67 

2 Gal, 1 HexNAc, 1 Fuc, 1 NeuAc, GalNAcol 1518 (F)(S) 56.3 0.77 0.99 0.43 0.81 

3 Gal, 2 HexNAc, 1 Fuc, GalNAcol 1606 (F) 78.1 1.03 1.24 1.06 1.23 

2 Gal, 3 HexNAc, 1 Fuc, GalNAcol 1647 (F) 59.4 0.51 0.77 0.44 0.79 

3 Gal, 2 HexNAc, 2 Fuc, GalNAcol 1780 (F) 68.8 1.88 2.93 0.97 1.83 

3 Gal, 3 HexNAc, 1 Fuc, GalNAcol 1851 (F) 75.0 1.05 1.17 0.68 1.07 

3 Gal, 3 HexNAc, 2 Fuc, GalNAcol 2025 (F) 68.8 1.32 1.95 0.51 1.17 

 

Table 8| Percentage of total samples containing structure, and mean relative abundance 

of 24 most prevalent glycan structures in 4 patient groups 

The relative abundance of glycan structures in each patient sample was determined by 
measuring the area of the main peak corresponding to the mass of the glycan and comparing 
it to the total area of all peaks in the spectra. The mean relative abundance is shown for a 
subset of 24 prevalent glycans across 4 patient sample groups. Full data including all glycan 
structures and their relative abundance in each patient sample can be found in appendix 3. 
 

Key; (F), Fucosylated, (S), Sialylated, CS, Control Sigmoid, CA, Control Ascending, UCS, UC 
Sigmoid, UCA, UC Ascending 
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Wilcoxon matched pairs signed rank tests were performed to assess for statistically 

significant differences in the abundance of the 24 most common glycans between sigmoid 

and ascending colon of controls and of UC patients. A number of structures were found to 

be significantly different in abundance between the sigmoid and ascending colon of UC 

patients; m/z 779 (P= 0.0098), m/z 953 (P= 0.0039), m/z 983 (P= 0.0098), m/z 1157 (P= 

0.0098), m/z 1331 (P= 0.0273), m/z 1402 (P=0.0098), m/z 1505 (P=0.0313), m/z 1647 

(P=0.0391), m/z 1780 (P= 0.0156), m/z 2025 (P= 0.0078) (Fig. 23) (Table 9). However, none 

of these P values fell below the threshold value once controlling for the false discovery rate 

q= 0.05. Of the 10 structures, 8 were fucosylated (m/z 953, m/z 1157, m/z 1331, m/z 1402, 

m/z 1505, m/z 1647, m/z 1780, m/z 2025), and the significant difference was in agreement 

with the reduced abundance of Fuc in the sigmoid colon compared with the ascending 

region.  

Next, Mann-Whitney tests were performed to determine if there were significant differences 

between the abundance of glycan structures between the sigmoid colon of controls and UC 

patients, and similarly for the ascending colon. Two significant differences were observed 

between the ascending colon regions of controls and UC patients. These corresponded to an 

increased abundance of the sialylated structure, m/z 1140 in UC patients (P= 0.0193) 

compared with controls, as well as an increased abundance of the sialylated and fucosylated 

structure m/z 1314 in UC (P= 0.0169). Neither of these P values fell below the threshold value 

when controlling for the false discovery rate (Table 9). 

However, the profiles of sialylated and fucosylated structures out of the 24 most abundant 

glycans revealed apparent trends for differences between the two groups. In particular, the 

abundances of most fucosylated structures was higher in control patients when compared 

to UC in both the sigmoid and ascending colon (Fig. 24). In addition, in the ascending colon, 

the abundance of most sialylated structures was higher in UC patients (Fig. 25). 
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Figure 23| Dot plots of glycan structures determined to be significantly different in 

abundance between sigmoid and ascending colon of UC patients 

The relative abundance of glycan structures in each patient sample was determined by 
measuring the area of the main peak corresponding to the mass of the glycan and comparing 
it to the total area of all peaks in the spectra. Statistical tests were carried out on the 24 most 
prevalent glycans identified across patients. The mean and standard error is shown for the 
relative abundance of glycans in each patient group. Statistically significant differences 
between patient groups are indicated although none of the P values fell below the false 
discovery threshold. See appendix 5 for dot plots of glycan structures where no significant 
differences were calculated between patients. 
 

Key; CS, Control Sigmoid, CA, Control Ascending, UCS, UC Sigmoid, UCA, UC Ascending 
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Figure 23 continued| Dot plots of glycan structures determined to be significantly different 

in abundance between sigmoid and ascending colon of UC patients 

The relative abundance of glycan structures in each patient sample was determined by 
measuring the area of the main peak corresponding to the mass of the glycan and comparing 
it to the total area of all peaks in the spectra. Statistical tests were carried out on the 24 most 
prevalent glycans identified across patients. The mean and standard error is shown for the 
relative abundance of glycans in each patient group. Statistically significant differences 
between patient groups are indicated although none of the P values fell below the false 
discovery threshold. See appendix 5 for dot plots of glycan structures where no significant 
differences were calculated between patients. 
 

Key; CS, Control Sigmoid, CA, Control Ascending, UCS, UC Sigmoid, UCA, UC Ascending 
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Figure 24| Profile of fucosylated structures in sigmoid and ascending colon of control and 

UC patients 

A) Profile of fucosylated glycan structures in the sigmoid colon 
B) Profile of fucosylated glycan structures in the ascending colon 
 

The relative abundance of fucosylated glycan structures in each patient sample was 
determined by measuring the area of the main peak corresponding to the mass of the glycan 
and comparing it to the total area of all peaks in the spectra. The mean and standard error 
is shown for the relative abundance of fucosylated glycans, selected out of a subset of the 24 
most prevalent structures across patients.  
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Figure 25| Profile of sialylated structures in sigmoid and ascending colon of control and UC 

patients 

A) Profile of sialylated glycan structures in the sigmoid colon 
B) Profile of sialylated glycan structures in the ascending colon 
 

The relative abundance of sialylated glycan structures in each patient sample was 
determined by measuring the area of the main peak corresponding to the mass of the glycan 
and comparing it to the total area of all peaks in the spectra. The mean and standard error 
is shown for the relative abundance of sialylated glycans, selected out of a subset of the 24 
most prevalent structures across patients.  
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 Quantitation of mucin glycosyltransferase expression by qRT-PCR 

To analyse the expression of the main mucin glycosyltransferases involved in the generation 

of core, sialylated or fucosylated structures, total RNA was extracted from human mucosal 

biopsies taken from the sigmoid and ascending colon and reverse transcribed to cDNA. The 

expression of 10 glycosyltransferases, C1GalT1, C3GnT and Fut2, selected based on previous 

links to IBD and, ST3Gal-I, ST3Gal-II, ST3Gal-III, ST3Gal-IV, ST3Gal-VI, ST6GalNAc-I and 

ST6GalNAc-II for their role in the sialylation of mucins, was analysed by qRT-PCR. Relative 

expression was determined in comparison to the reference 18S gene (-DCt). qRT-PCR was 

successfully carried out on 69 of the available colonic samples from 37 patients. The most 

abundantly expressed glycosyltransferases out of those analysed were C1GalT1, C3GnT, 

ST3Gal-IV and ST6GalNAc-I. 

As with the analysis of the microbiota composition and sialic acid abundance, for statistical 

analysis, the data from four groups of samples were analysed: sigmoid colon of controls, 

ascending colon of controls, sigmoid colon of UC patients, ascending colon of UC patients 

(See section 3.2.2). The resulting data consisted of 20 samples from 10 control patients and 

34 samples from 17 UC patients. Wilcoxon matched pairs signed rank tests were performed 

to assess for significant differences between the expression of glycosyltransferases in the 

sigmoid and ascending colon in each patient group. These revealed significant differences in 

the expression of glycosyltransferases; namely sialyltransferases. In particular, the 

expression of the sialyltransferase ST3Gal-IV was significantly higher in the sigmoid colon in 

both controls and UC patients (P= 0.0020 and P= 0.0009, respectively) (Fig. 26) (Table 10). 

These P values were lower than the threshold value set when controlling the false discovery 

rate to below q= 0.05. Furthermore, the expression of several other sialyltransferases were 

significantly enhanced in the sigmoid colon of UC patients; ST3Gal-I (P= 0.0203), ST3Gal-VI 

(P= 0.0494), ST6GalNAc-I (P=0.0418), ST6GalNAc-II (P= 0.0332), however these P values did 

not fall below the false discovery threshold (Fig. 26) (Table 10). Furthermore, whilst the same 

trend was apparent in control patients, the differences between the ascending and sigmoid 

colon failed to reach statistical significance (Table 10). In contrast, using Mann-Whitney tests, 

no significant differences or trends could be observed in the expression of 

glycosyltransferases between control and UC patients (Table 10). 

A PCA plot of the gene expression data confirmed the above findings. Distinct clustering of 

samples was apparent based on colon location, suggesting different expression profiles in 

the sigmoid and ascending regions (Fig. 27). In contrast, there was no obvious clustering 
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based on disease state, suggesting no difference between control patients and patients with 

UC (Fig. 27). 
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Figure 26| Sialyltransferases with significantly different expression patterns between 

sample groups 

Glycosyltransferase expression data was generated by normalisation of raw qRT-PCR Ct 
values to the Ct of an 18S reference gene. Three technical replicates were carried out for each 
qRT-PCR reaction. The mean and standard error is shown for the gene expression values in 
each patient group. Statistically significant differences between patient groups are indicated. 
*P values for these glycosyltransferases do not fall below the false discovery rate. See 
appendix 5 for dot plots of glycosyltransferases where no significant differences were 
calculated between the expression in different patient groups. 
 

Key; CS, Control Sigmoid, CA, Control Ascending, UCS, UC Sigmoid, UCA, UC Ascending 
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Controls ascending colon  UC ascending colon  
Controls sigmoid colon  UC Sigmoid colon  

Figure 27| PCA plot of glycosyltransferase expression data 

Glycosyltransferase expression data was generated by normalisation of raw qRT-PCR Ct 
values to the Ct of an 18S reference gene. Samples are plotted following Eigen-value 
decomposition of the variable matrix. Samples positioned closest on the PCA plot are more 
similar in terms of glycosyltransferase gene expression, whilst those positioned further apart 
are more dissimilar. Paired samples from the same patient are indicated with connecting 
lines. The PCA 1st score summarises the largest amount of the total variance in the data 
(72.1%), whilst the PCA 2nd score summarises the second largest amount (9.2%).  
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Wilcoxon matched pairs 

signed rank test 
Mann-Whitney test 

  CS v CA UCS v UCA CS v UCS CA v UCA 

534 (TF antigen/Core 1) 0.3125 0.1309 0.4278 0.7340 

691 (Sialyl-Tn) 0.8125 0.3223 0.4496 0.4264 

708 (F) 0.4375 0.0645 0.8641 0.6504 

779 (Core 2 with GlcNAc) 0.1250 0.0098 0.7340 0.3079 

895 (Sialyl-TF) 0.4375 0.6953 1.0000 0.4278 

936 (S) 0.3125 0.7646 0.7754 0.3352 

953 (F) 0.4375 0.0039 0.7332 0.8208 

983 0.4375 0.0098 0.9098 0.5711 

1024 1.0000 0.8311 0.4612 0.9095 

1140 (S) 0.2500 0.8457 0.5650 0.0193 

1157 (F) 0.0625 0.0098 0.5711 0.4278 

1256 (Disialyl-TF) 0.7500 0.0547 1.0000 0.9074 

1314 (S)(F) 0.5000 0.7695 0.9518 0.0169 

1331 (F) 0.1250 0.0273 0.6455 0.0699 

1344 (S) 1.0000 0.2500 0.2761 0.1456 

1402 (F) 0.1875 0.0098 0.4209 0.3079 

1432 0.2500 0.1971 0.4257 0.2114 

1505 (F) 0.2500 0.0313 0.6487 0.1459 

1518 (S)(F) 0.6250 0.0925 0.7080 0.7299 

1606 (F) 0.8125 0.6523 0.9541 1.0000 

1647 (F) 0.6250 0.0391 0.9007 0.8641 

1780 (F) 0.3125 0.0156 0.3441 0.1397 

1851 (F) 0.8750 0.1055 0.7269 0.6097 

2025 (F) 0.3125 0.0078 0.1832 0.2569 

Sialic Acid 0.0273 0.0018 0.2799 0.1622 

 

Table 9| P values for statistical tests comparing glycosylation in UC patients and controls 

P values are shown for the comparison of sigmoid vs. ascending and control vs. UC patients. 
Statistical tests were carried out to assess for significant differences in the relative abundance 
of glycan structures quantified in human samples by MALDI-TOF and in the abundance of 
sialic acid measured by HPAEC-PAD. P values ≤ 0.05 are considered significant (highlighted in 
bold). 
 

Key; CS, Control Sigmoid, CA, Control Ascending, UCS, UC Sigmoid, UCA, UC Ascending 
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Wilcoxon matched 
pairs signed rank test 

Mann-Whitney test 

  CS v CA UCS v UCA CS v UCS CA v UCA 

C1GalT1 0.7695 0.8871 0.4666 0.8212 

C3GnT 0.3223 0.8129 0.9001 0.4979 

ST3Gal-I 0.3594 0.0203 0.5800 0.9525 

ST3Gal-II 0.6953 0.2012 0.6334 0.3033 

ST3Gal-III 0.5566 0.0929 0.6926 0.4074 

ST3Gal-IV 0.0020 0.0009 0.7824 0.3033 

ST3Gal-VI 0.5566 0.0494 0.5444 0.5982 

ST6GalNAc-I 0.3750 0.0418 0.9001 0.8212 

ST6GalNAc-II 0.3750 0.0332 0.5303 0.5981 

Fut2 0.2754 0.4777 0.8605 0.9800 

 

Table 10| P values for statistical tests comparing glycosyltransferase expression in UC 

patients and controls 

P values are shown for the comparison of sigmoid vs. ascending and control vs. UC patients. 
Statistical tests were carried out to assess for significant differences in expression of 
glycosyltransferase enzymes quantified in human samples by qRT-PCR. P values ≤ 0.05 are 
considered significant (highlighted in bold). 
 

Key; CS, Control Sigmoid, CA, Control Ascending, UCS, UC Sigmoid, UCA, UC Ascending 
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 Discussion 

Our data showed that it was possible to isolate mucins from human mucosal lavage in a form 

and amount enabling future structural characterisation. To our knowledge, this is the first 

study reporting the purification of mucin and imaging by AFM from lavage samples. Human 

colonic mucins from lavage formed a wide variety of mucin chain lengths, similar to PGM, 

(Gunning et al., 2013; Znamenskaya et al., 2012), as also observed with bovine submaxillary 

mucin, human ocular mucins, and human respiratory mucins (Baos et al., 2012; Kesimer et 

al., 2013; Znamenskaya et al., 2012). Visualisation of mucins purified from human mucosal 

lavage suggested the increased abundance of mucin in the GuHCl soluble fractions as 

compared to the insoluble fraction, in contrast to mucins isolated from human biopsies 

(Larsson et al., 2009). The solubility of the mucin fractions suggest that the mucus sampled 

via the lavage technique mainly originates from the loose outer mucus layer, where it is in 

direct contact with the gut microbiota (Johansson et al., 2010; Johansson et al., 2008). 

In mucins purified from mucosal biopsies, it has been shown by AgPAGE that GuHCl insoluble 

mucins form monomers (monomeric MUC2 ~2.5 MDa) as well as non-reducible dimers and 

other oligomers (Larsson et al., 2009). Here, purified mucins from mucosal lavage formed 

double to quadruple bands in AgPAGE. Additional experiments are required to further 

characterise the molecular weight and proteome of mucins from mucosal lavage, e.g. using 

analytical ultracentrifugation and shotgun proteomic approaches (Herrmann et al., 1999; 

Kesimer and Sheehan, 2012). Here, we focussed on the glycosylation component of the 

mucins. The heavily glycosylated nature of the mucins was apparent on AgPAGE by the lack 

of protein specific staining but positive glycan staining, suggesting that the protein backbone 

was concealed and made inaccessible by the glycan side chains. 

