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Hue plane preserving color correction (HPPCC), introduced by Andersen and Hardeberg [Proceedings of the
13th Color and Imaging Conference (CIC) (2005), pp. 141-146], maps device-dependent color values (RGB) to
colorimetric color values (X Y Z) using a set of linear transforms, realized by white point preserving 3 x 3 matrices,
where each transform is learned and applied in a subregion of color space, defined by two adjacent hue planes. The
hue plane delimited subregions of camera RGB values are mapped to corresponding hue plane delimited sub-
regions of estimated colorimetric XY Z values. Hue planes are geometrical half-planes, where each is defined by
the neutral axis and a chromatic color in a linear color space. The key advantage of the HPPCC method is that,
while offering an estimation accuracy of higher order methods, it maintains the linear colorimetric relations of
colors in hue planes. As a significant result, it therefore also renders the colorimetric estimates invariant to ex-
posure and shading of object reflection. In this paper, we present a new flexible and robust version of HPPCC
using constrained least squares in the optimization, where the subregions can be chosen freely in number and
position in order to optimize the results while constraining transform continuity at the subregion boundaries. The
method is compared to a selection of other state-of-the-art characterization methods, and the results show that it

outperforms the original HPPCC method.
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1. INTRODUCTION

In digital photography, camera characterization relates the
camera output values, known as device-dependent RGB,
to standard observer colorimetric values, known as device-
independent XY Z [1] (or to a known linear combination of
XYZ, such as sRGB [2]). However, mapping RGB to XYZ
cannot be precisely achieved. The reason for this is that cameras
do not sample light in the same way as X Y'Z. Mathematically,
camera sensors do not span the same subspace as the human
visual system, i.e., camera sensors are not linear transforms
from the XY Z color matching functions [3,4] (we say that they
are not colorimetric). This is mainly due to noise considerations
[5] and limitations in the manufacturing process. Given that
the camera sees, or samples, light differently than the human
visual system, color correction is a pragmatic step for best map-
ping RGBs to XY Zs. The simplest and, it turns out, the most
widely used color correction strategy is to map RGBs to XY Zs
using a 3 x 3 color correction matrix. The above method is
called the linear color correction (LCC) [6]. In Fig. 1, we can
see an input image as captured by the NIKON D70 camera,
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which we call a raw image, and an image corrected to the sSRGB
color space using the LCC.

In Fig. 2, three sets of spectral sensor functions are shown. In
Fig. 2(b), the color matching functions of the human standard
observer (XYZ) [1] and in Fig. 2(a) a set of digital camera
sensors [7] are plotted as a functions of wavelength. It is readily
seen that the two sets of sensors are different and the responses
from them therefore also must be different. The best linear trans-
form of the camera sensors to the X' Y'Z color matching functions
with respect to the sensor RMSE is shown in Fig. 2(c).

In order to improve on the performance of the LCC,
numerous more advanced methods have been proposed. They
include polynomial regression, nonlinear optimization, neural
networks, and look-up tables (LUTs). For the conversion of
color signals from digital color scanning, which is strongly re-
lated to digital photography, polynomial regression of different
polynomial degrees was investigated in Ref. [8] and a spectral
scanner model was used in Ref. [9]. In Ref. [10], polynomial
modeling was tested on digital camera characterization. Neural
networks are used in Refs. [11-13] and compared to polynomial
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(a) Raw image.

(b) Corrected to sSRGB.

Fig. 1. Nikon D70 raw camera response to the scene containing a
color checker, before (a) and after (b) correction to the sRGB color
space by means of a 3 x 3 color correction matrix. Both images have
a gamma of 0.5 applied.

methods in Ref. [14]. Methods of device calibration using
look-up tables and interpolation are given in Ref. [15], and a
hybrid of look-up table and linear transformation is presented
in Ref. [16]. In order to remedy noise effects in the color cor-
rection, a method of varying linear color transformation as a
function of noise estimates in spatially local areas of a color
image is presented in Ref. [17]. Color correction can be
based on optimization of colorimetric differences, which is
most common, or on optimization of nonlinear perceptual
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differences. The latter include a color correction method based
on altering the LCC transform coefficients using a spherical
sampling approach [18].

A method introducing constrained linear color correction
was presented in Ref. [19] to enforce a mapping of one (or
possibly two) color(s) without error. The authors called their
method the white preserving color correction (WPCC) as
the natural choice of the color to be mapped exactly is neutral.
Perceptually, it is typically very important that scene neutral
and white are mapped to colorimetric neutral and white pre-
cisely in order to avoid color casts in the rendered image [20].
The method can be also applied within the framework of the
polynomial color correction.

Exposure and shading independence by which scalings of
reflectances recorded by the camera device are mapped to
the exact same scalings of the reflectances matched by the
observer is an inevitable priority when colorimetric correctness
is desired. If the device response to the reflectance of a surface is
recorded with values C,,, and correspondingly C,,, by the
observer, then these responses would yield #C,,;, and #C,,,
if exposure time or irradiance on the surface was modified
by a scalar value of 4. In practice, this scaling takes place when
surfaces locally occur in a scene with different irradiances or
globally as a function of exposure time. The 3 x 3 matrix
method is inherently exposure and shading independent and
will therefore map these scalings correctly. The root-polynomial
color correction [21] is also exposure independent.

