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Abstract: Plants are responsive to temperature, and can distinguish differences of 1ºC. In 

Arabidopsis, warmer temperature accelerates flowering and increases elongation growth 

(thermomorphogenesis). The mechanisms of temperature perception are however largely 

unknown. We describe a major thermosensory role for the phytochromes (red light receptors) 

during the night. Phytochrome null plants display a constitutive warm temperature response, 

and consistent with this, we show in this background that the warm temperature transcriptome 
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becomes de-repressed at low temperatures. We have discovered phytochrome B (phyB) 

directly associates with the promoters of key target genes in a temperature dependent manner. 

The rate of phyB inactivation is proportional to temperature in the dark, enabling phytochromes 

to function as thermal timers, integrating temperature information over the course of the night. 

 

One Sentence Summary: The plant temperature transcriptome is controlled at night by 

phytochromes, acting as thermoresponsive transcriptional repressors. 

 

 

Main Text: 

 
Plant development is responsive to temperature, and the phenology and distribution of crops 

and wild plants have already altered in response to climate change (1, 2). In Arabidopsis 

thaliana, warm temperature-mediated elongation growth and flowering is dependent on the 

bHLH transcription factors PHYTOCHROME INTERACTING FACTOR4 and 5 (PIF4 and 5) (3– 

6). Growth at 27ºC reduces the activity of the Evening Complex (EC) resulting in greater PIF4 

transcription. The EC is a transcriptional repressor made up of the proteins EARLY 

FLOWERING3 (ELF3), ELF4 and LUX ARRHYTHMO (LUX) (7–9). To test if the EC is also 

required for hypocotyl elongation responses below 22ºC, we examined the behavior of elf3-1 

and lux-4 at 12 and 17ºC. Hypocotyl elongation in elf3-1 and lux-4 is largely suppressed at 

lower temperatures (Fig. 1A, B), which is consistent with cold temperatures being able to 

suppress PIF4 overexpression phenotypes (10). Since PHYTOCHROME B (PHYB) was 

identified as a QTL for thermal responsiveness and PIF4 activity is regulated by phytochromes 

(8, 11), we investigated whether these red light receptors control hypocotyl elongation in the 

range 12 to 22ºC. Plants lacking phytochrome activity (12) show constitutively long hypocotyls 

at 12ºC and 17ºC. Thus phytochromes are essential for responding to temperature (Fig. 1C, D 

and Fig. S1). 

 

We used transcriptome analysis to determine whether disrupted thermomorphogenesis in 

phyABCDE is specific for temperature signaling or is a consequence of misregulated growth 

pathways. To capture diurnal variation in thermoresponsiveness, we sampled seedlings over 24 

hours at 22 and 27ºC. Clustering analysis reveals 20 groups of transcripts (Fig. 2A and Fig. S3; 

described in supplement). Thermomorphogenesis occurs predominantly at night and is driven 

by PIF4. Consistent with this, we observe PIF4 is present in cluster 20, which is more highly 

expressed at 27ºC during darkness. Clusters 15 and 16 represent the other major groups of 
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nighttime thermally responsive genes, and these are strongly induced in phyABCDE. These 

clusters are enriched for genes involved in hormone signaling and elongation growth (YUCCA8, 

YUCCA9, BRASSINOSTEROID INSENSITIVE2, LIKE AUXIN RESISTANT1, AUXIN 

RESPONSE FACTOR7 and 9, BIG and TRANSPORT INHIBITOR1) (Tables S3-S5). These 

results indicate that the nighttime warm temperature transcriptome is specifically affected when 

phytochrome activity is altered. We used Principal Component (PC) analysis to investigate the 

overall responses of the transcriptome to temperature and phytochromes. For PC1, which 

explains 40.8% of the expression variance, phyABCDE at 22ºC occupies a similar position to 

wild type at 27ºC (Fig. 2B). At nighttime there is a positive correlation between gene expression 

changes in response to temperature and to phyABCDE; this relationship is lost during the day 

(Fig. 2C). Phytochromes are interconvertible photoreceptors (14–16): phyB switches between 

an inactive Pr state and an active Pfr state upon absorbing red- and far-red light respectively. In 

a thermal relaxation reaction, Pfr in the dark spontaneously reverts to the Pr state (17–19). We 

hypothesized that the reversion of Pfr to the inactive Pr state may contribute to the subsequent 

increase in expression of the warm temperature transcriptome during the night. We therefore 

examined plants containing a constitutively active version of phyB. The Y276H point mutation in 

phyB (YHB) prevents the dark reversion reaction (20, 21), locking phyB in the active Pfr state. 