Inter-individual variation in terminal mucin glycosylation was observed by lectin screening 

and force spectroscopy. Heterogeneity of Fuc and sialic acid was particularly of note via lectin 

probing. Both of these epitopes are frequently found terminally in mucin glycans in the colon 

and therefore are the initial sugars that must be cleaved and degraded to allow access to the 

rest of the glycan (Tailford et al., 2015a). Detailed MS analysis also revealed many sialylated 

and fucosylated structures and confirmed a large degree of inter-individual variability. In line 

with our observations, in a previous study on mucins purified from biopsies over 100 complex 

O-linked oligosaccharides were identified (Larsson et al., 2009). However, it is important to 

note that in our study, this number is probably underestimated since MALDI-TOF cannot 

distinguish between isomer oligosaccharides. Whilst a subset of 24 structures were present 
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in most individuals, the abundance of most of these structures tended to be quite variable 

from one individual to the next. In the study by Larsson and coll. the repertoire and relative 

abundance of glycans on mucins purified from biopsies appeared to be relatively constant in 

healthy human subjects (n= 25) (Larsson et al., 2009). It is possible that mucus from lavage 

samples has been subjected to increased degradation by bacterial glycoside hydrolases than 

mucus from biopsies, due to its closer proximity to the microbiota, thereby explaining the 

higher level of inter-individual heterogeneity. 

As previously reported with biopsies (Robbe et al., 2003), by MALDI-TOF, we were able to 

detect a significant decrease in the overall fucosylation of mucins, as well as in the 

abundance of many individual fucosylated glycan structures from proximal to distal colon. 

Furthermore, there was a trend towards an increase in sialic acid abundance towards the 

distal end of the colon, mainly detectable in control patients, but also apparent in UC, 

although not significant. It is important to note that the analysis performed by MALDI-TOF in 

our study is only semi-quantitative, since it did not account for glycan structures possessing 

two or more sialic acid or Fuc epitopes. In accordance with this, quantification by HPAEC-

PAD, where the total amount of sialic acid is measured, revealed that the increase in sialic 

acid from proximal to distal colon was significant in both patient groups. This was reflected 

in a distinct increasing gradient of sialyltransferase expression from ascending to sigmoid 

colon in both groups. ST6GalNAc-I was amongst the sialyltransferases to display this trend in 

both controls and UC patients. The sialyltransferase with the most significant difference 

between proximal and distal colon was the ST3Gal-IV sialyltransferase, which was also one 

of the most highly expressed glycosyltransferases out of those studied, in accordance with 

Affymetrix GeneChip assays in healthy colonic tissue (Kemmner et al., 2003). It is important 

to note that changes in gene expression do not necessarily correlate with protein expression 

levels or enzyme activity, however an increasing protein abundance of both ST6GalNAc-I and 

ST3Gal-IV from ascending to sigmoid colon has been demonstrated previously by proteomic 

analysis (van der Post and Hansson, 2014). It has been suggested that ST3Gal-IV is involved 

in the generation of the Sda/Cad epitope, of which there is also an increasing gradient from 

proximal to distal colon (van der Post and Hansson, 2014). However, we were unable to 

decipher the abundance of this epitope in our patients because, as previously mentioned 

MALDI-TOF data only gives the molecular ions and does not distinguish between isomer 

oligosaccharides.  

Comparisons between control and UC patients revealed that there were no significant 

alterations in the overall abundance of sialic acid by HPAEC-PAD. However, the profile of 24 
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most common, and abundant mucin glycans detected by MS displayed subtle alterations in 

UC patients compared with controls. For example, the abundance of shorter glycan 

structures tended to be greater in UC patients than in controls, whilst the reverse was true 

for longer, more complex glycans. A tendency towards shorter glycan structures in UC has 

been observed previously in mucins from biopsies (Larsson et al., 2011). In particular, the 

abundance of the short sialylated structure, STn was found to be significantly increased in 

UC patients (Larsson et al., 2011). The abundance of STn (glycan structure m/z 691) and 

indeed many of the other sialylated structures from the subset of 24 appeared to be higher 

in UC than in controls in our study, particularly in the ascending colon. In addition, in both 

sigmoid and ascending colon, the abundance of fucosylated structures in the subset of 24 

was lower in UC patients. However, none of the observed differences were significant 

enough to fall below the false discovery rate. The lack of significance in our data may again 

be attributed to inter-individual variation associated with the host genetics and/or the 

composition of the mucus-associated microbiota (in particular, the abundance of mucin 

degraders), and reflects the need for a higher number of samples in both patient groups. 

It has been proposed that the increased prevalence of STn antigen in UC patients may be due 

to an increased expression of ST6GalNAc-I enzyme (Larsson et al., 2011). Furthermore, 

alterations in core 3 and core 1 glycosyltransferase expression were recently demonstrated 

to compromise the mucus layer and cause subtle alterations in the microbiota in mice 

(Bergstrom et al. 2016, Sommer et al. 2014). However, we could not detect significant 

differences in the expression of these enzymes or the other glycosyltransferases measured 

in UC patients in our study, when compared with controls. It is possible that the expression 

of other glycosyltransferases (not listed in this study), responsible for generating the 

precursors of the glycans modified in UC, are altered. However, the lack of significant 

alterations in glycosyltransferase expression between controls and UC patients may also 

suggest that other factors, such as the mucus-associated microbiota composition can drive 

the observed changes in mucin glycosylation in UC. 

Overall, we observed an increasing gradient of sialic acid and sialyltransferase expression, 

and a decreasing gradient of Fuc from proximal to distal colon, supported by MS, HPAEC-PAD 

and qRT-PCR. In contrast, only subtle alterations were apparent in the glycosylation profile 

of mucins from mucosal lavage of UC patients when compared with controls, following a 

trend similar to that previously described from biopsies. However, the alterations were less 

significant than previously described. The glycosylation of mucins from the outer layer is 

probably less uniform between individuals due to the relative increased complexity in the 



148 

outer mucus layer when compared to the sterile inner layer, caused by additional factors, 

such as bacterial enzymes remodelling the mucosal surface. As a result, changes in the outer 

mucus layer in UC are likely to be more subtle, requiring larger study cohorts to increase 

significance. In order to further elucidate the mucus-microbiota relationship in IBD, 

additional studies addressing the composition of these components in both the inner and 

outer mucus layer would be beneficial. Furthermore, studies of glycosyltransferase protein 

expression and activity, in addition to gene expression would help to clarify the role of these 

enzymes in the altered glycosylation observed in UC.  
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 Associations between mucin glycosylation and mucin 

degraders 

 Introduction and objectives 

Evidence from previous studies suggests a deviation of the mucosal barrier from its 

homeostatic state in IBD. This includes changes in the GI microbiota composition and host 

genetics. These components are interlinked and an initial alteration in one of these may drive 

alterations in the others and exacerbate disease (Fig. 28).  

Changes in mucin glycosylation driven by host genetics may directly impact on mucus-

associated microbiota composition (including mucin-degraders) and/or physiochemical 

properties of the mucus layer. As a result, the mucus may become more penetrable to 

pathogenic bacteria, resulting in increased epithelial contact and inflammation. 

Alternatively, changes in the mucus-associated microbiota may be driven by alterations in 

environmental factors such as the diet, and in turn lead to a remodelling of the mucin glycan 

profile via direct mucin degradation, or indirectly through changes in glycosyltransferase 

expression (Fig. 28). In order to thoroughly investigate this relationship, mechanistic studies 

in mice and in vitro must be performed in parallel with association studies in humans.  

  

Figure 28| Schematic diagram demonstrating the various components which may impact 

on the development of IBD and how they may be interlinked 
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Here, we decided to focus our attention on two mucin degrading strains of A. muciniphila 

and R. gnavus, and their association with mucin glycosylation. In IBD, these species have 

been found to be differentially altered; whilst the abundance of A. muciniphila decreased in 

IBD, the abundance of R. gnavus increased (Png et al., 2010), resulting in a decreased A. 

muciniphila/R. gnavus ratio. Our findings by qPCR recapitulated the depletion of A. 

muciniphila in UC, and whilst we did not observe a significant increase of R. gnavus, it did not 

display the same trend as A. muciniphila, however it was not possible to obtain information 

at the strain level. In IBD, an increase in shorter sialylated glycans has also been observed 

(Larsson et al., 2009). We hypothesised that the difference in the abundance of these 

bacteria in disease may be closely associated to changes in the glycosylation profile in IBD. 

Indeed, A. muciniphila and R. gnavus show distinct mucin degrading strategies reflecting the 

glycoside hydrolase repertoire of these strains. A. muciniphila is more adapted to the 

utilisation of complex mucin glycans, whilst R. gnavus specifically targets sialic acid (Crost et 

al., 2016; Tailford et al., 2015b). We therefore hypothesised that the glycosylation profile 

observed in IBD would favour the mucin degradation strategy of R. gnavus, leading to an 

altered ratio of A. muciniphila and R. gnavus. Mechanistic investigations were performed in 

vitro to help elucidate if the glycan landscape differentially affects the growth of these two 

bacteria, and in vivo to assess whether these bacteria can modify the glycosylation profile.  
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 Mechanistic studies of the association between R. gnavus CC55_001C, A. 

muciniphila ATCC BAA 835 and mucin glycosylation 

In vitro and in vivo mechanistic investigations of the association of R. gnavus and A. 

muciniphila abundance with mucin glycosylation were carried out using the following 

representative organisms; R. gnavus CC55_001C, isolated from colonic biopsy tissue of a 

human subject as part of the HMP, and A. muciniphila ATCC BAA 835, isolated from the 

faeces of a healthy adult (Derrien et al., 2004).  

 Profiling of R. gnavus and A. muciniphila growth in monosaccharides and 

oligosaccharides 

To obtain an initial overview of the carbohydrate utilisation abilities of R. gnavus CC55_001C 

and A. muciniphila ATCC BAA 835, the anaerobic growth of both bacteria were monitored on 

basal medium supplemented with diverse host monosaccharides and oligosaccharides as 

sole carbon sources. The growth assays were performed under strict anaerobic conditions. 

After 48 h the optical density of the control media was compared with that of the media 

inoculated with each bacteria to determine any increases in OD, and hence growth. A ΔOD 

of 0.1 or greater was considered as an indication of growth. 

R. gnavus CC55_001C grew well on 3’ SL (ΔOD= 1.13), and GlcNAc (ΔOD= 0.96). In addition 

growth was detected on Glc (ΔOD= 0.43), Gal (ΔOD= 0.33), Fuc (ΔOD= 0.13), 2’ FL (ΔOD= 

0.20), 3’ FL (ΔOD= 0.35), LNT (ΔOD= 0.17), LacNAc (ΔOD= 0.11), Lactosamine hydrochloride 

(ΔOD= 0.10) and 6’ SL (ΔOD= 0.13) (Fig. 29) (Table 11). R. gnavus could not grow on GalNAc, 

Neu5Ac, Neu5Gc, Lac or LNnT. 

In marked contrast, growth of A. muciniphila ATCC BAA 835 was only observed on 3 of the 

substrates tested. A. muciniphila growth was greatest on Glc (∆OD= 0.41), followed by Lac 

(∆OD= 0.23) and LacNAc (∆OD= 0.25) (Fig. 29) (Table 11). No growth was observed on 

GlcNAc, Gal, GalNAc, Fuc, Neu5Ac, Neu5Gc, 2’ FL, 3’ FL, LNT, LNnT, Lactosamine 

hydrochloride, 6’ SL or 3’ SL. These data showed that R. gnavus is more adapted to utilising 

host mono- and di-saccharides as compared to A. muciniphila. 
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Figure 29| Growth of A. muciniphila ATCC BAA 835 and R. gnavus CC55_001C in different 

carbohydrate sources 

Carbohydrate supplemented YCFA media was inoculated with A. muciniphila or R. gnavus 
cells from BHI-YH starter cultures. Growth was determined by measuring the change in 
optical density after 48 hours of inoculation of the carbohydrate supplemented media, as 
compared to control media without inoculum. Measurements were taken at a wavelength of 
595 nm. A ΔOD of ≥0.1 was considered as bacterial growth. 
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Table 11| Changes in optical density of carbohydrate supplemented media after 48 hrs of 

inoculation with A. muciniphila ATCC BAA 835 or R. gnavus CC55_001C 

Growth was determined in a range of different carbohydrates by measuring the change in 
optical density at a wavelength of 595 nm. A ΔOD of ≥0.1 was considered as bacterial growth. 
  

Carbohydrate source Abbreviation 

Ruminococcus 
gnavus CC55_001C  

Akkermansia 
muciniphila ATCC BAA 

835  

∆OD Growth? ∆OD Growth? 

D-glucose Glc 0.43 YES 0.41 YES 

N-acetylglucosamine GlcNAc 0.96 YES 0.05 NO 

D-galactose Gal 0.33 YES 0.02 NO 

N-acetylgalactosamine GalNAc 0.09 NO 0.09 NO 

L-fucose Fuc  0.13 YES 0.06 NO 

N-acetylneuraminic acid Neu5Ac 0.01 NO 0.01 NO 

N-glycolylneuraminic acid Neu5Gc 0.01 NO 0.01 NO 

D-lactose Lac 0.05 NO 0.23 YES 

2’-fucosyllactose 2’ FL 0.20 YES 0.00 NO 

3’-fucosyllactose 3’ FL 0.35 YES 0.00 NO 

Lacto-N-tetraose LNT 0.17 YES 0.03 NO 

Lacto-N-neo-tetraose LNnT 0.06 NO 0.02 NO 

N-acetyllactosamine LacNAc 0.11 YES 0.25 YES 

Lactosamine hydrochloride  0.10 YES 0.00 NO 

6’-sialyllactose 6’ SL 0.13 YES 0.02 NO 

3’-sialyllactose 3’ SL 1.13 YES 0.02 NO 
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 Profiling of R. gnavus and A. muciniphila growth in mucins  

 Characterisation of pPGM and LS174T mucin glycosylation 

In order to compare the growth of A. muciniphila ATCC BAA 835 and R. gnavus CC55_001C 

on mucins and assess how it may be affected by the mucin glycosylation profile, two different 

types of mucins were used for bacterial growth assays; pPGM which is commercially available 

and was purified as described in section 2.5.3, and mucin purified from the LS174T colon 

adenocarcinoma cell line (See section 2.5.4). Prior to testing the growth of R. gnavus and A. 

muciniphila on pPGM and LS174T mucin, the glycosylation profile of both types of mucin was 

analysed by liberation of the glycans and MALDI-TOF analysis (Fig. 30).  

Analysis of pPGM glycans revealed short glycan structures as well as longer more complex 

glycans containing LacNAc (Galβ1-4GlcNAc) motifs. Relative quantification revealed that 

nearly half of the glycans were fucosylated whilst only around 2 % were sialylated (Table 12). 