The precursor to our method is the HPPCC method [22].
Here, linear transforms are applied per hue segment in such a
way that color correction is hue preserving, white point preserv-
ing, and continuous. The method operates on subregions of
color space, defined by two adjacent hue planes. These hue plane
delimited subregions of white-balanced camera RG B values are
mapped to corresponding hue plane delimited subregions of es-
timated colorimetric X Y'Z values. Hue planes are geometrical
half-planes, each defined by the neutral axis and a chromatic
color in a linear color space. On an intersecting plane
perpendicular to the neutral axis, an angle, known as a hue angle
of the hue plane, can be measured. Between two such adjacent
hue planes, a convex cone in the color space is defined. The
cone has its vertex in the origin and it contains the full gamut
of colors between the two hue planes that were recorded by the
camera sensors or the color matching functions (see Fig. 3).
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(a) Example of real camera (Nikon 5100) sensors [7]; (b) XY Z color matching functions; and (c) their estimate using the best linear
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Fig. 3. Visualization of the convex cone spanned by the two hue
planes in the RGB unit cube. A hue plane is spanned by the neutral
vector  and a chromatic color (i or #). These three vectors intersect

the chromaticity plane (dotted triangle) at w', #', and 2. The hue
planes intersect the chromaticity plane in hue lines (dashed lines).

Hue plane preservation enables an exact mapping of linear
relations of colors that originate from a linear combination of a
neutral reflection or a specular highlight and a diffuse reflec-
tion. If, for example, an object or a surface has a reflection
that can be entirely (or at least approximately) characterized
by a mixture of a neutral reflection with the color of the illu-
minant and a reflection of a chromatic surface (i.e., diffuse
reflection) [23], then the device response can be written as
Crgp (ki kg) = kyW .+ kyD,. The corresponding response
from the observer is C.,(k,, k;) = k,W,+ k,D,, where
W, and W, are the responses to the neutral, D, and D, are
the responses to the chromatic surface, and 4, and k; are
the scalars that determine the mixture. By varying 4, and
kg, hue planes are described in device and observer space.
In order for a mapping f() to be hue plane preserving, the
equation  f(C,e(ky kg)) = Cyy,(ky» k) must hold for all
k, and k.

It can be easily seen that the LCC is hue plane preserving.
However, the polynomial and root-polynomial mappings will
not be hue plane preserving, despite their potential higher
accuracy. They will distort the hue planes, which can lead to
undesirable perceptual deviations of color, ie., hue shifts
and possibly unstable predictions of very saturated colors
(see Fig. 4).

The major contributions of this work can be described as
follows. The original HPPCC method required a careful selec-
tion of the small set of color samples that would both delimit
the color space subregions and define the linear color correction
transforms within them. Here, we pose a color correction prob-
lem as the colorimetric error minimization of all available color
samples while preserving the geometrical structure of separate
and continuous linear transforms as in the original HPPCC.
Furthermore, our framework allows for more flexible optimi-
zation with respect to the location of the color space subregion
boundaries. In Section 2 we give details of the original and in
Section 3 the proposed algorithm. The method proposed in this
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tortion resulting from the root-polynomial color correction of degree
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paper significantly improves color correction results comparing
with its precursor, which is shown in Section 4.

The preliminary version of this algorithm has been pre-
sented at a conference [24]. Here, we present an extended
version of this work, which includes an additional step enabling
optimization of the hue region boundaries, and give additional
results and discussions. Comparing to the conference publica-
tion, the final method utilizing the aforementioned optimiza-
tion offers modest improvements of the color correction for the
algorithm settings with a low number of hue regions, i.e., for
simpler models that require less parameters.

2. HUE PLANE PRESERVING COLOR
CORRECTION

In this section, we will briefly describe the original hue plane
preserving color correction method.

Throughout this paper, we will always assume that we deal
with the RG B color responses that were white-balanced; that is,
each RGB response has been divided by the respective color
response of the perfect diffuser denoted as w = (Ry, G, By).

Andersen and Hardeberg [22] proposed to sort the RGB
color responses according to their hue correlates 6, in the g
chromaticity plane in ascending order as
it r,=g,= %:

: 1 1
lf}"i—gl\gl’>§)

ol N ©

Y | 1 1
1fri—§/\gl.<§, 0]
1
arctan% + mn  otherwise,
i3

where

0 lfVZZ%/\gZZ%;
m=q1 ifg <3, (2

2 otherwise,

and the chromaticity values are calculated by
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r,=R;/(R; + G; + B), g =G;/(R;+ G; + B)).

3

Next, they choose K chromatic RG B samples denoted as g,
that will define the boundaries between K hue regions. Finally,
they find the 3 x 3 color correction transform for each region 4
by inverting the following equation:

i [#
o | T = | Bl fork=1...k-1
. L 5l
. [
qIT T, = j)lT for b =k, (4)
'] Lhs,

where p, denotes a measured X' Y'Z corresponding to the color
response §,, and p,, denotes a measured X Y’ corresponding to
the color response of the neutral patch @. By construction, T} is
invertible and hence all color samples at the boundaries of the
hue regions as well as the neutral sample are mapped exactly to
their corresponding X YZ values. The above also ensures the
continuity of the transform. The second line in Eq. (4) guar-
antees the transform wraparound with respect to hue, i.e., the
last hue region extends from 6y to 8. The construction of the
hue regions in the 7¢ chromaticity space is illustrated in Fig. 5.
The figure shows four hue regions extending from the white
point w whose extent is limited by the two consecutive hue
region boundaries.

Thus, in a preprocessing step, the HPPCC mehod calculates
K, 3 x 3 matrices—one for each hue region. When the color
correction is applied to the image, they map each RGB
pixel into its chromaticity and calculate its hue angle using
Egs. (1)=(3). Then, they use the hue region boundary samples
g, to calculate the hue region, with respect to which a pixel
belongs. Finally, they apply the color correction matrix corre-
sponding to this hue region.