This results in constitutive repression of the warm temperature transcriptome throughout the 

night (Fig. 2A and Fig. S3). YHB plants also phenocopy cool grown plants, showing little 

thermoresponsive elongation growth even at 27ºC (Fig. S2). Across the time-course, 79% of the 

temperature transcriptome is misregulated in phyABCDE, YHB or both backgrounds (Fig. 2D). 

 

PhyA is able to bind promoters (22), and PIF3 can recruit phyB to G-boxes in vitro (23), so we 

tested if phyB controls temperature responsive genes directly. Chromatin immunopurification of 

phyB coupled with sequencing (ChIP-seq) revealed phyB to bind >100 sites (~95 promoters), 

with more targets bound at 17ºC than 27ºC (Fig. 3A). Phytochrome signaling is reduced at 

warmer temperatures, and even for the 33 sites bound by phyB at both temperatures, less 

binding occurs at 27ºC (Fig. 3B). Most phyB target genes are expressed at night in response to 

temperature (Fig S4, Table S1). It has been suggested that phyB may modulate transcription 

(23), and our results indicate it acts as a transcriptional repressor, since most targets are 

upregulated under conditions that reduce phytochrome activity during night-time, while during 

daytime this relationship is lost (Fig. 3C,D and Fig. S6, S9). We do not observe a change in 

PHYB expression or phyB protein levels in response to temperature, consistent with the effect 

of temperature on phyB being direct (Fig. S11). 
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Most of the phyB bound peaks contain G-boxes (Fig. 3E and Fig. S7), motifs bound by PIFs. 

We found overlap between phyB peaks and reported binding sites for PIF1, 3, 4, and 5 (24–26) 

(Fig. 3E, F). PhyB preferring sites that are bound by all 4 PIFs were enriched at both 17 and 

27ºC (Only 7% of the identified peaks are shared between all 4 PIFs in (24)). Of the loci that are 

bound by phyB at both 17ºC and 27ºC, only three are not bound by PIFs. Compared to other 

sites, phyB at PIF binding sites shows a stronger enrichment (Fig. S5). These loci likely 

represent sites for facilitated PIF binding and co-enrichment for phyB. The ATHB2 promoter 

illustrates how phyB binding correlates to the binding sites of PIFs (Fig. 3G; Fig. S8). To further 

resolve the phyB peaks we used X-ChIP (27). Verified multiple PIF bound sites corresponded 

with phyB bound sites (Fig. S10). Although light induces degradation of PIFs, there are 

significant levels of natively expressed PIF4 during the daytime (28). Thus phyB at promoters 

may recruit or modulate action of other regulators, providing a mechanism to increase the 

dynamic range of the transcriptional regulation of target genes. Precedent exists for a 

transcriptional activator being converted into a repressor by a ligand, for example FD is an 

activator when bound to FT and a repressor when bound to TFL1 (29). 

 

Changes in the activity of a transcriptional repressor, R, can explain the thermoresponsive 

expression of PIF4 and LUX, and thermal responsiveness of R can be accounted for by ELF3 

(8). However transcripts of PIF4 target genes such as ATHB2, cluster separately from PIF4 and 

show greater responsiveness to phytochrome signaling (Fig. 2A). We concluded that 

phytochromes provide additional temperature dependent regulation of PIF4. Thus, active 

phytochromes (Pfr) repress activity of PIF4 and its ability to activate ATHB2 (Fig. 4A). In the 

dark, the amount of Pfr is determined by the dark reversion rate, b. We used ATHB2 expression 

data from Ler, phyABCDE and YHB to calibrate this model (Fig. S12). Using parameters from 

the previous model (8), we allowed the model to determine which values for b are consistent 

with the thermoresponsive gene expression profiles (Table S5). The model picks values of b 

that vary as a function of temperature: the half-life of Pfr is 2.09 h at 22ºC and 1.53 h at 27ºC. If 

b is not allowed to vary with temperature, the model does not fit the data as well (Fig. S13). Our 

model recapitulates ATHB2 expression in response to temperature, suggesting that dual control 

of PIF4 at transcriptional and post-translational levels explains regulation of gene expression to 

control expansion growth (Fig. 4B). 