Two different mucin fractions were purified from the LS174T mucin which were obtained in 

an approximate 1:1 ratio from LS174T cells. The first fraction consisted of MUC2 mucins.  The 

glycans from these mucins were mainly short and sialylated structures. These structures 

were dominated by sialyl-TF (~60 %), disialyl-TF (~23 %) and STn (~2 %). Approximately 3 % 

of structures on MUC2 mucin were also sulphated (Table 13). The other mucin fraction, 

containing a mixture of non-MUC2 mucins contained glycans with 70 % sialylation and 4.8 % 

sulphation (Table 14).  
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Figure 30| MALDI-TOF spectra of glycans liberated from pPGM and LS174T mucins 

A) Spectra obtained from pPGM 
B) Spectra obtained from LS174T MUC2 
C) Spectra obtained from LS174T mixed mucins 

 

Glycans were liberated from purified mucins by reductive β-elimination, and analysed by 
MALDI-TOF using a DHB matrix. The relative abundance of each glycan structure was 
determined by measuring the area of the main peak corresponding to the mass of the glycan 
and comparing it to the total area of all peaks in the spectra. The most abundant glycan peaks 
are annotated with mass to charge (m/z) ratio and structure(s). 
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Sequence of Oligosaccharides m/z Relative % 

1 Gal, GalNAcol 534 3.18 

1 Gal, 1 Fuc, GalNAcol 708 8.51 

1 Gal, 1 HexNAc, GalNAcol 779 19.99 

1 Gal, 1 NeuAc, GalNAcol 895 0.55 

2 Gal, 1 Fuc, GalNAcol 912 0.08 

1 Gal, 1 HexNAc, 1 Fuc, GalNAcol 953 4.87 

1 NeuGc, HexNAc, GalNAcol 967 0.09 

2 Gal, 1 HexNAc, GalNAcol 983 1.06 

1 Gal, 2 HexNAc, GalNAcol 1024 4.42 

1 Gal, 1 Fuc, 1 NeuAc, GalNAcol 1069 0.14 

1 Gal,1 HexNAc, 1 NeuAc, GalNAcol 1140 0.91 

2 Gal, 1 HexNAc, 1 Fuc, GalNAcol 1157 2.49 

1 Gal, 2 HexNAc, 1 Fuc, GalNAcol 1198 1.14 

2 Gal, 2 HexNAc, GalNAcol 1228 3.19 

1 Gal, 2 NeuAc, GalNAcol 1256 0.10 

1 Gal, 3 HexNAc, GalNAcol 1269 1.36 

2 Gal, 1 HexNAc, 2 Fuc, GalNAcol 1331 6.11 

2 Gal, 1 HexNAc, 1 NeuAc, GalNAcol 1344 0.12 

3 Gal, 1 HexNAc, 1 Fuc, GalNAcol 1361 0.11 

2 Gal, 2 HexNAc, 1 Fuc, GalNAcol 1402 14.14 

3 Gal, 2 HexNAc, GalNAcol 1432 0.19 

2 Gal, 3 HexNAc, GalNAcol 1473 14.38 

2 Gal, 1 HexNAc, 1 Fuc, 1 NeuAc, GalNAcol 1518 0.11 

3 Gal, 1 HexNAc, 2 Fuc, GalNAcol 1535 0.21 

2 Gal, 2 HexNAc, 2 Fuc, GalNAcol 1576 1.00 

3 Gal, 2 HexNAc, 1 Fuc, GalNAcol 1606 0.24 

2 Gal, 3 HexNAc, 1 Fuc, GalNAcol 1647 5.94 

3 Gal, 3 HexNAc, GalNAcol 1677 0.49 

2 Gal, 4 HexNAc, GalNAcol 1718 0.14 

3 Gal, 2 HexNAc, 2 Fuc, GalNAcol 1780 0.54 

2 Gal, 3 HexNAc, 2 Fuc, GalNAcol 1821 0.22 

3 Gal, 3 HexNAc, 1 Fuc, GalNAcol 1851 0.35 

3 Gal, 4 HexNAc, GalNAcol 1922 0.51 

3 Gal, 3 HexNAc, 2 Fuc, GalNAcol 2025 1.26 

3 Gal, 4 HexNAc, 1 Fuc, GalNAcol 2096 0.58 

4 Gal, 3 HexNAc, 3 Fuc, GalNAcol 2404 0.27 

4 Gal, 4 HexNAc, 2 Fuc, GalNAcol 2475 0.26 

 

Table 12| Relative abundance of oligosaccharides detected in pPGM by MALDI-TOF 

The relative abundance of each glycan structure was determined by measuring the area of 
the main peak corresponding to the mass of the glycan and comparing it to the total area of 
all peaks in the spectra. The structure corresponding to each m/z value is shown.  
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Sequence of Oligosaccharides m/z Relative % 

1 NeuAc, GalNAcol 691 2.15 

1 Gal, 1 HexNAc, GalNAcol 779 1.94 

1 Gal, 1 HexNAc, 1 SO3, GalNAcol 867 1.75 

1 Gal, 1 NeuAc, GalNAcol 895 59.14 

1 Gal, 1 NeuGc, GalNAcol 925 2.07 

2 Gal, HexNAc, GalNAcol 983 1.64 

2 Gal, 2 HexNAc, GalNAcol 1228 1.38 

1 Gal, 2 NeuAc, GalNAcol 1256 22.61 

1 Gal, 2 HexNAc, 1 Fuc, 1 SO3, GalNAcol 1286 1.01 

2 Gal,1 HexNAc, 1 NeuAc, GalNAcol 1344 1.46 

1 Gal, 1 Fuc, 2 NeuAc, GalNAcol 1430 0.70 

2 Gal, 3 HexNAc, GalNAcol 1473 0.71 

3 Gal, 3 HexNAc, GalNAcol 1677 0.29 

2 Gal, HexNAc, 2 NeuAc, GalNAcol 1705 2.88 

2 Gal, 1 HexNAc, 1 Fuc, 2 NeuAc, GalNAcol 1879 0.27 

 

Table 13| Relative abundance of oligosaccharides detected by MALDI-TOF in the MUC2 

mucin fraction purified from LS174T adenocarcinoma cell line 

The relative abundance of each glycan structure was determined by measuring the area of 
the main peak corresponding to the mass of the glycan and comparing it to the total area of 
all peaks in the spectra. The structure corresponding to each m/z value is shown. 
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Sequence of Oligosaccharides m/z Relative % 

1 Gal, GalNAcol 534 4.59 

1 NeuAc, GalNAcol 691 4.70 

1 Gal, 1 Fuc, GalNAcol 708 3.78 

1 Gal, 1 HexNAc, GalNAcol 779 4.08 

1 Gal, 1 NeuAc, GalNAcol 895 38.20 

1 Gal, 1 NeuGc, GalNAcol 925 2.97 

2 Gal, 1 HexNAc, GalNAcol 983 4.43 

1 Gal, 1 HexNAc, 1 NeuAc, GalNAcol 1140 2.04 

3 Gal, 1 HexNAc, GalNAcol 1187 0.75 

2 Gal, 2 HexNAc, GalNAcol 1228 1.54 

1 Gal, 2 NeuAc, GalNAcol 1256 9.76 

1 Gal, 2 HexNAc, 1 Fuc, 1 SO3, GalNAcol 1286 0.80 

2 Gal, 2 HexNAc, 1 SO3, GalNAcol 1316 0.73 

2 Gal,1 HexNAc, 1 NeuAc, GalNAcol 1344 3.50 

2 Gal, 1 HexNAc, 1 NeuGc, GalNAcol 1374 0.78 

3 Gal, 2 HexNAc, GalNAcol 1432 1.53 

2 Gal, 3 HexNAc, GalNAcol 1473 0.95 

2 Gal, 1 HexNAc, 1 Fuc, 1 NeuAc, GalNAcol 1518 1.26 

3 Gal, 2 HexNAc, 1 Fuc, GalNAcol 1606 0.79 

3 Gal, 3 HexNAc, GalNAcol 1677 1.78 

2 Gal, 1 HexNAc, 2 NeuAc, GalNAcol 1705 2.81 

3 Gal, 3 HexNAc, 1 SO3, GalNAcol 1766 0.97 

3 Gal, 2 HexNAc, 1 NeuAc, GalNAcol 1793 0.75 

3 Gal, 3 HexNAc, 1 Fuc, GalNAcol 1851 0.68 

4 Gal, 3 HexNAc, GalNAcol 1881 1.89 

3 Gal, 2 HexNAc, 1 Fuc, 1 NeuAc, GalNAcol 1967 0.85 

4 Gal, 3 HexNAc, 1 Fuc, GalNAcol 2055 0.90 

3 Gal, 3 HexNAc, 1 Fuc, 1 NeuAc, GalNAcol 2213 0.79 

4 Gal, 3 HexNAc, 1 NeuAc, GalNAcol 2243 0.63 

4 Gal, 3 HexNAc, 1 Fuc, 1 NeuAc, GalNAcol 2417 0.78 

 

Table 14| Relative abundance of oligosaccharides detected by MALDI-TOF in the mixed 

mucin fraction purified from LS174T adenocarcinoma cell line  

The relative abundance of each glycan structure was determined by measuring the area of 
the main peak corresponding to the mass of the glycan and comparing it to the total area of 
all peaks in the spectra. The structure corresponding to each m/z value is shown.  
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 Initial characterisation of A. muciniphila and R. gnavus growth in pPGM 

The growth pattern of A. muciniphila ATCC BAA 835 and R. gnavus CC55_001C in pPGM was 

initially characterised by monitoring the OD change of both bacteria in YCFA basal media 

supplemented with the mucin over 27 h. In these conditions, R. gnavus had no apparent lag 

phase. Rather, a short exponential phase was observed during which the OD increased, 

reaching a maximum at 5-6 h. During the following 21 h, the OD gradually started to decrease 

again, indicating cell death. In contrast, following inoculation, A. muciniphila had a lag phase 

of around 5 h, following which an exponential phase was observed until around 25 h after 

which the OD appeared to start to plateau. Growth beyond 27 h was not monitored, however 

the overall ΔOD was more than 4-fold greater than that of R. gnavus (Fig. 31).   
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Figure 31| Growth of R. gnavus CC55_001C and A. muciniphila ATCC BAA 835 in YCFA basal 

medium supplemented with 1 % pPGM 

pPGM supplemented YCFA media was inoculated with A. muciniphila or R. gnavus cells from 
BHI-YH starter cultures. Growth was determined by measuring the change in optical density 
at a wavelength of 600 nm at various intervals over a 27 h period. 
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 Growth assays of R. gnavus and A. muciniphila in pPGM and LS174T mucin 

For further characterisation of R. gnavus and A. muciniphila growth in mucins containing 

difference glycosylation profiles, additional growth assays were performed using qPCR rather 

than OD to provide a more accurate quantification of cell growth. However, due to issues 

with aggregation of bacteria in YCFA basal media, creating difficulties in pelleting the bacteria 

by centrifugation, an alternative bicarbonate buffered basal media recipe (CP media) was 

used (Derrien et al., 2004). 

R. gnavus and A. muciniphila were inoculated from starter cultures in BHI media into pPGM 

or LS174T mucin supplemented CP media and were cultured up to 48 h. Cells were 

enumerated in the inoculum and in the mucin cultures at 27 and 48 h post-inoculation by 

qPCR, using 16S sequence specific primers as described previously (See section 2.5.6). The 

assay was carried out in duplicate and technical replicates of each qPCR reaction were 

performed. 

Each A. muciniphila mucin culture was inoculated with 1.3 x 108 cells, whilst each R. gnavus 

mucin culture was inoculated with 2.0 x 108 cells. When pPGM was used as a carbon source, 

A. muciniphila showed an average 4-fold increase in growth by 27 h and 5.2-fold increase by 

48 h. In contrast, R. gnavus showed on average a 1.5-fold increase in growth by 27 h, but by 

48 h cell numbers had reduced to 0.8-fold of the original inoculum. In the medium containing 

LS174T mucin as a sole carbon source, by 27 h, A. muciniphila cell numbers were decreased 

from the original inoculum with an average fold change of 0.38, and even more so at 48 h 

with a fold change of 0.21. In contrast, at 27 h R. gnavus cell numbers were sustained from 

the original inoculum, with an average fold change of 1.08. However, the number of R. 

gnavus cells decreased at 48 h with a fold change of 0.64 from the inoculum (Fig. 32).   
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Figure 32| Fold change of A. muciniphila ATCC BAA 835 and R. gnavus CC55_001C in pPGM 

and LS174T mucins 

pPGM and LS174T mucin supplemented CP media were inoculated with A. muciniphila or R. 
gnavus cells from starter cultures in BHI-YH media. A. muciniphila assays were inoculated 
with 1.3 x 108 cells whilst R. gnavus assays were inoculated with 2.0 x 108 cells. The graph 
shows the fold change in cell numbers from the initial inoculum after 27 and 48 hrs of growth. 
Cell numbers in the initial inoculum and 27 and 48 hr assay samples were determined by 
qPCR quantification against a standard curve of known cell numbers. Assays were performed 
in duplicate.  
 

Key; Rg, R. gnavus, Am, A. muciniphila 
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 Metabolite production and pathways utilised by A. muciniphila and R. gnavus 

The utilisation and production of metabolites was measured in the spent media of A. 

muciniphila ATCC BAA 835 and R. gnavus CC55_001C cultures grown on LS174T mucins or 

pPGM. The concentration of metabolites was measured by NMR after 48 h of growth and 

compared to that of the control media at the same time point, allowing metabolite 

production (mM) to be analysed. 

In pPGM supplemented medium, after 48 h, the main metabolite produced by both R. gnavus 

and A. muciniphila was ethanol (~20 mM by R. gnavus and ~6 mM by A. muciniphila). In 

addition, R. gnavus produced nearly 1 mM of both acetate and propanol, whilst formate, 

propionate and propane-1,2-diol were also produced, although at a lower amount (~0.6 mM, 

~0.4 mM and ~0.5 mM, respectively). As well as ethanol, A. muciniphila also produced 

acetate (~2.1 mM), succinate (~1.6 mM), propionate (~0.3 mM) and propane-1,2-diol (~0.2 

mM). Changes in concentration of metabolites following growth of bacteria, as compared to 

the control media are given in table 15 (Fig. 33). 

In LS174T mucin, after 48 h, ethanol was still the major metabolite produced by R. gnavus 

(~23 mM), whilst acetate and formate were produced in similar levels to those observed in 

pPGM (~1.3 mM and ~0.8 mM, respectively). Propanol, propionate and propane-1,2-diol 

were produced in very low quantities, in contrast with growth in pPGM (~0.1 mM, ~0.03 mM, 

and ~0.04 mM, respectively). Production of metabolites by A. muciniphila in LS174T mucin 

was completely depleted, with only minimal amounts of acetate, formate and propionate 

produced, in stark contrast to growth in pPGM (Fig. 34) (Table 15).  
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Table 15| Change in mM concentration of metabolites after 48 hours growth in pPGM and 

LS174T mucin supplemented medium 

Metabolites were quantified using 1H NMR. The table shows the main metabolites with their 
change in mM concentration in mucin supplemented CP media inoculated with R. gnavus or 
A. muciniphila, as compared to media without inoculation. 
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Figure 33| Change in mM concentration of metabolites by A. muciniphila ATCC BAA 835 

and R. gnavus CC55_001C grown in pPGM supplemented CP media 

A) Change in mM concentration of all metabolites detected 
B) y axis scaled up to view fold changes of acetate, formate, lactate, propanol, propionate, 
propane-1,2-diol and succinate 
 

pPGM supplemented CP media was inoculated with A. muciniphila or R. gnavus cells from 
starter cultures in BHI-YH media. Graphs show the change in mM concentration of 
metabolites in inoculated CP cultures after 48 hrs, as compared to media without inoculation. 
Metabolites were quantified using 1H NMR. The metabolites shown are the main metabolites 
detected in the spent media. Assays were performed in duplicate. 
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Figure 34| Change in mM concentration of metabolites by A. muciniphila ATCC BAA 835 

and R. gnavus CC55_001C grown in LS174T mucin supplemented CP media 

A) Change in mM concentration of all metabolites detected 
B) y axis scaled up to view fold changes of acetate, formate, lactate, propanol, propionate, 
propane-1,2-diol and succinate 
 

LS174T mucin supplemented CP media was inoculated with A. muciniphila or R. gnavus cells 
from starter cultures in BHI-YH media. Graphs show the change in mM concentration of 
metabolites in inoculated CP cultures after 48 hrs, as compared to media without inoculation. 
Metabolites were quantified using 1H NMR. The metabolites shown are the main metabolites 
detected in the spent media. Assays were performed in duplicate. 
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To help identify the metabolic pathways of SCFA production being carried out by R. gnavus 

CC55_001C and A. muciniphila ATCC BAA 835, a blastp search was performed against 

deduced sequences of genes diagnostic of these pathways in other organisms, as described 

by Reichardt and coll. (Reichardt et al., 2014). With regards to propionate production, A. 

muciniphila ATCC BAA 835 possessed a gene with 52% homology to that of mmdA; an 

enzyme found in the succinate pathway of Veillonella parvula and Bacteroidetes (Table 16). 