1/3

0

1/3 1r

Fig. 5. Construction of hue regions in the rg chromaticity space.
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3. HUE PLANE PRESERVING COLOR
CORRECTION USING CONSTRAINED LEAST
SQUARES

Here, we present in detail our new hue plane preserving color
correction using constrained least squares.

In the HPPCC method, the matrices are found given a set of
known RG Bs and known corresponding X'V Zs that divide the
color space into the number of hue regions. However, in this
paper, we wish to find matrices that “best fit” all our data.

We denote an V x 3 matrix of camera responses as Q and an
N -vector of corresponding measured X responses as x. The lin-
ear least-squares color correction is given as

minimize ||Q7 - x|, (5)
t

where 7 is a 3-vector to be found. To be precise, in color cor-
rection, we must also solve for the mapping to the other two
channels, i.e., ¥ and Z, but the math is the same, so below we
will only solve for RGB to X.

In the method proposed in this paper, we alter the above
optimization by sorting N color responses according to 6
and dividing them into K subsets. Each subset contains N,
samples such that ¥_ N, = N. The subset samples are placed
into the rows of K, V), x 3 matrices denoted as Q. Next, % is
sorted according to the same index and partitioned into K sub-
sets denoted as x;,. We can seck for a separate solution to color
correction for each subset # of the dataset. This can be achieved
by performing the following optimization:

K
minimize Y _ [|Qu7; - %l 6)
By =

Note that the above returns different correction transforms
7, for each subset of the training set and the solution for Z, is
independent of 7;, HPPCC has the important property that the
color correction transform is continous, and this is because the
two colors defining the hue boundary (the neutral and an RGB)
are the same for two successive color correction transforms.
Solved independently, Eq. (6) would not have this property.
Thus, we are going to pose the least-squares problem as if
the solutions were coupled so we can solve for all the unknown
variables at the same time.

Let us rewrite Eq. (6) as

minimize |A7 - X||, (7)
T
where A is a nonsquare (V x 3K) block diagonal matrix
Q 0 - 0

0 Q - 0

A == . . . . > (8)
0 0 - Qg

T is a 3K-vector T = ('IT, e i;, )?, and X is an N-vector
X =@ . x0T

Let us denote an RG B vector whose corresponding hue an-
gle is greater than the hue angle of the last sample in Q, and less
than the hue angle of the first sample in Q. as 4/ . This def-
inition includes a “wraparound,” i.e., an RGB separating the
last (that is the K'th) hue region from the first needs to have
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its hue angle between the hue angles of the last sample in Qg
and the first sample in Q.
Then we can formulate the following equality constraints:

Gty =gl i, k=1,..,K-1,
gih=qih, k=K,
W't =" =... =i =x, 9)

where @ and x,, are a white-balanced camera response and a
colorimetric response X to the neutral patch, respectively. In
total, there are 2K constraints.

These constraints can be written in a matrix form as

CT = b, (10)
where C is a 2K x 3K matrix:

il -4 0 -

0 4 -4

0 0 Gk ~dka

-T .. -T

C= | % 0 0 9k ) (11)

o -2 0 . 0

0 o gt ...

0 -1 _ 5T

_T 0

and

w

- { 0 ] (12)
The new optimization is

minimize ||AT - X]||
T

subjectto CT = b, (13)

This constrained optimization enforces continuity of the
color correction transform at the boundaries of the hue regions.
Further, it can be noted, that if one wishes to preserve the con-
tinuity of color correction transform, it is not necessary to have
the last constraint that enforces white preservation [the last
equality in the last row in Eq. (9) and consequently the last
rows in Egs. (11) and (12)]. If we omitted this constraint, then
C would be a (2K - 1) x 3K matrix and & would be a zero
vector. While the reduced set of constraints could provide a
good solution to the color correction problem, we chose to sup-
plement it with an additional white preserving constraint. This
is in line with both the original HPPCC method as well as the
white preserving color correction [19] that was mentioned in
Section 1.

The above optimization can be written for all three XYZ
channels as

miniTmize [|AT - X]||

subjectto CT = B, (14)
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where X is an /V x 3 matrix of measured and sorted XY Zs, T is
a 3K x 3 matrix consisting of K, 3 x 3 linear color correction

matrices, and
0
B=|_]|, (15)
LDZ ]
where 15; is a row vector of measured XY Zs of the neutral
patch, and 0 a (2K - 1) x 3 matrix containing zeros.

This optimization can be solved using the method of
Lagrange multipliers, which provides the following closed-form
solution [25,26]:

{T} _ {2ATA cf]l[zATx}

zZ cC 0 B (1)

where Z is a matrix of Lagrange multipliers.
In Fig. 6, we can see a visualization of the color correction
transformation calculated using the method described above. It

ISR
o %5
RS SLHAX
K SN
7
05

24
5%

5
5%

AR,
% oy
AR SRS
'/m,:/:,;;,;;,:::;::m%’.,'.«

o
G

XA

e,

i y SRS AR KRR,

IR ORARRIIAAS AR,

o s SRR R,
ARSI,

N
- N
0

g r g9 0 r

Fig. 6. Cross sections along the rg chromaticity plane of the
XYZ = f(RGB) color correction hypersurface. Left: different
colors representing ten hue regions used in this example. Right: the
same figure with coloring proportional to X (top), ¥ (middle), and
Z (bottom).
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Fig. 7. Estimated ten sets of color matching functions. The colors of the plots correspond to the colors of the hue regions in Fig. 6.

can be seen that the surface created from the transformed chro-
maticities is continuous and consists of a number of planes
anchored at the white point. Cleatly, the calculated transforms
are different in different hue regions. We can get a further
intuition of how different the color transforms are in different
hue regions if we compare the RGB camera sensor sensitivities
transformed by the color correction transforms optimized for
those different hue regions. In this example, the color correc-
tion transform was calculated for the dataset generated using
Nikon camera spectral sensitivities [see Fig. 2(a)]. In Fig. 7,
we can see the estimated X' V'Z color matching functions result-
ing from the color correction transformation applied to the
above RGB sensors. We can see that the estimated XY 7
CMFs are clearly different in different hue regions. In particu-
lar, the ten Y estimates differ among each other perhaps as
much as the X and Z estimates, which is not immediately
apparent when comparing the rows of Fig. 6.