 

Our model infers a temperature responsive half-life for Pfr. Dark reversion of phytochromes from 

various species is a thermal relaxation reaction (15). We observed that the in vivo dark 
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reversion rate of phyB: phyBPfr t1/2 showed an exponential relationship to temperature over one 

order of magnitude between 4 and 27ºC (t1/2 =10(-0.0496T + 1.315); (T, temperature, ºC; t1/2 half life, h), 

R2 = 0.99) (Fig. 4C, Fig. S14). The half-lives at 22ºC and 27ºC (t1/2 1.79 h and 0.86 h 

respectively) are comparable to those seen in the model. 

 

Since phytochromes are central regulators of plant responses to the environment, their 

acquisition of a thermally responsive behavior suggests an evolutionary route to integrate 

temperature information into development. Single amino acid changes as well as post- 

translational modifications can alter the dark reversion rate, suggesting sequence diversification 

among phytochromes affords diversity in thermal responsiveness for different climates (19, 21, 

30–32). The Pfr dark reversion rate represents a sensitive mechanism to integrate small 

differences in temperature over the night in order to make developmental decisions. 
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Fig. 1 Phytochromes are essential for correct thermomorphogenesis at lower 

temperatures. (A) Seedlings for Col-0, elf3-1 and lux-4 respectively grown at indicated 

temperatures for 8 days under short photoperiods. Scale bars, 5 mm. (B) Hypocotyl length 

boxplots for the indicated genotypes grown at different temperatures as in (A). (C) 

Seedlings for Ler, phyB-1 and phyABCDE respectively grown at indicated temperatures 

for 8 days under short photoperiods. Scale bars, 5 mm. (D) Hypocotyl length boxplots for 

the indicated genotypes grown at different temperatures as in (C). 
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Fig. 2 Phytochromes control the temperature transcriptome at night. (A) Clustering of all RNA-seq time 

course samples for phyABCDE, Ler, and YHB at 22ºC and 27ºC. Samples were collected every 4 h from 

ZT=0 with additional timepoints at ZT=1 and ZT=22. Black bars indicate night, white bars day. Clustering 

was performed on the expression-filtered dataset using a Gaussian mixture model; number of clusters 

was assumed to be a random variable. The number of clusters was automatically learned using an 

empirical Bayes approach (variational bayesian inference). (B) Principal components analysis on the 

expression-filtered dataset using genes as features. (C) Transcripts up-regulated in the phyABCDE 

background correlated positively with genes induced by temperature at dawn (ZT=0, top) but not at dusk 

(ZT=8, bottom). (D) Sets of differentially expressed genes from phytochrome and temperature 

transcriptomes overlap. 
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Fig. 3 PhyB binds to promoters of temperature responsive genes. (A) Comparison of phyB-myc ChIP-seq peaks 

identified at 17ºC and 27ºC using MACS2. In 6 instances, a single broad 17ºC peak was identified as two smaller 

peaks at 27ºC, each of these are considered as two separate peaks in the subsequent analysis. (B) Among the 33 
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colored red and those that increase by over 50% are colored blue, the remaining are grey. (C) Log-fold change in 

expression in phyABCDE compared to log-fold change in expression caused by elevated temperature (27ºC vs 

22ºC), at two time-points (ZT=8 and 20) in the RNA-seq time course from Fig. 2. The green points depict the 

transcripts of the 15 genes that are adjacent to the 33 peaks that are found in both 17ºC and 27ºC. Pearson's R is 

calculated for all genes (grey) and the phyB target genes (green). (D) Distributions of log-fold change in expression 
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considering the 6 broad peaks as a single peak), a G-box was the strongest de novo motif identified by Homer2, 
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sorted by whether it was found at 27ºC, 17ºC or both- a red bar indicates that this peak overlaps with the center of 

the reported PIF binding site (23). All but three of the peaks found in both 17ºC and 27ºC are bound by multiple PIFs, 

almost none of the peaks found only at 27ºC are bound by PIFs. (G) IGV browser view of the ATHB2 promoter, 
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Fig. 4. A thermoresponsive gene expression network. (A) Regulatory network integrating 

temperature information through ELF3 activity and Pfr dark reversion. Temperature information is 

integrated through activity of ELF3, which acts as a repressor of PIF4, and deactivation of 

Phytochrome (Phy). Circles denote proteins and squares genes. (B) Modeled gene expression 

(orange and red lines) agrees with measured values (black dots). (C) The phyB Pfr half-life 

varies exponentially with temperature (assayed in etiolated seedlings). At lower temperatures, 

active Pfr persists at the end of the night, while at higher temperatures most Pfr is depleted within 

a few hours. 
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