R. gnavus CC55_001C also possessed a gene encoding a protein with 39% homology to 

mmdA, as well as another predicted protein with 77% homology to PduP; a propionaldehyde 

dehydrogenase found in the propanediol pathway of related species Ruminococcus obeum 

and Roseburia inulinivorans (Table 16). Furthermore, both organisms possess a gene 

encoding a protein homologous (A. muciniphila; 58% and R. gnavus; 81%) to PduQ; a 

propanol dehydrogenase, involved in the by-production of propanol in the propanediol 

pathway (Table 16). This predicted protein is also found in R. inulinivorans ABC25529 

(Reichardt et al., 2014). These enzymes and the metabolites produced by R. gnavus 

CC55_001C and A. muciniphila ATCC BAA 835, as well as the enzymatic functions of these 

proteins are shown in the context of their metabolic pathways in figure 35. 

 

  

Protein sequence identity (Query coverage) 

Akkermansia muciniphila 
ATCC BAA 835 

Ruminococcus gnavus 
CC55_001C 

Succinate 
pathway 

mmdA 52% (100%) 39% (92%) 

Acrylate 
pathway 

LcdA None None 

Propanediol 
pathway 

PduP None 77% (100%) 

PduQ 58% (90%) 81% (100%) 

 

Table 16| Occurrence of predicted enzymes involved in pathways of propionate 

metabolism in A. muciniphila ATCC BAA 835 and R. gnavus CC55_001C 

A blastp search was performed on the A. muciniphila and R. gnavus genomes against deduced 
sequences of genes diagnostic of the succinate, acrylate and propanediol pathways in other 
organisms (Reichardt et al., 2014). % protein identity is given for all matches >30% with >80% 
query coverage 
 

MmdA, Methylmalonyl-CoA decarboxylase α-subunit, LcdA, Lactoyl-CoA dehydratase α-
subunit, PduP, CoA-dependent propionaldehyde dehydrogenase, PduP, Propanol 
dehydrogenase 
  



167 

  

Figure 35| Metabolites produced by R. gnavus CC55_001C and A. muciniphila ATCC BAA 

835 at 48 hours in the context of their metabolic pathways 

Production in pPGM at 48 hours is shown by coloured boxes. Alterations in metabolite 
production in LS174T mucin at 48 hours is shown by adjacent arrows. Predicted enzymes 
involved in these pathways are shown in italics. 
 

R. gnavus and A. muciniphila both produce a number of metabolites, including SCFAs 
propionate and acetate when grown in pPGM. In LS174T mucin, R. gnavus no longer appears 
to utilise the propanediol pathway (propionate production via propane-1,2-diol) whilst A. 
muciniphila metabolite production is almost completely abolished.  
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 Colonisation of germ-free mice with R. gnavus and A. muciniphila  

To establish if the mucin degrading strains of R. gnavus or A. muciniphila could alter the 

glycosylation profile of mucins, in vivo colonisation experiments were carried out in germ-

free mice. Mice were mono-colonised with either R. gnavus CC55_001C, A. muciniphila ATCC 

BAA 835, co-colonised with both, or were kept germ-free, allowing the glycosylation profile 

of each group to be compared to a ‘baseline’ profile. Each group was comprised of 5 female 

C57BL/6J mice between the ages of 11-14 weeks. Mice were fed a standard sterilised diet.  

Mice were gavaged with bacterial cells from cultures grown in BHI-YH, enumerated using 

qPCR with 16S specific bacterial primers. Each mouse received a 100 µl dose intragastrically 

corresponding to 5.79 x 108 cells for R. gnavus mono-associated mice, 6.01 x 109 cells for A. 

muciniphila mono-associated mice, and 3.85 x 108 R. gnavus cells plus 3.31 x 108 A. 

muciniphila cells for the co-colonised mice. 

Mice were kept in gnotobiotic conditions for 21 days and faecal samples collected every 3 or 

4 days to carry out gDNA extractions. Between days 0 and 3, the concentration of DNA 

recovered per gram of faeces increased dramatically for both mono- and co-associated mice. 

For R. gnavus mono-associated mice, there was a 21-fold increase, for A. muciniphila mono-

associated mice, there was a 20-fold increase, and for co-associated mice, there was a 31-

fold increase in gDNA concentration. In contrast, there was no change in the concentration 

of gDNA recovered from the faeces of the germ-free control group. For the rest of the study, 

the gDNA concentration recovered from faecal samples remained stable in all groups. 

The number of bacterial cells colonising mice was determined by qPCR using 16S group 

specific primers. At least two technical replicates were performed for each qPCR reaction. Ct 

values were compared against a standard curve with known numbers of cells, based on the 

theoretical molecular weight of each bacteria. Cell enumeration showed that both R. gnavus 

CC55_001C and A. muciniphila ATCC BAA 835 could rapidly and stably colonise the germ-free 

GI tract. In line with the increasing gDNA concentrations, the number of cells in each of the 

mono- and co-associated mouse groups increased rapidly between days 0 and 3, and 

remained quite stable throughout the rest of the experiment (Fig. 36). A. muciniphila mono-

associated mice were colonised to a mean density of 1.3 x 1010 cells per gram of faecal 

sample. R. gnavus mono-associated mice were colonised to a mean density of around 5.3 x 

109 cells per gram of faecal sample. In the co-associated group, mice were colonised with a 

mean density of 5.9 x 109 A. muciniphila cells and 8.5 x 109 R. gnavus cells per gram of faecal 

sample. 
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Figure 36| Mono- and co-colonisation of germ-free C57BL/6J mice with A. muciniphila 

ATCC BAA 835 and R. gnavus CC55_001C 

Germ-free mice were gavaged with A. muciniphila, R. gnavus or a combination of both 
bacteria, initially grown in BHI-YH media. Each mouse received an intragastric dose of 5.79 x 
108 cells for R. gnavus mono-associated mice, 6.01 x 109 cells for A. muciniphila mono-
associated mice, and 3.85 x 108 R. gnavus cells plus 3.31 x 108 A. muciniphila cells for the co-
colonised mice. Colonisation was determined by measuring the number of bacterial cells 
recovered in faecal samples from the mice at intervals following mono- and co- colonisation. 
The number of bacterial cells recovered per gram of faeces at intervals following gavage is 
shown. Cell numbers in the initial gavage and in faecal samples during the experiment were 
determined by qPCR quantification against a standard curve of known cell numbers.  
 

Key; red circles, number of R. gnavus cells, blue circles, number of A. muciniphila cells 
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 Glycomic profiling of mucins from mice mono- and co-colonised with A. 

muciniphila and R. gnavus by mass spectrometry 

To assess for differences in mucin glycosylation between controls and mice mono- and co- 

colonised, scrapings of mucus were taken from the colon of mice sacrificed on day 21 of the 

experiment. Mucus from 5 mice in each group were pooled and the mucins purified by 

caesium chloride ultracentrifugation, as reported in section 2.5.4. The glycans were released 

by β-elimination and analysed by MS, as in section 2.4.7. The relative abundance of each 

glycan structure was determined by measuring the area of the main peak corresponding to 

the mass of the glycan and comparing it to the total area of all main structure peaks in the 

spectra (Fig. 37). Alterations in glycosylation of mucins from mice mono-colonised with R. 

gnavus CC55_001C, A. muciniphila ATCC BAA 835 or co-colonised with both was determined 

by comparing the glycosylation profile of the pooled mucins of each group to that of a pooled 

sample from the 5 control germ-free mice. 

Two separate mucin fractions were analysed from the colon, corresponding to gel-

forming/secreted Muc2, and other mixed mucins. Overall, in control mice, a greater number 

of structures were found in the colon mixed mucin fraction (34 structures) when compared 

with the Muc2 fraction (15 structures) (See appendix 3). The predominant structures in both 

mixed mucin and Muc2 fractions included the sialyl-TF antigen with an m/z of 895, and the 

structure m/z 1589, comprising two potential mono-sialylated core 2 isomers (Fig. 38). 

Interestingly, however, a higher percentage of structures on mixed mucins, as compared to 

Muc2, were sialylated (mixed mucins, 75.22%, Muc2, 49.30%) (Fig. 39), whilst the reverse 

was true for fucosylation (mixed mucins, 8.97%, Muc2, 35.73%) (Fig. 40).  

A comparison between mice mono-colonised with R. gnavus CC55_001C, A. muciniphila 

ATCC BAA 835 or co-colonised with both strains revealed a number of differences in the 

glycosylation of Muc2 and mixed mucin fractions between the groups. In the Muc2 mucin 

fraction, the overall number of detected structures increased following colonisation with R. 

gnavus CC55_001C (23 structures) or with a mixture of R. gnavus and A. muciniphila ATCC 

BAA 835 (22 structures), as compared to germ-free mice. In contrast, the overall number of 

structures was decreased on mixed mucins from these groups (R. gnavus mono-colonised, 

29 structures, co-colonised, 18 structures). Glycosylation of both Muc2 and mixed mucins in 

mice mono-colonised with A. muciniphila ATCC BAA 835 could not be determined, due to 

these samples seemingly containing a large amount of polyhexose contaminants (Fig. 37). 
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The overall percentage of sialylated structures in the Muc2 fraction was reduced when mice 

were mono-colonised with R. gnavus or co-colonised with both bacteria as compared to 

controls (GF control, 49.30%, R. gnavus mono-colonised, 25.60%, co-colonised, 26.57%) 

(Fig. 39). This trend was also observed in the mixed mucin fraction (germ-free control, 

75.22%, R. gnavus mono-colonised, 59.21%, co-colonised, 33.66%) (Fig. 39). Furthermore, in 

the Muc2 fraction, the percentage of fucosylated structures was lower in mice mono-

colonised with R. gnavus (21.20%) but slightly increased in the co-colonised mice (38.96%) 

as compared to germ-free controls (35.73%) (Fig. 40). In the mixed mucin fraction, the same 

trend was apparent, however the decrease of fucosylation in mono-colonised mice was more 

subtle (7.73%), whilst the increase in fucosylation in co-colonised mice was more 

pronounced (18.82%), as compared to germ-free controls (8.97%) (Fig. 40). 

There were also some obvious differences in the levels of individual glycan structures 

between germ-free and colonised mice (Fig. 38). In the Muc2 fractions, the abundance of the 

TF antigen (m/z 534) in R. gnavus colonised mice was almost 5-fold higher than in germ-free 

mice, and 2-fold higher in co-colonised mice (Fig. 38) (See table 17 for structures). Although 

not as pronounced, an increase of TF antigen was also evident in the mixed mucin 

population. A depletion of sialyl-TF antigen was apparent in R. gnavus and co-colonised mice 

in both mucin fractions (Fig. 38). In contrast, the abundance of structure m/z 1589 was 

differentially altered in the mucin fractions of R. gnavus colonised mice; decreased in Muc2 

but increased in mixed mucins, whilst it was depleted in both fractions of co-colonised mice 

when compared with germ-free mice (Fig. 38).  

Together these findings indicate that colonisation of germ-free mice with either R. gnavus, 

A. muciniphila or both results in remodelling of the mucin glycan profile.
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Figure 37| Example MALDI-TOF spectra of colonic mucin glycans from mice  

A) MUC2 mucin glycosylation of A. muciniphila ATCC BAA 835 mono-colonised mice 
B) MUC2 mucin glycosylation of R. gnavus CC55_001C mono-colonised mice  
 

Glycans were liberated from purified mucins by reductive β-elimination, and analysed by 
MALDI-TOF using a DHB matrix. The relative abundance of each glycan structure was 
determined by measuring the area of the main peak corresponding to the mass of the glycan 
and comparing it to the total area of all main structure peaks in the spectra. The most 
abundant glycan peaks are annotated with mass to charge (m/z) ratio and structure(s). A) 
shows a typical spectra obtained from A. muciniphila mono-colonised mice where polyhexose 
contaminants are evident, whilst B) shows a typical spectra obtained from R. gnavus mono-
colonised mice where this contamination is not apparent (as with co-colonised mice). 
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Figure 38| Glycosylation profile in the colon of germ-free mice, and mice mono- and co- 

colonised with R. gnavus CC55_001C and A. muciniphila ATCC BAA 835 

A) Glycan profile in Muc2 mucin fraction 
B) Glycan profile in mixed mucin fraction 
 

Mucus was harvested from the colon of mice mono- or co-colonised with A. muciniphila 
and/or R. gnavus for 21 days. Mucus from 5 mice in each colonisation group was pooled. The 
mucins were purified, separating them into two mucin fractions (Muc2 and mixed mucins). 
Glycans were liberated by reductive β-elimination, and analysed by MALDI-TOF using a DHB 
matrix. The relative abundance of glycan structures from mouse samples was determined by 
measuring the area of the main peak corresponding to the mass of the glycan and comparing 
it to the total area of all peaks in the spectra. The graphs show the glycan profile in the two 
different mucin fractions from 4 mouse groups.  
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Structure m/z 
1 Gal, GalNAcol 534 

1 Gal, 1 Fuc, GalNAcol 708 (F) 

1 Gal, 1 HexNAc, GalNAcol 779 

1 Gal, 1 HexNAc, 1 SO3, GalNAcol 867 

1 Gal, 1 NeuAc, GalNAcol 895 (S) 

2 Gal, 1 Fuc, GalNAcol 912 (F) 

1 Gal, 1 NeuGc, GalNAcol 925 (S) 

1 Gal, 1 HexNAc, 1 Fuc, GalNAcol 953 (F) 

2 Gal,1 HexNAc, GalNAcol 983 

1 Gal, 2 HexNAc, GalNAcol 1024 

2 Gal,1 HexNAc, 1 SO3, GalNAcol 1071 

1 Gal, 1 HexNAc, 1 NeuAc, GalNAcol 1140 (S) 

2 Gal,1 HexNAc, 1 Fuc, GalNAcol 1157 (F) 

3 Gal, 1 HexNAc, GalNAcol 1187 

2 Gal, 2 HexNAc, GalNAcol 1228 

2 Gal, 2 HexNAc, 1 SO3, GalNAcol 1316 

2 Gal, 1 HexNAc, 2 Fuc, GalNAcol 1331 (F) 

2 Gal, 1 HexNAc, 1 NeuAc, GalNAcol 1344 (S) 

1 Gal, 2 HexNAc, 1 NeuAc, GalNAcol 1385 (S) 

2 Gal, 2 HexNAc, 1 Fuc, GalNAcol 1402 (F) 

2 Gal, 3 HexNAc, GalNAcol 1473 (F) 

2 Gal, 1 HexNAc, 3 Fuc, GalNAcol 1505 (F) 

2 Gal, 1 HexNAc, 1 Fuc, 1 NeuAc, GalNAcol 1518 (F)(S) 

2 Gal, 3 HexNAc, 1 SO3, GalNAcol 1561 

2 Gal, 2 HexNAc, 2 Fuc, GalNAcol 1576 (F) 

2 Gal, 2 HexNAc, 1 NeuAc, GalNAcol 1589 (S) 

2 Gal, 2 HexNAc, 1 NeuGc, GalNAcol 1619 (S) 

3 Gal, 3 HexNAc, GalNAcol/2 Gal, 2 HexNAc, 1 NeuAc, 1 SO3, GalNAcol 1677 (S) 

2 Gal, 1 HexNAc, 2 NeuAc, GalNAcol 1705 (S) 

2 Gal, 2 HexNAc, 1 Fuc, 1 NeuAc, GalNAcol 1763 (F)(S) 

2 Gal, 3 HexNAc, 1 NeuAc, GalNAcol 1835 (S) 

3 Gal, 3 HexNAc, 1 Fuc, GalNAcol 1851 (F) 

2 Gal, 1 HexNAc, 1 Fuc, 2 NeuAc, GalNAcol 1879 (F)(S) 

4 Gal, 3 HexNAc, GalNAcol 1881 

3 Gal, 4 HexNAc, GalNAcol 1922 

2 Gal, 2 HexNAc, 2 NeuAc, GalNAcol 1950 (S) 

3 Gal, 3 HexNAc, 2 NeuAc, GalNAcol 2400 (S) 

3 Gal, 4 HexNAc, 2 NeuAc, GalNAcol 2645 (S) 

4 Gal, 3 HexNAc, 5 Fuc, GalNAcol 2752 (F) 

3 Gal, 5 HexNAc, 2 NeuAc, GalNAcol 2890 (S) 
 

Table 17| Table of glycan structures identified in mucins of mice mono- and co-colonised 

with A. muciniphila ATCC BAA 835 and R. gnavus CC55_001C 

Structures corresponding to m/z values are shown in the table. Full data including relative 
abundances of glycans structures in each mouse group can be found in appendix 3 
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Figure 39| Relative abundance of sialylated structures in colonic mucins from germ-free 

mice, and mice mono- and co- colonised with R. gnavus CC55_001C and A. muciniphila 