It is interesting to note the number of degrees of freedom
(DFs) that can be optimized in our proposed framework.
Matrix C is (in general) rank 2K. Then, from the Rank-nullity
theorem, we have that nul(C) = K, which is a number of DFs
to be optimized in the case of a single channel color correction.
Thus, for K = 3, we will have the same number of degrees of
freedom to be optimized as in the linear color correction—3 for
single channel color correction or 3 x 3 = 9 in the three chan-
nel case. Analogously, for K = 4, we have 4 x 3 = 12 DFs, for
K =5, we have 5 x 3 = 15 DFs, etc. The situation is some-
what different in the K = 2 case. Then, the color transforms in
the two hue regions are different only when 4,, ¢,, and @ are
coplanar (equivalent to 8, = 6, + ), in which case tk(C) =
3 and as in the K = 3 case, we have 3 x 3 = 9 DFs.

A. Hue Region Boundary Optimization

Above, we described the optimization method for calculating a
color correction transform subject to white preserving and con-
tinuity constraints at the boundaries of some given hue regions.
Here, we are considering the possible ways for finding the
optimal locations in the hue circle of the hue boundaries 8,
and their corresponding g, RGBs that are used to form the
constraints.

Splitting the set of color samples into the K subsets corre-
sponding to the K different hue regions with an equal number
of samples in each hue region would be one way of doing this.

While this idea may provide good results, it is very unlikely that
such an approach will give an optimal performance from the
point of view of color correction accuracy, in particular for a
low number of hue regions. Hence, we think that there is cer-
tainly some scope for further optimization of the hue region
boundaries.

The optimization that we have chosen utliizes gradient
descent. The initial parameters (hue region boundaries) are
calculated as described in the above paragraph, i.e., initially
hue regions contain the same number of color samples. Then,
the parameters of the color correction transform T and the
hue region boundaries 0, are updated iteratively. In each iter-
ation, the parameters of the color correction transform T are
recalculated for the updated set of 6, and the training set mean
error is calculated in the CIELUV color space. A gradient
descent algorithm is used to minimize this error, which returns
a set of 6, (and T) parameters corresponding to a (local) error
minimum.

The above optimization procedure is performed if the num-
ber of required hue regions is greater than two. If this is not
the case, i.e., we require only two hue regions, then we must
employ a slightly different approach. The reason for this is that
if we want the two color transforms to be different, then as
mentioned in Section 3, we must ensure that §,, §,, and @ are
coplanar, which is equivalent to 6, = 0, + 7. Hence, in this
case we are searching for one parameter: #;. This can be
achieved by performing an exhaustive search giving us an initial
0, value, followed by further gradient descent optimization.

For a high number of hue regions, the gradient descent op-
timization may produce some hue regions that are very small
and consequently contain few if any color samples. Therefore,
the optimization that we use is further constrained—we enforce
that each hue region has at least five patches and that its hue
angle is of at least five degrees. The optimization has been
implemented using the fmincon function of MATLAB and
used the interior point algorithm. The requirement of a mini-
mum hue angle of each region can be expressed as a linear
inequality constraint and the minimum number of patches
in each region as a nonlinear inequality constraint.

Most recently, Andersen and Connah published a paper
proposing another color correction method that is also hue
plane preserving and based on the original HPPCC [27]. The

differences between our method and their method are as
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follows. In our method, a hue angle determines a single color
correction matrix that has been optimized for the relevant hue
region and the CO continuity of the color correction transform
is enforced using the hue region boundary constraints as dis-
cussed above. Andersen and Connah proposed to train as many
color correction matrices as there are training samples and use
their weighted (with respect to the hue angle of the sample to
be corrected) average as the color correction matrix for that
sample. Unlike our method, the resulting color correction
transform is differentiable, but on the other hand it requires
more calculations to determine a color correction transform
for each sample.

4. EXPERIMENTS AND DISCUSSION

We evaluated the performance of our new method by perform-
ing both the synthetic data simulations and a real camera ex-
periment. The synthetic data experiments are described in the
first three subsections. In Section 4.A, we describe an initial
experiment with an aim to select an optimal number of hue
regions providing the proposed algorithm settings for sub-
sequent experiments. In Section 4.B, we compare the results
produced by our new method to some existing state-of-
the-art color correction methods. In Section 4.C, we provide
additional color correction results for an extended set of camera
sensors and illuminants. Finally, in Section 4.D, we perform an
experiment using data acquired from two real cameras.

A. Selection of the Number of Hue Regions

The aim of the first experiment is to establish the influence of
the number of hue regions on the performance of the proposed
method.

In this experiment, we used the Sony DXC-930 [28],
Foveon [29], and Nikon 5100 sensor sensitivities [7]. We
employed three reflectance datasets: the X-rite SG color chart
comprising 96 reflectances (shown in Fig. 1), the Macbeth DC
chart comprising 180 patches, and the Simon Fraser University
(SFU) reflectance dataset comprising 1995 reflectances [28].

The reflectance, illuminant D65 [6], and sensor sensitivity
spectra were sampled every 10 nm from 400 to 700 nm. The
above spectra were used to numerically calculate the corre-
sponding sets of camera responses (RGBs) and XY Zs. For each
of the three datasets, we learn color correction models, which
are then evaluated using the leave-one-out cross validation (the
smaller SG and DC reflectance datasets), i.e., for the dataset
containing 7 samples, and we build a model from all but
one sample, which is later used for testing. This is repeated
n times, and the mean AE in the CIELUV color space [6]
is calculated. In the experiments involving the largest (SFU)
dataset, instead of leave-one-out we use the 100-fold cross
validation.

In the original HPPCC method, the authors used twelve
hue regions. Here, we varied this number from 1 to 10. We
calculated the mean, median, and 95 percentile AE errors
for the three datasets and the three sensor sets. The results
of this experiment can be seen in Figs. 8-10. They reveal a
decreasing trend of color correction errors as the number of
hue regions increases. The decrease is usually clearly visible
for the first few hue region partitions and is followed by a
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Fig. 8. Mean, median, and 95 percentile AE errors for the increas-
ing number of hue partitions for the SG chart dataset.
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Fig. 9. As in Fig. 8 but for the DC chart.
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Fig. 10. As in Figs. 8 and 9 but for the SFU dataset.

plateau, with occasional small error increases. The strength
of this decrease depends on the dataset and the sensor set used
but is present in all of them. The errors diminish most signifi-
cantly for the smaller SG and DC datasets. As for the largest
SFU dataset, there is a more modest decrease in mean and
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median error statistics. This difference is not, in our view,
attributable to one reason alone. One factor to consider is
the relative sizes of the datasets. The color chart data has fewer
patches, so it is not unsurprising that we can arrive at a better
fitting model. Also related to the small patch number, we car-
ried out leave-one-out cross validation for this dataset (but not
for the SFU set). Assuming a dataset has a large number of
duplicates, leave-one-out cross validation tends to overfit the
data, i.e., you can achieve better fitting errors but at the cost
of a model that is—in effect—overfitted to the data. However,
in our experiments it is important to note that we only used the
distinct colors (and mitigate the possibility of overfitting).
Another important factor is the distribution of the color sam-
ples. Although the SFU dataset is large, the preponderance of
the data is desaturated. As such, the error (for all methods is
less) and the potential for improvement is, concomitantly, less
too. Having said that, for the SFU dataset, we can see a strong
decrease in the 95 percentile error at least for two of the three
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sensors. This figure is as or even more important than the
other two error statistics as it is usually the high errors greater
than 10AF affecting a small number of saturated samples that
produce strong visible effects. Another observation that we can
make is that there is little benefit in having more than six hue
regions and often having as few as four provides performance
that is not much below the optimum. Therefore, for further
experiments in the following sections, we have decided to test
our method with these two settings: four and six hue regions.
We will denote these two methods as NHPPCC-4 and
NHPPCC-6.

In Figures 11(a)-11(d), we can see the distribution of errors
in the CIELUV chromaticity diagram for linear color correc-
tion and the proposed method with two, four and six hue
regions. This result was produced for the Nikon sensor, the
D65 illuminant, and the DC chart reflectance dataset. We
can see that the red lines representing color correction errors
generally become shorter as the number of hue regions
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Fig. 11.  Color correction errors shown in the CIELUV chromaticity diagram. The errors plotted were calculated for the Nikon sensor, DC chart

reflectance set, and four different color correction methods.
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increases. This said, Figs. 11(c) and 11(d) do not suggest there
is a significant performance difference between NHPPCC-4
and NHPPCC-6.

B. Comparison with Other Color Correction Methods

In this section, we compare the NHPPCC method to the linear
color correction and also to the original HPPCC. For the for-
mer, we used the hue region settings established in Section 4.A.
For the latter, the hue circle was divided into twelve slices
and the sample selection was performed based on a relative
susceptibility to noise (for details see [22]).

Further, we compared the performance of the above to the
polynomial and root-polynomial color correction methods up
to degree of three [21]. An additional color correction method
that was used for comparison was the tri-linear LUT interpo-
lation with the graph Hessian regularizer [30]. The size of the
LUT that we used was 13 x 13 x 13.

We performed the above comparisons for the same three
sensor sets and the three reflectance datasets that we utilized
in the previous section. Analogously, we used the D65 daylight
illuminant. Also, the cross validation was performed in the
same way as described above. The results of these experiments
can be seen in Table 1. We present the same three statistics of
AE errors in the CIELUV color space. The best performing
algorithm in each column is shown in bold font.
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We can make the following observations from these results.
We can see that both NHPPCC-4 and NHPPCC-6 always
perform better than the LCC and the original HPPCC. The
advantage of the new method over the HPPCC is particularly
visible for the largest SFU dataset as well as for all the Foveon
results. This was to be expected as the HPPCC SFU dataset
results expose the fact that this method was using only a small
number of reflectances of this very large dataset (in fact
124+ 1 =13) to calculate the color correction transform.
Therefore, its results had to be worse than the results of all the
other methods that utilized all (putting aside cross validation)
dataset samples. The Nikon sensor SFU dataset results are an
exception here, as the HPPCC returns a result that is compa-
rable to the LCC. This may be due to the fact that the Nikon
sensor is more colorimetric than the other two and in general
all the error figures are much lower than for the other two
sensors. The NHPPCC improves on HPPCC by enforcing
that all color samples are used in the model fit. At the same
time, it maintains the flexibility of the HPPCC in optimizing
color correction in each hue region separately.

As for the second point regarding the Foveon sensor results,
the clear improvement of the NHPPCC methods over HPPCC
stems from the fact that the responses of this sensor set are
desaturated and hence require more “aggressive” color correc-
tion. The desaturated samples that are relatively close to the

Table 1. Synthetic Data Characterization Results?