ATCC BAA 835 

A) Abundance of sialylated structures in Muc2 mucin fraction 
B) Abundance of sialylated structures in mixed mucin fraction 
 

Colonic mucus was harvested from mice mono- or co-colonised with A. muciniphila and/or R. 
gnavus for 21 days. Mucus from 5 mice in each colonisation group was pooled. The mucins 
were purified, separating them into two mucin fractions (Muc2 and mixed mucins). Glycans 
were liberated by reductive β-elimination, and analysed by MALDI-TOF using a DHB matrix. 
The relative abundance of sialylated glycan structures from mouse samples was determined 
by measuring the area of the main peaks corresponding to the mass of sialylated glycans and 
comparing it to the total area of all peaks in the spectra. The graphs show the relative 
abundance of sialylated structures in the two different mucin fractions from 4 mouse groups. 
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Figure 40| Relative abundance of fucosylated structures in colonic mucins from germ-free 

mice, and mice mono- and co- colonised with R. gnavus CC55_001C and A. muciniphila 

ATCC BAA 835 

A) Abundance of fucosylated structures in Muc2 mucin fraction 
B) Abundance of fucosylated structures in mixed mucin fraction 
 

Colonic mucus was harvested from mice mono- or co-colonised with A. muciniphila and/or R. 
gnavus for 21 days. Mucus from 5 mice in each colonisation group was pooled. The mucins 
were purified, separating them into two mucin fractions (Muc2 and mixed mucins). Glycans 
were liberated by reductive β-elimination, and analysed by MALDI-TOF using a DHB matrix. 
The relative abundance of fucosylated glycan structures from mouse samples was 
determined by measuring the area of the main peaks corresponding to the mass of 
fucosylated glycans and comparing it to the total area of all peaks in the spectra. The graphs 
show the relative abundance of fucosylated structures in the two different mucin fractions 
from 4 mouse groups. 
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 Quantification of mucin sialylation from mice mono- and co-colonised with A. 

muciniphila and R. gnavus by HPAEC-PAD 

To quantify the level of sialic acid in mucins purified from colonic mucus scrapings of mice 

mono- and co-colonised with A. muciniphila ATCC BAA 835 and R. gnavus CC55_001C, pooled 

samples of mucins purified from the 5 mice in each group were analysed in triplicate. HPAEC-

PAD was performed following acid hydrolysis of both the Muc2 and mixed mucin fractions, 

as described in section 2.4.6.  

In general, as observed by MS, mixed mucins from germ-free mice were more highly 

sialylated (0.98% sialic acid) than those in the Muc2 fraction (0.54% sialic acid) (Fig. 41).  

A comparison between mice mono-colonised with R. gnavus CC55_001C, A. muciniphila 

ATCC BAA 835 or co-colonised with both revealed that the degree of mucin sialylation was 

reduced in all colonised mice as compared to germ-free controls (Fig. 41). In mice mono-

colonised with R. gnavus, sialylation was reduced to 0.33% in Muc2 (compared to 0.54% in 

controls) and 0.58% in mixed mucins (compared to 0.98% in controls). This trend was also 

apparent in mucins purified from A. muciniphila mono-colonised and co-colonised mice, and 

was also more pronounced in these mice, compared to R. gnavus mice (Muc2; A. muciniphila 

mono-colonised, 0.20%, co-colonised, 0.20%, mixed mucins; A. muciniphila mono-colonised, 

0.36%, co-colonised, 0.28%) (Fig. 41), suggesting that colonisation with these bacteria results 

in the degradation/release of sialic acid from mucins. 
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Figure 41| Abundance of sialic acid as determined by HPAEC-PAD in colonic mucins from 

mice mono- and co- colonised with A. muciniphila ATCC BAA 835 and R. gnavus CC55_001C 

Mucus was harvested from the colon of mice mono- or co-colonised with A. muciniphila 
and/or R. gnavus for 21 days. Mucus from 5 mice in each colonisation group was pooled. The 
mucins were purified, separating them into two mucin fractions (Muc2 and mixed mucins). 
Sialic acid was liberated from purified mucins using mild acid hydrolysis. HPAEC-PAD analysis 
of each sample was performed in triplicate. The graph shows the relative abundance of sialic 
acid in the two different mucin fractions from 4 mouse groups. The standard error is shown 
for each group. 
 

Key; Block colours, sialylation of Muc2 fractions, hashed colours, sialylation of mixed mucin 
fractions 
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 Metabolite production in the caecal contents of mice mono- and co-colonised 

with A. muciniphila and R. gnavus  

Very few metabolites were detected in the caecal contents of germ-free mice. The main 

metabolite detected was ethanol (~1 mM) with very low concentrations of acetate (~ 0.05 

mM) and formate (~0.04 mM) (Fig. 42). Upon colonisation with R. gnavus CC55_001C the 

concentrations of ethanol, acetate and lactate increased when compared with germ-free 

controls (~2 mM, ~0.4mM and ~0.6 mM, respectively) (Fig. 43). There was also a small 

increase in the concentration of formate in these mice (~0.1 mM) (Fig. 43). Very few 

metabolites were observed to change in concentration when mice were mono-colonised 

with A. muciniphila ATCC BAA 835. The main difference was an increase in ethanol (~1.1 mM) 

(Fig. 43). In co-colonised mice, the pattern of metabolite production mainly reflected the 

combined effect of R. gnavus and A. muciniphila colonisation (production of acetate, lactate, 

formate and ethanol) (Fig. 43). 
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Figure 42| Concentrations (mM) of the main metabolites in the caecal contents of germ-

free mice 

A) mM concentration of all selected metabolites 
B) y axis scaled up to view mM concentrations of propionate, acetate, lactate, succinate, 
formate and propane-1,2-diol 
 

Caecal contents were harvested from germ-free mice. Metabolites were quantified in the 
supernatant of caecal contents from germ-free mice using 1H NMR. The mM concentration 
of the main metabolites involved in SCFA metabolism are shown in the graphs. 
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Figure 43| Change in mM concentration of metabolites in mice mono- and co-colonised 

with A. muciniphila ATCC BAA 835 and R. gnavus CC55_001C when compared with germ-

free controls 

A) Change in mM concentration of all selected metabolites 
B) y axis scaled up to view change in mM concentrations of propionate, acetate, lactate, 
succinate, formate and propane-1,2-diol 
 

Caecal contents were harvested from mice mono- and co-colonised with A. muciniphila 
and/or R. gnavus for 21 days. Metabolites were quantified in the supernatant of caecal 
contents using 1H NMR. Graphs show the change in mM concentration of the main 
metabolites involved in SCFA metabolism in mono- and co-colonised mice when compared 
with germ-free controls.  
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 Discussion 

Mechanistic investigations were performed in vitro and in germ-free mice to investigate the 

relationship between the mucin degrading strains of R. gnavus and A. muciniphila and mucin 

glycosylation.  

In vitro experiments revealed that R. gnavus CC55_001C and A. muciniphila ATCC BAA 835 

utilise different sets of mono- and small oligosaccharides. R. gnavus CC55_001C was able to 

grow on Fuc, 2’ FL, 3’ FL and 3’ SL, as previously reported for R. gnavus type strain ATCC 

29149 (Crost et al., 2013). However, no detectable growth was observed when the sialic 

acids, Neu5Ac or Neu5Gc or Lac were used as a sole carbon source, also in agreement with 

previous observations with the ATCC 29149 strain (Crost et al., 2013). R. gnavus CC55_001C 

encodes the full complement of genes in the cluster dedicated to sialic acid metabolism (See 

appendix 6 for blastp homology), including an intramolecular sialidase, which in R. gnavus 

ATCC 291459 and R. gnavus ATCC 35193 was shown to cleave off and release sialic acid from 

α2-3 linked sialylated glycoproteins in a 2,7-anhydro sialic acid form, supporting the growth 

of these bacteria (Crost et al., 2016; Tailford et al., 2015b). It has been suggested that the 

presence of the intramolecular trans-sialidase confers to these strains a competitive 

nutritional advantage by allowing them to release sialic acid from mucins in a form they can 

preferentially access (a ‘selfish’ mechanism) (Crost et al., 2013; Crost et al., 2016). It is very 

likely that the same mechanism of sialic acid metabolism applies to R. gnavus CC55_001C. 

This was further supported by our in vitro growth assays where we showed that, in stark 

contrast to A. muciniphila, R. gnavus CC55_001C cell numbers were sustained from the initial 

inoculum for 27 h before any detectable depletion was observed in the highly sialylated 

LS174T mucin. However, a higher concentration of LS174T mucin may be required in order 

to provide R. gnavus with enough substrate for growth, since mucins from colorectal cancers 

contain a lower number of carbohydrate chains as identified previously (Mihalache et al., 

2015) and confirmed in this study. In addition to growth on 3’ SL, here, we also observed 

minimal growth of R. gnavus CC55_001C on 6’ SL, a substrate on which R. gnavus ATCC 29149 

could not grow (Crost et al., 2013). Growth of R. gnavus CC55_001C on this substrate may 

indicate a broader substrate specificity of the predicted sialidase encoded by R. gnavus 

CC55_001C, although this would need to be verified by a biochemical approach. 

A. muciniphila ATCC BAA 835 growth was observed in very few simple sugars. Unlike R. 

gnavus, A. muciniphila ATCC BAA 835 could not grow on Fuc, sialic acid, fucosylated or 

sialylated mono- and disaccharides. Although A. muciniphila encodes two sialidases, 
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AkmNan0625 and AkmNan1835 which are active against both 3’ SL and 6’ SL, this species is 

unable to utilise sialic acid (Tailford et al., 2015b; van Passel et al., 2011). This may be due to 

the A. muciniphila genome lacking the full complement of genes in the nan cluster (as 

identified by an in-house bioinformatician). In our study, the highest growth was apparent in 

the media containing pPGM. Since pPGM contains a complex O-glycan profile, this would 

suggest that A. muciniphila favours the utilisation of more complex glycan chains for growth. 

It has been proposed that in order to grow, A. muciniphila requires a combination of 

oligosaccharides as well as amino acids, provided by the complex mucin structure (Derrien 

et al., 2004). Furthermore A. muciniphila is the predominant mucin-degrading organism in 

human faeces (Derrien et al., 2004). Our in vitro culturing assays suggested that the pPGM, 

containing complex mucin glycans was more favourable to the growth of A. muciniphila, 

which ultimately had a higher fold growth in medium containing this mucin than R. gnavus. 

In contrast, in LS174T mucin, which possesses smaller and mostly sialylated oligosaccharide 

chains, A. muciniphila cell numbers reduced dramatically from the original inoculum, with no 

detectable growth. Overall, the decrease in growth between pPGM and LS174T mucin was 

much more dramatic for A. muciniphila than R. gnavus, suggesting that the LS174T mucin 

glycan profile is more favourable to R. gnavus than to A. muciniphila. This may partly 

contribute to the observed decrease in A. muciniphila abundance in UC, where an altered O-

glycan profile similar to that of LS174T mucins has been demonstrated to occur (Larsson et 

al., 2011; Larsson et al., 2009). 

In parallel with the growth assays, we measured the abundance of metabolites, including 

SCFAs produced by R. gnavus CC55_001C and A. muciniphila ATCC BAA 835 grown in mucin 

supplemented medium. In the colon, there are typically three main bacterial SCFAs 

produced; propionate, butyrate and acetate, which are usually found in a 1:1:3 ratio (Louis 

et al., 2014). The SCFAs link the microbiota and the host immune system as they are rapidly 

absorbed by the intestinal epithelium, and exert a number of immuno-modulatory effects. 

In general, butyrate appears to exert the greatest effects on host immunity and is a major 

source of energy for colonocytes, whilst propionate, and acetate in particular appear to be 

less potent (Correa-Oliveira et al., 2016; Tedelind et al., 2007). 

Both bacteria produced acetate and propionate when grown in pPGM. Propionate 

production can occur via a number of molecular pathways (Reichardt et al., 2014). Here, 

bioinformatics and metabolite analyses suggest that R. gnavus mainly utilises the 

propanediol pathway, due to the presence of genes homologous to PduP and PduQ and the 

increase in concentration of propane-1,2-diol and propanol in the spent media, which are 
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intermediates and by-products of this pathway, respectively. This pathway has also been 

demonstrated to occur in the closely related species, Roseburia inulinivorans and 

Ruminococcus obeum (Reichardt et al., 2014). Furthermore, R. gnavus ATCC 29149 has also 

been suggested to produce propionate through this pathway, mainly through the utilisation 

of Fuc from fucosylated substrates (Crost et al., 2013). A. muciniphila ATCC BAA 835 also 

produced propionate, however in accordance with previous publications, no homology was 

identified with PduP, a propanol dehydrogenase enzyme involved in this pathway, and 

therefore A. muciniphila does not appear to utilise the propanediol pathway (Reichardt et 

al., 2014). It is possible that A. muciniphila utilises the succinate pathway to produce 

propionate, as suggested by the low level protein homology with MmdA, an α-subunit of a 

methylmalonyl-CoA decarboxylase enzyme involved in this pathway, and by the large 

amount of succinate detected in the spent media. This pathway is widely used by 

Bacteroidetes to generate propionate from carbohydrates and by some Firmicutes to 

produce propionate from lactate or succinate (Reichardt et al., 2014). 

When cells were grown in LS174T mucin, the amount of propionate produced by R. gnavus 

CC55_001C, as well as intermediates of the propanediol pathway was reduced when 

compared to growth of R. gnavus in pPGM. However, the increase in acetate concentration, 

as well as formate by R. gnavus was similar in both pPGM and LS174T mucin. This suggests 

that during growth of R. gnavus CC55_001C in LS174T mucin, the propanediol pathway is not 

active, whilst other metabolic pathways are still utilised. These observations are consistent 

with previous reports of R. obeum A2-162, where it was shown that the propanediol pathway 

was only active during growth on fucosylated substrates, producing propionate, whereas 

only acetate, formate and lactate were produced when the bacteria were grown on glucose 

(Reichardt et al., 2014). In contrast, in our study, production of all metabolites by A. 

muciniphila were reduced when this bacteria was grown in LS174T mucin as a carbon source 

when compared to pPGM. This suggests a sustained metabolism of R. gnavus CC55_001C on 

LS174T mucin, and provides further evidence for the better ability of R. gnavus to survive on 

this source of carbon as compared to A. muciniphila.  

The balance of metabolites in the gut lumen is delicately controlled by production, use and 

mucosal uptake. According to our results, this balance is potentially disrupted when the 

nutritional reservoir provided by the mucin glycans is altered. Interestingly, in a study 

performed in 1988, the ratio of acetate to total SCFAs was increased in colon cancer patients 

compared with controls, however not in patients with IBD or diverticulitis (Weaver et al., 

1988). However, this study was performed using enema samples, which may not directly 
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represent the mucosal concentrations of SCFAs. Although R. gnavus CC55_001C and A. 

muciniphila ATCC BAA 835 were not observed to directly produce butyrate, it is understood 

that some gut bacteria, particularly Firmicutes, can utilise acetate and convert it to butyrate 

(Duncan et al., 2004a; Louis et al., 2014). In the healthy gut, several of the most abundant 

species including F. prausnitzii and Roseburia spp. are generally net users of acetate, and 

butyrate producers (Duncan et al., 2002a; Louis and Flint, 2009). A number of studies have 

reported a decrease in F. prausnitzii and Roseburia spp. in IBD (Machiels et al., 2014; Sokol 

et al., 2009). A reduction of these bacteria may therefore result in a net increase in acetate 

as well as a net decrease in butyrate, potentially affecting gut homeostasis. Machiels and 

coll. reported that whilst the butyrate concentration in UC was lower, this failed to reach 

significance (Machiels et al., 2014). In contrast, some studies have reported increases in 

butyrate producers such as F. prausnitzii in CD (Hansen et al., 2012b; Willing et al., 2010a). It 

is possible that alterations in mucin glycosylation favouring the growth of acetate producers 

such as R. gnavus results in increased metabolic substrate for acetate consumers such as F. 

prausnitzii, explaining these results. In support of this, F. prausnitzii was unable to colonise 

the GI tract of germ-free rats without the presence of the acetate producer B. 

thetaiotaomicron (Wrzosek et al., 2013). In active UC patients it has been shown that the 

intestinal epithelium has a diminished capacity to oxidize butyrate (Kato et al., 2007). 