Dataset SG DC SFU

Model Type Mean Med 95 Pt. Mean Med 95 Pt. Mean Med 95 Pt.
Sony

LCC 4.8 3.2 18 3.9 2.1 14 2.6 1.4 7.5
PCC,2 4.0 2.7 11 3.1 1.8 10 2.4 1.4 7.2
PCC,3 3.2 2.2 7.5 2.4 1.3 7.7 1.9 1.2 6.5
LuT 2.7 1.9 7.3 1.8 1.0 6.7 1.5 1.0 5.0
RPCC,2 2.8 1.8 8.7 2.4 1.3 8.5 2.1 1.2 7.0
RPCC,3 2.6 1.6 8.1 2.2 1.3 7.5 1.8 1.2 6.1
HPPCC 3.8 2.2 14 2.8 1.4 10 3.6 1.8 14
NHPPCC-4 3.4 2.3 13 2.7 1.5 9.6 2.4 1.5 7.4
NHPPCC-6 3.2 2.0 10 2.6 1.2 9.5 2.3 1.4 7.6
Nikon

LCC 2.7 2.2 6.3 2.4 1.6 6.8 2.0 1.5 5.8
PCC,2 2.2 1.7 5.2 1.8 1.2 5.0 1.7 1.2 4.6
PCC,3 1.7 1.2 4.2 1.4 1.0 4.0 1.4 1.1 3.9
LUT 1.5 1.1 4.7 1.1 0.9 3.1 1.3 0.9 3.6
RPCC,2 1.7 1.4 4.3 1.5 1.1 4.2 1.5 1.1 4.2
RPCC,3 1.5 1.1 3.9 1.3 0.9 3.6 1.4 1.1 4.0
HPPCC 2.7 1.9 8.6 2.0 1.5 5.6 2.0 1.6 5.7
NHPPCC-4 2.0 1.7 4.6 1.7 1.3 4.9 1.7 1.3 4.5
NHPPCC-6 1.8 1.4 4.2 1.6 1.2 4.0 1.7 1.3 4.5
Foveon

LCC 4.0 3.6 10 3.6 2.5 10 2.5 1.6 7.3
PCC,2 2.9 2.4 6.8 2.9 2.2 8.6 2.2 1.7 5.7
PCC,3 2.2 1.6 5.8 2.1 1.6 6.3 1.9 1.5 5.0
LuT 3.4 2.7 9.9 2.7 1.7 8.7 2.0 1.4 5.2
RPCC,2 3.0 2.3 7.1 2.9 1.8 7.0 2.0 1.4 5.5
RPCC,3 2.0 1.6 5.1 2.2 1.4 6.4 1.9 1.4 5.0
HPPCC 4.9 2.7 19 5.4 3.4 18 3.3 2.2 9.2
NHPPCC-4 2.9 2.2 8.0 2.4 1.6 7.3 2.1 1.6 5.2
NHPPCC-6 2.8 1.9 8.3 2.4 1.5 7.1 2.0 1.5 5.3

“The errors obtained are given as the mean, median, and 95 percentile error in the CIELUV color space.
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achromatic center pose a problem for the HPPCC method.
For that method, the hue region boundary sample selection
procedure works in such a way that if the color samples are
desaturated, it is difficult to choose the right color samples that
would define in an optimal way the shape of the color correc-
tion transform in each region of the hue circle.

The above results also show that the results of our new
method are in most cases comparable or not much worse than
the state-of-art root-polynomial color correction (RPCC). The
smallest errors are usually produced by the 3D LUT method or
the polynomial or root-polynomial color correction of higher
degrees. We must remember, however, that the LUT and poly-
nomial methods have drawbacks. These include the lack of
exposure invariance and the lack of hue plane preservation.
We note that the root-polynomial color correction is invariant
to exposure but does not preserve hue planes. From this point
of view, it is the linear color correction, which is the benchmark
of our proposed method. Our proposed method significantly
outperforms this benchmark. Importantdy, the NHPCC
method could also plausibly be incorporated in existing camera
processing pipelines.

C. Additional llluminants and Sensor Sets

In order to confirm the observations made in the previous ex-
periments, we carried out an additional experiment involving a
significantly larger set of camera sensors. Here, we used the
same dataset of 37 sensor sets that was used in [18]. The dataset
includes 28 sensors sets used in Ref. [31] and nine from the
Image Engineering website [32]. We also tested our method
with three illuminant spectra: daylight D65, illuminant A,
and fluorescent illuminant F11 (see Fig. 12). Here, we tested
only the most relevant and challenging SFU reflectance dataset.

The results of this experiment are visualized in Fig. 13 and
further summarized in Table 2. Each of the three figure panels
contains mean AFE bars for all 37 sensors and three methods
that we test here: linear color correction and our proposed
method with the number of hue regions set to four and six.
Table 2 contains the average of these mean AE errors as well
as average of median and 95 percentile errors.

The first observation we make is that the trends from the
earlier experiments are confirmed. Our proposed method
improves color correction performance comparing to the linear
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Fig. 12. Spectra of three illuminants: D65, A, and F11.
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color correction for all combinations of 37 sensor sets and three
illuminants. Next, we can see that the improvement is most
significant for the least colorimetric sensors, where the scope
for improvement is the widest. We can also see only a very
small advantage of NHPPCC-6 over NHPPCC-4. Again, this
advantage is the most visible for the least colorimetric sensors.
Importantly, we observe significant improvements of average
95 percentile errors for all three illuminants.