Therefore the abundance of F. prausnitzii and its production of butyrate may not be the 

important factor in determining gut homeostasis, but rather the utilisation of butyrate by 

the host. It is evident that more comprehensive studies are required to fully elucidate this 

relationship and the factors driving changes in the abundance of butyrate producers in IBD, 

in relation to mucin glycosylation. 

To further characterise the relationship between mucin degraders and mucin glycosylation, 

germ-free mice were mono- and co-colonised with R. gnavus CC55_001C and A. muciniphila 

ATCC BAA 835 to determine if these bacteria were able to modify the mucin glycan profile. 

Both bacteria could rapidly and stably colonise the GI tract, in agreement with previous 

studies where germ-free mice have been successfully mono-colonised with R. gnavus E1 and 

A. muciniphila (Crost et al., 2010; Derrien et al., 2011; Graziani et al., 2016). However, the 

density to which R. gnavus and A. muciniphila were able to colonise mice in our study 

appeared to be dependent on whether mice were mono- or co- associated with the bacteria. 

Whilst A. muciniphila survival appeared to be better when mono-associated with mice, R. 

gnavus appeared to thrive better in the presence of A. muciniphila. It is possible that in co-

colonised mice, A. muciniphila, due to its cocktail of glycoside hydrolases and apparent 
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preference for complex mucin glycans, generates more accessible nutrients for R. gnavus. 

Furthermore, R. gnavus may be capable of utilising the glycans more rapidly than A. 

muciniphila, explaining the decreased density of A. muciniphila in these mice when 

compared to those that have been mono-colonised. Indeed, from our in vitro assays, A. 

muciniphila displayed a prolonged lag phase on pPGM compared with R. gnavus, suggesting 

that R. gnavus is able to access the nutrient supply provided by pPGM more quickly. In 

addition, transcriptome analysis following colonisation of mice with A. muciniphila 

demonstrated that this bacteria modulates genes involved in establishing homeostasis and 

immune tolerance toward commensal microbiota, with the largest transcriptional changes 

in the colon (Derrien et al., 2011). It is possible, therefore, that increased tolerance towards 

R. gnavus, as a result of the presence of A. muciniphila allowed R. gnavus to colonise to a 

higher density in these mice.  

By mass spectrometry, we detected many of the same glycan structures in the colon of germ-

free C57BL/6J mice as has been identified previously in this strain and in germ-free rats by 

MALDI-TOF and LC/MS techniques (See appendix 3) (Johansson et al., 2015; Wrzosek et al., 

2013). It is of note that polyhexoses were also detected amongst the glycan structures, 

particularly in A. muciniphila mono-colonised mice where we could not detect any mucin 

glycan structures. It is unclear whether these polyhexoses are an inherent factor introduced 

during sample processing and analysis, which are normally undetected when high levels of 

glycosylation mask the polyhexose peaks. The polyhexose contamination in mucins from 

germ-free mice may be more visible due to a lower glycosylation. In mice colonised by A. 

muciniphila, bacterial degradation of mucin glycans may have caused the concentrations of 

most structures to fall below the detection limit, exacerbating the relative abundance of the 

polyhexose contaminants. Indeed, by HPAEC-PAD, although we could observe sialic acid, its 

abundance on mucins was depleted in A. muciniphila mono-colonised mice in comparison to 

germ-free controls. 

In R. gnavus mono-colonised mice, colonic mucin glycosylation was still observed, but 

changes in the profile of glycan structures were apparent when compared to germ-free mice. 

In particular, both Muc2 and mixed mucins displayed a lower degree of sialylation, in 

accordance with the ability of R. gnavus to liberate and utilise sialic acid transglycosylation 

product due to the presence of an intramolecular trans-sialidase and the nan operon (Crost 

et al., 2013; Crost et al., 2016; Tailford et al., 2015b). A nearly 2-fold decrease in sialylation 

by R. gnavus in both Muc2 and mixed mucin fractions was confirmed by HPAEC-PAD. By MS, 

the decrease in sialic acid could be attributed to a depletion in two main structures in Muc2, 
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the sialyl-TF antigen (m/z 895) and a mono-sialylated core 2 structure of which there are two 

potential isomers (m/z 1589). In a previous study, this latter structure was also noted to be 

decreased in the Muc2 population of mice following conventionalisation with a normal 

C57BL/6J microbiota (Johansson et al., 2015). These results therefore suggest m/z 1589 and 

sialyl-TF may act as major nutrient sources for R. gnavus CC55_001C. These findings may 

explain the prolonged survival of R. gnavus on LS174T mucins, in which we observed the 

MUC2 fraction to be rich in sialyl-TF (59.14% of structures), however m/z 1589 was 

undetected. It is important to note that differences between the O-glycosylation of Muc2 

isolated from the distal colon of mouse models and humans have also been identified 

previously, and therefore interpretation of results from mouse studies must be approached 

with caution (Thomsson et al., 2012). In contrast to our findings in the Muc2 fraction, in the 

mixed mucin fraction from mice, structure m/z 1589 was increased in mice mono-colonised 

with R. gnavus when compared to germ-free controls. It is possible that in the mixed mucin 

fraction sialic acid is predominantly α2,6-linked to this structure, whilst in the Muc2 fraction 

it is α2,3-linked, and therefore it is not as readily cleaved in the mixed fraction due to the 

predicted α2,3 linkage specificity of the sialidase encoded by R. gnavus. Further structural 

analysis of mucin glycans in both fractions via MS/MS would allow the validation of this 

hypothesis. 

Interestingly, although there was an apparent depletion in glycan structures in A. muciniphila 

mono-colonised mice, in co-colonised mice, we were still able to detect glycan structures in 

colonic mucins despite the presence of A. muciniphila. A possible explanation for this might 

be that R. gnavus stimulates the expression of glycosyltransferases, as demonstrated in 

previous studies (Graziani et al., 2016), helping to restore the glycan structures lost by A. 

muciniphila degradation. In particular, Graziani and coll. showed that colonization of germ-

free mice with R. gnavus E1 resulted in an increase in GlcNAc and α-1,2-Fuc residues on 

glycoproteins (Graziani et al. 2016). Consistent with this, we observed an increase in the 

relative amount of mucin fucosylation in co-colonised mice compared with germ-free 

controls. However, as we were unable to distinguish between GlcNAc and GalNAc ions using 

MALDI-TOF, we could not assess the impact of R. gnavus colonisation on GlcNAc abundance. 

A trend towards a decrease in sialylation was also evident in co-colonised mice by MS and 

HPAEC-PAD, particularly in the mixed mucin fraction. Alike the R. gnavus mono-colonised 

mice, this trend appeared to be mainly due to a decrease in the sialyl-TF and m/z 1589 

structures. The relative abundance of m/z 1589 in particular was reduced to a greater extent 

in the Muc2 fraction of co-colonised mice compared with R. gnavus mice, and in contrast to 
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R. gnavus mono-colonised mice was also reduced in the mixed mucin fraction of co-colonised 

mice. This is consistent with the ability of A. muciniphila to also liberate sialic acid due to the 

two sialidases it encodes, which have specificity for both α2,3- and α2,6- linked structures, 

and provides further evidence that in mixed mucins, m/z 1589 may be sialylated via an α2-6 

linkage. 

In order to gain some insight into the metabolites produced by R. gnavus and A. muciniphila 

during colonisation of germ-free mice, we measured these in the caecal contents by NMR. 

Germ-free mice caecal contents contained acetate as the main SCFA, but lacked of 

propionate and butyrate, consistent with previous observations in germ-free animals 

(Wrzosek et al. 2013). However, the concentrations we detected were much lower than 

previously observed, possibly due to the difference animal model of germ-free mice versus 

rats. Furthermore, Wrzosek and coll. used gas liquid chromatography, which may differ in 

sensitivity to the NMR used in our analysis. In our study, the main metabolites produced in 

the caecum of mice mono-colonised with R. gnavus CC55_001C were ethanol, acetate, 

lactate and formate. Interestingly, production of propionate and intermediates of the 

propanediol pathway were not detected. This pattern of metabolite production is consistent 

with the fact that mucin fucosylation is generally considered to be low in proximal regions of 

the mouse GI tract, and is similar to our in vitro observations of R. gnavus metabolite 

production when grown in LS174T mucin, which also has a low level of mucin fucosylation. 

Metabolite production in the caecum of mice mono-colonised with A. muciniphila ATCC BAA 

835 was mainly restricted to ethanol, with very low production of other metabolites, unlike 

our in vitro observations of growth on mucins such as pPGM. This suggests that whilst A. 

muciniphila may be carrying out fermentation in caecum, it is utilising different substrates to 

those during growth on pPGM, probably as a result of a different glycosylation pattern on 

the mucins from this region. In co-colonised mice, the metabolite profile reflected that of 

the combined effect of R. gnavus and A. muciniphila growth, suggesting that metabolism of 

each bacteria was unaffected by the presence of the other, although more work is warranted 

to validate these hypotheses. 

Overall, based on evidence from our in vitro assays, it is probable that the microbiota and 

particularly the abundance of mucin degraders is, at least in part, shaped by mucin 

glycosylation. However, it is important to note that the purified mucin used in these assays 

lack many of the physiological constituents of mucus such as antimicrobials and cytokines 

that may also modulate the microbiota. Furthermore, the ability of individual species to 

colonise is probably also dependent on the composition of the microbiota, as supported by 
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the increased colonisation of germ-free mice by R. gnavus in the presence of A. muciniphila. 

The mechanisms by which this occurs are numerous, but probably include cross-feeding 

between species and remodelling of mucin glycosylation. Indeed, we showed that 

colonisation of mice with both A. muciniphila and R. gnavus resulted in a glycan profile 

shifted from that of a germ-free mouse. The synergistic action of these bacteria may help to 

maintain a homeostatic mucosal barrier via the coordinated degradation and stimulation of 

mucin glycosylation, which may be disrupted during inflammatory conditions. In order to 

understand these interactions further, these organisms would need to be studied in the 

context of a conventional microbiota.  
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 Conclusions and perspectives 

The focus of this PhD project was to investigate the relationship between the mucus-

associated microbiota and mucin glycosylation, and the mechanisms underpinning changes 

in these factors in IBD. To encompass the above, the first part of this thesis explored 

alterations in the human gut mucosa-associated microbiota composition and mucin 

glycosylation/the expression of glycosyltransferases in UC patients. The second part used in 

vitro growth assays and investigations in mice with the aim of elucidating the mechanisms 

by which two specific mucin degrading bacteria, R. gnavus CC55_001C and A. muciniphila 

ATCC BAA 835 interact with mucin and mucin glycans. This chapter summarises the findings 

from these investigations, their impact in wider field, and future directions of work. 

Previously, studies have identified a breakdown of gut homeostasis in IBD, incorporating 1) 

dysbiosis of the microbiota, and 2) alterations in mucin barrier function, including mucin 

glycosylation. However, both of these factors have rarely been studied in the same model, 

and particularly not in humans. As a result, the relationship between both components 

remains poorly understood. In our study, the collection of mucosal lavage samples from 

controls and IBD patients allowed us to study the composition of the microbial community 

in direct contact with the mucins, a major advantage of using this method of sampling.  

Overall, our profiling of the mucus-associated microbiota and mucin glycosylation profile in 

controls and UC patients revealed general trends in accordance with the main properties of 

these components identified in previous studies, were they have been characterised 

separately. By both 16S sequencing and qPCR, the microbiota was highly similar in proximal 

and distal colon, which is consistent with previous observations (Lavelle et al., 2015). In stark 

contrast, mucins and mucin glycosyltransferases displayed gradients from proximal to distal 

colon, including increasing gradients of sialic acid and sialyltransferase expression, but 

decreasing gradients of Fuc in both controls and UC patients, again in accordance with 

previous observations (Robbe et al., 2003; van der Post and Hansson, 2014). 

However, differences in both mucin glycosylation and the microbiota were apparent in UC 

patients when compared to controls. It is important to note that these differences were only 

evident following detailed analyses such as quantification of specific bacterial groups by 

qPCR, and structural characterisation of mucin glycans by mass spectrometry. As a 

consequence, it is worth noting that broader analysis methods, such as 16S sequencing 

platforms or lectin screening may not be sufficient to characterise microbiota and host glycan 

changes in IBD. For example, we observed no alterations in the diversity, richness or 
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evenness of the microbial community whereas distinct changes in the abundances of 

bacterial groups were apparent in UC, including a decrease in the ratio between A. 

muciniphila and R. gnavus in both sigmoid and ascending colon locations. In parallel, UC 

mucins displayed alterations in glycosylation including a site-wide decrease in many of the 

abundant complex glycan structures found in controls, as well as a site-wide decrease in the 

main fucosylated structures. Furthermore, we observed an increase in the main sialylated 

structures in UC, as previously observed with sialylated structures such as STn (Larsson et al., 

2011), but in our study this was mainly a feature in the ascending colon. It is important to 

note that many of the trends we detected in the human lavage samples did not reach 

statistical significance due to the limited number of samples we were able to obtain. Another 

limitation was the variability between IBD patients which included those at different stages 

of disease (remission and relapse), on different medications and with variable lifestyles. 

Indeed the stage of disease, particularly the presence of inflammation, has been implicated 

as an important factor associated with the presence of aberrant mucin glycosylation (Larsson 

et al., 2011). Therefore, future investigations should focus on using larger patient numbers 

and better defined patient groups. Longitudinal studies of individual IBD patients would be 

greatly helpful, to take into account inter-individual variation. 

Despite these limitations, this first part of the work allowed us to generate the hypothesis 

that alterations in mucin glycosylation in UC patients may result in a mucosal environment 

that is less favourable to the growth of A. muciniphila, explaining its decrease in UC. To test 

this hypothesis, the growth of A. muciniphila and R. gnavus was assayed using two different 

types of mucin; pPGM containing a complex glycosylation profile with a high proportion of 

fucosylation, or mucins from the LS174T colon adenocarcinoma human cell line, with a 

glycosylation profile more similar to UC, i.e. less complex, with decreased fucosylation and 

increased sialylation. The assay validated the trends we observed in humans, showing that 

A. muciniphila growth was drastically affected in media supplemented with the LS174T 

mucin, containing a ‘UC-like’ glycosylation profile. In contrast, R. gnavus was able to tolerate 

LS174T mucin, sustaining cell numbers for a longer period of time. The effect of a lack of 

fucose in these mucins on R. gnavus metabolism was evident through the decrease in the 

production of intermediates of the propanediol pathway, however production of acetate 

was maintained, suggesting that R. gnavus utilises other glycan nutrients from LS174T mucin. 

These observations support a causal role for mucin glycosylation in shaping the composition 

of the gut microbiota and the balance of SCFAs in UC. In accordance with this, recent findings 

showed that the availability of mucosal carbohydrates, in particular fucose and sialic acid, 
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has the potential to impact on the composition of microbial species including the expansion 

of pathogenic organisms such as Salmonella enterica and C. difficile (Ng et al., 2013; Tong et 

al., 2014).  In addition, in humans, individuals appear to have a different microbiota 

composition depending on the expression ABO blood group antigens and secretor (FUT2 

genotype) status (Makivuokko et al., 2012; Wacklin et al., 2014). As well as a lower species 

richness, the abundance of specific bacterial genera appears to be modified in non-secretors, 

including a lower abundance of Akkermansia spp. (Wacklin et al., 2014). For example, 

individuals harbouring the B blood group antigen have significantly different profiles of 

E. rectale, C. coccoides and C. leptum groups (Makivuokko et al., 2012). 

Although our data provide an interesting insight into the impact of mucin glycosylation on 

R. gnavus and A. muciniphila growth and metabolism, additional experiments would be 

beneficial to help validate our findings. A main limiting factor in our in vitro assays was the 

time-consuming nature of LS174T mucin purification, from which only small yields could be 

obtained. Since we expect that LS174T mucin contains a lower carbohydrate content than 

pPGM, given more time, future experiments could investigate whether R. gnavus can grow 

in media containing higher percentages of this mucin. It may also be valuable to perform 

glycosylation analysis of mucins in the spent media following growth of these organisms, 

particularly to elucidate the major nutrients utilised by R. gnavus in the absence of 

fucosylated glycans. In addition, co-culture experiments with both bacteria would provide an 

insight into whether these bacteria can outcompete each other, or benefit from one other 

via cross-feeding on these mucin glycans. In the long term, and since we showed that mucin 

degradation properties can be strain specific, further experiments could also investigate the 

ability of other strains of R. gnavus and A. muciniphila to utilise differentially glycosylated 

mucins. 