D. Real Data Experiments

In this section, we describe an experiment, which unlike all
previous experiments, was performed on a dataset captured
with cameras. We used the two real camera datasets (Nikon
D70 and Sigma SD15) that we described earlier in Ref. [21].
Both datasets have been captured as follows. We placed the
X-rite SG color checker in a viewing box, which was illumi-
nated by a D65 simulator [6]. The illumination was provided
by a Gamma Scientific RS-5B LED illuminator [33]. The scene
containing the color checker was imaged with both cameras

set to RAW image capture mode. A Photo Research PR-650
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Table 2. Average Results for 37 Sensors and Three llluminants

D65 A F11
Model Type Mean Med 95 Pt. Mean Med 95 Pt. Mean Med 95 Pt
LCC 2.3 1.7 6.2 1.7 1.2 5.0 1.3 0.8 3.7
NHPPCC-4 1.8 1.3 5.0 1.5 1.0 4.3 1.1 0.7 3.2
NHPPCC-6 1.8 1.3 4.9 1.4 1.0 4.2 1.0 0.7 3.1

Table 3. Nikon D70 and Sigma SD15 Characterization
Results?®

Nikon D70 Sigma SD15
Model Type Mean Med 95Pt. Mean Med 95 Pt
LCC 2.5 2.3 5.1 5.2 4.0 16
PCC,2 2.1 1.8 4.8 3.9 3.2 9.4
PCC,3 1.7 1.6 3.1 3.1 2.3 7.0
LUT 1.7 1.4 4.4 4.3 3.3 12
RPCC,2 1.9 1.7 4.0 3.8 2.8 8.7
RPCC,3 1.6 1.3 3.4 3.2 2.4 9.1
HPPCC 2.5 2.1 6.0 5.0 3.2 17

NHPPCC-4 2.0 1.8 4.3 3.9 3.0 10
NHPPCC-6 1.9 1.7 3.9 3.5 2.6 9.1

“The error statistics are given as in Table 1.

spectrophotometer was used to measure the XY Zs of the 96
patches of the color checker. We used DCRAW [34] (Nikon)
and PROXEL X3F [35] (Sigma) to extract the 16 bit linear
images. We calculated the average RGB of each manually seg-
mented color checker patch. The dark frames were captured
with the lens cap on and then subtracted from the average cam-
era responses. We did not attempt to correct for the camera
optics (which might also affect intensity at the pixel level).
We used the average RGB responses and the measured
XYZs to color characterize the two cameras according to all
the models described in Section 4.B. The models were also
validated and evaluated in the same way as those derived from
the synthetic data. The results of these experiments are pre-
sented in Table 3.

We can see that the results very closely follow the trends that
we could see in the synthetic data experiments. The NHPPCC
methods are always better than the linear color correction as
well as the original HPPCC. They also provide a comparable
performance to the remaining methods, including root-
polynomial color correction. As for the synthetic data, the
improvement in performance is the most significant for the
camera that initially produced the worst results.

5. CONCLUSIONS

Hue plane preserving color correction using constrained least
squares is based on the earlier algorithm that utilized a small
set of linear corrections where the correction chosen depended
on hue. Our extensive experiments prove that unlike its
predecessor, our new method is robust. It provides a step
change in performance over linear color correction for all tested
cameras and datasets. The method benefits from being expo-
sure invariant as well as preserving hue planes. It provides
results that are only marginally worse than those provided

by state-of-art root-polynomial color correction and LUT-
based color correction. While these nonlinear methods often
offer a small improvement over our method, they do exhibit
drawbacks: a lack of exposure invariance (LUT, PCC) and a
lack of hue preserving (LUT, PCC, RPCC). Our method re-
tains advantages of both nonlinear and linear color correction
methods. The former arise from that our method is globally
nonlinear and hence it offers a significant correction improve-
ment over LCC, the latter in essence stem from the fact that our
nonlinear color correction method is piecewise linear, i.e., it
consists of a set of linear transforms each operating in its
own convex cone in the color space. Therefore, in addition
to being exposure invariant and hue preserving, our method
will have the same good noise characteristics as the standard
linear color correction.
Supplementary material is available at [36].

Funding. Engineering and Physical Sciences Research
Council (EPSRC) (EP/J005223/1).

Acknowledgment. This work was supported by the UK
Engineering and Physical Sciences Research Council (grant
number EP/J005223/1). The authors would like to thank
Javier Vazquez-Corral for his help in collating the sensor spectra
database used in the experiments in Section 4.C.

REFERENCES

1. G. Wyszecki and W. Styles, Color Science: Concepts and Methods,
Quantative Data and Formulae (Wiley, 1982).

2. M. Stokes, M. Anderson, S. Chandrasekar, and R. Motta, “A standard
default color space for the internet—sRGB,” Technical Report
(Hewlett-Packard, Microsoft, 1996).

3. R. T. D. Luther, “Aus dem Gebiet der Farbreizmetric,” Z. Tech. Phys.
8, 540-555 (1927).

4. H. E. Ives, “The transformation of color-mixture equations from one
system to another,” J. Franklin Inst. 180, 673—-701 (1915).

5. P. Hubel, J. Holm, G. Finlayson, and M. Drew, “Matrix calculations for
digital photography,” in Proceedings of the 5th Color and Imaging
Conference (CIC) (1997).

6. R. Hunt and M. R. Pointer, Measuring Colour, 4th ed. (Wiley, 2011).

7. M. M. Darrodi, G. Finlayson, T. Goodman, and M. Mackiewicz,
“Reference data set for camera spectral sensitivity estimation,”
J. Opt. Soc. Am. A 32, 381-391 (2015).