In addition to understanding the impact of mucin glycosylation on the microbiota, we tested 

whether A. muciniphila ATCC BAA 835 and R. gnavus CC55_001C could shape mucin glycans 

by mono- and co-colonising germ-free mice with each bacterial species. Following 3 weeks 

of colonisation, distinct changes in the glycosylation of mucins from these mice were evident. 

A. muciniphila appeared to deplete mucin glycosylation, possibly due to the expression of a 

wide range of glycoside hydrolases. This is an interesting observation since A. muciniphila is 

generally regarded as a ‘biomarker’ of health. However, previous studies suggest that A. 

muciniphila may stimulate mucin synthesis, facilitating turnover of mucins and enhancing 

barrier function (Derrien et al., 2016). It is also possible that A. muciniphila contributes to 
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host health in other ways. For example, a recent study demonstrated the ability of A. 

muciniphila to bind to intestinal epithelial cells and strengthen the integrity of the cell 

monolayer (Reunanen et al., 2015). However, Shin and coll. found that serum LPS levels and 

gut permeability were not significantly different in mice administered with A. muciniphila 

when compared with control mice (Shin et al., 2014). Evidence also suggests that A. 

muciniphila alters the host transcriptome profile and balances immune responses (Derrien 

et al., 2011). Therefore, a role for A. muciniphila in maintaining host health may involve 

facilitating tolerance towards commensals, whilst other bacteria help to replenish mucin 

glycosylation through mechanisms such as stimulating glycosyltransferase expression. In 

accordance with this, in co-colonised mice, we observed that some mucin glycans are still 

intact despite the presence of A. muciniphila, suggesting that R. gnavus may help to restore 

mucin glycans degraded by A. muciniphila. In vivo experiments performed by Graziani and 

coll. showed that colonisation with R. gnavus E1 resulted in an increase in GlcNAc and α-1,2-

fuc residues on glycoproteins, and a significant induction in the expression of 

glycosyltransferase and mucin genes, including ST6Gal1, C1GalT1, Muc1, Muc2 and Muc3 (as 

well as C3GnT and Fut3, although not significant) (Graziani et al., 2016). A similar function 

has previously also been shown of B. thetaiotaomicron which is able to modulate host 

production of hydrolysable fucosylated glycans to its advantage (Hooper et al., 1999). 

Moreover, different microbiota can influence the mucus properties of mice of the same 

genetic background, leading to differences in the penetrability of the inner mucus layer to 

bacterial sized beads (Jakobsson et al., 2015). This provides further evidence to suggest that 

the mucus barrier is shaped by the microbiota. 

In future, it will be of interest to investigate the mechanisms via which R. gnavus CC55_001C 

alters mucin glycosylation. For example, analysis of the mouse transcriptome would allow us 

to establish if R. gnavus mediates these effects through upregulation of glycosyltransferases. 

Furthermore, in order to understand the biological impact of mucin glycan remodelling by A. 

muciniphila and R. gnavus in IBD, DSS treatment of these mice would allow us to evaluate 

their susceptibility to induced colitis. However, it is also important to acknowledge that the 

conclusions drawn from gnotobiotic experiments are limited as the normal behaviour of a 

bacterium is difficult to mimic in a germ-free mouse model, where competition for niche and 

substrates from other commensal organisms and pathogenic bacteria is lacking. Therefore, 

experiments could explore the effects of manipulating the microbiota composition and 

abundance of R. gnavus/A. muciniphila in a conventionalized microbiota context. 
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Together, our findings point towards a multifactorial dysregulation at the epithelial interface 

in IBD, encompassing (although not limited to) changes in mucosal barrier function including 

altered mucin glycosylation, dysbiosis of the microbiota and aberrations in metabolic 

function.  

This study has provided evidence to suggest that mucin glycosylation may be a factor which 

contributes towards shaping the microbiota composition. On the other hand, the data also 

support a role for bacteria in remodeling mucin glycosylation and facilitating mucin turnover, 

a process which could be disrupted should the microbiota composition be altered. In IBD, 

therefore, it may be more appropriate to consider that the intestinal barrier system is in a 

feedback loop, where all components are interdependent and an initial disruption in any of 

these components drives further alterations in other mucosal constituents, propagating 

disease and exacerbating inflammation.  

Such mechanisms would also explain the large amounts of seemingly contradictory data 

arising from the literature, since such alterations are likely to be impacted by the inter-

individual variation of the patient cohorts studied and also by stage of IBD at which samples 

are taken. In addition to studying larger patient cohorts, as mentioned above, it is evident 

that attempts should be made to limit the effect of biases introduced as a result of study 

design, such as the method of sample collection, how the samples are processed, and how 

they are analysed. An important consideration to take into account during choice of cohort 

size is the impact bowel preparation may have on the parameters being analysed, since 

evidence already exists to suggest the microbiota composition and diversity is affected , 

however little information exists surrounding the effect on the mucus layer (Shobar et al., 

2016). 

A question that still remains is how either mucin glycosylation or the microbiota composition 

are initially driven into an altered state. Previous studies have suggested that altered 

expression of glycosyltransferases, such as an increase in ST6GalNAc-I may be responsible 

for aberrant mucin glycosylation in UC, in particular an increase in the STn antigen (Larsson 

et al., 2011). In our study, we did not observe differences between the gene expression of 

glycosyltransferases in controls and UC patients, however it is possible that alterations occur 

at the level of protein expression, activity of glycosyltransferases or in the expression of 

glycosyltransferases not covered in this study. Furthermore, disruption of the Golgi 

glycosylation machinery, such as the localisation of glycosyltransferases, may result in 

altered mucin glycosylation (Theodoratou et al., 2014). For example, an increase in Golgi pH 
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results in increases in the TF antigen, a characteristic alteration in mucin glycosylation in IBD 

(Campbell et al., 2001a). It may be worthwhile to consider possibilities such as these in future 

studies.  

Furthermore, here we did not investigate the role of the immune system, which may be 

another factor contributing to inflammation. For example, mucin glycosylation may be 

initially altered via a dysregulation of immune components resulting in the onset of IBD. 

Knockout of γδ T-cells (TCRδ−/−) in mice results in increased Muc2, Muc13 and Muc17 gene 

expression in the small intestine, associated with a reduction in the sialylation of mucins. 

These mice are more susceptible to DSS induced colitis, supporting a role for γδ T-cells in 

maintaining mucosal homeostasis by regulating small intestinal mucin expression and 

glycosylation (Kober et al., 2014). Pro-inflammatory cytokines such as TNF and IFN-γ have 

also been linked to changes in glycosylation, including increased TF antigen and sialyl-LewisX 

although how these effects are mediated is unknown (Campbell et al., 2001b; Theodoratou 

et al., 2014). Alternatively, immune abnormalities or environmental factors could drive 

changes in the microbiota, and specifically mucin degraders, resulting in an altered mucin 

glycosylation pattern. Deficiency in the NLRP6 inflammasome in mice results in an alteration 

in faecal microbiota, including expansion of sulfatase producing Prevotellaceae (Elinav et al., 

2011). DSS administration resulted in alterations in the gut microbiota composition, including 

increases in the abundance of the mucin degrader A. muciniphila. These alterations were 

associated with immunological changes (Hakansson et al., 2015).  

Elucidating the role of the various host and environmental components in IBD is complicated 

with samples derived from the mucosa, a dynamic surface where constituents are in a 

constant state of flux. Although increasing numbers of techniques are being developed to 

study the components contributing to the intestinal barrier, limitations still exist and 

interpretation of data should be approached with caution. Recent evolution in glycoprofiling 

techniques, which have previously been lagging, means that high-throughput glycan analyses 

are now feasible and affordable, and effort should be made to undertake large and high-

quality studies to replace previous smaller powered experiments (Theodoratou et al., 2014). 

Furthermore, with the advent of improved bioinformatics tools, broad level analysis of the 

microbiota by 16S rRNA gene and metagenomic/metatranscriptome analysis should also be 

readdressed to allow the composition of the microbiota to be resolved at the strain and 

genome level (Miyoshi and Chang, 2016). Furthermore, these analytical tools are of little use 
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without the development of user-friendly software to probe/model potential interactions 

between multiple parameters, a main limitation we recognised in our study.  

In light of the apparent multifactorial nature of IBD, it is likely that the strategies to treat the 

disease will also need to be readdressed. Therapeutics are currently focussed on ‘correcting’ 

only one component of the mucosal barrier, such as the microbiota through the 

administration of probiotics, prebiotics or faecal microbiota transplant, or the immune 

system via immunotherapy. However, these therapeutics are often prescribed with little 

success. Given our current understanding of IBD, it may be better to design dual therapeutic 

strategies that target more than one of the components known to drive a deviation from 

intestinal homeostasis, e.g. providing immunotherapy in addition to faecal microbiota 

transplant to restore the gut microbiota. In addition, given our knowledge regarding inter-

individual variation, it may be beneficial to modify these therapeutics to suit individual 

disease aetiology (Miyoshi and Chang, 2016). In the long term, focus should shift to providing 

therapies targeted at curing disease by restoring the genetic abnormalities pre-disposing 

individuals to IBD, whilst also providing treatment to normalise the microbiota, immune 

system and intestinal mucus at the mucosal interface. 
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Appendix 2 

Patient metadata 

Key 

Regions; 

S, Sigmoid 

A, Ascending 

 

Grouping; 

UC, Ulcerative colitis 

CD, Crohn’s disease 

 

Disease activity; 

Disease activity is based on histological scoring of extra biopsies taken from the same region 

Quies, Quiescent 

Quies*, Quiescent in given region but activity notable elsewhere (as specified in * column) 

Mod, Moderate 

 

Experimental analysis; 

Y, the relevant experimental technique was carried out with the sample listed 

  



248 

M
A

LD
I-

TO
F 

Y Y       Y Y    Y Y Y Y Y Y Y Y             Y Y Y Y Y Y Y Y 

H
P

A
EC

-

P
A

D
 

Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y    Y Y Y Y Y Y Y Y 

q
R

T-

P
C

R
 

Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y    Y Y Y Y Y Y Y Y Y Y Y Y 

1
6

S 

Se
q

 

Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y    Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y 

q
P

C
R

 

Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y    Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y 

G
e

n
d

e
r 

F F M
 

M
 

M
 

M
 

F F M
 

M
 

M
 

M
 

M
 

M
 

F F M
 

M
 

M
 

M
 

M
 

M
 

M
 

M
 

F F M
 

M
 

F F F F M
 

M
 

A
ge

 

6
4

 
6

4
 

5
5

 
5

5
 

7
5

 

7
5

 

6
8

 
6

8
 

7
2

 

7
2

 

5
1

 
5

1
 

7
5

 

7
5

 

4
8

 
4

8
 

6
2

 

6
2

 
5

5
 

5
5

 

7
4

 

7
4

 
6

1
 

6
1

 

5
6

 

5
6

 
4

7
 

4
7

 

3
0

 

3
0

 
4

7
 

4
7

 

5
0

 

5
0

 

Tr
e

at
m

e
n

t 
(I

B
D

) 

   

5
A

SA
 

5
A

SA
 

   

5
A

SA
/T

h
io

p
u

ri
n

es
 

5
A

SA
/T

h
io

p
u

ri
n

es
 

   

5
A

SA
 

5
A

SA
 

St
er

o
id

s 

St
er

o
id

s 

5
A

SA
 

5
A

SA
 

   
5

A
SA

 

5
A

SA
 

   
5

A
SA

 

5
A

SA
 

5
A

SA
 

5
A

SA
 

   

St
er

o
id

s 

St
er

o
id

s 
   

5
A

SA
/T

h
io

p
u

ri
n

es
 

5
A

SA
/T

h
io

p
u

ri
n

es
 

*                                           

M
ild

 il
ea

l C
D

 

M
ild

 il
ea

l C
D

 
   

Fo
ca

l a
ct

iv
e 

ch
ro

n
ic

 c
o

lit
is

 

Fo
ca

l a
ct

iv
e 

ch
ro

n
ic

 c
o

lit
is

 

D
is

e
as

e
 

A
ct

iv
it

y 

N
A

 
N

A
 

Q
u

ie
s 

M
ild

 

N
A

 

N
A

 

M
o

d
 

M
o

d
 

N
A

 

N
A

 

Q
u

ie
s 

Q
u

ie
s 

Q
u

ie
s 

Q
u

ie
s 

Q
u

ie
s 

Q
u

ie
s 

N
A

 

N
A

 
Q

u
ie

s 

Q
u

ie
s 

N
A

 

N
A

 
Q

u
ie

s 

Q
u

ie
s 

Q
u

ie
s 

Q
u

ie
s 

N
A

 

N
A

 

Q
u

ie
s*

 

Q
u

ie
s*

 
N

A
 

N
A

 

Q
u

ie
s*

 

Q
u

ie
s*

 

R
e

fe
rr

al
 r

e
as

o
n

 

Su
rv

ei
lla

n
ce

 (
p

re
vi

o
u

s 
ca

n
ce

r)
 

Su
rv

ei
lla

n
ce

 (
p

re
vi

o
u

s 
ca

n
ce

r)
 

   

Su
rv

ei
lla

n
ce

 (
p

re
vi

o
u

s 
ca

n
ce

r)
 

Su
rv

ei
lla

n
ce

 (
p

re
vi

o
u

s 
ca

n
ce

r)
 

   

G
o

rl
in

's
 s

yn
d

ro
m

e
 

G
o

rl
in

's
 s

yn
d

ro
m

e
 

         

Su
rv

ei
lla

n
ce

 (
p

re
vi

o
u

s 
ca

n
ce

r)
 

Su
rv

ei
lla

n
ce

 (
p

re
vi

o
u

s 
ca

n
ce

r)
 

   

Ir
o

n
 d

ef
ic

ie
n

cy
 a

n
ae

m
ia

 

Ir
o

n
 d

ef
ic

ie
n

cy
 a

n
ae

m
ia

 
      

D
ia

rr
h

o
ea

 a
n

d
 b

lo
at

in
g 

D
ia

rr
h

o
ea

 a
n

d
 b

lo
at

in
g 

   
C

h
an

ge
 in

 b
o

w
el

 h
ab

it
 

C
h

an
ge

 in
 b

o
w

el
 h

ab
it

 

   

G
ro

u
p

 

C
o

n
tr

o
l 

C
o

n
tr

o
l 

U
C

 
U

C
 

C
o

n
tr

o
l 

C
o

n
tr

o
l 

U
C

 
U

C
 

C
o

n
tr

o
l 

C
o

n
tr

o
l 

U
C

 
U

C
 

U
C

 

U
C

 

U
C

 
U

C
 

C
o

n
tr

o
l 

C
o

n
tr

o
l 

C
D

 

C
D

 

C
o

n
tr

o
l 

C
o

n
tr

o
l 

U
C

 

U
C

 

U
C

 

U
C

 
C

o
n

tr
o

l 

C
o

n
tr

o
l 

C
D

 

C
D

 
C

o
n

tr
o

l 

C
o

n
tr

o
l 

C
D

 

C
D

 

R
e

gi
o

n
 

S A
 

S A
 

S A
 

S A
 

S A
 

S A
 

S A
 

S A
 

S A
 

S A
 

S A
 

S A
 

S A
 

S A
 

S A
 

S A
 

S A
 

P
at

ie
n

t 
n

o
. 