8. H. Kang, “Colour scanner calibration,” J. Imaging Sci. Technol. 36,
162—-170 (1992).

9. R. S. Berns and M. J. Shyu, “Colorimetric characterization of a desk-
top drum scanner using a spectral model,” J. Electron. Imaging 4,
360-372 (1995).

10. G. Hong, M. R. Luo, and P. A. Rhodes, “A study of digital camera
characterisation based on polynomial modelling,” Color Res. Appl.
26, 76-84 (2001).

11. T. Cheung and S. Westland, “Colour camera characterisation using
artificial neural networks,” in 10th Color Imaging Conference (The
Society for Information Display, 2002), vol. 4, pp. 117-120.



12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Research Article

H. Kang and P. Anderson, “Neural network application to the color
scanner and printer calibration,” J. Electron. Imaging 1, 125—134 (1992).
L. Xinwu, “A new color correction model based on bp neural network,”
Adv. Inf. Sci. Serv. Sci. 3, 72-78 (2011).

T. Cheung, S. Westland, D. Connah, and C. A. Ripamonti,
“Comparative study of the characterization of colour cameras by
means of neural networks and polynomial transforms,” J. Color.
Technol. 120, 19-25 (2004).

P. Hung, “Colorimetric calibration in electronic imaging devices using
a look-up tables model and interpolations,” J. Electron. Imaging 2,
53-61 (1993).

J. McElvain and W. Gish, “Camara color correction using two-
dimensional transforms,” in Proceedings of the 21st Color and
Imaging Conference (CIC) (2013).

S. H. Lim and A. Silverstein, “Spatially varying colour correction
matrices for reduced noise,” Technical Report HPL-2004-99 (Imaging
Systems Laboratory, HP Laboratories, 2004).

J. Vazquez-Corral, D. Connah, and M. Bertalmio, “Perceptual color
characterization of cameras,” Sensors 14, 23205-23229 (2014).

G. D. Finlayson and M. Drew, “Constrained least-squares regression
in color spaces,” J. Electron. Imaging 6, 484-493 (1997).

P. Green and L. W. MacDonald, eds., Colour Engineering: Achieving
Device Independent Colour (Wiley, 2002).

G. Finlayson, M. Mackiewicz, and A. Hurlbert, “Colour correction
using root-polynomial regression,” IEEE Trans. Image Process. 24,
1460-1470 (2015).

C. F. Andersen and J. Y. Hardeberg, “Colorimetric characterization of
digital cameras preserving hue planes,” in Proceedings of the 13th
Color and Imaging Conference (CIC) (2005), pp. 141-146.

B. T. Phong, “lllumination for computer generated pictures,” Commun.
ACM 18, 311-317 (1976).

M. Mackiewicz, C. Andersen, and G. Finlayson, “Hue plane preserv-
ing colour correction using constrained least squares regression,”

Vol. 33, No. 11 / November 2016 / Journal of the Optical Society of America A

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36

2177

in Proceedings of the 22nd Color and Imaging Conference (CIC)
(2015).

A. Laratta and F. Zironi, “Computation of lagrange multipliers for
linear least squares problems with equality constraints,” Computing
67, 335-350 (2001).

C. L. Lawson and R. J. Hanson, Solving Least Squares Problems
(SIAM, 1995).

C. F. Andersen and D. Connah, “Weighted constrained hue plane
preserving camera characterization,” IEEE Trans. Image Process.
25, 4329-4339 (2016).

K. Barnard, L. Martin, B. Funt, and A. Coath, “A dataset for color
research,” Color Res. Appl. 27, 147-151 (2002).

P. Hubel, “Foveon technology and the changing landscape of digital
cameras,” in Proceedings of the 13th Color and Imaging Conference
(CIC) (2005), pp. 314-317.

E. Garcia, R. Arora, and M. R. Gupta, “Optimized regression for
efficient function evaluation,” IEEE Trans. Image Process. 21,
4128-4140 (2012).

J.Jiang, D. Liu, J. Gu, and S. Susstrunk, “What is the space of spectral
sensitivity functions for digital color cameras?” in Proceedings of the
IEEE Workshop on Applications of Computer Vision (WACV) (IEEE
Computer Society, 2013), pp. 168-179.
“Spectral sensitivities of several cameras,”
engineering.de/.

M. Mackiewicz, S. Crichton, S. Newsome, R. Gazerro, G. Finlayson,
and A. Hurlbert, “Spectrally tunable led illuminator for vision research,”
in Proceedings of the 6th Colour in Graphics, Imaging and Vision
(CGIV) (2012), Vol. 6, pp. 372-377.

“DCRAW: Decoding raw digital photos in Linux,” https://www.
cybercom.net/~dcoffin/dcraw/.

“PROXEL X3F Tools,” http://www.proxel.se/x3f.html.

. http://research.cmp.uea.ac.uk/hppcc_sup_material/.

http://www.image-


http://www.image-engineering.de/
http://www.image-engineering.de/
http://www.image-engineering.de/
http://www.image-engineering.de/
https://www.cybercom.net/~dcoffin/dcraw/
https://www.cybercom.net/~dcoffin/dcraw/
https://www.cybercom.net/~dcoffin/dcraw/
https://www.cybercom.net/~dcoffin/dcraw/
http://www.proxel.se/x3f.html
http://www.proxel.se/x3f.html
http://www.proxel.se/x3f.html
http://www.proxel.se/x3f.html
http://research.cmp.uea.ac.uk/hppcc_sup_material/
http://research.cmp.uea.ac.uk/hppcc_sup_material/
http://research.cmp.uea.ac.uk/hppcc_sup_material/
http://research.cmp.uea.ac.uk/hppcc_sup_material/
http://research.cmp.uea.ac.uk/hppcc_sup_material/

	XML ID funding