1
3

TB
0

5
8

3 
1

3
TB

0
5

8
3 

1
3

TB
0

6
0

1 
1

3
TB

0
6

0
1 

1
3

TB
0

6
0

5 

1
3

TB
0

6
0

5 

1
3

TB
0

6
1

4 
1

3
TB

0
6

1
4 

1
3

TB
0

6
1

7 

1
3

TB
0

6
1

7 

1
3

TB
0

6
3

4 
1

3
TB

0
6

3
4 

1
3

TB
0

6
4

8 

1
3

TB
0

6
4

8 

1
3

TB
0

6
5

5 
1

3
TB

0
6

5
5 

1
3

TB
0

6
6

7 

1
3

TB
0

6
6

7 
1

4
TB

0
0

0
5 

1
4

TB
0

0
0

5 

1
4

TB
0

0
2

5 

1
4

TB
0

0
2

5 
1

4
TB

0
0

2
4 

1
4

TB
0

0
2

4 

1
4

TB
0

0
3

0 

1
4

TB
0

0
3

0 
1

4
TB

0
0

4
7 

1
4

TB
0

0
4

7 

1
4

TB
0

0
5

5 

1
4

TB
0

0
5

5 
1

4
TB

0
0

6
0 

1
4

TB
0

0
6

0 

1
4

TB
0

0
6

1 

1
4

TB
0

0
6

1 



249 

M
A

LD
I-

TO
F 

Y Y Y Y Y Y    Y Y    Y Y Y Y    Y Y    Y Y Y Y    Y Y     

H
P

A
EC

-

P
A

D
 

Y Y Y Y Y Y    Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y 

q
R

T-

P
C

R
 

Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y   Y Y 

1
6

S 

Se
q

 

Y Y Y Y Y Y    Y Y Y Y Y Y Y Y Y Y Y Y Y Y  Y Y Y Y Y Y Y Y Y Y 

q
P

C
R

 

Y Y Y Y Y Y    Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y 

G
e

n
d

e
r 

M
 

M
 

M
 

M
 

M
 

M
 

M
 

M
 

F F M
 

M
 

F F F F F F F F F F M
 

M
 

F F F F M
 

M
 

F M
 

M
 

A
ge

 

4
5

 

4
5

 

5
6

 

5
6

 

4
9

 

4
9

 

7
3

 

7
3

 

5
7

 

5
7

 

7
3

 

7
3

 

6
8

 

6
8

 

6
3

 

6
3

 

4
2

 

4
2

 

6
5

 

6
5

 

6
1

 

6
1

 

5
4

 

5
4

 

6
7

 

6
7

 

7
3

 

7
3

 

5
1

 

5
1

 

5
7

 

6
0

 

6
0

 

Tr
e

at
m

e
n

t 
(I

B
D

) 

5
A

SA
 

5
A

SA
 

5
A

SA
 

5
A

SA
 

5
A

SA
/T

h
io

p
u

ri
n

es
 

5
A

SA
/T

h
io

p
u

ri
n

es
 

   

5
A

SA
 

5
A

SA
 

5
A

SA
 

5
A

SA
 

5
A

SA
 

5
A

SA
 

5
A

SA
 

5
A

SA
 

N
o

n
e

 

N
o

n
e

 

5
A

SA
 

5
A

SA
 

      

N
o

n
e

 

N
o

n
e

 

5
A

SA
 

5
A

SA
 

St
er

o
id

s 

St
er

o
id

s 

Th
io

p
u

ri
n

es
/b

io
lo

gi
cs

 

   

*                         

Fo
ca

l a
ct

iv
e 

ch
ro

n
ic

 c
o

lit
is

 

Fo
ca

l a
ct

iv
e 

ch
ro

n
ic

 c
o

lit
is

 

               

M
o

d
er

at
e 

p
ro

ct
it

is
 

M
o

d
er

at
e 

p
ro

ct
it

is
 

     

D
is

e
as

e
 

A
ct

iv
it

y 

Q
u

ie
s 

Q
u

ie
s 

Q
u

ie
s 

Q
u

ie
s 

Q
u

ie
s 

Q
u

ie
s 

N
A

 

N
A

 

M
o

d
 

M
o

d
 

Q
u

ie
s 

Q
u

ie
s 

Q
u

ie
s 

Q
u

ie
s 

Q
u

ie
s 

Q
u

ie
s 

Q
u

ie
s*

 

Q
u

ie
s*

 

Q
u

ie
s 

Q
u

ie
s 

N
A

 

N
A

 

N
A

 

N
A

 

Q
u

ie
s 

Q
u

ie
s 

Q
u

ie
s 

Q
u

ie
s 

Q
u

ie
s*

 

Q
u

ie
s*

 

M
ild

 

N
A

 

N
A

 

R
e

fe
rr

al
 r

e
as

o
n

 

         

Su
rv

ei
lla

n
ce

 (
p

re
vi

o
u

s 
p

o
ly

p
s)

 

Su
rv

ei
lla

n
ce

 (
p

re
vi

o
u

s 
p

o
ly

p
s)

 

                  

D
iv

er
ti

cu
la

r 
d

is
ea

se
 

D
iv

er
ti

cu
la

r 
d

is
ea

se
 

B
ar

re
tt

's
 o

es
o

p
h

ag
u

s 

B
ar

re
tt

's
 o

es
o

p
h

ag
u

s 

           

Su
rv

ei
lla

n
ce

 (
p

re
vi

o
u

s 
p

o
ly

p
s)

 

Su
rv

ei
lla

n
ce

 (
p

re
vi

o
u

s 
p

o
ly

p
s)

 

G
ro

u
p

 

U
C

 

U
C

 

U
C

 

U
C

 

C
D

 

C
D

 

C
o

n
tr

o
l 

C
o

n
tr

o
l 

U
C

 

U
C

 

U
C

 

U
C

 

U
C

 

U
C

 

U
C

 

U
C

 

U
C

 

U
C

 

C
D

 

C
D

 

C
o

n
tr

o
l 

C
o

n
tr

o
l 

C
o

n
tr

o
l 

C
o

n
tr

o
l 

U
C

 

U
C

 

U
C

 

U
C

 

U
C

 

U
C

 

C
D

 

C
o

n
tr

o
l 

C
o

n
tr

o
l 

R
e

gi
o

n
 

S A
 

S A
 

S A
 

S A
 

S A
 

S A
 

S A
 

S A
 

S A
 

S A
 

S A
 

S A
 

S A
 

S A
 

S A
 

S S A
 

P
at

ie
n

t 
n

o
. 

1
4

TB
0

0
6

8 

1
4

TB
0

0
6

8 

1
4

TB
0

0
7

3 

1
4

TB
0

0
7

3 

1
4

TB
0

0
8

2 

1
4

TB
0

0
8

2 

1
4

TB
0

0
8

3 

1
4

TB
0

0
8

3 

1
4

TB
0

0
8

6 

1
4

TB
0

0
8

6 

1
4

TB
0

0
9

7 

1
4

TB
0

0
9

7 

1
4

TB
0

1
0

4 

1
4

TB
0

1
0

4 

1
4

TB
0

1
1

7 

1
4

TB
0

1
1

7 

1
4

TB
0

1
3

8 

1
4

TB
0

1
3

8 

1
4

TB
0

1
3

7 

1
4

TB
0

1
3

7 

1
4

TB
0

1
4

3 

1
4

TB
0

1
4

3 

1
4

TB
0

1
6

8 

1
4

TB
0

1
6

8 

1
4

TB
0

1
7

3 

1
4

TB
0

1
7

3 

1
4

TB
0

1
9

6 

1
4

TB
0

1
9

6 

1
4

TB
0

1
9

7 

1
4

TB
0

1
9

7 

1
4

TB
0

2
6

1 

1
4

TB
0

3
1

3 

1
4

TB
0

3
1

3 



250 

M
A

LD
I-

TO
F   Y           

H
P

A
EC

-

P
A

D
 

Y Y   Y Y   Y 

q
R

T-

P
C

R
 

Y Y Y   Y   Y 

1
6

S 

Se
q

 

Y Y Y         

q
P

C
R

 

Y Y Y Y     Y 

G
e

n
d

e
r 

F F F M
 

F M
 

F 

A
ge

 

3
0

 

3
8

 

6
8

 

1
7

 

1
7

 

2
4

 

6
4

 

Tr
e

at
m

e
n

t 
(I

B
D

) 

IV
 s

te
ro

id
s,

 5
A

SA
, t

h
io

p
u

ri
n

es
 

5
A

SA
/t

h
io

p
u

ri
n

e
s 

5
A

SA
 

5
A

SA
 

N
o

n
e

 

St
er

o
id

s 

  

*               

D
is

e
as

e
 

A
ct

iv
it

y 

M
ild

  

M
o

d
 

Q
u

ie
s 

Q
u

ie
s 

  

M
ild

 

N
A

 

R
e

fe
rr

al
 r

e
as

o
n

 

            

V
o

m
it

in
g 

an
d

 d
ia

rr
h

o
ea

 

G
ro

u
p

 

C
D

 

U
C

 

C
D

 

U
C

 

C
D

 

C
D

 

C
o

n
tr

o
l 

R
e

gi
o

n
 

S S S S S S S 

P
at

ie
n

t 
n

o
. 

1
4

TB
0

3
5

4 

1
4

TB
0

3
5

7 

1
4

TB
0

4
2

4 

1
4

TB
0

6
5

3 

1
5

TB
0

0
5

8 

1
5

TB
0

1
6

3 

1
5

TB
0

3
1

0 

 



251 

Appendix 3 

Electronic data 

Normalised sequencing reads of DNA extracted from human lavage samples 

MALDI-TOF data of mucins purified from human lavage samples 

MALDI-TOF data of mucins purified from mice mono- and co- colonised with R. gnavus 

CC55_001C and A. muciniphila ATCC BAA 835   
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Appendix 4 

Effect of confounding variables on microbiota composition (qPCR) 

P values of ANOVA and Pearson statistical tests in the Sigmoid and Ascending colon 

Sigmoid colon 
ANOVA Pearson 

Gender Treatment Age 

Bifidobacterium 0.4475 0.5987 0.3690 

Roseburia 0.9340 0.1214 0.7933 

Faecalibacterium 0.3015 0.3003 0.5186 

Lactobacillaceae 0.6473 0.1148 0.4466 

Bacteroides 0.7944 0.0776 0.8340 

Lachnospiraceae 0.1823 0.0870 0.3506 

A. muciniphila 0.6659 0.0230 0.7071 

R. gnavus 0.0532 0.4092 0.1137 

B. fragilis 0.0764 0.9312 0.3686 

    

Ascending colon 
ANOVA Pearson 

Gender Treatment Age 

Bifidobacterium 0.5960 0.4221 0.4405 

Roseburia 0.9756 0.0562 0.9874 

Faecalibacterium 0.1116 0.2503 0.4620 

Lactobacillaceae 0.9698 0.3104 0.8634 

Bacteroides 0.3845 0.2085 0.8431 

Lachnospiraceae 0.2722 0.1705 0.3482 

A. muciniphila 0.6065 0.0650 0.6238 

R. gnavus 0.1803 0.4108 0.2697 

B. fragilis 0.0250 0.7201 0.5110 
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Appendix 5 

Dot plots of glycan structures 
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% fucosylated structures
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Dot plots of glycosyltransferase expression 

  

C1GalT1 expression
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ST3Gal-II expression
Quantified by qRT-PCR
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Appendix 6 

BlastP results of R. gnavus CC55_001C homologous proteins to nan locus of R. gnavus 

ATCC 29149 
A

cc
e

ss
io

n
 n

u
m

b
e

r 

W
P

_0
0

4
8

4
3

6
4

2
.1

 

W
P

_0
0

4
8

4
3

6
4

1
.1

 

W
P

_0
0

4
8

4
3

6
3

9
.1

 

W
P

_0
0

4
8

4
3

6
3

8
.1

 

ET
D

1
9

2
8

0
.1

 

W
P

_0
2

3
9

2
3

9
6

1
.1

 

W
P

_0
0

4
8

4
3

6
3

3
.1

 

W
P

_0
0

4
8

4
3

6
3

1
.1

 

ET
D

1
9

2
7

6
.1

 

W
P

_0
2

3
9

2
3

9
5

9
.1

 

W
P

_0
0

4
8

4
3

6
2

5
.1

 

B
la

st
p

 %
 

h
o

m
o

lo
gy

 

1
0

0
 

1
0

0
 

1
0

0
 

1
0

0
 

1
0

0
 

9
9

 

1
0

0
 

1
0

0
 

1
0

0
 

9
9

 

1
0

0
 

H
o

m
o

lo
go

u
s 

p
ro

te
in

 in
 

C
C

5
5

_0
0

1
C

 

H
yp

o
th

et
ic

al
 p

ro
te

in
 

H
yp

o
th

et
ic

al
 p

ro
te

in
 

A
ra

C
 f

am
ily

 t
ra

n
sc

ri
p

ti
o

n
al

 

re
gu

la
to

r 

Su
ga

r 
A

B
C

 t
ra

n
sp

o
rt

er
 

su
b

st
ra

te
-b

in
d

in
g 

p
ro

te
in

 

H
yp

o
th

et
ic

al
 p

ro
te

in
 

H
yp

o
th

et
ic

al
 p

ro
te

in
 

O
xi

d
o

re
d

u
ct

as
e

 

A
n

h
yd

ro
si

al
id

as
e

 

H
yp

o
th

et
ic

al
 p

ro
te

in
 

N
-a

ce
ty

ln
eu

ra
m

in
at

e 
ly

as
e

 

H
yp

o
th

et
ic

al
 p

ro
te

in
 

A
cc

e
ss

io
n

 

n
u

m
b

e
r 

ED
N

7
7

0
8

7
.1

 

ED
N

7
7

0
8

6
.1

 

ED
N

7
7

0
8

5
.1

 

ED
N

7
7

0
8

4
.1

 

ED
N

7
7

0
8

3
.1

 

ED
N

7
7

0
8

2
.1

 

ED
N

7
7

0
8

1
.1

 

ED
N

7
7

0
8

0
.1

 

ED
N

7
7

0
7

9
.1

 

ED
N

7
7

0
7

8
.1

 

ED
N

7
7

0
7

7
.1

 

Ty
p

e
 o

f 
p

ro
te

in
 

P
u

ta
ti

ve
 G

D
SL

-l
ik

e 
p

ro
te

in
 

P
u

ta
ti

ve
 s

u
ga

r 
is

o
m

er
as

e 
 

P
ro

te
in

 w
it

h
 h

o
m

o
lo

gy
 t

o
 t

ra
n

sc
ri

p
ti

o
n

al
 

re
gu

la
to

rs
 o

f 
A

ra
C

 f
am

ily
 

P
re

d
ic

te
d

 s
o

lu
te

-b
in

d
in

g 
p

ro
te

in
 (

A
B

C
 

tr
an

sp
o

rt
er

) 

P
u

ta
ti

ve
 p

er
m

ea
se

s 
(A

B
C

 t
ra

n
sp

o
rt

er
) 

H
o

m
o

lo
gy

 w
it

h
 o

xi
d

o
re

d
u

ct
as

e 
fr

o
m

 t
h

e 

G
fo

/I
d

h
/M

o
cA

 f
am

ily
 

G
H

3
3

 e
n

zy
m

e 
(n

an
H

) 

P
re

d
ic

te
d

 M
an

N
ac

-6
-P

 (
n

an
E)

 

P
u

ta
ti

ve
 N

eu
5

A
c 

ly
as

e 
(n

an
A

) 

P
re

d
ic

te
d

 M
an

N
A

c 
ki

n
as

e 
(n

an
K

) 

P
ro

te
in

 in
 R

. g
n

a
vu

s 

A
TC

C
 2

9
1

4
9

 

R
U

M
G

N
A

_0
2

7
0

1
 

R
U

M
G

N
A

_0
2

7
0

0
 

R
U

M
G

N
A

_0
2

6
9

9
 

R
U

M
G

N
A

_0
2

6
9

8
 

R
U

M
G

N
A

_0
2

6
9

7
 

R
U

M
G

N
A

_0
2

6
9

6
 

R
U

M
G

N
A

_0
2

6
9

5
 

R
U

M
G

N
A

_0
2

6
9

4
 

R
U

M
G

N
A

_0
2

6
9

3
 

R
U

M
G

N
A

_0
2

6
9

2
 

R
U

M
G

N
A

_0
2

6
9

1
 

 


